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1 Introduction
In the last decade, the complexity of networks has increased
significantly to accommodate the rise of innovative appli-
cations. This growing complexity has rendered traditional
human-in-the-loop network management approaches inad-
equate, necessitating greater automation and flexibility in
managing these networks. The introduction of Software-
Defined Networking (SDN) with a programmable control
plane marked a major advancement in this direction, en-
abling a wide range of network automation applications to
be executed within the SDN control plane.

Machine Learning (ML) algorithms have become essential
for automating the planning, deployment, and management
of modern mobile and computer networks [1]. In SDN, ML
models are typically executed in the control plane or on ex-
ternal servers [2]. However, these models require back-and-
forth communication with the user plane to run real-time in-
ference, which leads to significant latency, often in the range
of tens to hundreds of milliseconds [3]. This delay makes
them inadequate for applications with stringent latency de-
mands, such as augmented and virtual reality (AR/VR) [4].

Recent advancements in programmable user planes, with
hardware such as Intel Tofino ASICs [5] and NVIDIA Blue-
Field DPUs [6], and network programming languages like
P4 [7], have spurred interest in offloading ML models to
the user plane for line-rate inference with potentially sub-
microsecond latency. However, implementing ML models
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directly in the user plane presents significant challenges due
to three key limitations [8]. First, user plane devices like
switches use expensive memory like TCAM and SRAMwhich
are available in very limited amounts, restricting data stor-
age capacity. Second, to ensure high-speed packet process-
ing, the number of operations that can be performed on
each packet is highly constrained, often only one. Third,
the supported mathematical operations are limited to ad-
dition, subtraction, bit shifts, and logical operations. This
means that floating point operations cannot be performed
within these devices. The P4 programming language intro-
duces additional constraints, such as the absence of loops
and the inability to inspect packet payloads, which further
complicates ML deployment in the user plane. These limita-
tions make it infeasible to fully train ML models within the
switch using P4, restricting user-plane applications to de-
ploying pre-trained models for line-rate inference [8]. Con-
sequently, the fundamental question arises: How can ML
models be effectively deployed in programmable user-plane
equipment for high-speed inference while accounting for the
above constraints?

The primary aim of this PhD project is to address the
aforementioned question, contributing to the broader goal of
realizing self-driving networks [9]. This is achieved through
the development of solutions for embedding data-driven mod-
els into the user plane, facilitating the acceleration of of-
floadable network management tasks. The research ques-
tion is divided into three specific sub-questions: (i) Which
ML models are most suitable for user plane inference? (ii)
Which user-plane components should be targeted for model
deployment? and (iii) How can the constraints of user plane
devices be effectively accommodated?

During the PhD, answers were sought to the above ques-
tions leading to several design choices for the contributions
that were made. The questions were tackled as follows.

(i) Which ML models are most suitable for deployment in
the user plane?
A key aim of this thesis is to maintain simplicity in mod-
els designed for user-plane inference to ensure compatibil-
ity with user-plane environments. Therefore, Decision tree
(DT) and Random Forest (RF) models are chosen. Unlike
complex neural networks (NNs) requiring multiple opera-
tions, tree-based models rely on simple comparisons between
feature values and thresholds at each tree node to reach an
inference decision. More so, these models either match or
surpass NNs in tabular data inference tasks, achieving a bet-
ter accuracy-complexity tradeoff [10]. This makes them the
ideal models for user-plane deployment.
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Figure 1: Overview of the user plane inference workflow.

(ii) Which user-plane components should be targeted for
model deployment?
A range of off-the-shelf programmable user-plane targets is
available, including ASICs like Intel Tofino [5], and Smart-
NICs such as Netronome Agilio [11]. Each has distinct ad-
vantages and limitations. SmartNICs installed in dedicated
servers could support complex models like NNs but only al-
low inference at specific locations. Switches on the other
hand, while widely deployed and capable of in-network in-
ference, are more constrained in memory and operations,
restricting model complexity. However, switches excel in
performance, throughput, and cost-effectiveness, supporting
high data rates, making them ideal for user-plane inference,
and justifying why they are chosen in this thesis.

(iii) How can the constraints of user plane devices be ef-
fectively accommodated?
The design of solutions for in-switch inference must take
into account the various constraints of programmable user
planes. Many existing approaches face performance and
scalability challenges primarily because they fail to accom-
modate the stringent limitations of specific user-plane tar-
gets. This thesis presents several techniques and adaptations
aimed at overcoming these constraints, enabling scalable so-
lutions for performing line-rate inference in programmable
switches using DT and RF models.

User-plane inference with ML is a relatively new area of re-
search, with most existing works proposed over the last five
years, as recently surveyed [12, 13]. The majority of prior
work focuses on classification, used for tasks like network
intrusion detection, device identification, and service finger-
printing. This thesis also focuses on classification, which
runs fully in the user plane and is analogous to the forward-
ing role of the switch, which in essence, is the classification of
packets to different forwarding ports. The rest of this work
summarizes the thesis which is available in full online [14].

2 Methodology
We focus on deploying Decision Tree (DT) and Random
Forest (RF) models in programmable switches because their
simplicity makes them ideal for in-switch operation. These
models rely solely on logical comparisons between feature
values and node thresholds, which fits well with the highly
constrained environments of switches. Switches, in turn, can
facilitate widespread, high-speed inference throughout the
network. The following sections detail the workflow adopted
for our methodology (§2.1), the software tools and frame-
works used (§2.2), and the experimental hardware setup we
used to test our solutions (§2.3).

2.1 In-switch inference workflow
Figure 1 shows the adopted workflow for deploying models
into the user plane. It is divided into three parts based on
where the processes are running.

ML Server. As in all ML tasks, the ML model prepara-
tion starts with the acquisition of the target dataset typically
as packet captures in .pcap format. We employ Tshark [15]
to extract packet header fields which are used as features
in packet-level (PL) inference or to compute features in the
case of flow-level (FL) inference. With the computed fea-
tures now saved in .csv files, the dataset is used to train the
models using Scikit-Learn [16] Python-based libraries. The
final model is then transformed into Match & Action (M/A)
table entries that will be sent to the controller as shown in
Figure 1.

Controller. The trained model is injected into the switch
P4 program by the controller via a control plane specifica-
tion e.g., the P4Runtime API. The controller does not take
part in the inference process which instead happens fully in
the switch. However, it receives information from the switch
via packet digests which bring statistics or results from the
switch, based on which it can modify table entries to change
the behaviour of the switch program.

User Plane. The entire inference process takes place
in the switch i.e., in the user plane which is portrayed at
the bottom of Figure 1 as a Protocol Independent Switch
Architecture (PISA) pipeline which is adopted by most user
plane targets. A P4 program is written based on the model
that is to be deployed. The parser is programmed to extract
all header fields that serve as model features. In the first
part of the M/A pipeline which is the ingress pipeline, M/A
tables are defined for the model and any logic required is
implemented too. The nature of tables and/or computations
depends on which inference solution is being deployed, as we
will show in §3 and §4. Upon deployment, packets arriving
the switch are parsed and features are extracted. In the
ingress, the model is applied and a decision is reached. The
packet is then forwarded or dropped based on the result.
Additional processing could be applied in the egress pipeline
if needed.

2.2 Software tools
As described in §2.1, we use TShark [15], to extract features
from .pcap files. We then use Python for the data analy-
sis, feature selection, model hyper-parameter tuning, model
training (using Scikit-Learn [16]) and model translation into
M/A table entries. For writing programs that implement
the models in the switch, we use P4. At the early stages
of the PhD when we had no hardware components, we used
BMv2 as a software target to debug and test our P4 code.
This switch was deployed within Mininet [17] alongside a
few hosts for sending traffic through the switch via Tcpre-
play [18] from one host and capturing it on another using
Tcpdump. To generate background traffic and increase the
heterogeneity of our test environments, we used the Moon-
gen [19] traffic generator to produce and inject Gbps traffic.
Background traffic is however not inferred upon and only
serves to generate a traffic mix that better resembles real-
world scenarios.

2.3 Hardware setup
After a year of experimentation with BMv2 switches, we set
up a hardware testbed consisting of two servers and three



programmable switches. The servers are equipped with In-
tel 8-core Xeon processors running at 2GHz, 48GB of RAM,
and 100Gbps QSFP28 interfaces. The switches are Edgecore
Wedge 100BF-QS models featuring Intel Tofino BFN-T10-
032Q chipsets with 32 100-GbE QSFP28 ports. They oper-
ate on the Open Network Linux (ONL) OS, along with In-
tel’s Software Development Emulator (SDE) for compiling
P4 programs for the Tofino Native Architecture (TNA) [5].
In our experiments, we implement models as P4 programs
within switches. We also run a controller instance and a traf-
fic sink on one server while using another server as a traffic
source to inject test traffic and background traffic into the
switch via Tcpreplay.

3 Stateless inference
In stateless inference, the in-switch model infers on indi-
vidual packets using features extracted directly from packet
headers without storing any information from previous pack-
ets. This thesis proposed two solutions for stateless inference
in programmable switches.

3.1 Rapid cyberattack detection in smart grids
We demonstrate how in-switch inference enables the rapid
detection of cyberattacks on SDN-based Smart Grid (SG)
networks. Modern power grids are “smart”, connecting mil-
lions of devices through data networks, which exposes them
to cyberattacks that could result in outages or data breaches.
Hence, timely cyberattack detection is crucial. ML models
are commonly employed in SDN-based SGs for detecting cy-
berattacks, but these models often run on external servers or
within the network’s control plane, leading to millisecond-
level detection delays. The application presented in this
thesis shows how ML inference at the Packet Level (PL) in
programmable switches accelerates the detection and mit-
igation of attacks in SGs, achieving line-rate performance
with sub-microsecond delays [20]. This work introduces the
concept of user-plane inference into SDN-based SGs for the
first time, deploying a trained DT model within the switch
pipeline to perform real-time inference on live network traf-
fic. The results produced by this thesis demonstrate that a
fully user-plane solution achieves up to 99% accuracy in at-
tack detection and classification while operating up to four
orders of magnitude faster than control-plane methods.

3.2 Henna
The above solution and all prior work on PL inference in
the user-plane focus on flat classification, and have signifi-
cant structural limitations that prevent them from scaling
when handling complex inference tasks. To tackle these lim-
itations, this thesis proposes Henna, the pioneer implemen-
tation of an in-switch multi-stage hierarchical classification
system. The concept upon which Henna hinges is that of
splitting a difficult classification task into easier cascaded
inference tasks, which can then be addressed with sepa-
rate resource-efficient tree-based classifiers. The design of
Henna aligns with the internal organization of programmable
switch architecture and integrates state-of-the-art strategies
for mapping decision trees to switch hardware. Henna is then
implemented into a real-world testbed with off-the-shelf In-
tel Tofino programmable switches using the P4 language.
Experiments with a complex 21-category classification task
based on measurement data exhibit how Henna improves the

F1-score of an advanced single-stage model by 21%, while
maintaining usage of switch resources at 8% on average.

4 Stateful inference
Although PL inference models are substantially easier to
embed in programmable user planes, stateful inference is
much more relevant in the majority of networking tasks since
most packets are related to each other and hence can be pro-
cessed together as flows which provides a more contextual
understanding of network traffic [21] by leveraging interest-
ing insights about the relationships between the packets.
However, deploying models in switches for stateful infer-
ence constitutes a significant challenge as it requires main-
taining state and computing stateful features in resource-
constrained devices. This challenge is tackled in this thesis
with the proposal of two solutions.

4.1 Flowrest
Despite the advancements brought about by Henna and
other pre-2023 solutions, it was still subject to the accuracy
barriers suffered by PL solutions, and it also did not employ
any FL features. As such, there was still no practical solu-
tion for running inference at FL in hardware switches with
RFs. Prior FL works were either not fully tested in hardware
(pForest [22] and SwitchTree [23]), or where use-case spe-
cific (pHeavy [24]). In response, we proposed Flowrest [25],
the first comprehensive framework for deploying FL mod-
els into hardware switches, accounting for the constraints of
the switches right from the design phase of the models. The
proposed solution builds on (i) novel guidelines for tailor-
ing RF models to operation in programmable switches right
from the design phase, (ii) an original framework to embed
flow-level (FL) machine learning models into programmable
switch ASICs, and (iii) efficient strategies for maintaining
state within switches to compute, store and employ FL fea-
tures for inference. Flowrest sets a new standard for FL
inference in the user plane. To validate this claim, a thor-
ough evaluation of the proposed solution is conducted in an
experimental platform based on Intel Tofino switches in two
steps; (i) Flowrest is evaluated on unencrypted traffic, com-
paring it to major existing proposals for in-switch inference
which all target unencrypted traffic, and (ii) it is then eval-
uated on encrypted traffic classification [26]. Results from
the evaluation with tasks of unprecedented complexity show
how Flowrest achieves accuracy gains in the 10% − 39%
range over previous approaches to implement DT and RF
models in real-world equipment.

4.2 Jewel
Despite the improved performance resulting from FL clas-
sification, a major dichotomy still exists between works for
in-switch inference, based on whether they operate at PL or
FL. The former relies on simple features from packet headers
that are simple to implement but limit accuracy in challeng-
ing use cases; the latter exploits richer flow-based statistical
features to improve accuracy, but leaves early packets in
each flow unclassified. To bridge this gap, NetBeacon [27]
was proposed as a hybrid solution for simultaneous PL+FL
inference, using multiple PL and FL models deployed in
the switch. However, deploying multiple models greatly in-
creased switch resource consumption. Instead, this thesis
presents Jewel [28], an in-switch ML solution based on a



fully joint PL and FL design, which offers the best of both
worlds by classifying early flow packets individually at PL
and shifting to FL inference as soon as possible. The pro-
posed solution involves (i) a single RF model trained to clas-
sify both packets and flows, and (ii) hardware-aware model
selection and training techniques for resource footprint min-
imization. Jewel is implemented in P4 and deployed in a
testbed with Intel Tofino switches, where extensive experi-
ments are conducted with a variety of real-world use cases.
Results from experiments conducted in this thesis reveal how
Jewel outperforms four state-of-the-art benchmarks, with
absolute accuracy gains in the 2.0% − 5.3% range, while
consuming a modest amount of switch resources.

5 Future work
Future work could focus on integrating user-plane inference
into real networks for tasks like traffic classification, routing
optimization, real-time anomaly detection, load balancing,
and much more. Exploring other hardware targets such as
FPGAs and SmartNICs, could offer more flexibility and en-
able the deployment of more complex models. Additionally,
evaluating stateful FL inference at high speeds will help as-
sess scalability. Reducing memory usage remains an essen-
tial aspect to investigate. Also, distributed inference scenar-
ios where models are split across devices present a promising
path but require solutions for model coordination and com-
munication between model components. Lastly, new tech-
nologies like eBPF could be leveraged to further push the
boundaries of network management by deploying applica-
tions for network security, observability, and management
in the Linux kernel space, as is already being done by large
corporations, e.g., Google, Cloudflare, Android, and Netflix.
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