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Abstract—The surge in usage of mobile applications generates
a massive volume of traffic data exhibiting unique dynamics
that are hard to unravel. In this work, we leverage factor
analysis to pin down recurrent patterns of mobile traffic over
the three dimensions of space, time and services in multi-city
measurements of unprecedented resolution. We link the revealed
structures of real-world mobile demands to urban fabrics, i.e.,
the combination of infrastructures and social characteristics
that determine the functionality of an urban territory, hence
establishing connections between specific city landscapes and the
mobile application consumption they create. Our study provides
new understanding about the diversity of mobile service dynamics
in metropolitan areas, including insights on how economic status
drives adoption of specific applications, how residential versus
commercial areas create a dichotomy in applications usage, how
private and public transports drive surges in the prevalence of
different sets of applications, or how nightlife or university studies
stimulate the utilization of specific classes of services.

I. INTRODUCTION

The rapid development of mobile communication technolo-
gies in the last two decades has created unprecedented changes
in our society. People rely today on mobile applications to
manage many aspects of their lives, including getting informed
and forming opinions, organizing their daily personal and pro-
fessional activities, moving with private and public transport,
spending their free time or even dating. The entanglement of
mobile applications with real-world life is especially strong
in dense urban areas, where individuals are known to make
a substantially higher use of such technologies [1]. In fact,
the penetration of mobile communications in cities is so high
that it has become a recognized tool to investigate socio-
economic urban phenomena like mobility [2]–[5], poverty [6],
[7], inequality [8], or disease transmission [9]–[11].

Prompted by these considerations, in this paper we inves-
tigate the existence of connections between the spatiotem-
poral consumption patterns of mobile applications and the
underlying urban fabrics, i.e., the entangled blend of physical
infrastructure, human activities and socio-economic character-
istics that combine to determine the functionality of an urban
territory. Our aim is therefore that of (i) identifying recurrent
utilization schemes of one or more mobile applications over
space or time and (ii) linking such schemes to the urban
fabric that explains their emergence. This approach lets us
establish causal relationships between the city landscape and
the complex mobile service demands it generates, ultimately
revealing why people cling to specific mobile applications
at different times and locations. The result has clear so-
cial implications [12] as well as important applications to

networking, where it can, e.g., drive a better urban-fabrics-
informed planning of networks supporting application-specific
operations such as slicing [13].

Several studies have examined the link between mobile net-
work traffic and urban environments, but often with different
goals or datasets. For example, analyses of 3G [14], 4G [15],
and 5G [16], [17] networks include basic geographical in-
sights but lack the in-depth connections we pursue. Similarly,
prior works on traffic patterns of app categories (e.g., video
streaming, messaging) [18]–[24] or of specific software like
WhatsApp or Facebook [25]–[27], focus on service demand
locality without deeper urban correlation analysis. Closer to
our goal, a significant body of works has focused on land
use detection via mobile data [28]–[33], thus relating network
traffic to the underlying topography. Yet these analyses typi-
cally employ mobile call and texting records that are especially
suitable to tell apart land use categories (e.g., residential,
agricultural, commercial, retail, industrial); instead, our target
is the traffic generated by individual applications and we
aim at associating it to more general urban fabrics that are
characterized not only by land usages but also by combinations
of urban infrastructures and socio-economic status.

Other studies that have explored the interface of application
demands and geographical locations have done so with very
different objective than ours. For instance, previous works
have validated urban planning theories [34], characterized
indoor cellular traffic [35], profiled users based on their
spatiotemporal mobile service demands [36], [37], or predicted
application usage based on user location [38], [39]. However,
none has focused on the causality relationships between the
urban environment and the mobile application consumption.

There exist also a few investigations that have explicitly
coupled geographical features with the mobile demands they
entail. Yet, they have considered aggregate data traffic over
all services that cannot explain the spatiotemporal behavior of
each application nor its connection with urban fabrics [40],
[41]; or, they have carried out application-level analyses at
countrywide scales and with low spatial resolutions (e.g., at
the granularity of large administrative units covering whole
cities) that do not allow inspecting urban dynamics [42], [43].

Ultimately, we still lack a clear understanding of the exact
connections between mobile service usages and the urban
features that determine them. We contribute to closing such
a knowledge gap with the following main contributions.

• We tailor exploratory factor analysis to the problem of
identifying complex recurrent patterns in the demands for



mobile services, which lets us extract hidden behaviors
that affect either a single service or a whole set and that
occur over space, time or both dimensions at once.

• We apply such a factor analysis to a state-of-the-art mea-
surement dataset of mobile network traffic, capturing the
usage of tens of applications at a high spatial resolution
of 100×100 m2 and encompassing multiple urban areas
in a major European country.

• We identify tens of application-specific spatiotemporal
dynamics that occur across all studied urban areas and
link those to precise urban fabrics, unveiling the inherent
and previously unknown connections between the city ter-
ritory and the mobile traffic generated by its inhabitants.

II. DATA MEASUREMENT AND PROCESSING

Our study builds upon network traffic measurements col-
lected in the production network of Orange, a major global
operator with a leading market position in France. The data
was collected by jointly monitoring the 4G Radio Access
Network (RAN) and Core Network (CN) infrastructure that
provides coverage to the main urban areas of France during 10
consecutive weeks. The resulting traffic measurements concern
ten major French cities, i.e., Paris, Lyon, Marseille, Toulouse,
Bordeaux, Strasbourg, Nantes, Nice, Le Mans, and Dijon.

A. Network monitoring platform

The traffic measurements were performed by the network
operator using passive measurement probes tapping at the Gi,
SGi and Gn interfaces connecting the Gateway GPRS Support
Nodes (GGSNs) and Packet Data Network Gateways (PGWs)
of the Long Term Evolution (LTE) Evolved Packet Core
(EPC) network to external public data networks (PDNs). This
monitoring strategy allows capturing the 4G traffic traversing
the mobile network across the whole country. The probes
run dedicated proprietary classifiers that allow associating
individual TCP and UDP flows to the mobile applications that
generate them, for purposes that include network monitoring,
traffic engineering, and research activities. The dataset used
for our study contains information about 68 mobile services.

To geographically localize the measured traffic we associate
it to the serving base stations. Specifically, we resort to
Network Signaling Data (NSD) captured by probes monitoring
the S1 interface connecting base stations to the Mobility Man-
agement Entity (MME). NSD events allow associating each
traffic flow to the exact sequence of its servicing antennas,
which lets us allocate the correct fraction of the total volume of
data traffic in the flow to each serving base station. The flows
association to base stations are updated at every 15 minutes,
hence the dataset describes mobile applications traffic records
at each base station with that same temporal granularity.

B. Traffic interpolation to statistical zones

In order to ease analyses throughout the study, we perform
an interpolation of the traffic collected at each base station onto
a zoning defined by the French National Institute of Statistics
and Economic Studies (INSEE). The spatial interpolation is
illustrated in Figure 1, and involves the following steps.

(A) Definition of the empirical coverage matrix of each base
station at a high spatial resolution. Coverage is encoded
as the probability P (ℓ|i) that a user served by base
station i is located at a given tile ℓ of 100×100 m2. The
information is provided to us by the network operator.

(B) Extraction of the traffic time series at each base station.
For each base station i, we compute the 10-week times
series T i

a (t) of each mobile services a with a 15-minute
temporal granularity of time t.

(C) Geographical mapping of the temporal traffic. For each
base station i we multiply the traffic time series T i

a (t)
with the coverage matrix P (ℓ|i), obtaining a spatiotem-
poral representation Mi

a(ℓ, t) of the demand at i.
(D) Computation of the aggregate spatial traffic. The spa-

tiotemporal maps of traffic from all base stations at a
given time t are summed to obtain the overall service-
level traffic maps Ma(ℓ, t) for each application a.

(E) Interpolation to statistical zoning. We retrieve the IRIS
zoning produced by INSEE, which tessellates the urban
territory of each target city into statistical zones based on
geographical and demographic criteria; IRIS zones have
homogeneous surfaces and encompass populations of at
most 2, 000 local inhabitants. We then assign to each IRIS
zone the demands Ma(ℓ, t) associated to all tiles ℓ it
covers. The traffic of tiles overlaying multiple IRIS zones
is distributed proportionally to the fraction of tile covered
by each overlapping IRIS zone.

The result of this processing are service-level time series Dz
a(t)

of the traffic demand for each application a at each of 5,097
IRIS zones z covering the ten major cities under consideration.

C. Ethics considerations

The measurements run to collect the data used for our study
were performed by the operator for network management and
research purposes, and temporarily stored within a secure
platform at their own premises. The raw data processing was
carried out in the same platform by personnel of the network
operator, in full compliance with Article 89 of the General
Data Protection Regulation (GDPR) [44] of the European
Commission. The data collection and processing were ap-
proved by the Data Protection Officer (DPO) of the operator,
and authorized by the relevant national privacy-protection
agency. The researchers involved in our study only had access
to the aggregate data T i

a (t) and P (ℓ|i), whose spatiotemporal
resolution ensures that no data subject can be re-identified
from the data, which in fact does not qualify as personal data
in the GDPR acceptation.

III. REFINEMENT OF MOBILE SERVICES

Each IRIS zone (hereinafter also simply referred as zone)
in the dataset is associated with the traffic demands of 68
individual mobile services over 10 weeks at a temporal
resolution of 15 minutes. However, given the high diversity
of popularity and penetration of mobile applications, not all
of them are statistically relevant to an analysis at a IRIS
zoning resolution; indeed, many services have too few users



Fig. 1: Methodology for computing the traffic maps; (a)
Coverage matrix for an base station i, (b) Traffic time series
for Spotify, (c) Multiplication of the coverage matrix with the
traffic time series, (d) Summation of all traffic maps.
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Fig. 2: Filtering of applications with inconsistent dynamics
over (a) time, (b) space and (c) dispersion. Accepted services
in each plot are colored in green and identified via DBSCAN.

or generate negligible and essentially random demands within
each zone over 15 minutes. To tell apart the services that
generate meaningful patterns from those that are too noisy
to yield usable information, we change the resolution of time
series Dz

a(t) to 1 hour by aggregating consecutive 15-minute
time slots. Then, we define the median week time series of
application a in zone z as

D̃z
a(τ) = med (Dz

a(t) : t mod T = τ) , (1)

where the med and mod operators denote the median of a set
and the modulo operation, respectively, whereas T=168 is the
number of hours in one week. The expression in (1) returns
the median traffic volume for service a in zone z at each hour
τ of a complete week.

As such, D̃z
a(τ) already de-noises the time series via the

median calculation. We next explore if such a process is
sufficient to make each service a show consistent and usable
demand dynamics across zones. More precisely, we define
metrics to test the quality of the service-level median week
time series in terms of their time, space, and data dispersion,
as defined next. The ultimate goal is identifying the subset of
reliable applications A∗ to be adopted in the rest of our study.

A. Temporal consistency

In order to assess the temporal regularity of the demands,
we adapt the Total Variation (TV) metric [45] to measure the

changes between consecutive values in the D̃z
a(τ) time series

for each service a and zone z. The original TV definition is

TV(D̃z
a(τ)) =

T∑
τ=1

∣∣D̃z
a(τ + 1)− D̃z

a(τ)
∣∣, (2)

which effectively measures the temporal smoothness of D̃z
a(τ)

but cannot be used to compare the smoothness among time se-
ries of differences in magnitudes that often characterize D̃z

a(τ).
We introduce the Total Percentage Variation (TPV) metric,
which quantifies consecutive relative differences instead of
absolute differences, as follows

TPV(D̃z
a(τ)) =

|T |−1∑
τ=1

∣∣D̃z
a(τ + 1)− D̃z

a(τ)
∣∣

D̃z
a(τ)

. (3)

The expression allows studying the time consistency of a ser-
vice a by composing the set TCa = {TPV(D̃z

a(τ)) | z ∈ Z}
over the set Z of all zones and then computing its mean
µ(TCa) and standard deviation σ(TCa). Intuitively, time
consistent mobile services have low µ(TCa) and σ(TCa)
values, indicating smooth demands opposed to bursty and
random traffic. Figure 2a shows the distribution of pairs
(µ(TCa),σ(TCa)): as expected, applications with higher av-
erage TCa also tend to display an increasing deviation of
the metric, pinpointing abrupt and high changes in the traffic
that translate into noise for our study. In order to separate the
subset of time-consistent applications, we apply the density-
based clustering algorithm (DBSCAN) [46] on the mean and
deviation pairs of all applications, which returns a cluster of
49 applications with time regularity (green in the figure).

B. Spatial consistency

To determine the spatial regularity of mobile service de-
mands, we analyze the level of correlation of the service-
level traffic demands recorded within a specific zone and the
adjacent zones. Formally, let Nz be the neighborhood set of z
that contains the K zones that are the geographically closest
to z. We define the Local Correlation (LC) metric as

LC(D̃z
a(τ)) =

1

K

∑
k̄∈Nz

ρ
(
D̃z

a(τ), D̃k
a(τ)

)
, (4)

where ρ is the Pearson correlation. The LC values are in
[−1, 1], with values closer to 1 suggesting a strong positive
correlation among neighbors. The space consistency of a
service a is described by the set SCa = {LC(D̃z

a(τ)) | z ∈ Z}.
Figure 2b shows the distribution of pairs (µ(SCa), σ(SCa)),
where spatially consistent services are related to high µ(SCa)
but low σ(SCa), i.e., strong local correlation across all zones.
Again, we observe that less consistent applications that are
characterized by lower mean correlations LCa tend to also
have larger standard deviations, which detects services that
have fairly random behaviors in contiguous zone and may
hamper spatial patterns in our study. Applying DBSCAN to
the LCa statistics returns a cluster of 48 mobile services that
yield space consistency (green in the figure).



C. Data dispersion consistency

We refer to data dispersion as the variability in D̃z
a(τ) in

relation to its mean value. To quantify the level of dispersion
of a service-level traffic time series we use the Coefficient
of Variation (CV) [47], which is defined as the ratio of the
standard deviation to the mean, formally

CV(D̃z
a(τ)) =

σ
(
D̃z

a(τ)
)

µ
(
D̃z

a(τ)
) . (5)

The CV is a dimensionless quantity, and it can be employed to
compare the dispersion of data between time series free from
scale effects. In addition, CV values above 1 indicate high
variability, while values below 1 indicate low data variability,
i.e., high data dispersion consistency [47].

We describe the data dispersion consistency of a mobile
application a by the set DCa = {CV(D̃z

a(τ)) | z ∈ Z},
with mean µ(DCa), and standard deviation σ(DCa). As in
the previous approaches, Figure 2c exhibits the distribution
of pairs (µ(DCa), σ(DCa)), resulting in a unique cluster
identified by DBSCAN, grouping a subset of 46 mobile
services with an adequate level of data dispersion consistency.

D. Application selection

Intersecting the clusters of consistent applications returned
by each of the previously described criteria, we obtain a
subset A∗ of 30 mobile services that fulfill our requirement
of reliability in time, space, and data dispersion. The subset
A∗ includes, e.g., Instagram, YouTube, Facebook, Netflix,
Twitter/X, SnapChat, or Spotify, just to name a few.

IV. FACTOR ANALYSIS OF SERVICE-LEVEL DEMANDS

In order to explore the underlying structure of mobile
application usage, we rely on an Exploratory Factor Analysis
(EFA) approach [48]. We cast EFA so as to identify the
common factors that explain specific spatial and temporal
patterns in the mobile usage dynamics at service level, as
detailed next.

A. EFA operation

In its fundamental definition, EFA assumes that the structure
of a large set of observable variables can be modeled via
a linear combination of unobservable common factors and
error terms. Considering a set of N samples described by p
variables with a set of k common factors, the EFA model can
be expressed, in matrix notation, as

X = M+ LF+ ε, (6)

where
• X = (xij)p×N is the data matrix,
• M = (mij)p×N is the mean matrix, mij =

1
N

∑N
l=1 xil,

• L = (lij)p×k is the factor loading matrix that describes
the relationship between variables and common factors,

• F = (fij)k×N is the factor score coefficient matrix that
describes the sample placement on the factor distribution,

• ε is the error term matrix that yields the residual behavior
of each sample not explained by the common factors.

A simplified EFA model can be derived from (6) as follows

Σ = LL⊺ +Ψ, (7)

where Σ := Cov(X −M) is the covariance matrix from the
data, and Ψ := Cov(ε) is the covariance of the error term.

In our case, EFA is employed to summarize the traffic
patterns of mobile applications observed at a large number
of locations. Thus, the input for EFA is a set of zones (i.e.,
samples), each characterized by different traffic features (i.e.,
variables) that describe the consumption of mobile services.
The objective of (7) becomes then identifying a limited set of
common factors that explain the largest portion possible of the
total variance in the traffic demand data across zones.

We proceed by engineering the traffic features fed to EFA as
well as the implementation of the the different steps required
to fit (7) to the measurement data and to interpret the results.

B. Service-level demand signature

The raw data matrix X is composed by p=30×4×24×7×10
variables for N = ∥Z∥ zones, since in each zone we have
the traffic generated at every 15 minutes for 10 weeks by
30 different services upon the filtering in Section III. This
volume of information is too large to be ingested as is for
downstream analysis and would render (i) the resolution of
the EFA representation computationally unfeasible and (ii)
the interpretation of the result extremely involved since the
resulting loading factor matrix L has also a dimension p.

Instead, we propose a demand signature that compresses
the voluminous data above into a much more compact format
that still retains the key spatiotemporal dynamics of the traffic.
The signature can thus be effectively used as the input feature,
cutting complexity and preserving the quality of the insights.

Our demand signature definition is twofold, as follows.

• It captures the individual temporal dynamics of the traffic
generated by each application a in the target zone z as
the demand Dz

a(t) already introduced in Section II.
• It represents the relative prevalence of the traffic gen-

erated by each application a in the target zone z with
respect to all other services as the revealed comparative
advantage (RCA) index [49]. The RCA is defined as

Rz
a(t) =

Dz
a(t)/Dz

A(t)

DZ
a (t)/DZ

A(t)
, (8)

where Dz
A(t), DZ

a (t) and DZ
A(t) denote the aggregate

traffic demands at time t of (i) all services at z, (ii) ap-
plication a over all zones, and (iii) all services over
all zones (i.e., the total traffic recorded in our data at
t), respectively. The RCA thus quantifies how relative
consumption of an application a within a zone z at t
(numerator) compares against the typical consumption of
that service in all zones at the same time (denominator).
In fact, the RCA defined in (8) takes values in [0,∞].
To avoid issues related to the unbounded nature of such,
we consider a variant of the original RCA definition, i.e.,
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the symmetric revealed comparative advantage (SRCA),
formall defined as follows

Sz
a(t) =

Rz
a(t)− 1

Rz
a(t) + 1

. (9)

The SRCA values are in [−1, 1], with values lower
than 0 indicating under-consumption and values above
0 indicating over-consumption with respect to the typical
activity over the whole monitored territory at time t.

While Dz
a(t) and Sz

a(t) offer complementary perspectives
on service-level demands, they do not solve and actually
worsen the problem of the variable set size, which is now
multiplied by two. We compress Dz

a(t) and Sz
a(t) in two steps.

First, similarly to Section III, we compute median weeks of
both time series for all applications and zones. For the traffic
Dz

a(t), we compute D̃z
a(t) as per equation (1); in addition,

since we are interested in analyzing consumption patterns
instead of actual traffic volumes that can vary dramatically
across zones, we min-max normalize all D̃z

a(t) time series.
An example of resulting traffic median week time series is in
the top plot of Figure 3a for one representative zone z and
application a. For the SRCA, we instead compute

S̃z
a(τ) = med (Sz

a(t) : t mod T = τ) , (10)

an example being in the bottom plot of Figure 3a.
Second, we further reduce the dimensionality of the signa-

ture, which is still at p=30×168×2, i.e., above 10,000. Based
on well-known regularities in mobile traffic [31], we take
advantage of the fact that the most distinguishing dynamics
tell apart working days (Monday to Friday in France) and
weekends (Saturday and Sunday in France) to generate a more
concise representation of D̃z

a(τ) and S̃z
a(τ). The two time

series are reduced to two periods of 24 hours each, modeling
working days and weekends respectively, by averaging each
hour of the day over the corresponding days in D̃z

a(τ) and
S̃z
a(τ). The result is illustrated in Figure 3b for the same zone

z and application a of Figure 3a.

C. Suitability of the data for EFA

The resulting demand signature has a size p=30×48×2, i.e.,
a sample-to-variable ratio N/p of roughly 2:1 considering that
we have N=∥Z∥=5,097 zones in our dataset. This complies

with rules of thumb adopted by previous works based on EFA
that recommend N/p ratios higher than 1. Yet, there is no evi-
dence of a minimum ratio needed to achieve satisfactory factor
recovery [50]; in fact, the optimal N/p value highly depends
on the domain and data over which EFA is applied [51].

In order to formally verify the suitability of the demand
signature for EFA, we therefore rely on the widely used
Kaiser-Meyer-Olkin (KMO) test [52]. The KMO test is based
on the correlation between the observed variables and indicates
how well each variable can be explained by the other variables.
KMO values range between 0 and 1, with values closer to 1
suggesting that EFA should produce reliable factors. We apply
the KMO test to our data composed of N = 5, 097 samples
and p = 2, 880 variables, resulting in a value of 0.988 and
indicating that the dataset is highly suitable for EFA.

It is also reasonable to question why we prefer EFA over the
more commonly used Principal Component Analysis (PCA)
method, which addresses the similar problem of reducing the
number of variables to fewer items. In fact, EFA and PCA
greatly differ in their goals. PCA aims at reducing the number
of variables into components that explain as much of the
variance as possible. On the other hand, EFA identifies a latent
structure of common factors that only explain the common
variance of the data and not the unique variance. Ultimately,
PCA is a tool for dimensionality reduction while EFA shall
be used to identify latent correlations [53]. As the latter is our
objective, EFA is the appropriate method whereas choosing
PCA would incur into less informative results [54].

D. Factor extraction

There are multiple methods to fit an EFA model,
among which we select the Maximum Likelihood estimator
(MLE) [55] for our data. The main goal of MLE is to enhance
the interpretability of the common factors while providing an
adequate fit to the data as per (7). The MLE approach is
popular for extracting common factors, and is especially apt
in use cases with a large number of samples like ours.

The MLE method produces parameter estimates, i.e., L
and Ψ in (7)) that minimize the discrepancy between Σ,
the covariance matrix obtained from the data matrix, and Σ̂,
the covariance matrix implied by the hypothesized model.
Thus, the MLE factor extraction is obtained by iteratively
minimizing the following discrepancy function:

fMLE = tr(ΣΣ̂−1)− log |Σ̂−1Σ| − p, (11)

where tr is the trace function that sums the elements on the
diagonal of a square matrix.

E. Factor retention

A critical decision in an EFA is selecting the optimal
number k of common factors. Intuitively, a higher k improves
the fit of the data, but it may also lead to overfitting of the
model and a more complex interpretation of the resulting
factors. Several statistical methods have been proposed in the
literature to determine how many factors to include in an EFA.
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Nevertheless, most of these criteria have not been thoroughly
tested on datasets beyond social sciences domains.

We thus experimented with some of the most widespread
methodologies for our study, including Parallel Analysis, the
Empirical Kaiser Criterion, and the Minimum Average Partial
method. However, they all suggested retaining more than 100
factors, a clear indicator of so-called overfactoring. Finally, we
employ one of the fundamental methods for factor retention,
i.e., the Cumulative Percentage of Variance (CPV). Thus, we
select the number of factors based on how much variability can
be explained as we include more factors. Figure 4 shows the
cumulative variance explained in our data as a function of the
number of factors retained. We set the desired amount of CPV
to 70%, resulting in the retention of 20 factors. The selected
value aligns with the literature, as the proposed thresholds for
the CPV typically range between 60% and 95%, depending
on the field of study and target data [56].

F. Factor rotation

One of the properties of the EFA model is its rotation
invariance: the factor loading matrix L can be rotated within
the variable space, preserving the same fit quality. This prop-
erty can be exploited to enhance the factors by reorganizing
and simplifying their structure, which translates into a more
interpretable rotated factor loading matrix L∗ = (l∗ij). In
our analysis, we employ the Varimax approach [57], one
of the most used rotation methods. Varimax is a type of
orthogonal rotation that assumes factors to be uncorrelated
and minimizes the number of variables with high loadings on
each factor. More precisely, Varimax computes scaled loadings
l̃∗ij = l∗ij/hi, where hi =

∑k
j=1 l

2
ij . Then, the procedure finds

the factor rotation that maximizes the following function:

V =
1

p

k∑
j=1

{
p∑

i=1

(
l̃∗ij
)4 − 1

p

(
p∑

i=1

(
l̃∗ij
)4)2}

(12)

As a result, the differences between the loading factors are
maximized in the rotated factor loading matrix.

V. MOBILE APPLICATION USAGE IN URBAN FRANCE

Applying EFA to the service-level demands via the adapta-
tions reported in Section IV yields 20 common factors across
the 5,097 IRIS zones that compose the ten cities observed.
Table I presents a summary for 8 of such 20 common factors
and associates each to a distinctive urban fabric. For each
factor we also report the applications whose demand dynamics
are driving the factor, the temporal periods affected by the

Factor Urban fabric Applications Time
1 Income level All All
2 Residential All 8 am – 6 pm
4 Budget nightlife All 10 pm – 6 am
6 University students Instagram, Twitter/X All
8 Main roadways Waze, Siri All
10 Train commuting All 7-8 am, 6-7 pm
14 Airports All All
15 App-driven locations Pokemon Go All

TABLE I: Summary of 8 prominent common factors identified
by EFA in the traffic generated by 30 mobile applications in
5,097 IRIS zones of 10 French cities.

factor and a short description. Collectively, the factors we
study account for 55.2% of the total variance in the data. The
remaining 12 factors are associated with a minor fraction of
the variance, and focus on less prominent urban fabrics, such
as suburban areas or large parks in the city outskirts, hence
we do not discuss them in detail due to space limitations.

We next delve into the analysis of the selected factors above.
To this end, we leverage three distinct representations that can
be extrapolated from the EFA model in (7) as follows.

• Sum of the squared loadings over each application a for
the target factor k. Formally, let us define as a the subset
of values in the demand signature in Section IV-B that
refer to application a only; this is a set of 96 variables
out of the complete p=2880 variables that compose the
signature. Then the metric is L2

a(k) =
∑

i∈a l2ik and is
useful to understand which services have higher squared
loadings and are therefore most concerned with the factor.
An example of this metric is in Figure 5 for factor 1.

• Loadings separated by application for the target factor k.
We display the actual loadings lik such that i ∈ a, which
as said above correspond to 96 variables, as a heatmap.
These loadings indicate how the factor is linked to the
typical hourly traffic demand and SRCA of application a
in weekend and weekdays, as per our signature definition.
Higher loadings towards 1 indicate that service a is highly
affected by factor k at the specific hour, either in terms of
its traffic dynamics D̃z

a(τ) or relative traffic share S̃z
a(τ).

Figure 6 shows sample heatmaps for factor 1, where the
top two rows refer to the SRCA of a in weekends (first
row) and working days (second row) while the bottom
two rows are associated to the normalized demand of a
in weekends (third row) and working days (fourth row).

• Scores separated by application for the target factor k.
We plot as a geographical map the scores fkj , for all
samples, i.e., IRIS zones, j ∈ Z. Scores indicate how
prevalent the factor k is in each zone, and allows us to
clearly visualize areas of the observed cities that show
high scores hence are dominated by the applications and
traffic dynamics that characterize k. An example of scores
map is in Figure 8a for factor 1 and zones in Paris.

A. Factor 1, or the digital divide of wealth

Factor 1 describes a common pattern across most of the
monitored applications, as illustrated by the sum of squared
loadings in Figure 5. Mail services (e.g., Apple, Gmail) and
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Fig. 5: Factor 1 sum of squared loadings for all applications.
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Fig. 6: Factor 1 loadings for selected applications. In each plot,
SRCA (resp., traffic) loadings are top (resp., bottom) two rows.

LinkedIn yield especially high L2
a values, but the same holds

for entertainment services like social media (e.g., Facebook) or
messaging (e.g., SnapChat). Looking at the detailed loadings
of selected applications with especially high L2

a, in Figure 6
reveals that such applications are in fact affected by factor 1
in diametrically opposite ways. The factor is characterized by
high loadings in the SRCA (red in the figure) of productivity-
oriented applications like mail or cloud services, which thus
experience much higher relative consumption than other ser-
vices; it is instead associated with low SRCA loadings close
to -1 (blue in the figure) for messaging or social media that
are thus used much less than customary. The usage patterns
above are consistent over time, as the SRCA loadings do
not show temporal variance. The loadings for the normalized
traffic dynamics, in the bottom two rows of each plot, more
muddled in the case of factor 1.

Figure 8a shows the factor 1 scores across Paris, dividing the
city into two distinct regions. When compared with the income
distribution in Figure 8b, the similarity is evident, with a high
Pearson correlation of 0.7 between the scores and INSEE’s
average income data per IRIS zone. Similar strong correlations
are observed in other cities as well.

Takeaway. The geography of mobile service usage is pre-
dominantly is driven by wealth. Economic imbalance produces
the single most important factor in our analysis, which explains
alone over 20% of the total mobile traffic variance. High-
income areas are characterized by a stable higher usage of a
specific set of applications oriented at productivity, whereas
low-income areas are characterized by a higher usage of
social media and messaging services. The result reinforces
works in the social sciences literature suggesting that notable
consumption of social media is associated to lower education
and income [58], and unveils the huge magnitude of the effect.

B. Factor 2, or the work-life dynamics of mobile traffic

Factor 2 affects all applications, with uniformly high L2
a

values similarly to what happens in factor 1. The loadings
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Fig. 7: Factor 2 loadings for selected applications. In each plot,
SRCA (resp., traffic) loadings are top (resp., bottom) two rows.

however illustrate a completely different effect than factor 1.
Figure 7 depicts the loadings of six applications, however we
observed the same identical pattern in all monitored services.
In this case, the RCA loadings are all around 0, implying that
the factor is not characterized by a higher or lower relative
usage of specific applications. Instead, the major dynamics
occur in the loadings of the normalized traffic, in the bottom
two rows of each plot. The factor is clearly characterized by a
substantial drop of demands for all services (hence, lower total
mobile traffic) during the working hours on Monday through
Friday (as shown by the fourth row in each heatmap). The
total network activity is instead especially high in the evening
and during weekends.

The high scores in Figure 8c show vast areas in Paris that
are characterized by the temporal pattern of the overall traffic
discussed above. However, Figure 8e also highlights concen-
trations of negative-score regions that are thus affected by
the same patterns in the opposite way: these areas experience
higher traffic demands during the work hours and low activity
periods during evenings and weekends. Comparing the scores
against INSEE data about the density of residential buildings,
in Figure 8d, and of commercial and industrial buildings, in
Figure 8f, reveals significant spatial similarities. To quantify
the relationship, we separate scores above and below 0 as
well as the maps of residential areas and of commercial or
industrial areas. We then overlap the factor 2 high-score map
to the residential areas, and the factor 2 low-score map to
the commercial or industrial areas, computing in both cases
the F1 score that measures the predictive power of factor 2
in identifying each type of area. We find high F1 scores of
0.68 and 0.54 for Paris, and similar values for the other cities,
indicating an important connection between the factor and the
residential versus commercial nature of the underlying region.

Takeaway. Neighborhoods characterized by residential ac-
tivities and work dynamics are told apart by how traffic fluctu-
ates between 8 am and 6 pm during working days: residential
areas see a reduced demand in those periods, while traffic
surges in commercial areas. As the effect is homogeneous
across services, total traffic is a good indicator for this factor,
which explains why studies based on aggregated demands
primarily identify this work-life dichotomy [40], [41].

C. Factor 4, or the digital footprint of budget nightlife

Like the previous factors, also factor 4 describes usage
patterns that characterize the vast majority of applications.
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Fig. 8: Scores for (a) factor 1 and (c,e) factor 2. Maps of (b) normalized income, (d) residential and (f) commercial areas.
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Fig. 9: Factor 4 loadings for selected applications. In each plot,
SRCA (resp., traffic) loadings are top (resp., bottom) two rows.
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Fig. 10: High-scores IRIS zones for factors 4 and 10 in Paris.

The loadings in Figure 9 offers a glance to the fact that most
services show peaks in their demands during the late evening
and night hours, from 10 pm through 6 am. Instead, the relative
usage of applications does not vary as shown by near-0 SRCA.

The cartography of scores in Figure 10a pinpoints in fact
specific hotspots in Paris that collect the nighttime traffic surge
outlined by the loadings. These are well-known nightlife areas
in the city, such as Pigalle, Bastille or Ménilmontant, which
offer a variety of nightclubs, late-hour bars or adult show
theaters. In particular, these areas offer nighttime entertain-
ment at a reasonable cost and are popular for their affordable
accommodation. This relates them to nightlife in low-income
locations that are also highlighted by the scores, although to
a lesser extent, such as low-income Bagnolet or Ivry.

Takeaway. Locations characterized by nightlife activities
on a budget see a generalized increased consumption of all
mobile services during the late evening and night hours.

D. Factor 6, or a mobile service synopsis of student life

Factor 6 is applications-specific with high L2
a for Instagram

and Twitter/X. Figure 11 shows that (i) the SRCA loadings
reflect a higher usage than normal for these services, while
(ii) the scores pinpoint specific locations in the French cities
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Fig. 11: Factor 6 scores in Bordeaux (left) and Marseille
(right), only high scores are shown. Factor 6 loadings for
Instagram and Twitter: in each plot, SRCA (resp., traffic)
loadings are the top (resp., bottom) two rows.

that match university campuses (e.g., Domaine Universitaire in
Bordeaux, or Campus de Luminy in Marseille). Interestingly,
the scores also reveal precise areas in each city that are popular
places for university students to hang out (e.g., Victoire in
Bordeaux, or Notre Dame du Mont in Marseille).

Takeaway. High relative Instagram and Twitter/X demands
are an excellent predictor of university students’ presence.

E. Factor 8, or connecting traffic on roads and networks

This factor yields high L2
a for mobility-related applications

such as Waze and Google Maps, as well as for Apple Siri. The
loadings, exemplified in Figure 12, show that such services
are used more than usual at all times (e.g., Waze) or during
daylight hours (Siri). Scores, in Figure 12, immediately explain
the root cause for this factor: overlaying the high-score IRIS
zones with the topology of the city road networks exposes a
clear match between the factor and the major local roadways.

Takeaway. Highly trafficked roads induce an exceptional
consumption of not only of navigation services like Waze
or Google Maps but also of personal assistants like Siri. We
hypothesize that this may be due to many drivers being more
comfortable using speech commands while traveling.

F. Factor 10, or mobile traffic also commutes

Factor 10 concerns a large portion of the applications, which
all show peaks of demand at 7-8 am and 6-7 pm, i.e., the home-
work commuting times in France, according to the loadings,
depicted in Figure 13 for sample services. High-score zones,
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Fig. 13: Factor 10 loadings for selected services. In each plot,
SRCA (resp., traffic) loadings are top (resp., bottom) two rows.
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Fig. 14: Factor 14 scores in Paris (left) and Bordeaux (right).
Factor 14 loadings for Spotify and Netflix: in each plot, SRCA
(resp., traffic) loadings are the top (resp., bottom) two rows.

in Figure 10b, map well to the topology of metropolitan train
lines, indicating that the factor describes the traffic induced by
medium- and long-range commuters on public transport.

Takeaway. Commuters on metropolitan trains consume a
variety of mobile applications, ranging from social media (e.g.,
Instagram) to knowledge sources (e.g., Wikipedia). Interest-
ingly, video streaming (e.g., Netflix) also shows higher relative
usage in SRCA loadings, implying an especially significant
burst of usage with respect to the other affected services.

G. Factor 14, or the multiple facets of transportation hubs

Also this factor has high L2
a on most services, yet with

quite diverse loadings, exemplified in Figure 14. Factor 14 is
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Fig. 15: Factor 15 scores in Paris (left) and Marseille (right).
Factor 15 loadings for Pokemon GO: in each plot, SRCA
(resp., traffic) loadings are the top (resp., bottom) two rows.

linked for instance to peaks of audio streaming (e.g., Spotify)
traffic early in the morning and higher relative usage of video
streaming (e.g., Netflix) during the afternoons. Scores, in
Figure 14 help unraveling the factor as they highlight airports
or major train stations in all cities.

Takeaway. Airports show multi-faceted mobile service de-
mands with unique and diverse application-level dynamics.

H. Factor 15, or the places of augmented-reality gaming
This factor is exclusively associated with Pokémon GO

according to L2
a values, and indeed pinpoints a higher usage

than normal for this service as shown in Figure 15. Scores
in the same figure highlight iconic locations and large parks
or pedestrian areas in each city, which the developer arguably
selects as good areas for a better augmented-reality experience.

Takeaway. Due to the combination of its augmented-reality
nature and huge popularity, Pokemon GO is a fairly unique
game, to the point that its spatiotemporal dynamics cannot
be categorized along those of other mobile services. This
result is a strong indicator that applications controlling the
user movements can generate original patterns not seen in
traditional human activity-driven mobility.

VI. CONCLUSIONS

We customized exploratory factor analysis to reveal latent
dynamics in service-level mobile traffic and applied such a
tool to a real-world dataset collected by a network operator in
10 cities of France. Our results demonstrate the effectiveness
of the approach to reveal a number of tangled patterns in space
and time that are potentially associated to specific applications.
Our work provides both a promising methodology for in-depth
traffic characterization and novel insights on how urban fabrics
control the demands for mobile services.
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