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Model pruning has been proposed as a technique for reducing the size and complexity of Federated learning (FL) models. By making

local models coarser, pruning is intuitively expected to improve protection against privacy attacks. However, the level of this expected

privacy protection has not been previously characterized, or optimized jointly with utility. In this paper, we first characterize the

privacy offered by pruning. We establish information-theoretic upper bounds on the information leakage from pruned FL and we

experimentally validate them under state-of-the-art privacy attacks across different FL pruning schemes. Second, we introduce

PriPrune– a privacy-aware algorithm for pruning in FL. PriPrune uses defense pruning masks, which can be applied locally after any

pruning algorithm, and adapts the defense pruning rate to jointly optimize privacy and accuracy. Another key idea in the design

of PriPrune is pseudo-pruning: it undergoes defense pruning within the local model and only sends the pruned model to the server;

while the weights pruned out by defense mask are withheld locally for future local training rather than being removed. We show that

PriPrune significantly improves the privacy-accuracy tradeoff compared to state-of-the-art pruned FL schemes. For example, on the

FEMNIST dataset, PriPrune improves the privacy of PruneFL by 45.5% without reducing accuracy.
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1 INTRODUCTION

Federated Learning (FL) has emerged as the predominant paradigm for distributed machine learning across a multitude

of user devices [18, 26]. It is known to have several benefits in terms of reducing the communication, computation and

storage costs for the users, training better global models, and raising the bar for privacy by not sharing the local data. FL

allows users to train models locally on their (user) devices without revealing their local data but instead collaborate by

sharing only model updates that can be combined to build a global model through a central server. A typical FL scenario

∗
Both authors contributed equally to the paper.

Authors’ addresses: Tianyue Chu, IMDEA Networks Institute and Universidad Carlos III de Madrid, Madrid, Spain, tianyue.chu@imdea.org; Mengwei

Yang, University of California, Irvine, Irvine, USA, mengwey@uci.edu; Nikolaos Laoutaris, IMDEA Networks Institute, Madrid, Spain, nikolaos.laoutaris@

imdea.org; Athina Markopoulou, University of California, Irvine, Irvine, USA, athina@uci.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX


2 Tianyue Chu, Mengwei Yang, Nikolaos Laoutaris, and Athina Markopoulou

involves numerous users and resource-constrained devices [23] making it challenging to perform resource-intensive

tasks like training Deep Neural Networks (DNNs) on them.

In parallel, significant efforts have been put toward optimizing sparse DNNs to create lightweight models suitable for

training on edge devices [6, 14, 24]. Model pruning, which involves the removal of a certain percentage of parameters,

has gained significant attention [13, 20, 28]. Its primary objective is to derive a sparse DNNs model that decreases the

computational requirements and enhances efficiency without compromising accuracy [10]. Several model pruning

techniques have been developed for FL to optimize model sparsity under given constraints on the processing and

communication capabilities of devices, especially under heterogeneous clients, [3, 17].

It is intuitively expected that by reducing the number of weights of FL models, the pruning method should, as

a side-effect, also improve their resistance to reconstruction attacks. These attacks aim at using these weights to

reverse-engineer the model and obtain information about the input data; a.k.a. gradient inversion attacks launched by

the server. Prior work on model pruning focuses solely on the scalability/accuracy trade-off and thus neither considers

nor quantifies the privacy impact of pruning on FL. To the best of our knowledge, our paper is the first to consider

privacy in the context of FL model pruning, and to address the following key questions: Q1. Can we quantify privacy in

FL model pruning? Q2. How can we further optimize pruning for privacy, and jointly with accuracy? To address these

questions, we make the following two contributions.

First, we theoretically and empirically quantify privacy leakage in model pruning.We derive information-

theoretic upper bounds on the amount of information revealed about any single user’s dataset via model updates, in any

pruned FL scheme. This is the first theoretical characterization of privacy leakage in pruned FL models. We also conduct

a comprehensive empirical evaluation that quantifies the actual amount of privacy leakage of six different pruning

schemes, considering several state-of-the-art privacy attacks. Within the family of gradient inversion attacks (including

Deep Leakage from Gradients [45] and Gradient Inversion (GI) [11]), we also design a novel privacy attack (referred

to as Sparse Gradient Inversion, or SGI), specifically tailored to exploit vulnerabilities inherent in FL model pruning.

This evaluation combined with our theoretical analysis provides valuable insights into the choices and parameters that

affect the privacy provided by pruning.

Building upon these insights, we make our second contribution: we design PriPrune– a privacy-preserving
pruning mechanism. PriPrune defends against gradient inversion attacks in pruned FL, by performing additional

local (defense) pruning, after any (base) FL pruning scheme. PriPrune applies a personalized defense mask and adapts

the defense pruning rate, so as to jointly optimize model accuracy and privacy, using back-propagation augmented

with Gumbel Softmax Sampling. Another key idea in the design of PriPrune is what we refer to as Pseudo-Pruning: it

entails pruning with the defense mask within the local model and transmitting the pruned model to the server, thereby

enhancing privacy. However, the weights pruned out by the defense mask in the local model are not discarded; instead,

they are retained locally for subsequent rounds of local training, thereby preserving model accuracy. We evaluate

PriPrune via comprehensive experiments across various FL pruning schemes, a state-of-the-art attack and several

benchmark datasets. We show that it achieves a significantly better privacy-accuracy tradeoff than privacy-unaware

pruned FL baselines. For example, on the FEMNIST dataset, PriPrune improves the privacy PruneFL [17] by 45.5%

without imposing any accuracy loss.

2 RELATEDWORK
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Fig. 1. FL with model pruning, under a privacy attack by an honest-but-curious server. Step 1: the server broadcasts the global model
with weight 𝑤𝑡 to users. Step 2: After local training, user 𝑖 employs base pruning with pruning mask 𝑚̄𝑡

𝑖
, resulting in a pruned model

with weights 𝑤̄𝑡
𝑖
. The user then applies a defense pruning technique, yielding a pruned model with weights 𝑤̂𝑡

𝑖
. Step 3, the server

aggregates the model updates and launches a gradient inversion attack upon receiving 𝑤̂𝑡
𝑖
. Step 4: the server applies global pruning

with pruning mask 𝑚̄𝑡 , and updates the global model accordingly. Notice Base pruning can be any FL pruning scheme. Defense
pruning is introduced, in this paper, specifically to protect against privacy attacks.

Model Pruning in FL. State-of-the-art research for model pruning in FL utilizes two main approaches: one involves

the pruning mask being decided on the server side and the client only using this mask without changing it, and the

other involves the collaborative selection of the pruning mask by both the user and the server side. PruneFL [17]

follows the first approach., aiming to reduce the size and complexity of FL models without compromising accuracy.

It achieves this by removing less important weights and connections in each layer of the neural network based on

their magnitude and importance scores. However, the pruning mask is only decided by the server without considering

user-side local representations. LotteryFL [22] belongs to the second approach, introducing a method that allows users

to maintain local representations by selecting a subset of the global network using personalized masks. However, the

system of sparse models it produces performs well only on local datasets. FedDST [3] involves dynamic sparse training

on both the client and server sides, extracting and training sparse sub-networks. Other recent state-of-the-art studies

have introduced various gradient-based one-shot pruning algorithms at initialization. Snip [21] leverages connection

sensitivity to retain critical connections and remove less significant ones, aiming to limit the loss due to pruning. On

the other hand, GraSP [38] focuses on preserving the gradient flow through the network by scoring weights based on

the Hessian-gradient product. SynFlow [34], being a data-agnostic pruning algorithm, emphasizes preserving the total

flow of synaptic strengths through the neural network to achieve Maximal Critical Compression during initialization.

More importantly, none of them considered privacy implications in their design, as PriPrune does.

Reconstruction Attacks in FL. In terms of privacy leakage, communicating gradients throughout the training process

in federated learning can reveal sensitive information about the participants. Deep leakage from gradients (DLG)
Manuscript submitted to ACM
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[45] demonstrated that sharing the gradients can leak private training data, including images and text. Improved

DLG (iDLG) [44], presented an analytical procedure to extract the ground-truth labels from the shared gradients and

showed the advantages of iDLG over DLG. Inverting Gradients [11] introduced cosine similarity as a cost function in

their reconstruction attacks and employed total variation loss LTV as an image prior. Inverting Gradients [11] and

GradInversion [41] demonstrated the capability to reconstruct high-resolution images with increased batch sizes. The

reconstruction quality of the attack was improved in Reconstruction From Obfuscated Gradient (ROG) [42]. ROG [42]

proposed conducting the reconstruction optimization in low dimensional space and trained a neural network as a

postprocessing module.

While these privacy attacks have demonstrated the privacy vulnerabilities of standard federated learning, none of

them has considered pruned federated learning. Therefore, we do not currently know how effective existing attacks are

against the sparser models from pruned FL.

Privacy-Preserving Techniques in FL. FL is particularly vulnerable to the aforementioned inverting-the-gradient type

of reconstruction attacks, since it relies on gradient updates to operate. There exists a large body of literature on privacy-

enhancing methods that protect against this type of attacks in FL. The adversary is typically an “honest-but-curious”

server, i.e., a server that participates correctly in the FL protocol, but tries to infer training data of individual clients based

on their gradient updates. One family of defense approaches is based on differential privacy (DP) [7, 8, 12, 36, 40, 43],

which can be applied locally (at the clients), centrally (at the server), or in a distributed way. In the local DP model for FL,

each client adds noise to the local update before sharing with the server, which makes it difficult for the server to invert

the true gradient and infer the client’s training data. However, local DP is known to significantly degrade utility, in this

case model accuracy. Another defense approach applied to FL is Secure Aggregation (SecAgg) [4, 32, 33, 37, 39]. SecAgg

ensures that individual updates are encrypted (thus preventing the server from inverting the gradients of individual

users), while their aggregate can still be decrypted (thus enabling the server to train a good model). SecAgg is powerful

but has computational overhead, although significant advances have been done recently.

Both DP and SecAgg are important but orthogonal to the underlying FL and can be combined with a number of FL

protocols, including all the pruning protocols we consider as base in this study. Our proposed PriPrune can also be

combined with DP and/or SA. For instance, after applying PriPrune to base pruning, clients can add local DP to the

pruned updates before sending them to the server, and/or they can encrypt their pruned updates to enable SA. This

paper focuses on pruning itself and the privacy-utility tradeoff that can be achieved, before adding orthogonal defense

techniques. Future work could explore adding DP and/or SecAgg, which are out of the scope of this paper.

Recent works like FedMap [15] and Fed-LTP [30] discuss privacy specifically in the context of pruned FL. FedMap,

which appeared after this submission, enhances privacy by training models from scratch and by avoiding the sharing of

detailed pruning masks. However, it does not quantify the privacy leakage that may still occur from the pruned models.

FedMap can be considered as a base pruning technique, and PriPrune can still be applied to protect it. Fed-LTP, on the

other hand, combines Lottery Ticket Pruning with Zero-concentrated Differential Privacy (zCDP) to enhance privacy.

Integrating zCDP, or any type of DP, with our proposed PriPrune is orthogonal to our core contribution, as discussed

above, and can be explored as part of future research.

3 PROBLEM SETUP

Federated Learning (FL) with Pruning. We consider a general FL system with multiple users and one server,

employing any model pruning scheme on the users and/or the server. We refer to pruning at this stage as base pruning
Manuscript submitted to ACM
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Algorithm 1 FL with Pruning under Privacy Attack

1: Given: 𝑇 number of global training rounds; 𝑁 number of users indexed by 𝑖; 𝐸 number of local epochs; the server aims to

reconstruct the local data of the target user.

Server executes:
2: Initialize 𝒘0

3: for 𝑡 ← 1 to𝑇 do
4: for each user 𝑖 ∈ 𝑁 in parallel do
5: 𝒘̂𝑡

𝑖
← UserUpdate(𝒘𝑡−1,𝒎𝑡−1, 𝑖 )

6: if user 𝑖 is targeted then
7: ∇𝒘̂𝑡

𝑖
← 𝒘̂𝑡

𝑖
− 𝒘̂𝑡−1

𝑖

8: Privacy Attack on (𝐹 (D𝑖 ; 𝒘̂𝑡
𝑖
) , 𝒘̂𝑡

𝑖
, ∇𝒘̂𝑡

𝑖
)

9: end if
10: end for
11: 𝒘𝑡 ←

(∑𝐼
𝑖=1

∥D𝑖 ∥
∥D∥ 𝒘̂

𝑡
𝑖

)
⊙ 𝒎̄𝑡

;

12: end for
function UserUpdate(𝒘𝑡−1,𝒎𝑡−1, 𝑖 ) :

13: for local epoch 𝑒 ← 1 to 𝐸 do
14: Local Training and Base Pruning: 𝒘̄𝑡

𝑖
← Eq. (1)

15: Defense Pruning: 𝒘̂𝑡
𝑖
← 𝒘̄𝑡

𝑖
⊙ 𝒎̂𝑡

𝑖

16: end for
17: Return 𝒘̂𝑡

𝑖
to server

with base pruning rate 𝑝 , and it can be any state-of-the-art pruning FL scheme [3, 17]. This is depicted in Fig. 1 and

formalized in Algorithm 1.

The goal is to train a global model 𝐹 (D,𝒘) through FL. At the beginning of round 𝑡 , user 𝑖 with the local dataD𝑖 and

labels 𝑦𝑖 has local model weights𝒘𝑡
𝑖
; the server broadcasts the most recent global model 𝐹 (D,𝒘𝑡 ) to all participating

users. Then the round proceeds as follows:

Local Training and Base Pruning: Each user 𝑖 utilizes base pruning strategy P𝑖 (·) with base pruning masks 𝒎̄𝑡
𝑖
on its

trained local model 𝐹 (D𝑖 ,𝒘𝑡
𝑖
) :

𝒘̄𝑡
𝑖 :=

(
𝒘𝑡 − 𝑟

𝜕ℓ𝑖
(
𝐹 (D𝑖 ,𝒘𝑡 ⊙ 𝒎̄𝑡 ), 𝑦𝑖

)
𝜕𝒘𝑡

)
⊙ 𝒎̄𝑡

𝑖 (1)

Where 𝒎̄𝑡
𝑖
= P𝑖 (𝒘𝑡

𝑖
), 𝑟 is the learning rate and ⊙ is the Hadamard product. The base pruning mask 𝒎̄𝑡

𝑖
exhibits variability

across different base pruning schemes, reflecting the diverse pruning strategy P𝑖 (·) employed.

Server : The server receives model updates 𝒘̂𝑡
𝑖
from all participating users and aggregates to update the global model, as

it is typical in FL. We do not consider secure aggregation [33], differential privacy [27], or other defenses known in the

literature.
1

Threat Model. We consider an honest-but-curious server, which correctly follows the FL protocol but uses model

updates to infer private information, by launching privacy attacks against target user(s), as shown in Algorithm 1. In

our case, the server has full visibility of all masked local models and, upon receiving an update from a target user, it

attempts to reconstruct the user’s training data. We consider reconstruction attacks that invert gradients, including

Deep-Leakage-from-Gradients (DLG) [45], Gradient Inversion (GI) [11], and a custom attack SGI described in Section

4.2. We focus on single-round attacks, i.e., attacks that invert gradients observed at a single round
2
.

1
We consider those defenses as out-of-the-scope for this paper, since they are orthogonal to pruning. They can be implemented on top/combined with our

pruning-based defense methods.

2
To the best of our knowledge, there are currently no known practical multi-round inverting-the-gradient types of attacks that combine information from

multiple rounds. There is theoretical analysis of upper bounds of multi-round information leakage, including [9, 32] and we derive our own multi-round

Manuscript submitted to ACM



6 Tianyue Chu, Mengwei Yang, Nikolaos Laoutaris, and Athina Markopoulou

Defense via Pruning: In this paper, we propose to defend against privacy attacks, via pruning itself. One could

specifically design an entire pruning scheme not only for accuracy and efficiency but also for privacy, and the defense

would then be optimized jointly with the particular base pruning scheme e.g., PruneFL [17] and FedDST [3].

In this paper, we take a modular and universal approach: we consider any given state-of-the-art base pruning scheme

(with rate 𝑝𝑖 and mask 𝒎̄𝑡
𝑖
) without any modification. Then, we introduce additional local defense pruning, with mask

𝒎̂𝑡
𝑖
and pruning rate 𝑝𝑖 , specifically designed for protecting each user 𝑖 from privacy attacks. User 𝑖 eventually sends

back to the server weights after applying both base (𝒎̄𝑡
𝑖
) and defense (𝒎̂𝑡

𝑖
) pruning: 𝒘̂𝑡

𝑖
= 𝒎̄𝑡

𝑖
⊙ 𝒎̂𝑡

𝑖
⊙𝒘𝑡

𝑖
. This is depicted

in Fig. 1 and Algorithm 1 (see Line 15 and 16), and elaborated upon on Fig. 7. Given a base pruning (𝒎̄𝑡
𝑖
), there are many

possible defense pruning strategies (𝒎̂𝑡
𝑖
). In Section 5.2, we propose PriPrune for 𝒎̂𝑡

𝑖
, to optimize the accuracy-vs-privacy

tradeoff.

4 QUANTIFYING PRIVACY IN FL MODEL PRUNING

In this section, to address question Q1, we provide a theoretical and empirical quantification of privacy leakage in FL

model pruning. We aim to assess the server’s ability to infer information about an individual user’s local dataset D𝑖 .

We employ Mutual Information (MI) as the metric for quantifying privacy leakage:

I (𝑋 ;𝑌 ) =
∫
X×Y

𝑙𝑜𝑔
𝑑P𝑋,𝑌 (𝑥,𝑦)

𝑑P𝑋 (𝑥) ⊗ P𝑌 (𝑦)
𝑑P𝑋,𝑌 (𝑥,𝑦)

= H(𝑋 ) + H(𝑌 ) − H(𝑋,𝑌 ) (2)

Where (𝑋 ;𝑌 ) is a pair of random variables with values over the space X ×Y. Their joint distribution is P𝑋,𝑌 (𝑥,𝑦) and
the marginal distributions are P𝑋 (𝑥) and P𝑌 (𝑦).

This concept, rooted in information theory and Shannon entropy, captures the interdependence between two random

variables. It is very powerful for privacy analysis, given its applicability across various domains and tasks [1, 2]. This

applicability extends across various datasets, pruning schemes, and attack scenarios, as recently demonstrated in the

quantification of privacy within the context of FL aggregation [9].

4.1 TheoreticalQuantification

We seek to quantify how much information the server can infer about the private data D𝑖 of user 𝑖 over 𝑇 global

training rounds, based on the pruned updates

{
𝒘𝑡
𝑖
⊙ 𝒎̄𝑡

𝑖

}
𝑡 ∈[𝑇 ] submitted by user 𝑖 , via:

I𝑖 = I
(
D𝑖 ;

{
𝒘𝑡
𝑖 ⊙ 𝒎̄𝑡

𝑖

}
𝑡 ∈[𝑇 ]

)
(3)

where I represents mutual information between D𝑖 and
{
𝒘𝑡
𝑖
⊙ 𝒎̄𝑡

𝑖

}
𝑡 ∈[𝑇 ] ,𝒘

𝑡
𝑖
∈ R𝑑

is the local model weights of user 𝑖

at round 𝑡 .

This quantification is based on two mild assumptions:

Assumption 1. The random vector 𝑔𝑖
(
𝒘𝑡
𝑖
, 𝑏

)
has non-singular covariance matrix Σ𝑖 and mean 0.

Here, 𝑔𝑖

(
𝒘𝑡
𝑖
, 𝑏

)
∈ R𝑑∗

is the largest sub-vector of the 𝑔𝑖

(
𝒘𝑡
𝑖
, 𝑏

)
, where 𝑑∗ is the rank of 𝑔𝑖

(
𝒘𝑡
𝑖
, 𝑏

)
, 𝑑∗ ≤ 𝑑 , 𝑑 is the

model size, 𝑏 denotes the size of the random samples. 𝑔𝑖 (𝒘𝑡
𝑖
, 𝑏) denotes the stochastic estimate of the gradient of the

leakage in Section 4.1.2. Designing a practical multi-round attack is orthogonal to our contribution, which focuses on quantifying the leakage and

designing an add-on defense, for existing attacks.

Manuscript submitted to ACM



PriPrune: Quantifying and Preserving Privacy in Pruned Federated Learning 7

local loss function for user 𝑖 , computed based on a random sample 𝑏, and B𝑡
𝑖
is a data batch of size 𝐵 sampled uniformly

at random from it local dataset D𝑖 .

Assumption 2. 𝑝𝑖 the pruning rate of user 𝑖 remains unchanged throughout the training process.

Building upon Equation 2, Equation 3 can be written as:

I𝑖 ≤
𝑇∑︁
𝑡=1

(
I
(
x
𝑡
𝑖 ;𝒘𝑡

𝑖 ⊙ 𝒎̄𝑡
𝑖

����{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

))
(4)

Where x
𝑡
𝑖
=

𝜕ℓ𝑖 (𝒘̄𝑡−1

𝑖
;D𝑖 )

𝜕𝒘 = 1

𝐵

∑
𝑏∈B𝑡

𝑖
𝑔𝑖

(
𝒘𝑡
𝑖
, 𝑏

)
.

To that end, we first characterize the privacy leakage for a single round 𝑡 :

I
(
x
𝑡
𝑖 ;𝒘𝑡

𝑖 ⊙ 𝒎̄𝑡
𝑖

����{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

)
(5)

Under these two mild assumptions, we obtain our main theoretical result; the proof is deferred to Appendix A.

4.1.1 Upper Bound for Privacy Leakage in a Single Round. We now provide an upper bound for Equation 5, i.e., for the

privacy leakage in a single round.

Theorem 4.1 (Single Round Leakage). Under Assumption 1 and 2, we have an upper bound of I𝑡
𝑖
for a single round:

I𝑡𝑖 ≤ 1 − 𝑝𝑖 − 1

2 ln 2

+ 2 log

1

𝐵
+ 2Δ + 𝑑∗ log (2𝜋𝑒) (6)

where Δ = log

����det

(
Σ
− 1

2

𝑖

)����.
Proof. Based on Equation 2, we have

I
(
x
𝑡
𝑖 ;𝒘𝑡

𝑖 ⊙ 𝒎̄𝑡
𝑖

����{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

)
≤ H

(
𝒘𝑡
𝑖 ⊙ 𝒎̄𝑡

𝑖

����{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

)
︸                                     ︷︷                                     ︸

A

+ H
(
x
𝑡
𝑖

����{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

)
︸                            ︷︷                            ︸

B

(7)

For part A, based on the chain rule of entropy, we have

A = H
(
𝒘𝑡
𝑖 ⊙ 𝒎̄𝑡

𝑖

����{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

)
+ H

(
𝒘𝑡
𝑖 , 𝒎̄

𝑡
𝑖

����{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡 ]

)
≥ 0 (8)

Due to H
(
𝒘𝑡
𝑖
⊙ 𝒎̄𝑡

𝑖

����𝒘𝑡
𝑖
, 𝒎̄𝑡

𝑖
,

{
𝒘𝑘
𝑖
⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

)
= 0, and H

(
𝒘𝑡
𝑖
, 𝒎̄𝑡

𝑖

����{𝒘𝑘
𝑖
⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡 ]

)
≥ 0, we have

H
(
𝒘𝑡
𝑖 ⊙ 𝒎̄𝑡

𝑖

����{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

)
≤ H

(
x
𝑡
𝑖

����{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

)
︸                            ︷︷                            ︸

B

+ 1 − 𝑝𝑖 − 1

2 ln 2

(9)

The proof is shown in the Appendix A.

B = H
©­­«

1

𝐵

∑︁
𝑏∈B𝑡

𝑖

𝑔𝑖
(
𝒘𝑡
𝑖 , 𝑏

) ������{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

ª®®¬ (10)
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Let 𝑋 =
∑
𝑏∈B𝑡

𝑖
𝑔𝑖

(
𝒘𝑡
𝑖
, 𝑏

)
, 𝑍 =

{
𝒘𝑘
𝑖
⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

, 𝑌 = 1

𝐵
𝑋 . 𝑓𝑋,𝑍 (𝑥, 𝑧) and 𝑓𝑌,𝑍 (𝑦, 𝑧) are the corresponding joint

probability density functions.

Then Equation 10 can be written as follows:

H (𝑌 |𝑍 ) = H
©­­«
∑︁
𝑏∈B𝑡

𝑖

𝑔𝑖
(
𝒘𝑡
𝑖 , 𝑏

) ������{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

ª®®¬︸                                            ︷︷                                            ︸
C

+ log

1

𝐵
(11)

The proof is shown in the Appendix A.

In recent theoretical results for analyzing the behaviour of SGD, the SGD vector is approximated by a distribution

with independent components or by a multivariate Gaussian vector [46]. Based on the ZCA whitening transformation

and Assumption 1, we have 𝑔𝑖

(
𝒘𝑡
𝑖
, 𝑏

)
= Σ
− 1

2

𝑖
𝒛, where 𝒛 has zero mean and I𝑑∗ convariance matrix.

For the part C, we set 𝒗 =
∑
𝑏∈B𝑡

𝑖
𝒛 and 𝒖 = Σ

− 1

2

𝑖
𝒗, then we have:

C = H
©­­«
∑︁
𝑏∈B𝑡

𝑖

𝑔𝑖
(
𝒘𝑡
𝑖 , 𝑏

) ������{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

ª®®¬ = H
©­­«Σ
− 1

2

𝑖

∑︁
𝑏∈B𝑡

𝑖

𝒛

������{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

ª®®¬ = −
∫
PU (𝒖) logPU (𝒖) d𝒖

(𝑎)
= −

∫
PV (𝒗)����det

(
Σ
− 1

2

𝑖

)���� log

©­­­­«
PV (𝒗)����det

(
Σ
− 1

2

𝑖

)����
ª®®®®¬
����det

(
Σ
− 1

2

𝑖

)���� d𝒗 = log

����det

(
Σ
− 1

2

𝑖

)���� + H
©­­«
∑︁
𝑏∈B𝑡

𝑖

𝒛

������{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

ª®®¬︸                                  ︷︷                                  ︸
D

(12)

where (a) is based on the transformation of random vectors. Based on the Maximum Entropy Upper Bound [35], which

the continuous distribution X with prescribed varianceV(X) maximizing the entropy is the Gaussian distribution of

same variance. Since the entropy of a multivariate Gaussian distribution with mean 𝜇 and covariance 𝐾𝑖, 𝑗 is

h(N𝑛 (𝜇, 𝐾)) =
1

2

log (2𝜋𝑒)𝑛 |𝐾 |

where |𝐾 | denotes the determinant of 𝐾 . Hence, the maximum entropy upper bound for part D is

D ≤ 1

2

log (2𝜋𝑒)𝑑
∗ |I𝑑∗ | =

𝑑∗

2

log (2𝜋𝑒) (13)

Therefore, by combining Equation 12 and Equation 13, the upper bound for part B is

B ≤ log

1

𝐵
+ log

����det

(
Σ
− 1

2

𝑖

)���� + 𝑑∗
2

log (2𝜋𝑒) (14)

By adding parts A and B, we establish the upper bound for privacy leakage for a single round as in Theorem 4.1.

4.1.2 Upper Bound for Privacy Leakage across Multiple Rounds. Using Equation 4, we can also obtain an upper bound

for Equation 3, i.e., how much information the aggregated model over 𝑇 global training rounds could leak about the

private data:
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Algorithm 2 Sparse Gradient Inversion (SGI) Attack

1: Input: 𝐹 (D𝑖 ; 𝒘̂𝑡
𝑖
) : model at round 𝑡 from targeted user 𝑖; learning rate 𝜂 for inverting gradient optimizer; 𝑆 : max iterations for

attack; 𝜏 : regularization term for cosine loss in inverting gradient attack; 𝒎𝑟𝑒𝑐 :the recovery mask generated by server; 𝑑 :the

model size

2: Output: reconstructed training data (D𝑖 , 𝑦𝑖 ) at round 𝑡

𝒎𝑟𝑒𝑐 [ 𝑗 ] 𝑗 ∈𝑑 =

{
1 if 𝒘̂𝑡

𝑖
[ 𝑗 ] ≠ 0

0 if 𝒘̂𝑡
𝑖
[ 𝑗 ] = 0

3: ∇𝒘̂𝑡
𝑖
←

(
𝒘̂𝑡
𝑖
− 𝒘̂𝑡−1

𝑖

)
⊙𝒎𝑟𝑒𝑐

4: Initialize D′
0
← N(0,1), 𝑦′

0
← 𝑅𝑎𝑛𝑑𝑖𝑛𝑡 (0,𝑚𝑎𝑥 (𝑦) )

5: for 𝑠 ← 0 to 𝑆 − 1 do
6: ∇𝒘′𝑠 ← 𝜕ℓ (𝐹 (D′𝑠 , 𝒘̂𝑡

𝑖
), 𝑦′𝑠 )/𝜕𝒘̂𝑡

𝑖

7: L′𝑠 ← 1 − ∇𝒘̂𝑡
𝑖
·∇𝒘′𝑠

∥∇𝒘̂𝑡
𝑖
∥∥∇𝒘′𝑠 ∥

+ 𝜏
8: D′

𝑠+1 ← D′𝑠 − 𝜂∇D′𝑠 L
′
𝑠 , 𝑦
′
𝑠+1 ← 𝑦′𝑠 − 𝜂∇𝑦′𝑠 L

′
𝑠

9: end for
10: Return D′

𝑆
, 𝑦′

𝑆

Corollary 4.2 (Multiple Rounds Leakage). Continuing with Theorem 4.1, we can upper bound I𝑖 after 𝑇 global

training rounds as follows:

I𝑖 ≤ 𝑇
(
1 − 𝑝𝑖 − 1

2 ln 2

+ 2 log

1

𝐵
+ 2Δ + 𝑑∗ log (2𝜋𝑒)

)
(15)

This shows that increasing the number of global training rounds (𝑇 ) leads to a proportional rise in the upper bound

of information leakage from the user’s local training model.

Importance of the Upper Bounds: The derived upper bounds are important for several reasons.

• They provide a theoretical upper limit to the amount of information that can potentially be leaked from model

updates in pruned models. To the best of our knowledge, this has not been previously characterized for pruned

models.

• Because they are information-theoretical in nature, these bounds are universally applicable. They apply to any

learning task, any data distribution, any pruning scheme, and any privacy attack. The attacker is the server that

sees the pruned updates

{
𝒘𝑡
𝑖
⊙ 𝒎̄𝑡

𝑖

}
𝑡 ∈[𝑇 ] from client 𝑖 , and infers information about the local training Data D𝑖

of that client. Regardless of the exact reconstruction strategy, the inferred information is at most the mutual

information I𝑖 between the update and the local data, quantified in Equation 3. The derivation of the bounds

assumes the existence of a pruning mask but does not depend on how this mask was generated, e.g., whether

through magnitude-based pruning, gradient-based pruning, or any other pruning method.

• Theorem 1 expresses the bound in terms of important parameters (e.g., the pruning rate 𝑝 , model size 𝑑 , etc),

which provides insights into the choices and parameters that affect the privacy provided by pruning in practical

algorithms. However, the bounds may or may not be tight compared to the actual information leakage, depending

on the real-world scenario. In fact, these bounds are necessarily conservative since they are universal. This is why,

in the next section, we complement the theoretical analysis with experimental evaluations in specific settings

(i.e., considering specific base pruning, attack and defense schemes, specific data sets, and learning tasks).
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(a) Normalized Mutual Information (NMI).
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(b) Peak Signal-to-Noise Ratio (PSNR).

Fig. 2. Impact of varying pruning rate on privacy leakage using key metrics: Normalized Mutual Information (NMI) displayed on (a)
and Peak Signal-to-Noise Ratio (PSNR) shown on (b) under a Sparse Gradient Inversion attack (SGI) in FEMNIST for five pruning
methods under varying the base pruning rate.

4.2 EmpiricalQuantification

We perform an experimental evaluation to quantify the exact amount of privacy loss in concrete settings. This allows

us to compare the theoretical bounds to experimental results and show that they are qualitatively aligned. It also allows

us to obtain insights (in Section 5.1) that inform the design of defense pruning (in Section 5.2). More evaluation results

are provided in Section 6 and in Appendix C.1.

4.2.1 Privacy Metrics. To quantify the extent of privacy leakage, we use the Normalized Mutual Information (NMI)

between the training data and the reconstructed data. For two vectors𝑈 , 𝑉 ∈ R𝑁 , NMI is computed as follows. The

entropy of𝑈 is calculated by 𝐻 (𝑈 ) = −∑ |𝑈 |
𝑖=1

𝑃 (𝑖) log(𝑃 (𝑖)), where 𝑃 (𝑖) = |𝑈𝑖 |/𝑁 . The Mutual Information between𝑈

and 𝑉 is given by 𝐼 (𝑈 ;𝑉 ) = ∑ |𝑈 |
𝑖=1

∑ |𝑉 |
𝑗=1

|𝑈𝑖∩𝑉𝑗 |
𝑁

log

(
𝑁 |𝑈𝑖∩𝑉𝑗 |
|𝑈𝑖 | |𝑉𝑗 |

)
. NMI is then measured as

𝐼 (𝑈 ;𝑉 )
mean(𝐻 (𝑈 ),𝐻 (𝑉 ) ) .

For image data, prior research [9] has shown that NMI aligns well with the Peak Signal-to-Noise Ratio (PSNR).

This is also the case here: we see an agreement between NMI and PSNR with increasing pruning rates in Fig. 2 and

Fig. A2, both showing a similar decreasing trend. In the rest of the paper, we use both NMI and PSNR as metrics to

quantify the success of a reconstruction attack. Intuitively, the higher the NMI, the higher the privacy leakage, the more

successful the reconstruction attack. The higher the PSNR, the closer the original and reconstructed images and the

more successful the attack. Hence, Fig. 2 and Fig. A2 compare the NMI and PSNR metrics and show that that increasing

pruning rate reduces the success of the privacy attack.

4.2.2 Reconstruction Attack Algorithms. We first implement the classic Gradient Inversion (GI) attack [11] from the

DLG attack family. However, due to the unique sparsity patterns introduced by model pruning in FL, we identify the

potential for further optimizing this attack to specifically exploit the sparsity. Consequently, we introduce an advanced

attack tailored for the context of model pruning in FL, the Sparse Gradient Inversion (SGI) attack. This attack is designed

to recover the pruning mask within the pruned model. Moreover, its adaptability allows seamless integration with

existing privacy attacks in FL, thereby amplifying their effectiveness.
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Method Pruning Criteria

Pruning

Cycles

Pruning

at Server

Pruning

at Client

SNIP [21] gradient-based one shot ✓ ✗

SynFlow [34] gradient-based one shot ✓ ✗

GraSP [38] gradient-based one shot ✓ ✗

Random Pruning magnitude-based iterative ✓ ✓
FedDST [3] magnitude-based iterative ✓ ✓
PruneFL [17] magnitude-based iterative ✓ ✓

Table 1. Comparison for Evaluated Methods

(a) SGI attack. (b) GI attack.

Fig. 3. Comparison between the SGI (Sparse Gradient Inversion) attack and the GI (Gradient Inversion) attack on the FEMNIST
dataset for five pruning methods under varying the base pruning rate. In addition to the NMI metric, we show the corresponding
recovered images, which show the degradation with an increasing pruning rate.

The SGI attack is provided in Algorithm 2. In each iteration 𝑡 , the SGI algorithm proceeds as follows: (i) Based on the

user 𝑖’ local model weights𝒘𝑡
𝑖
, the server attempts to recover the pruning mask of user 𝑖 (Line 2). The recovered mask is

then integrated into the calculation of gradient, allowing the server to obtain a gradient ∇𝒘̂𝑡
𝑖
that closely approximates

the true gradients of user 𝑖; (ii) The SGI attack randomly initializes a set of dummy data, comprising dummy inputs D′
0

and dummy labels 𝑦′
0
. (iii) After the dummy gradient𝒘′ is acquired, the server then updates the dummy data in the

direction that minimizes the cosine distance between the dummy gradient and the gradient ∇𝒘̂𝑡
𝑖
.

4.2.3 Base Pruning Schemes under Attack. We subject a set of well-established FL pruning methods to the privacy

attack to assess their vulnerabilities and effectiveness in protecting user privacy. The pruning methods under evaluation

include Random pruning, Snip [21], SynFlow [34], GraSP [38], FedDST [3], and PruneFL [17], all of which are discussed

in Related Work (Section 2). We present an overview of the pruning criteria, cycles, and schedules employed by the

six evaluated methods. These specifics are elaborated in Table 1. By scrutinizing the table, we discern notable trends:

three of the methods execute pruning exclusively at the server side, while the remaining methods engage in pruning

activities at both the server and client sides. The latter approaches adopt an iterative pruning strategy throughout the

course of the FL process.
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(a) Varying base pruning rate 𝑝 . (b) Varying the batch size 𝐵.

(c) Varying base pruning rate 𝑝 . (d) Varying the batch size 𝐵.

Fig. 4. Impact of varying base pruning rate 𝑝 and batch size 𝐵 on privacy leakage. We consider the Normalized Mutual Information
(NMI) as privacy metric. We launch a Sparse Gradient Inversion (SGI) attack against 5 base pruning methods (Random, SNIP, SynFlow,
FedDST, and PruneFL), over two datasets (FEMNIST in the First Row and CIFAR10 in the (Second Row).

We compare the effectiveness of the Sparse Gradient Inversion (SGI) attack with the Gradient Inversion attack under

varying the base pruning rate. Our evaluation is based on the normalized mutual information (NMI) metric. Specifically,

we analyze the NMI achieved by each attack for different pruning methods. Figure 3 demonstrates that the SGI attack

consistently outperforms the Gradient Inversion attack by inferring a larger amount of information (as captured by

NMI) at each pruning rate level, across all tested pruning methods. This is because the SGI attack exploits the sparsity

inherent to model pruning, ultimately allowing better reconstruction attacks. In the rest of the paper, we use the SGI

attack as a baseline, with a learning rate of 0.01 and 10,000 attack iterations.

4.2.4 Attack Performance. We launch the SGI attack on the aforementioned FL pruning schemes, on the FEMNIST and

CIFAR10 datasets, to assess how FL parameters influence privacy leakage. The experimental results in Fig. 4 and Fig. 5

demonstrate that the impact of the parameters 𝑝 , 𝐵, 𝑑 , and 𝑇 qualitatively align with our theoretical findings.

Impact of Pruning Rate (𝑝). Fig. 4a and Fig. 4c illustrate that a higher pruning rate generally leads to a decrease in

NMI. This is intuitively expected as pruning removes information and makes it more difficult to attack the original

model. The effect is clearer for large pruning rates (e.g., above 0.5). Image reconstruction is clearer in FEMNIST than

CIFAR, consistently with prior work.
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(a) Varying the model size 𝑑 . (b) Varying training round𝑇 .
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(c) Varying the model size 𝑑 .
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(d) Varying training round𝑇 .

Fig. 5. Impact of varying model size 𝑑 and training rounds𝑇 on privacy leakage using Normalized Mutual Information (NMI) under a
Sparse Gradient Inversion (SGI) attack for six pruning methods: Random, SNIP, SynFlow, GraSP, FedDST, and PruneFL in FEMNIST
dataset (First Row) and CIFAR10 dataset (Second Row).

Impact of Batch Size (𝐵). Fig. 4b and Fig. 4d show increasing the batch size 𝐵 contributes to reducing information

leakage from the local training model. Larger batch sizes enable more data to be added during model training, which

can help obscure single data and increase privacy protection.

Impact of Model Size (𝑑). We consider 4 architecture of the models for FEMNIST dataset: Conv-1, Conv-2, Conv-4,

and Conv-6, featuring 1, 2, 4, and 6 convolutional layers, along with 2 linear layers. These models encompass 3,815,566,

6,603,710, 13,657,406, and 25,324,350 parameters, respectively. We consider 4 different model architectures for CIFAR

10 dataset: VGG-4, VGG-6, VGG-9, and VGG-11. These models consist of 1 convolutional layer and 2 linear layers, 4

convolutional layers and 2 linear layers, 6 convolutional layers with 3 linear layers, and 8 convolutional layers with 3

linear layers, respectively. These models encompass 1,125,642, 1,814,538, 6,436,106, and 9,385,994 parameters, respectively.

Figure 5a and Figure 5c depicts the relationship between the model size (𝑑) and the corresponding information leakage.

The x-axis in the figure represents the number of layers in each model. Fig. 5a and Fig. 5c show the upper bounds on

information leakage increase as 𝑑∗ increases. Interestingly, the impact of model size 𝑑 on information leakage is not

linear. In the case of over-parameterised models, some parameters may not contribute to the model’s performance or

information retention. Therefore, increasing the size of such models may not proportionally affect information leakage.

Impact of Global Training Rounds (𝑇 ). Fig. 5b and Fig. 5d show that increasing the global training rounds (𝑇 ) leads

to a proportional rise in the upper bound of information leakage. As the training progresses over multiple rounds, the
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Improved
Privacy-Utility 

Tradeoff

Pruning

Pseudo-Pruning

Fig. 6. Tradeoff of privacy vs. accuracy with three defense strategies: Largest (red), Random (green), and Mix (yellow), and their
enhanced versions incorporating Pseudo-Pruning (Pseudo). Pseudo could improve the overall tradeoff by elevating model accuracy and
Largest offers the highest level of privacy protection among all defense methods.

user’s model updates are repeatedly exposed to the central server. This repeated exposure increases the risk of potential

memorization of private training information by the server.

5 DESIGN OF DEFENSE PRUNING

5.1 Insights from PrivacyQuantification

As shown above, pruning designed only with model accuracy and model size in mind, does not sufficiently protect

against privacy attacks. Next, we describe three insights gained in the process of privacy quantification that inform our

design of privacy-aware FL model pruning (PriPrune described in Section 5.2).

Insight 1: Largest Weights Matter. Pruning weights with large gradients improves privacy the most, but also hurts

model accuracy the most. The intuition is that (base) pruning criteria, as used e.g., in PruneFL and FedDST, avoid pruning

model weights with the largest gradients, in order to preserve the most valuable information for the model. These

gradients can then be exploited by gradient inversion attacks. Fig. 4a and Fig. 4c confirm empirically that, as more

weights with large gradients are pruned, the attack is less successful.

This implies that the defense should strategically prune certain weights with large gradients, in addition to those

pruned by the base pruning scheme. We explored three defense strategies for weights to prune: (1) weights with the

top-𝑘 largest gradients (denoted as Largest), (2) random weight pruning (denoted as Random), and (3) a hybrid approach

combining the Largest and Random (denoted as Mix). We compared the three strategies for the same defense pruning

rate 𝑝𝑖 (set 0.3) on top of the base method (PruneFL) and details are provided in Appendix D.1. The results in Fig. 6,

within the Pruning oval, show the tradeoff achieved between privacy and accuracy: the ”Largest” method achieves the

best privacy and the worst model accuracy. This is because pruning weights with large gradients, removes valuable

information, thus improving privacy but also significantly reducing model accuracy. Therefore, to improve this tradeoff

and preserve privacy without harming accuracy, we need to introduce an additional mechanism.

Insight 2: Pseudo-Pruning. Users can prune weights with large magnitude gradients when they communicate with

the server (which helps privacy) and still keep these weights for their local training (which maintains accuracy).

We refer to this idea as Pseudo-Pruning. and illustrate it in Fig. 7. Before sending the weights 𝒘̄𝑡
𝑖
to the server user 𝑖

conducts Pseudo-Pruning with defense mask 𝒎̂𝑡
𝑖
. The weights pruned out by defense pruning with large gradients 𝒘̃𝑡

𝑖
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Defense Pruning

Fig. 7. Illustration of local pruning at user 𝑖 with Pseudo-Pruning defense: First user applies base pruning with base mask 𝒎̄𝑖 to derive
a pruned model𝒘̄𝑡

𝑖
. Then, defense pruning is conducted with mask 𝒎̂𝑖 . Defense pruning is implemented as Pseudo-Pruning, where

the remaining weights 𝒘̂𝑡
𝑖
(= 𝒘̄𝑡

𝑖
⊙ 𝒎̂𝑡

𝑖
) are sent to the server; while the pruned weights 𝒘̃𝑡

𝑖
(= 𝒘̄𝑡

𝑖
⊙ 𝒎̃𝑡

𝑖
) are locally saved for future

local training. Notably, these weights pruned by defense are not actually pruned, hence the term "Pseudo-Pruning."

(= 𝒘̄𝑡
𝑖
⊙ 𝒎̃𝑡

𝑖
) are withheld locally, thus preserving accuracy. Meanwhile, the weights remaining after the defense pruning

without large gradients, 𝒘̂𝑡
𝑖
(= 𝒘̄𝑡

𝑖
⊙ 𝒎̂𝑡

𝑖
), are transmitted to the server, thus preserving privacy. Here, 𝒎̃ is the bit-wise

complement matrix of 𝒎̂. In the next round, after user 𝑖 receives the global model𝒘𝑡+1
, the locally saved weights 𝒘̃𝑡

𝑖
are

loaded into the global model, serving as the local initial model.

We combine Pseudo-Pruning with each of the three strategies (Largest, Random, and Mix) in Insight 1, and we show

the evaluation results within the Pseudo-Pruning dashed oval in Fig. 6. Fig. 6 shows that the model accuracy is notably

better with Pseudo-Pruning than real pruning, with the same mask. Furthermore, combining the two insights into

Largest (Pseudo) offers the most effective privacy guarantee among all defenses discussed above. Hence, we adopt

Largest (Pseudo) as our defense strategy. Additional evaluation details are available in the Appendix D. Still, a remaining

shortcoming of the defense considered so far, is that their pruning rate is manually selected and remains fixed.

Insight 3: Adapt. The defense pruning rate (𝑝𝑖 ) should adapt to the model weights, to jointly optimize privacy and

model accuracy. A fixed defense rate is unable to capture the evolving dynamics of the training process. The defense

strategy should adapt to the changing dynamics of the training process by employing an adaptive defense pruning rate,

enabling a more effective optimization of the tradeoff between privacy and accuracy.

5.2 The PriPruneMechanism

Combining all aforementioned insights, we introduce the defense strategy, PriPrune, which dynamically adapts the

Pseudo-Pruning defense mask 𝒎̂ to jointly optimize accuracy and privacy throughout the FL training process.

Loss Function. The objective of user 𝑖 is to minimize a loss function that combines privacy and accuracy:

L𝑙𝑜𝑐𝑎𝑙 = 𝜆𝑎𝑐𝑐L𝑎𝑐𝑐 + 𝜆𝑝𝑟𝑖L𝑝𝑟𝑖 + 𝜆𝑠ℎ𝑎
∑︁

𝑙∈𝐿,𝑗∈𝑑𝑙
𝜶 𝑡
𝑖 (𝑙,𝑗 )

(16)

Here, L𝑎𝑐𝑐 represents the local model training loss, L𝑝𝑟𝑖 represents the local privacy loss, and

∑
𝑙∈𝐿,𝑗∈𝑑𝑙

𝜶 𝑡
𝑖 (𝑙,𝑗 )

serves as

the privacy regularization term, where 𝜶 𝑡
𝑖 (𝑙,𝑗 )

represents the probability of user 𝑖 not sharing the 𝑗-th parameter in 𝑙-th

Manuscript submitted to ACM



16 Tianyue Chu, Mengwei Yang, Nikolaos Laoutaris, and Athina Markopoulou

layer with the server at round 𝑡 . 𝐿 represents the total number of layers in the model, and 𝑑𝑙 refers to the number of

parameters in the 𝑙-th layer. Additionally, 𝜆𝑎𝑐𝑐 , 𝜆𝑝𝑟𝑖 , and 𝜆𝑠ℎ𝑎 act as weights for accuracy loss, privacy loss, and the

privacy regularization term, respectively.

Next, we explain the terms of the loss function of the user in Equation 16 and their rationale. First, the accuracy

loss is given by: L𝑎𝑐𝑐 = L
(
D𝑖 ; 𝒘̂𝑡

𝑖
|𝒘𝑡
𝑖,𝑖𝑛𝑖𝑡

)
. The initial local weight is computed as:𝒘𝑡

𝑖,𝑖𝑛𝑖𝑡
= 𝒘𝑡 ⊙ 𝒎̂𝑡−1

𝑖
+ 𝒘̄𝑡−1

𝑖
⊙ 𝒎̃𝑡−1

𝑖
,

where 𝒎̃ denotes the bit-wise complement matrix of 𝒎̂. It is the composition of locally saved weights with global

weights through the utilization of the defense mask 𝒎̂.

Then, the privacy loss L𝑝𝑟𝑖 is given by:

L𝑝𝑟𝑖 =
∑︁

𝑙∈𝐿,𝑗∈𝑑𝑙
− 𝑁𝑙∑
𝑙∈𝐿

𝑁𝑙

|𝒈𝑙, 𝑗 |∑
𝑗∈𝑑𝑙
|𝒈𝑙, 𝑗 |

log𝜶 𝑡
𝑖 (𝑙,𝑗 )

(17)

𝑁𝑙 indicates the number of weights in 𝑙-th layer, |𝒈𝑙, 𝑗 | represents the magnitude of the gradient for the 𝑗-th parameter

in 𝑙-th layer. The privacy loss is designed to discourage sharing weights with large gradients inspired by Insight 1,

aiming to mitigate information leakage. Therefore, we assign higher weights to parameters with larger gradients in the

loss function. Through this process, during the optimization of the privacy loss, the algorithm updates a higher 𝜶 𝑡
𝑖

associated with the larger weight term. This higher 𝜶 𝑡
𝑖
signifies a higher probability of not sharing the parameters with

larger gradients with the server, thus promoting the sharing of less valuable information with the server. Moreover,

we also distribute constraints to 𝑙-th layer based on its parameter count 𝑁𝑙 , in proportion to the total model weights,

which ensures uniform layer-wise sparsity.

The term

∑
𝑙∈𝐿,𝑗∈𝑑𝑙

𝜶 𝑡
𝑖 (𝑙,𝑗 )

introduces a privacy penalty based on the magnitude of 𝜶 𝑡
𝑖
. The optimization process aims to

minimize the sum of 𝜶 𝑡
𝑖
, resulting in a decrease in the overall probability of not sharing parameters. This, in turn, leads

to an increase in the total probability of sharing parameters. Thus, while the privacy loss discourages the sharing of

parameters with larger gradients with the server, this term encourages the sharing of parameters with smaller gradients,

thus preserving accuracy while maintaining privacy.

Optimization. In PriPrune, we optimize the defense mask 𝒎̂ and model weights 𝒘̄𝑖 jointly through gradient descent

based on our designed loss function. To overcome the discrete and non-differentiable nature of the defense mask 𝒎̂, we

employ Gumbel-Softmax sampling [16, 25] to substitute the original non-differentiable sample with a differentiable

sample. Specifically, 𝒎̂ is parameterized by a distribution vector 𝝅𝑙, 𝑗 = [𝜶 𝑡
𝑖 (𝑙,𝑗 )

, 1 − 𝜶 𝑡
𝑖 (𝑙,𝑗 )
]. 𝒗𝑙, 𝑗 represents the soft

Pseudo-Pruning decision for the 𝑗-th parameter in layer 𝑙 . The reparameterization trick is used for differentiable training:

𝒗𝑙, 𝑗 (𝑘) =
exp

(
(log𝝅𝑙, 𝑗 (𝑘) +𝐺𝑙, 𝑗 (𝑘))/𝜏

)∑
𝑘∈{0,1}

exp

(
(log𝝅𝑙, 𝑗 (𝑘) +𝐺𝑙, 𝑗 (𝑘))/𝜏

) (18)

where𝐺𝑙, 𝑗 = − log

(
− log𝑈𝑙, 𝑗

)
is Gumbel distribution with𝑈𝑙, 𝑗 sampled from a uniform i.i.d. distribution Unif(0, 1), 𝜏 is

the temperature of the softmax and 𝑘 ∈ {0, 1}. We apply the hard sample trick introduced by PyTorch document [29] to

acquire the defense mask 𝒎̂ and the main trick is to do 𝑦ℎ𝑎𝑟𝑑 − 𝑓𝑆𝑡𝑜𝑝𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (𝑦𝑠𝑜 𝑓 𝑡 ) + 𝑦𝑠𝑜 𝑓 𝑡 .
PriPrune. The PriPrune algorithm is descibed in Algorithm 3, which updates the UserUpdate function of Algorithm 1.

As depicted in Algorithm 3, in each FL round, after user 𝑖 receives the latest global model 𝒘𝑡
𝑖
from the server, they

sample their defense mask 𝒎̂𝑖 using Equation 18. The defense mask 𝒎̂𝑖 is then employed to combine the global model

𝒘𝑡
and the user’s locally saved 𝒘̃𝑡−1

𝑖
to generate the local initial model 𝒘𝑡

𝑖,𝑖𝑛𝑖𝑡
. Following this composition step, the
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Algorithm 3 PriPrune

1: function UserUpdate (𝒘𝑡 ,𝒎𝑡 , 𝑖):
2: Load 𝒘̃𝑡

𝑖
from local storage of user 𝑖

3: Initialize 𝜶 𝑡
𝑖
= 𝜶 𝑡−1

𝑖
4: for local epoch e ∈ 𝐸 do
5: Sample defense mask 𝒎̂𝑡

𝑖
by Equation 18 with 𝜶 𝑡

𝑖
6: Combine local and global model by:

𝒘𝑡
𝑖
[ 𝑗] 𝑗∈𝑑 =

{
𝒘̃𝑡
𝑖
[ 𝑗] if 𝒎̂𝑡

𝑖
[ 𝑗] = 0

𝒘𝑡
𝑖
[ 𝑗] if 𝒎̂𝑡

𝑖
[ 𝑗] = 1

7: Base Pruning: 𝒘̄𝑡
𝑖
← 𝒘𝑡

𝑖
⊙ 𝒎̄𝑡

𝑖
8: L𝑙𝑜𝑐𝑎𝑙 ← 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛16.

9: Model parameter update:
𝒘̄𝑡
𝑖
← 𝒘̄𝑡

𝑖
− 𝜂∇L𝑙𝑜𝑐𝑎𝑙 (𝒘̄𝑡

𝑖
,𝜶 𝑡

𝑖
)

10: Defense mask parameter update:
𝜶 𝑡
𝑖
← 𝜶 𝑡

𝑖
− 𝜂∇L𝑙𝑜𝑐𝑎𝑙 (𝒘̄𝑡

𝑖
,𝜶 𝑡

𝑖
)

11: end for
12: 𝒎̂𝑡

𝑖
← 𝑎𝑟𝑔𝑚𝑎𝑥 (𝜶 𝑡

𝑖
, 1 − 𝜶 𝑡

𝑖
)

13: Defense Pruning: 𝒘̂𝑡
𝑖
← 𝒘̄𝑡

𝑖
⊙ 𝒎̂𝑡

𝑖
, 𝒘̃𝑡

𝑖
← 𝒘̄𝑡

𝑖
⊙ 𝒎̃𝑡

𝑖

14: Return 𝒘̂𝑡
𝑖
to server, locally save 𝒘̃𝑡

𝑖

user initiates local training based on Equation 16, leading to updates in 𝒘̄𝑡
𝑖
, 𝒘̃𝑡

𝑖
, and 𝜶 𝑡

𝑖
. Then user 𝑖 conducts defense

pruning, retaining the non-shared weights 𝒘̃𝑡
𝑖
locally, and transmits the shared weights 𝒘̂𝑡

𝑖
to the server.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

Datasets and Models. We evaluate models Conv-2 [5] and VGG-11 [31] ) along with their corresponding datasets

FEMNIST [5] and CIFAR-10 [19]), which are commonly employed in FL studies.

Implementation details. In each round of training, we randomly select 10 clients from a pool of 193 users for the

FEMNIST and 100 clients for the CIFAR-10. The training process involves 20,000 iterations, with a batch size of 20 for

the FEMNIST and a batch size of 1 for the CIFAR-10. We employ 1 local training and initialize the learning rate at 0.25

with the base pruning rate set to 0.3. The details regarding the data split, resource and configurations are provided in

Appendix B.1.

Performance Metrics. To assess the effectiveness of the evaluated pruning methods, we employ the privacy metrics

and utility metrics. For privacy assessment, we use the Normalized Mutual Information (NMI) between the training

data and the reconstructed data as the privacy metric. Higher values of NMI indicate a higher risk of privacy leakage.

Additionally, the Peak Signal-to-Noise Ratio (PSNR) is employed as a well-established metric for image quality evaluation.

A thorough comparison of NMI and PSNR, along with supplementary experiments, supplemental experiments can

be found in Fig. 2 and Appendix B.3. The utility metric relies on model accuracy (ACC) to gauge model performance.

Ideally, we want improved privacy, without significantly compromising accuracy.

Hyper-parameter Selection.We conducted a search for our main parameter, the defense rate 𝑝𝑖 , from 0.1 to 0.6, as

depicted in Fig. 8c. With regards to our hyperparameters in loss functions, we search 𝜆𝑎𝑐𝑐 in the list of [1, 5, 10], 𝜆𝑝𝑟𝑖 in

the list of [1, 10, 15] and 𝜆𝑠ℎ𝑎 in the list of [2e-06, 2e-05, 2e-04]. Detailed results are provided in Appendix D.3.

Manuscript submitted to ACM



18 Tianyue Chu, Mengwei Yang, Nikolaos Laoutaris, and Athina Markopoulou

0 5000 10000 15000 20000
Training Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

PruneFL+PriPrune
PruneFL
PruneFL+Largest(10%)
PruneFL+Largest(20%)
PruneFL+Largest(30%)
PruneFL+Largest(40%)
PruneFL+Largest(50%)
PruneFL+Largest(60%)

(a) ACC over time

0 5000 10000 15000 20000
Training Rounds

0.10

0.15

0.20

0.25

0.30

0.35

0.40

No
rm

al
ize

d 
M

I

PruneFL
PruneFL+Largest(10%)
PruneFL+Largest(20%)
PruneFL+Largest(30%)
PruneFL+Largest(40%)
PruneFL+Largest(50%)
PruneFL+Largest(60%)
PruneFL+PriPrune

(b) Privacy (NMI) over time

(c) Privacy vs. Utility

0 5000 10000 15000 20000
Training Rounds

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

De
fe

ns
e 

Ra
te

PruneFL+PriPrune

(d) Defense rate 𝑝 over time

Fig. 8. Performance evaluation of PriPrune with adaptive defense rate and Largest (Pseudo) with 6 fixed defense rates, as defense
strategies, integrated with PruneFL (as the base pruning method), conducted over 20,000 training rounds across the FEMNIST dataset.
(a) Comparison of ACC over training rounds under these different defense strategies. (b) Comparison of Privacy (NMI) over training
rounds under these different defense strategies. (c) The Privacy-Utility tradeoff, measured in terms of NMI and ACC, respectively.(d)
Change in the adaptive defense rate of PriPrune over training rounds.

6.2 Performance of PriPrune

Recall that in Section 5.1, Insight 1, we initially assessed three defense strategies atop the base pruning method, namely:

Random, Largest, Random and Mix. The results in Figure 6 indicate that while these defense strategies enhance privacy,

they also degrade utility. Consequently, in Insight 2, we introduce Pseudo-Pruning to optimize this tradeoff. We evaluate

the aforementioned three defense strategies both with and without Pseudo-Pruning, revealing that their integration

with Pseudo-Pruning leads to improved accuracy and enhanced privacy. Notably, the Largest + Pseudo-Pruning strategy

achieves the optimal balance between privacy and utility, thus emerging as our preferred defense mechanism. In Insight

3, we tackle the challenge of a fixed defense rate by proposing PriPrune, which incorporates Largest + Pseudo-Pruning

(Largest (Pseudo) ) with an adaptive defense rate. The evaluation of the privacy improvement achieved by each individual

insight, in Section 5.1, essentially provides an ablation study. In this section, we conduct comprehensive experiments to

meticulously evaluate the performance of the entire PriPrune across various pruning mechanisms and datasets.

First, we present a performance comparison between the Largest (Pseudo) with 6 fixed defense rates and PriPrune

with the adaptive defense rate, both are integrated with PruneFL (as the base pruning method).

Comparable Utility. Fig. 8a illustrates how the utility metrics, ACC, change over FL rounds. It shows the convergence

curve of PriPrune, with its model accuracy closely aligned with that of PruneFL. This alignment indicates that PriPrune
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(a) PriPrune in FEMNIST (b) PriPrune in CIFAR-10

Fig. 9. Comparison of tradeoffs between privacy-vs-accuracy among four base pruning mechanisms, both with and without the
integration of PriPrune, across the FEMNIST and CIFAR-10 datasets.

maintains utility comparable to PruneFL. However, for the Largest (Pseudo) defense, increasing its fixed defense rate

from 10% to 60% results in decreased utility, rendering it unable to match the ACC achieved by PruneFL.

Enhanced Privacy. Figure 8b illustrates the change in the privacy metric NMI across FL rounds. It shows that PriPrune

consistently maintains a low NMI throughout all FL training rounds, significantly outperforming PruneFL. Moreover,

its NMI is comparable to that of Largest (Pseudo) with a fixed defense rate of 60%.

Optimal Tradeoff. Figure 8c illustrates the comparison of the privacy and utility tradeoffs among the mentioned

defenses. It shows that increasing the defense rate of Largest (Pseudo) enhances privacy protection but at the expense of

model accuracy. Conversely, PriPrune achieves the optimal tradeoff between privacy and accuracy. This is attributed to

the adaptive nature of PriPrune’s defense rate 𝑝 , which adjusts to the model weights and is optimized jointly for privacy

and model accuracy. The dynamic change of the defense rate of PriPrune is depicted in Fig. 8d.

We have demonstrated that PriPrune stands out as the best defense solution among other strategies. Subsequently,

we present the privacy performance of PriPrune when integrated with various state-of-the-art base pruning schemes in

FL, such as SNIP, SynFlow, FedDST, and PruneFL, across both the FEMNIST and CIFAR-10 datasets.

PriPrune with State-of-the-Art Pruned FL. Figure 9 shows the results of using PriPrune for defense after a number of

state-of-the-art base pruning schemes. Across all base pruning methods, this integration consistently enhances privacy

while preserving accuracy. This highlight PriPrune’s effectiveness and versatility in achieving an optimal tradeoff

between privacy and accuracy in diverse scenarios. This outcome is primarily due to the nature of PriPrune, which not

only actually prunes but also selectively retains certain critical weights for local training (through pseudo-pruning). This

mechanism allows the model to maintain or even improve accuracy while reducing the information leakage that could

be exploited in privacy attacks, as also shown in Fig.6. Specifically, PriPrune focuses on pseudo-pruning weights with

large gradients that are most likely to leak sensitive information and keep them for local training. This selective pruning

can lead to a model that is more robust against privacy attacks without a significant loss in accuracy. Additionally, the

adaptive pruning rate in PriPrune is optimized for the tradeoff between privacy and accuracy, allowing the model to

balance these two objectives effectively.

While Fig. 9 compares the tradeoffs between privacy-vs-accuracy, Table 2 further elaborates on the privacy improve-

ment achieved by using PriPrune as defense after any base scheme, reporting results over three experiments. Compared

to the base approach alone, adding PriPrune as defense consistently reduces NMI, thus improving privacy. For instance,
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FEMNIST CIFAR-10

Methods Base Base + PriPrune Base Base + PriPrune

PruneFL 0.22 ± 0.008 0.12 ± 0.007 0.29 ± 0.009 0.24 ± 0.009

FedDST 0.21 ± 0.025 0.13 ± 0.007 0.25 ± 0.008 0.18 ± 0.006

SynFlow 0.22 ± 0.009 0.15 ± 0.005 0.25 ± 0.012 0.21 ± 0.018

SNIP 0.23 ± 0.012 0.13 ± 0.014 0.24 ± 0.004 0.22 ± 0.008

Table 2. Comparison of privacy levels (NMI) between Base and Base + PriPrune for FL pruning methods. A lower NMI indicates a
reduced risk of privacy leakage.

on the FEMNIST dataset, PriPrune improves the privacy of PruneFL by 45.5% without compromising accuracy; on the

CIFAR-10 dataset, PriPrune improves privacy of FedDST by 28% while maintaining accuracy.

7 CONCLUSION

In this paper, we revisit federated learning with model pruning, from the point of view of privacy. First, we quantify the

information leakage and privacy gain offered for model pruning in FL, both theoretically and experimentally. Inspired

by insights obtained from our extensive privacy quantification, we design PriPrune– an adaptive privacy-preserving

local pruning mechanism in FL, that is jointly optimized for privacy and model performance. Our proposed mechanism

achieves the best tradeoff between privacy and accuracy across diverse pruning methods and datasets under privacy

attacks. One direction for our future work is to combine our pruning-based defense with classic, orthogonal defenses in

FL such as differential privacy and secure aggregation, to enhance privacy further.
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APPENDIX

This appendix extends the main paper, providing supplemental materials, including additional details and results, which

could not be included in the main paper, due to lack of space.

A PROOF OF THEOREM

This appendix provides the proof of Theorem 4.1 in Section 4.1.

A.1 Proof

Equation 2 is the definition of mutual information, which is:

I (𝑋 ;𝑌 ) =
∫
X×Y

𝑙𝑜𝑔
𝑑P𝑋,𝑌 (𝑥,𝑦)

𝑑P𝑋 (𝑥) ⊗ P𝑌 (𝑦)
𝑑P𝑋,𝑌 (𝑥,𝑦)

= H(𝑋 ) − H (𝑋 |𝑌 )

= H(𝑋 ) + H(𝑌 ) − H(𝑋,𝑌 )

Hence, Equation 3 can be written as:
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Where (a) and (b) are from the chain rule; (c) is from data processing inequality D𝑖 → 𝒘𝑡
𝑖
→ 𝒘𝑡

𝑖
⊙ 𝑚̄𝑡

𝑖
that

I
(
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)
= 0; (d) is from zero conditional entropy and invariant of mutual information,
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𝑖 , 𝑏

)
(20)

𝑏 denotes the size of the random samples.

Therefore, the privacy leakage for a single round 𝑡 is Equation 5:
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We first prove the upper bound for Equation 5.

Based on Equation 2, we have
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For part A, based on the chain rule of entropy, we have
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Due to H
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B

+ 1 − 𝑝𝑖 − 1

2 ln 2

(a) is from conditioning reduces entropy; (b) is from zero conditional entropy and the Taylor series of the binary entropy

function in a neighbourhood of 0.5 with the base pruning rate 𝑝𝑖 .

For part B,
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𝐵
𝑋 . 𝑓𝑋,𝑍 (𝑥, 𝑧) and 𝑓𝑌,𝑍 (𝑦, 𝑧) are the corresponding joint

probability density functions.

Then part B can be written as

H (𝑌 |𝑍 ) = −
∫
Y,Z

𝑓𝑌,𝑍 (𝑦, 𝑧) log
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𝑓𝑍 (𝑧)

d𝑦 d𝑧

= −
∫
X,Z
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C

+ log

1

𝐵

In recent theoretical results for analyzing the behaviour of SGD, they approximate the SGD vector by a distribution

with independent components or by a multivariate Gaussian vector.

We define 𝑔𝑖

(
𝒘𝑡
𝑖
, 𝑏

)
∈ R𝑑∗

is the largest sub-vector of the 𝑔𝑖

(
𝒘𝑡
𝑖
, 𝑏

)
with non-singular convariance matrices, where

𝑑∗ ≤ 𝑑 . Based on the ZCA whitening transformation and Assumption 1, we have 𝑔𝑖

(
𝒘𝑡
𝑖
, 𝑏

)
= Σ
− 1

2

𝑖
𝒛, where 𝒛 has zero

mean and I𝑑∗ convariance matrix.
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Then for the part C, we set 𝒗 =
∑
𝑏∈B𝑡

𝑖
𝒛 and 𝒖 = Σ

− 1

2

𝑖
𝒗, then we have:

C = H
©­­«
∑︁
𝑏∈B𝑡

𝑖

𝑔𝑖
(
𝒘𝑡
𝑖 , 𝑏

) ������{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

ª®®¬
= H

©­­«Σ
− 1

2

𝑖

∑︁
𝑏∈B𝑡

𝑖

𝒛

������{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

ª®®¬
= −

∫
PU (𝒖) logPU (𝒖) d𝒖

(𝑎)
= −

∫
PV (𝒗)����det

(
Σ
− 1

2

𝑖

)���� log

©­­­­«
PV (𝒗)����det

(
Σ
− 1

2

𝑖

)����
ª®®®®¬
����det

(
Σ
− 1

2

𝑖

)���� d𝒗
= log

����det

(
Σ
− 1

2

𝑖

)���� + H
©­­«
∑︁
𝑏∈B𝑡

𝑖

𝒛

������{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

ª®®¬︸                                  ︷︷                                  ︸
D

(22)

(a) is based on the transformation of random vectors. Based on the Maximum Entropy Upper Bound [35], which the

continuous distribution X with prescribed varianceV(X) maximizing the entropy is the Gaussian distribution of same

variance. Since the entropy of a multivariate Gaussian distribution with mean 𝜇 and covariance 𝐾𝑖, 𝑗 is

h(N𝑛 (𝜇, 𝐾)) =
1

2

log (2𝜋𝑒)𝑛 |𝐾 |

where |𝐾 | denotes the determinant of 𝐾 . Hence, the maximum entropy upper bound for part D is

H
©­­«
∑︁
𝑏∈B𝑡

𝑖

𝒛

������{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

ª®®¬ ≤
1

2

log (2𝜋𝑒)𝑑
∗ |I𝑑∗ | =

𝑑∗

2

log (2𝜋𝑒) (23)

Therefore, by combining Equation 22 and Equation 23, the upper bound for part B is

H
(
x
𝑡
𝑖

����{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

)
≤ log

1

𝐵
+ log

����det

(
Σ
− 1

2

𝑖

)���� + 𝑑∗
2

log (2𝜋𝑒)

(24)

After summing part A and part B, we derive the upper bound for the privacy leakage for the single round, which is

Equation 5:

I
(
x
𝑡
𝑖 ;𝒘𝑡

𝑖 ⊙ 𝒎̄𝑡
𝑖

����{𝒘𝑘
𝑖 ⊙ 𝒎̄𝑘

𝑖

}
𝑘∈[𝑡−1]

)
≤ 1 − 𝑝𝑖 − 1

2 ln 2

+ 2 log

1

𝐵
+ 2 log

����det

(
Σ
− 1

2

𝑖

)���� + 𝑑∗ log (2𝜋𝑒)
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Fig. A1. Impact of Varying Pruning Rates on Reconstructed ImageQuality Using Normalized Mutual Information (NMI) Metric in
DLG Attack.

Based on Equation 4, we have the upper bound for objective function Equation 3, standing how much information

the aggregated model over 𝑇 global training rounds could leak about the private data,

I𝑖 ≤𝑇 −
𝑇 (𝑝𝑖 − 1)

2 ln 2

+ 2𝑇 log

1

𝐵
+ 2𝑇 log

����det

(
Σ
− 1

2

𝑖

)���� + 𝑑∗𝑇 log (2𝜋𝑒)

For PruneFL, the upper bound for the single-round leakage is

I𝑡𝑖 ≤ 1 +
¯P ∪ A
2𝑑 ln 2

+ 2 log

1

𝐵
+ 2 log

����det

(
Σ
− 1

2

𝑖

)���� + 𝑑∗ log (2𝜋𝑒)

≤ 1 +
¯P

2𝑑 ln 2

+ 2 log

1

𝐵
+ 2 log

����det

(
Σ
− 1

2

𝑖

)���� + 𝑑∗ log (2𝜋𝑒) (25)

B PRIVACY ATTACKS

B.1 Extra Implementation details

Our algorithms are implemented by Pytorch and we implement experiments on two NVIDIA RTX A5000 and two Xeon

Silver 4316. Across all the examined methods, we employ 1 local training and initialize the learning rate to 0.25 and The

baseline pruning rate is set at 0.3 for all datasets.

Data Partitioning. Our data partitioning methodology is aligned with the FEMNIST setting, utilizing its inherent

193-user partition. As for the CIFAR-10 dataset, we divided it into 100 equal-sized, non-overlapping users, following the

methodology used in PruneFL [17].

B.2 Comparison of Attacks

In this subsection, we initiate our attack analysis by employing the classic Gradient Inversion (GI) attack [11], a member

of the DLG attack family, applied to both the Random and PruneFL pruning methods. As depicted in Figure A1, under

this classic DLG attack, the reconstruction of local image data fails even with low pruning rates, such as 𝑝 = 0.2 for

Random pruning.

This could be attributed to the sparsity patterns introduced by model pruning in FL. Our exploration takes a step

further to optimize the attack strategy. The goal is to capitalize on the characteristics of sparsity inherent to the model

pruning context. Consequently, we introduce an advanced attack tailored for the context of model pruning within FL,

Manuscript submitted to ACM



28 Tianyue Chu, Mengwei Yang, Nikolaos Laoutaris, and Athina Markopoulou

Fig. A2. Impact of varying pruning rate in FEMNIST on privacy leakage using key metrics: Normalized Mutual Information (NMI)
displayed on the left y-axis and Peak Signal-to-Noise Ratio (PSNR) shown on the right y-axis under a Gradient Inversion attack for
PruneFL.

termed the Sparse Gradient Inversion (SGI) attack. This novel approach aims to recover the pruning mask embedded

within the pruned model.

B.3 Evaluation on both NMI and PSNR Metrics

To quantify the extent of privacy leakage, we utilized the Normalized Mutual Information (NMI) metric, which has been

demonstrated in prior research to align well with the Peak Signal-to-Noise Ratio (PSNR) [9] as an effective measure

of privacy leakage. We examine the relationship between NMI and PSNR. The observed trend, depicted in Fig. A2,

illustrates a consistent decrease in both NMI and PSNR metrics with higher pruning rates. This result is consistent with

previous research, confirming the reliability of NMI as a measure of privacy leakage, which is comparable to the widely

accepted PSNR metric.

C EVALUATION METHODS

C.1 Attack Performance
Considering space constraints, we present the attack performance outcomes for the FEMNIST and CIFAR10 datasets in

this section.

FEMNIST Dataset. Figure 4 and Figure 5 show the impact of varying pruning rate, batch size, model size, and training

rounds on privacy leakage using Normalized Mutual Information (NMI) under a Sparse Gradient Inversion (SGI) attack

for six pruning methods: Random, SNIP, SynFlow, GraSP, FedDST, and PruneFL, on FEMNIST dataset.

Impact of Pruning Rate (𝑝). Figure 4a illustrates the impact of varying pruning rates 𝑝 from 0.1 to 0.9 on privacy

leakage using NMI on the FEMNIST dataset. Consistent with our Theorem 4.1, we observe that higher pruning rates lead

to a decreasing trend in NMI. This reduction indicates a lowered risk of privacy leakage due to the fewer parameters

present in the pruned model. Figure A3 shows the image reconstruction under different pruning rates. We notice the

reconstructions become harder under a large pruning rate.

Impact of Batch Size (𝐵). Figure 4b shows the impact of varying batch size 𝐵 on privacy leakage using NMI on the

FEMNIST dataset, where 𝐵 is selected from the set 1, 16, 20, 32, 64. It demonstrates that larger batch sizes increase the
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Fig. A3. Impact of varying pruning rate on image reconstruction in FEMNIST using different base pruning methods.

privacy protection of the FL process as they enable more data points to be added during local training, which can help

in obscuring the data characteristics of a particular user.

Impact of Model Size (𝑑). We consider 4 architecture of the models: Conv-1, Conv-2, Conv-4, and Conv-6, featuring 1,

2, 4, and 6 convolutional layers, along with 2 linear layers. These models encompass 3,815,566, 6,603,710, 13,657,406, and

25,324,350 parameters, respectively. Figure 5a depicts the relationship between the model size (𝑑) and the corresponding

increase in information leakage. The x-axis in the figure represents the number of convolutional layers in each model.

This observation can be attributed to the fact that larger models possess a higher number of parameters, thereby

amplifying gradient information leakage.

Impact of Communication Round (𝑇 ). In Figure 5b, the depiction of training rounds 𝑇 on information leakage reveals

a non-linear increase. This observation aligns with Corollary 4.2, which provides an upper bound not strictly indicative

of actual performance. The algorithms surpass this bound, allowing for potential non-linear growth with increasing

rounds, without contradicting the established theorems.

CIFAR10 Dataset. Figure 4 and Figure 5 show the impact of varying pruning rate, batch size, model size, and training

rounds on privacy leakage using Normalized Mutual Information (NMI) under a Sparse Gradient Inversion (SGI) attack

for six pruning methods: Random, SNIP, SynFlow, GraSP, FedDST, and PruneFL, on CIFAR10 dataset.

Impact of Pruning Rate (𝑝). Figure 4c illustrates the impact of varying pruning rates on privacy leakage using NMI.

By controlling the pruning rate from 0.1,0.3,0.5,0.7,0.9, we examine the trade-off between privacy leakage and the extent

of model pruning. Consistent with our Theory 4.1, we observe that higher pruning rates lead to a decreasing trend in

NMI. This decrease in NMI indicates a diminished risk of privacy leakage due to the reduced amount of information

available in the pruned model.

Impact of Batch Size (𝐵). Figure 4d shows the impact of varying batch size 𝐵 on privacy leakage using NMI on the

CIFAR10 dataset, where 𝐵 is selected from the set 1, 8, 16, 32. It demonstrates that larger batch sizes increase the privacy

protection of the FL process as they enable more data points to be added during local training, which can help in

obscuring the data characteristics of a particular user.
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Impact of Model Size (𝑑). We consider 4 different model architectures: VGG-4, VGG-6, VGG-9, and VGG-11. These

models consist of 1 convolutional layer and 2 linear layers, 4 convolutional layers and 2 linear layers, 6 convolutional

layers with 3 linear layers, and 8 convolutional layers with 3 linear layers, respectively. These models encompass

1,125,642, 1,814,538, 6,436,106, and 9,385,994 parameters, respectively. Figure 5c depicts the relationship between the

model size (𝑑) and the corresponding increase in information leakage. The x-axis in the figure represents the number

of layers in each model. This observation can be attributed to the fact that larger models possess a higher number of

parameters, thereby amplifying gradient information leakage.

Impact of Communication Round (𝑇 ). Figure 5d illustrates the impact of training rounds 𝑇 on information leakage.

Generally, an increase in training rounds results in more information leakage, but it’s worth noting that the increase

is not linear for all rounds. This observation aligns with Corollary 4.2, which provides an upper bound not strictly

indicative of actual performance. The algorithms surpass this bound, allowing for potential non-linear growth with

increasing rounds, without contradicting the established theorems.

D DEFENSE DETAILS

D.1 Results of Insights

Within the scope of the three defense methods in the Insights from Evaluation Section, specific configurations have

been established. These settings are detailed below:

For all three defense methods, the total pruning rate (𝑝) is uniformly set at 0.3, mirroring the original PruneFL’s

pruning rate.

For each defense method:

• PruneFL + Largest: The defense strategy involves pruning based on the weights with top-𝑘 largest gradients,

with the defense pruning rate set to 𝑝𝑙𝑎𝑟𝑔𝑒𝑠𝑡 = 0.3.

• PruneFL + Random: The defense strategy involves random pruning, with the defense pruning rate (𝑝) set to

𝑝𝑟𝑎𝑛𝑑𝑜𝑚 = 0.3.

• PruneFL + Mix: This is a hybrid approach that combines both the largest gradient-based pruning and random

pruning. The defense pruning rate is determined as the sum of 𝑝𝑙𝑎𝑟𝑔𝑒𝑠𝑡 = 0.15 and 𝑝𝑟𝑎𝑛𝑑𝑜𝑚 = 0.15.

Additionally, we explore various combinations of the pruning rates for largest and random within the Mix strategy,

including 0% largest with 30% random, 10% largest with 20% random, 20% largest with 10% random, and 30% largest

with 0% random.

Figure A4 shows the performance in terms of accuracy, privacy assessed through NMI, and attack loss of these four

combinations across 20,000 iterations of FL. The outcomes reveal that the configuration of 0% largest with 30% random

attains the highest accuracy, while 30% largest with 0% random yields the highest level of privacy protection.

Since we focus on privacy in this work, we first proceed to investigate the privacy-accuracy trade-off for the 30%

largest with 0% random configurations.

Figure A5 shows Privacy-Accuracy Trade-Off with Varying Defense Rate (0% to 50%) in Largest Method based on

PruneFL using NMI and Attack Loss Privacy Metrics.

The outcomes are indicative of a notable trend: as more weights associated with larger gradients are pruned, privacy

is enhanced at the expense of accuracy. This substantiates our Insight 1: Largest Weights Matter. Pruning weights with

large gradients improves privacy the most but also hurts model accuracy the most.
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Fig. A4. Comparative Performance Analysis of Four Defense Rate Combinations in MIX Strategy across 20,000 FL Rounds.
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Fig. A5. Comparison of Privacy-Accuracy Trade-Off with Varying Defense Rate (0% to 50%) in Largest Method based on PruneFL
using NMI and Attack Loss Privacy Metrics

D.2 Performance on CIFAR10 Dataset

To show the effectiveness of PriPrune, we also implement PriPrune on CIFAR10 Dataset with various pruning methods

as shown in Figure 9b. By incorporating PriPrune, all pruning methods successfully elevate its privacy levels without

undermining accuracy.

𝜆𝑝𝑟𝑖 = 1 𝜆𝑝𝑟𝑖 = 10 𝜆𝑝𝑟𝑖 = 15

Parameter 𝜆𝑠ℎ𝑎 = 2𝑒 − 04 𝜆𝑠ℎ𝑎 = 2𝑒 − 05 𝜆𝑠ℎ𝑎 = 2𝑒 − 06 𝜆𝑠ℎ𝑎 = 2𝑒 − 04 𝜆𝑠ℎ𝑎 = 2𝑒 − 05 𝜆𝑠ℎ𝑎 = 2𝑒 − 06 𝜆𝑠ℎ𝑎 = 2𝑒 − 04 𝜆𝑠ℎ𝑎 = 2𝑒 − 05 𝜆𝑠ℎ𝑎 = 2𝑒 − 06

𝜆𝑎𝑐𝑐 = 1 0.166 0.171 0.156 0.138 0.153 0.154 0.138 0.159 0.151

𝜆𝑎𝑐𝑐 = 5 0.154 0.158 0.136 0.125 0.121 0.123 0.135 0.123 0.130

𝜆𝑎𝑐𝑐 = 10 0.148 0.142 0.140 0.132 0.126 0.118 0.135 0.132 0.140

Table A1. Comparison of privacy levels (NMI) during hyper-parameter selection: with regards to our hyperparameters in loss functions,
we search 𝜆𝑎𝑐𝑐 in the list of [1, 5, 10], 𝜆𝑝𝑟𝑖 in the list of [1, 10, 15] and 𝜆𝑠ℎ𝑎 in the list of [2e-06, 2e-05, 2e-04].

D.3 Hyper-parameter Selection

Table A1 has searched 𝜆𝑎𝑐𝑐 in the list of [1, 5, 10], 𝜆𝑝𝑟𝑖 in the list of [1, 10, 15] and 𝜆𝑠ℎ𝑎 in the list of [2e-06, 2e-05, 2e-04],

which showing the comparisons of privacy levels during the hyper-parameter search. As shown in Table A1, when we

increase the 𝜆𝑝𝑟𝑖 , the NMI value becomes lower, indicating better privacy protection. We explore different combinations

of hyper-parameters and finally utilize the best set of values that could achieve the best privacy-accuracy tradeoff.

For different pruning methods and different datasets, we are adopting different combinations of hyper-parameters
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so as to achieve better privacy-utility tradeoff. In FEMNIST, we are using 𝜆𝑝𝑟𝑖 = 15, 𝜆𝑠ℎ𝑎 = 2𝑒 − 05 and 𝜆𝑎𝑐𝑐 = 5 for

PruneFL+PriPrune, 𝜆𝑝𝑟𝑖 = 1, 𝜆𝑠ℎ𝑎 = 2𝑒 − 06, 𝜆𝑎𝑐𝑐 = 10 for Synflow+PriPrune, 𝜆𝑝𝑟𝑖 = 1, 𝜆𝑠ℎ𝑎 = 2𝑒 − 06, 𝜆𝑎𝑐𝑐 = 10 for

SNIP+PriPrune and 𝜆𝑝𝑟𝑖 = 8, 𝜆𝑠ℎ𝑎 = 2𝑒 − 05, 𝜆𝑎𝑐𝑐 = 10 for FedDST+PriPrune. In CIFAR-10, we are using 𝜆𝑝𝑟𝑖 = 10,

𝜆𝑠ℎ𝑎 = 2𝑒 − 05 and 𝜆𝑎𝑐𝑐 = 5 for PruneFL+PriPrune, 𝜆𝑝𝑟𝑖 = 1, 𝜆𝑠ℎ𝑎 = 2𝑒 − 06, 𝜆𝑎𝑐𝑐 = 5 for Synflow+PriPrune, 𝜆𝑝𝑟𝑖 = 1,

𝜆𝑠ℎ𝑎 = 2𝑒 − 06, 𝜆𝑎𝑐𝑐 = 10 for SNIP+PriPrune and 𝜆𝑝𝑟𝑖 = 10, 𝜆𝑠ℎ𝑎 = 2𝑒 − 05, 𝜆𝑎𝑐𝑐 = 10 for FedDST+PriPrune.
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