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Abstract—The ability to perform mobile traffic forecasting effectively with Deep Neural Networks (DNN) is instrumental to optimize
resource management in 5G and beyond generation mobile networks. However, despite their capabilities, these DNNs often act as
complex opaque-boxes with decisions that are difficult to interpret. Even worse, they have proven vulnerable to adversarial attacks which
undermine their applicability in production networks. Unfortunately, although existing state-of-the-art EXplainable Artificial Intelligence
(XAI) techniques are often demonstrated in computer vision and Natural Language Processing (NLP), they may not fully address the
unique challenges posed by spatio-temporal time-series forecasting models. To address these challenges, we introduce DEEXP in this
paper, a tool that flexibly builds upon legacy XAI techniques to synthesize compact explanations by making it possible to understand
which Base Stations (BSs) are more influential for forecasting from a spatio-temporal perspective. Armed with such knowledge, we run
state-of-the-art Adversarial Machine Learning (AML) techniques on those BSs to measure the accuracy degradation of the predictors
under adversarial attacks. Our comprehensive evaluation uses real-world mobile traffic datasets and demonstrates that legacy XAI
techniques spot different types of vulnerabilities. While Gradient-weighted Class Activation Mapping (GC) is suitable to spot BSs sensitive
to moderate/low traffic injection, LayeR-wise backPropagation (LRP) is suitable to identify BSs sensitive to high traffic injection. Under
moderate adversarial attacks, the prediction error of the BSs identified as vulnerable can increase by more than 250%.

Index Terms—Explainable AI, mobile networks, deep learning.
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1 INTRODUCTION

THE ubiquitous access to 4G and 5G networks allows
billions of mobile devices to consume data traffic every

day. According to the Ericsson mobility report [1], the
number of 5G subscriptions increased by 1.6 billion by the
end of 2023. The rapid shift towards 5G is indicative of a
significant rise in mobile traffic demand. By 2029, global 5G
subscriptions are expected to exceed 5.3 billion.

The capability to analyze and forecast mobile traffic
volume observed at thousands of cellular BSs deployed
at city scale is very important. On the one hand, Mobile
Network Operators (MNOs) use it to optimize the network
behavior for deployment planning [2], load balancing, and
resource allocation in cloud Radio Access Networks [3]
and network slicing [4], achieve energy savings with in-
telligent BS sleeping strategies [5], and improve mobility
management [6]. On the other hand, local city authorities
can exploit mobile traffic information to infer human and
economy activities [7], plan land use [8], and better handle
crowded events [9], [10]. Yet, forecasting mobile traffic at
scale is a daunting task because the traffic load is highly
variable both in space and in time. In recent years, Deep
Learning (DL), a subfield of Artificial Intelligence (AI), has
become an important tool to tackle such challenges because
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of its ability to solve even complex networking problems
without explicit modeling [11]. DL techniques can forecast
future traffic volumes either with information collected from
BS or coarse and partial crowd-sensed measurements [12].

For the former case, a plethora of DNN architectures have
been proposed so far, with the unifying theme of leveraging
both spatial and temporal characteristics of traffic volumes. A
non-exhaustive list includes in order of complexity, stacked
auto-encoders and Long-Short Term Memory (LSTM) lay-
ers [13], Graph Neural Networks (GNN) [14], convolutional-
LSTM [15], stacked multi-graph convolutional network with
LSTM layers [5], and spatio-temporal graph network com-
bining attention and convolution mechanisms [16].

The fil rouge that interconnects the proposed DNN ar-
chitectures is that the logic governing them is not easily
understandable by humans, unlike, for example, decision
trees [17]. This property makes the latter excellent candi-
dates in restricted practical scenarios like that of automatic
configuration of newly deployed BSs [18]. Unfortunately,
unlike DNN architectures, decision trees and other simple
Machine Learning (ML) mechanisms do not apply to the
problem of mobile traffic forecasting. At the same time,
the lack of explainability of DNN models makes them
difficult to use in production networks because of the
inherent lack of understanding of the logic behind decisions,
which complicates troubleshooting and makes them more
vulnerable to adversarial attacks.

Consider a scenario where an adversary aims to disrupt
mobile network operations. The adversary could perform
data poisoning, introducing malicious data into the training
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set to corrupt the model’s learning process, or evasion
attacks, crafting specific input patterns to cause incorrect
predictions. For instance, injecting adversarial traffic into
BSs could lead to overprovisioning or underprovisioning
traffic loads, resulting in sub-optimal resource allocation and
service disruptions. These perturbations impair the network
operator’s ability to understand and mitigate issues quickly.
Enhancing the explainability of DNN models is essential for
improving their robustness and trustworthiness in practical
deployments. If the adversary’s perturbations happen to
align with the vulnerabilities identified by the XAI tools,
the impact can be even more destructive. These are well
known to occur when adversaries craft perturbations to the
original input that are imperceptible to the human eye (or
conventional anomaly detection tools) but are sufficient to
severely degrade the accuracy of an ML model at inference
time [19]. Crafting perturbations in the spatio-temporal
mobile traffic forecasting context translates into adding load
to a given number of BSs over time.

AI-based applications for managing cellular networks
face significant security threats due to the inherent vulnera-
bilities of machine learning models, particularly DNNs. The
literature has extensively explored potential security threats
associated with AI-based applications for managing cellular
networks. Notable works include [20], [21], [22], [23].

In this paper, we tackle the problem of assessing the
robustness and resilience of DNNs used for mobile traffic
forecasting. In analogy with the famous example of a tape
strip over a speed limit sign that leads a classifier to accelerate
and not to brake [24], we ask ourselves whether simply
perturbing the normal operation of a few selected BSs (i.e.,
the tape strip) is sufficient to undermine the accuracy of
a traffic predictor. For this, the key challenge is how to
extract such information, which requires understanding the
logic of the model operation. Unfortunately, the existing
XAI techniques have been conceived for computer vision
and natural language processing and fail to provide useful
explanations in the context of spatio-temporal time-series
prediction [25], [26], [27], [28], [29], [30], [31]. When applied
to traffic forecasting, these tools generate verbose outputs
that indicate activated neurons and relevance scores, which
increase with model size and the length of input history.

To tackle these challenges, we introduce DEEXP, a
novel framework designed to synthesize compact Deep
Explanations from DNN models in the challenging context
of spatio-temporal time-series prediction. Recognizing the
limitations of existing XAI techniques primarily developed
for computer vision and NLP [25], DEEXP is designed to
aggregate verbose information into a usable metric. Initially,
we demonstrated this flexibility by integrating LRP [32],
showcasing its effectiveness in identifying influential BSs for
forecasting. The use of two legacy XAI techniques, i.e., LRP
and GC [33], exemplifies DEEXP’s flexibility. This approach
ensures that our framework remains adaptable and effective
in tackling various forecasting challenges.

We perform an extensive evaluation of the strengths
of DEEXP with real-world mobile traffic data. We use the
well-known Telecom Italia dataset [34] and a measurement
dataset collected in a production 4G network serving a major
metropolitan region in Europe. We benchmark (Section 6) the
drop in accuracy of popular mobile predictors for capacity

and traffic forecasting [4] with "state-of-the-art" perturbation
techniques (Section 2.2) and targeted perturbations (Sec-
tion 5.3) on the set of identified relevant BSs. Our evaluation
is extensive: we trained over 1500 models and tested them
in over 250 configuration scenarios. We demonstrate that the
compact representation defined as the output of DEEXP is
representative of the relevance of the inputs and that the
relevance of BSs at a given time is not simply tied to the
corresponding traffic volumes. Across all the configuration
scenarios, we find that crafting perturbations to only one
BS, the most relevant in the neighborhood, is sufficient to
degrade the predictors more than standard, state-of-the-art
transparent-box attacks that are aware of the model weights.
Therefore, harnessing such knowledge has the potential to
significantly degrade the predictor’s accuracy.

This work leverages well-known XAI techniques and
DNN predictors, CAP for capacity forecasting and TRA for
traffic forecasting, to examine vulnerabilities in mobile traffic
forecasting. Our study systematically highlights BSs that,
if attacked, could lead to significant damage, providing a
new insights of model vulnerabilities in a mobile networking
context.

This paper presents the following contributions, which
represent a substantial extension beyond the preliminary
version of the work [35].

• DEEXP is designed with inherent flexibility, enabling
the seamless integration of diverse XAI techniques
originally conceived for verbose explanations in other
domains, such as computer vision and natural language
processing.

• We introduce novel experiments with additional XAI
techniques (e.g., SHapely Additive exPlanations (SHAP)
and Local Interpretable Model-agnostic Explanations
(LIME)) alongside GC and LRP, significantly broadening
the experimental scope. This paper also expands the
framework by integrating tailored LRP rules, introduc-
ing a comprehensive threat model, and incorporating
mitigation strategies and deployment frameworks.

• We modify and customize GC, enabling it to provide
relevance scores to inputs—a capability it lacks na-
tively—making it suitable for use within DEEXP. This
adaptation ensures its effectiveness for regression tasks
within spatio-temporal mobile traffic forecasting.

• We conduct an extensive evaluation of DEEXP using
real-world datasets, different predictors, and a range of
perturbation techniques. These experiments demonstrate
that targeted attacks on BSs identified as influential by
DEEXP cause significant prediction accuracy degrada-
tion, validating DEEXP’s capability in identifying model
vulnerabilities.

• The contributions also include exhaustive brute force
attacks and extensive comparative analyses across differ-
ent XAI techniques and adversarial strategies, providing
a deeper understanding of the vulnerabilities and ro-
bustness of forecasting models.

The main findings of our work are as follows:

• We find that the explanations that DEEXP provides are
compact and suitable to be utilized as proxy for BS
vulnerability;

• We find that different XAI techniques have different
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capabilities in understanding and interpreting the DNN
models and pinpointing different vulnerabilities. Specif-
ically, LRP is particularly effective in identifying BSs
that, when subjected to high traffic injections, can
cause significant overprovisioning damage. Conversely,
GC excels in identifying BSs that are highly sensitive
to moderate/low traffic injections, causing substantial
overprovisioning damage. These latter are more subtle
attacks that would not be distinguished from normal
variations in the traffic profile. Additionally, GC is
effective in causing high Service Level Agreement (SLA)
damage across all levels of traffic injections. By injecting
in BSs identified with GC up to 10% of traffic1 over
the course of the entire test set data, we observe up to
50% and 100% prediction error increase representing the
maximum values across both predictors and datasets
when considering the top 10% most damaged predic-
tors. For approximately 20% traffic injection, we see a
prediction error increase of 250%.

We release the artifacts and the methodology pseudocode
of the present study at: https://git2.networks.imdea.org/
wng/xai_aml-mobile-traffic-forecasting.2

The rest of the paper is organized as follows. In Section 2,
we delve into providing the reader with background on the
main aspects of this paper, namely XAI, AML. In Section 3.2,
we define how DNNs solve the spatio-temporal mobile traffic
forecasting problem which is instrumental to the reader to
fully grasp the design of DEEXP in Section 4 and outline
the motivation and challenges for the design of DEEXP. In
Section 5, we introduce the experiment settings, datasets
and attack strategies and evaluate the efficacy of DEEXP.
In Section 6, we present the final results. In Section 7, we
highlight the main insights, capabilities enabled by DEEXP,
limitations and next directions of this study. In Section 8, we
outline related works in the area and, finally, we conclude
the work in Section 9.

2 BACKGROUND AND MOTIVATION

In this section we introduce the basic concepts of Explainable
AI and AML that lay the foundations for our study.

2.1 Background on Explainable AI
Explainable AI Primer. In recent years, the interest in
promoting trust and resilience in ICT systems has gained
momentum. In response, the landscape of regulations at both
national and international bodies is continuously evolving
and several solutions leverage XAI [36].

Explainability differentiates itself from model inter-
pretability. The latter focuses on making transparent the
internal details of a generic AI model while explainability
goes beyond this concept by providing customized knowl-
edge for stakeholders to understand its decisions. In [37],
the authors analyze which concepts of explainability apply
to different stakeholders. For example, AI developers need
to explain the models for both diagnosis and improvement
purposes; end-users need explainability to trust AI decisions;

1. The percentage of traffic injected is computed on the average traffic
measured during the test set.

2. Artifacts of the original version [35] are available at the same URL

for governmental agencies, XAI helps to ensure that citizens’
rights are protected and laws are not infringed. In this work,
we focus on explanations for developers.
XAI Techniques. Recent advancements in XAI have broad-
ened the scope beyond traditional domains like computer
vision and natural language processing, marking significant
strides in broadening the applicability and understanding of
complex models.
• Model-Agnostic Techniques. These techniques offer

general solutions applicable across different models.
Tools such as SHAP [38], LIME [39], and Eli5 [40]
assess feature relevance by perturbing model inputs.
Each of these methods employs a distinct approach to
calculate relevance scores making them versatile for
various applications.

• Model-Specific Techniques. In contrast, model-specific
techniques such as DeepLIFT [41] and LRP [42] provide
explanations by evaluating which activations/neurons
were relevant to a prediction given the input data
via backpropagation. GC [33] uses the gradients of
the target concept flowing into the final convolutional
layer to produce a coarse localization map, highlighting
important regions in the input data. This allows us to
highlight which part of the input data influences the
prediction the most.

• Specialized Applications in XAI. Building upon these
foundations, The capabilities of XAI have been fur-
ther extended into specialized areas through tools like
AIChronoLens [43] and EXPLORA [44], which address
the unique challenges of time-series forecasting and
DRL-based network control, respectively. DeepAID [45]
introduces a framework tailored for interpreting un-
supervised deep learning models in security domains
suitable for anomaly detection applications. Similarly,
Metis [46] simplifies the interpretability of DL-based
networking systems by converting DNN and Deep Re-
inforcement Learning (DRL) solutions into interpretable
rule-based configurations using Decision Trees (DT) and
hypergraphs. While AIChronoLens excels in analyzing
univariate time-series data, DEEXP distinguishes itself
by its specific focus on spatio-temporal datasets. DEEXP
is uniquely designed for interpreting spatio-temporal
data complexities a niche not addressed by existing
methods.

2.2 AML

AML Primer. The concept of adversarial attacks on neural
networks was introduced in the seminal work by Szegedy
et al. [24] that demonstrates how introducing a small per-
turbation to the input is sufficient to fool a classifier (e.g.,
the infamous tape strip over a speed limit sign that leads
a classifier to accelerate and not to brake). This work also
shows that the specific nature of input perturbations is not
a random artifact. By applying the same perturbation to a
different Neural Network that was trained on a different
subset of the dataset, the latter will also misclassify the same
input.
AML Attack Techniques. Perturbation is key to testing neu-
ral networks’ robustness and resiliency against adversarial
attacks. These can be transparent-box, translucent-box, or
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opaque-box testing methods, depending on the amount of
information the attacker has. The first category assumes that
the adversary has full knowledge of the training data, model
architecture, and parameters, the latter none and translucent-
box attacks assume partial knowledge.

The very first attack, called the Fast Gradient Sign
Method (FGSM), was developed in 2014 [47]. It consists of
adding an imperceptibly small perturbation to an image. The
perturbation is introduced so that the value of its elements is
equal to the sign of the elements of the gradient of the cost
function. This increases the classification error. An iterative
version of FGSM was proposed later in [48] and achieves
higher effectiveness in crafting adversarial inputs at the
expense of higher computational cost. Although created for
images, the two methods have been tested for univariate and
multi-variate time-series [49].

Finally, attacks can be targeted or untargeted. The ob-
jective of the former is to modify the prediction of given
input data while the latter aims at degrading the overall
model accuracy. In this context, the seminal work by [50]
proposes a new perturbation masking strategy and a tuning-
and-scaling strategy that fits data and model poisoning for
untargeted attacks. The work by [51] explores poisoning
attacks on stochastic multi-armed bandits where a slight
manipulation of the rewards in the data, can force the bandit
algorithm to pull the target arm with a high probability. Our
work differentiates from the works by [50], [51] in that we
do not target attacks on the training data. It would be highly
impractical for attackers to obtain simultaneous access to the
training data of MNO and model weights to run such an
attack. Our key contribution is to exploit XAI to spot which
are the BS (clients in [50] jargon) that are more influential
for the forecasting of traffic volumes from a spatio-temporal
perspective. Therefore, we work at the level of test data.

2.3 Motivation and Challenges

In this paper, our goal is to bring robustness and resilience to
DL-driven mobile traffic forecasting. For this, we focus on a
specific aspect of the problem. Untargeted attacks or attacks
on inference data like FGSM [47], if applied natively to spatio-
temporal based DNN models are impractical, because would
require load modifications in each of the BSs used by the
model. Depending on the model input size, this number
might be in the order of thousands. We rather ask ourselves:
is it possible to spot those BSs that are most influential for the
forecasting? If yes, then it is possible to verify if altering the
normal behavior of a limited number of BSs is sufficient to
fool the predictor. To answer the question, we need to bring
XAI in the loop to understand which are the most influential
BSs for the model from a spatio-temporal perspective. This
requires addressing the following challenges:
• Challenge 1: Compact representation. The scores generated

by XAI techniques are often too verbose, making it chal-
lenging to interpret them. These scores need to be made
more compact while retaining essential information for
accurate forecasting and explanation.

• Challenge 2: Actionable insights. The National Institute
of Standards and Technology (NIST) [52] has outlined
a set of properties for XAI metrics intended to guide
the development of systems whose insights are not only

interpretable but also actionable. This directive under-
scores the importance of generating explanations that go
beyond theoretical usefulness to practical applicability.

In our pursuit to ensure the robustness of DL-based
mobile traffic forecasting systems against potential attacks
and perturbations, identifying vulnerable BSs remains a
crucial challenge. A naive presumption might be that BSs
with high or low traffic loads are inherently more vulnerable
to failures or targets for adversarial attacks. However, this
straightforward correlation between traffic load and vulnera-
bility does not necessarily hold. To systematically examine
this assumption, we conducted an exhaustive analysis by
computing the Pearson correlation between the distributions
of ranked traffic volumes and the vulnerability rankings of
BSs, determined by brute force methods. The brute force
method involves systematically injecting different levels of
traffic perturbations into each BS one by one, evaluating the
resulting damage to each of the models predictive accuracy.
After assessing the impact of each perturbation, we rank the
BSs based on the severity of damage they cause. This me-
thodical process ensures that each cell is individually tested
to determine its potential vulnerability when subjected to
perturbations. The explanation and formulation of the brute
force attack, along with other attack strategies, are presented
in Section 5.3. The complete results are presented in Table 1,
which reveals that the correlation coefficients consistently
approach zero. Additionally, the Pearson correlation between
the lowest to highest traffic ranking is also very low, as the
values will be the same only the average is of the opposite
sign.

These findings indicate no direct relationship between
high and low traffic loads and heightened vulnerability,
suggesting that high traffic does not automatically imply
greater susceptibility to adversarial disruptions. In addition,
we tested the Kullback-Leibler divergence method in our
previous work [35], and found similar results. This confirms
that simple correlation measures, such as Pearson correlation,
are insufficient to capture the complexities of vulnerabilities
in the traffic data. Here, high-traffic loads refer to BSs that
naturally handle high volumes of traffic without any extra
injected traffic. Fig. 1 illustrates this absence of correlation
with an example from a specific time instance, included
here due to space constraints. This realization brings to
light the limitations of conventional analytical methods in
capturing the dynamics of adversarial vulnerabilities in AI-
based mobile network predictors. It underscores the necessity
for more sophisticated interpretative techniques. Current
XAI tools, while providing initial insights, are insufficient for
unraveling the complex patterns observed. This deficiency
emphasizes the need for further development of XAI tech-
niques that can deliver deeper, actionable insights capable
of guiding more effective interventions. Our investigation,
therefore, leverages advanced XAI methodologies to pinpoint
precisely those BSs whose data manipulations could mislead
the forecasting model.
Our objective is to evaluate the effectiveness of our tool,
DEEXP, in identifying the BSs that when exploited, are more
susceptible to adversarial attacks. By targeting these BSs
with different attack strategies, we aim to observe significant
overprovisioning or SLA violations. The greater the damage
caused by these traffic perturbations, the more it confirms



5

0 1 2 3 4

0

1

2

3

4

Cells r ∈ R5×5

C
el

ls
c
∈
C

5
×
5

0
2
4
6
8
10
12
14
16
18
20
22
24

(a) Ranked Influential BSs

0 1 2 3 4

0

1

2

3

4

Cells r ∈ R5×5

C
el

ls
c
∈
C

5
×
5

0
2
4
6
8
10
12
14
16
18
20
22
24

(b) Ranked Traffic volumes

Fig. 1. Example instance of grounding the ranked vulnerable BSs with
ranked traffic volumes

TABLE 1
Pearson correlation between ranked traffic volumes and ranked BS from

brute force method for SLA violations

MILAN-CAP MILAN-TRA EUMA-CAP EUMA-TRA

AVG −0.05 −0.04 0.01 −0.06
STD 0.16 0.15 0.22 0.15

that DEEXP has correctly identified the most influential
BSs. Fig. 2 portrays representative examples of the drop
in prediction accuracy obtained with adversarial attacks.
In the "no-attack" case, the predictor strives to achieve an
equilibrium that minimizes overprovisioning while avoiding
incurring more expensive penalties for SLA violations. In
Fig. 2a, our attack leads to overprovisioning: by injecting
traffic into one BS, the predictor reacts by provisioning
additional capacity, which is expected. Conversely, in Fig. 2b,
our attack results in SLA violations by overwhelming the BS
beyond its capacity, leading to degraded service quality and
unmet service level agreements. These examples illustrate
how our method can strategically inject traffic to exploit
vulnerabilities in the predictor, either causing unnecessary
resource allocation or failing to meet SLAs. By leveraging
DEEXP’s ability to identify vulnerable BSs, we can gain
a deeper understanding of potential vulnerabilities. This
knowledge will allow us to better prepare and protect the
network from potential adversarial threats in the future.

3 ROBUSTNESS OF MOBILE NETWORKS

In the context of mobile traffic forecasting, ensuring the
robustness and resilience of DNNs is critical. These models,
while powerful, are vulnerable to adversarial attacks and
natural perturbations that can significantly impact their
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Fig. 2. Example of damages to the capacity predictor

performance. The primary challenge addressed in this paper
is to use DEEXP as a tool to identify vulnerabilities in DNN
models used for mobile traffic forecasting. To achieve this, we
introduce DEEXP, a novel framework designed to generate
compact and useful deep explanations for spatio-temporal
time-series predictions in mobile traffic forecasting of the
future traffic load. DEEXP builds upon legacy XAI techniques
to aggregate verbose information into actionable metrics,
providing a clear understanding of which BSs are most
influential for forecasting.

By leveraging DEEXP, we focus on identifying and
exploiting vulnerabilities within DNN models, thereby pro-
viding network operators with actionable insights into the
most critical BSs. These insights enable operators to focus
their mitigation efforts on the most influential points, which
can be used to enhance the overall robustness of the system.
While DEEXP does not directly prevent inaccuracies, it
serves as a crucial tool for pinpointing areas that require
reinforcement, facilitating the development of strategies to
ensure reliable and accurate traffic predictions even in the
presence of adversarial and natural perturbations. This, in
turn, contributes significantly to more reliable and secure
mobile network operations by allowing proactive measures
against potential disruptions.

It is important to note that perturbations may not neces-
sarily originate from a malicious attacker. Sudden changes
in demand and user behavior, often referred to as outliers,
can also introduce significant perturbations in the traffic
data. These outliers can arise from unexpected events such
as concerts, sports events, or natural disasters, leading to
sudden spikes or drops in traffic volumes at specific BSs.

3.1 Threat Model

Our threat model considers an attacker with access to
purpose-specific networked devices or compromised ones
for injecting traffic on a mobile network. The primary goal
of the attacker is to disrupt the network’s normal operations
through actions like a Distributed Denial of Service (DDoS)
attack. Examples of such devices are infected IoT devices
or smartphones. The attacker has the technical expertise
to access and compromise the set of devices, enabling
them to associate with the network. Once connected, they
carefully inject traffic into the network aiming at causing
service disruptions by introducing crafted perturbations to
the network load. Such attacks are feasible as the Mirai
botnet has demonstrated [53]. The attacker can compromise
N smartphones or IoT devices connected to the cellular
network and can programmatically determine which cell
identifiers (CIDs) to target by using Command and Control
(C&C) channels. Injecting traffic is trivial once the device is
compromised, as it does not require any privileged access
to open a socket. The malware facilitating these attacks
can come pre-installed or through user-installed apps, be
distributed through compromised Firmware-over-the-Air
(FOTA) updaters, official app stores, or via incentivized
app install programs. These distribution methods have been
extensively documented [54], [55], [56]. By understanding
the potential threat posed by an such attacker, we can better
design and implement security measures to protect the
network from such attacks.
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Fig. 3. Attack scenario taxonomy with an adversary that performs DDoS
attacks to a random BS. (1) BS traffic load is collected and (2) stored in
a central database. (3) The network operator uses a DNN for tasks like
resource management and load balancing, and (4) DEEXP identifies BSs
influential for the prediction. (5) An attacker injects traffic into the network
without knowledge of DEEXP’s findings. If this attack targets an influential
BS identified by DEEXP, the impact could be severe, leading to service
disruptions, resource misallocation, and network instability. (6) This
disruption affects connected UEs and the overall network performance.

The attacker does not necessarily have knowledge about
the trained DNN used by the network operator. However, the
network operator utilizes our tool, which leverages the DNN
to identify BSs that are particularly vulnerable to adversarial
attacks. The attacker injects malicious traffic into the network
without specific knowledge of the DNN’s predictions. If,
by chance, the attacker targets the same BSs identified as
vulnerable by DEEXP, then the attack would be significantly
more impactful. The consequences of such attacks can be
severe, leading to resource misallocation, service degradation,
service disruption, and network instability. For instance,
incorrect traffic predictions can cause overprovisioning or
underprovisioning of network resources, resulting in inef-
ficient use of resources, increased operational costs, and
failure to meet SLA. Persistent incorrect predictions can also
destabilize the network, leading to larger-scale outages and
reduced reliability of mobile services.

As illustrated in Fig. 3, the BSs’ traffic load is used to train
DNN models, which can be designed for specific goals such
as resource management, load balancing, routing, etc. Once
the model is trained, DEEXP is employed to identify the most
influential BSs for the prediction of the future traffic load. In
the radio-access network, there are many User Equipments
(UEs), each of which can connect to only one BS. If an infected
IoT device happens to inject traffic into an influential BS
identified by DEEXP, that BS may become overloaded and
unable to provide adequate resources to the UEs connected
to it, leading to potential service disruptions and degraded
network performance.

3.2 System Model and Problem Formulation
The objective of DNNs that tackle the problem of mobile
traffic forecasting is to predict the traffic volume at time
t + 1, having observed past traffic volumes. Formally, let
X = {X1, X2, . . . , XT } be the sequence of traffic snapshots

at time t = {1, 2, . . . , T}. Each traffic snapshot Xt contains
information from geo-distributed BSs each one identified
by its location given as coordinates (r, c) in a grid G of size
R× C :

Xt =


xt
(1,1) · · · xt

(1,C)

xt
(2,1) · · · xt

(2,C)

...
. . .

...
xt
(R,1) · · · xt

(R,C)

 . (1)

Therefore, xt
(r,c) measures the traffic volume at the BS located

at (r, c) at time t. The sequence D is a tensor D ∈ RR×C×T .
Let XS be the set of historical S past traffic observations
at time t: XS = {Xt−S+1, Xt−S+2, . . . , Xt}. Note that S is
known as history and S ≪ T . Then, the forecast X̂t+1 of the
spatio-temporal traffic volume in R× C at time t+ 1 is:

X̂t+1 = F (XS), (2)

where F is a generic prediction function. The DNN model
design phase is all about synthesizing F (Section 8 outlines
several such DNN models). F is trained by evaluating at
each iteration a loss function Lθ(X

t+1, X̂t+1) and updating
the model weights θ. L can be customized according to the
objective of the predictor. For the evaluation we will use
loss functions designed for the purposes of standard traffic
estimation and capacity forecasting, see Section 5.1.

4 OUR TOOL: DEEXP

Motivated by the challenges described in Section 2.3, this
section explores different XAI techniques that can be plugged
into DEEXP providing Deep Explanations by extracting
meaningful and compact information from the verbose
explanations that are natively provided by the existing XAI
tools.

Fig. 4 outlines the high-level design of DEEXP. In a
nutshell, DEEXP extracts through XAI techniques a relevance
score that defines the contribution of each BS to each forecast.
This information is still too verbose, hence DEEXP uses a
specific metric to aggregate the information that allows us to
uniquely spotlight BS relevance at each time step. We design
DEEXP with the following design principles in mind:
DP1: We allow for any of the existing XAI tools to be plugged

into DEEXP. This allows DEEXP to be as general-
purpose as possible and provides the capability of
comparing the explanations that the XAI tools provide
when applied to the same trained DNN model.

DP2: While DEEXP is not model-variant specific, we design
it to be used only with DNN models dealing with
spatio-temporal characteristics intrinsic to the mobile
traffic forecasting problem.

4.1 Spatio-Temporal Relevance Scoring

In analogy with computer vision where the objective is to un-
derstand the relevance of each pixel of an image at each point
in time t, our objective is to characterize the relevance of each
BS by assigning scores to xt

(r,c). We need to take into account
that each prediction X̂t+1 depends on the past sequence of
observations XS . Call ZS = {Zt−S+1, Zt−S+2, . . . , Zt} the
relevance scores associated to the prediction at t+ 1. Then,



7

Space

Tim
e

XS

C
O

N

V

C
O

N

V

C
O

N

V

C
O

N

V

... ...

DNN model

Model Output

LRP
SHAP
LIME

...
GradCam

XAI technique
ZS

Z t

DEEXP

Fig. 4. Architectural overview of DEEXP application in a typical DNN pipeline

during each t, zt(r,c) defines the relevance of each traffic
volume observed at the BS located in (r, c). In general,

Zt =


zt(1,1) · · · zt(1,C)

zt(2,1) · · · zt(2,C)

...
. . .

...
zt(R,1) · · · zt(R,C)

 . (3)

In itself, ZS contains too much information: S multi-
dimensional matrices. For a history of size S = 20, the
information is not directly usable. If we can compress
ZS → Zt, then for each prediction we obtain a compact and
useful metric that uniquely identifies the temporal relevance of
each BS, thereby addressing the two challenges presented in
Section 2.3. Given that in a usually short sequence of length
S it is hard to find seasonal or trend components, we take
the last instance. This approach assumes that the most recent
spatio-temporal traffic snapshot is the most important for
the current prediction.

4.2 Legacy XAI Techniques
Having defined a methodology to obtain compact and useful
explanations with Zt, we now show (i) how to map relevance
scores to the explanations given by existing XAI tools and (ii)
how to flexibly incorporate explanations given by different
families of XAI tools (DP1) available today, including layer-
wise backpropagation and gradient-based methods.

4.2.1 Layer-wise relevance propagation
Layer-wise Relevance Propagation (LRP) was initially in-
troduced in [32]. This method was extensively utilized
in our previous work [35]. LRP is a method that assigns
relevance scores to the inputs of a predictor to indicate
their contribution to the model’s output. This relevance
score is calculated by backpropagating the output through
the network, tracking how individual activation ai of each
neuron i and its contribution to neuron j with weight wi,j

influence subsequent layers of the Neural Networks (NN) p
and q. Formally:

Z
(q)
i←j = Z

(p)
j

∑
i,j

ai · wi,j∑
k ak · wk,j

. (4)

LRP follows a conservation principle for which the total
amount of relevance distributed in layer p remains unaltered
in layer q. When the backpropagation reaches the input
layer, the relevance is distributed to the input, i.e., Zt in
our case. Montavon et al. [57] have extended the basic
LRP framework by introducing several propagation rules

for deep neural networks (such as LRP-0, LRP-ϵ, LRP-γ,
etc.), particularly effective with rectifier (ReLU) nonlinearities.
These rules enhance the basic LRP approach by modifying
the redistribution criteria. In our work, we experimented
with various LRP rules to determine which ones provided the
most effective explanations for our models. After extensive
testing and comparison, we found that utilizing the following
two rules in our work, yielded the best empirical results:
• Basic rule (LRP-0) This is the original LRP rule in (4),

utilized in the original version of DEEXP.
• Gamma rule (LRP-γ) This rule aims at favoring the

effect of positive contributions over negative ones:

Z
(q)
i←j = Z

(p)
j

∑
i,j

ai · (wi,j + γw+
i,j)∑

k ak · (wi,j + γw+
i,j)

. (5)

The term w+
i,j = max(wi,j , 0) represents the positive

part of the weight wi,j , which only includes positive
contributions. The parameter γ controls by how much
positive contributions are favored. By increasing it,
the negative contributions start to disappear and the
explanations become more robust and empirically closer
to those of Shapley values [58].

Using different rules for LRP enhances its adaptability,
allowing explanations to be tailored to specific model archi-
tectures and explanation needs.

4.2.2 Grad-CAM
In this subsection, we present Gradient-weighted Class
Activation Mapping (GC) as developed by [33]. We have
subsequently modified it to address specific challenges in
our mobile networks’ research.

Original GC. GC is a widely recognized class-discriminative
localization technique that offers visual explanations from
CNN models, particularly useful for highlighting regions in
input images crucial for predicting class labels. GC computes
the gradient of the score for class c, denoted as yc before
the softmax operation, with respect to k-th feature map
activations Ak of a convolutional layer, represented as ∂yc

∂Ak .
The importance weights of neurons, αc

k, are calculated by
globally averaging the gradients over all layers with width i
and height j, as expressed by the following equation:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

. (6)

Here, it is essential to note that the gradients ∂yc

∂Ak are
computed with respect to the ReLU activation. The ReLU
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activation introduces non-linearity in the network, and
considering it during the guided backpropagation enhances
the interpretability of the visualization:

Zc
GC = ReLU(

∑
k

αc
kA

k), (7)

where Zc
GC is the final GC score of the class c.

Modified GC. In response to the requirements of our
regression-focused neural network architecture, we have
developed a modified version of the original GC. This
adaptation is particularly tailored to handle the specific
requirements of regression tasks, which are fundamentally
different from classification tasks.

In regression problems, the objective is often to predict
continuous outcomes rather than discrete class labels. This
shift requires a different approach in analyzing the influence
of inputs on the neural network’s outputs. The original
GC focuses on detecting class-discriminative regions, which
are less meaningful in regression contexts where the focus
is on predicting a continuous variable. Consequently, we
specifically extract gradients and convolutional outputs from
the first convolutional layer rather than an intermediate
layer. Through experimentation, we found that the layer
closest to the input provided the most meaningful results
for our problem, as it captures the raw spatial relationships
between BSs without introducing unnecessary complexity.
Unlike images, which contain rich contextual information
such as colors and textures that evolve through intermediate
layers, our data structure treats each BS as a discrete, position-
based unit. The positions of BSs remain fixed, and only their
traffic changes over time. As mentioned earlier, our modified
method does not rely on class-specific gradient calculations.
Instead, it calculates the gradients of the predicted value,
denoted as y, with respect to the feature map activations Ak

of the convolutional layer. The equation for computing these
gradients remains consistent with the GC framework:

Gk =
∂y

∂Ak
. (8)

However, instead of globally averaging these gradients
to compute importance weights, we directly use the raw
gradients up until the k-th convolutional layer, for a more
granular visualization. We then compute the element-wise
product of the feature map activations Ak and the raw
gradients Gk, across each channel k, to produce a raw
influence map Mk for each feature map:

Mk = Ak ⊙Gk. (9)

where ⊙ denotes the Hadamard product. This operation
directly multiplies each activation by its corresponding
gradient, emphasizing how each component of the feature
map contributes to the output.

Further, to map these influence maps Mk back to the
input space and facilitate a direct comparison with the origi-
nal input image, we employ a de-convolution (transposed
convolution) approach using the same trained weights as
the forward convolutional layer. This step reconstructs an
approximation of the input that highlights how the network’s
internal representations correlate with its predictions:

ZGC = Deconv(Mk). (10)

The reconstructed input ZGC is then compared with the
original input image to evaluate the predictive focus of the
network, providing insights into both positive and negative
contributions of various input features. For the remainder
of this paper, when we mention GC, we are referring to the
modified GC.

4.2.3 SHAP

Shapley Additive exPlanations (SHAP) is a model-agnostic
method introduced in [38] based on cooperative game theory.
It assigns importance scores to each feature by distributing
the prediction value among the input features, ensuring
fairness according to the Shapley value framework. The
Shapley value for a feature i is computed as the weighted
average of the feature’s marginal contributions over all
possible subsets S of the other features:

ZSHAP(i) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!

[
f(S∪{i})−f(S)

]
,

(11)
where N is the set of all features, f(S) is the model prediction
when only the features in subset S are used, and f(S ∪ {i})
is the prediction when feature i is added. SHAP ensures that
all contributions are fairly distributed across the features.

4.2.4 LIME

Local Interpretable Model-agnostic Explanations (LIME) [39]
approximates the decision boundary of a model by fitting
an interpretable surrogate model around the neighborhood
of the prediction instance. For an input x, LIME generates a
dataset of perturbed instances {x′i} and their corresponding
model predictions f(x′i). A weighted linear regression is then
applied:

ZLIME(x) = argming∈G
∑
i

πx(x
′
i)
[
f(x′i)− g(x′i)

]2
+Ω(g),

(12)
where πx(x

′
i) is a proximity measure defining the weight

of instance x′i, g is the interpretable surrogate model from
the class G, and Ω(g) is a complexity penalty to encourage
simplicity. LIME provides insights into the local behavior of
the model by interpreting the importance of features within
the perturbed neighborhood of the input instance.

5 METHODOLOGY

In this section, we elaborate on the experimental setup,
datasets and models used and the detailed attack strategies
utilized to assess the robustness of DL-based mobile traffic
forecasting systems. These strategies leverage DEEXP, though
it is important to note that the specific attacks implemented
are not inherent parts of DEEXP’s framework. Rather, they
are applications that utilize DEEXP to understand and exploit
potential vulnerabilities in DL models. Following this, we
introduce our adaptive GC ranking system. This compre-
hensive methodology allows us to thoroughly analyze and
benchmark the effectiveness of our proposed tool, DEEXP.
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5.1 Datasets
For the experiments, we rely on two datasets, whose at-
tributes and properties are described thereafter.

Milan Dataset. The Telecom Italia dataset contains mobile
traffic data from two areas in Italy, Milan and Trentino,
collected in 2014 [34]. This is the state-of-the-art dataset used
in the literature (e.g., [50]). The data comes from 1728 BSs and
is aggregated in a grid comprising square cells, e.g., 10000
cells for Milan. A Voronoi-tessellation technique associates
BSs and cells [59]. The data contains SMS, voice calls, and
“Internet activities” at a 10-minute granularity. Similar to
other works that rely on this dataset [60], we use “Internet
activities” as a proxy for mobile traffic volume. The “Internet
activities” data includes detailed records of mobile internet
usage, which is collected through Call Detail Records (CDRs).
A CDR is generated each time a user starts or ends an internet
connection. Additionally, during an ongoing connection, a
CDR is generated if the connection lasts for more than 15
minutes or if the user transfers more than 5 MB of data. This
granular data provides a comprehensive view of internet
activity, capturing the frequency and volume of data transfers
across different times and locations.

EU Metropolitan Area (EUMA) Dataset. The second dataset
contains traffic volumes generated by a set of popular mobile
applications like YouTube, Facebook, Netflix, Twitch, and
WhatsApp, among others. The data was collected in a
production LTE network that provides service to a major
metropolitan region in Europe in 2019. The dataset describes
service-level traffic volumes at each of over 400 BSs. As in the
case of the Milan dataset, the traffic information is aggregated
over 10-minute intervals and mapped to a regular grid of
3400 cells using the same Voronoi-based methodology [59].
We remark that, in order to make the scenarios comparable,
grid cells in the Milan and EUMA datasets have the same
size, i.e., 325× 325 m2.

5.2 Prediction Methodology
We now outline the predictors utilized and how the models
have been trained.

DNN Predictors. We use two state-of-the-art predictors that
have been developed to achieve different goals.
• CAP [4] was designed for capacity forecasting and it

aims at allocating sufficient resources for the operator
to jointly minimize overprovisioning and penalty for
non-served demands (i.e., SLA violations from here on).

• TRA [13] was designed for traffic forecasting and is one
of the first of its kind able to expose DNN advantage
over statistical analysis models like ARIMA.

The models are trained using an Adam optimizer with
a learning rate of 0.0005 during 150 epochs and with the
Rectified Linear Unit (ReLU) as the activation function for
neurons of each layer. The standard 80 : 20 training-testing
ratio is used and the resulting test-set for the Milan and
EUMA datasets are respectively 1780 and 400 samples of
10 minutes each (i.e., approximately 12 and 3 days).

Prediction Methodology. Spatio-temporal predictors can be
designed to output either the capacity or traffic volume for
only one BS (i.e., xt

(r,c)) or all the BSs present in the grid (i.e.,

Xt) as forecast at time t. To highlight best the capabilities of
DEEXP and without loss of generality, for the evaluation, we
select the areas AMilan ∈ GMilan and AEUMA ∈ GEUMA, both
of 21× 21 cells. A is selected taking into consideration the
Voronoi tessellation for a map with the actual BSs and traffic
distributions so that the predictors can exploit well the spatio-
temporal traffic characteristics. In both AMilan and AEUMA, we
train small models on 5×5 grids and each model forecasts the
capacity/traffic of the central cell only. This allows retaining
individual forecasts in all the cells of AMilan and AEUMA, and
makes the analysis of the vulnerability more practical as
the state-of-the-art attacks would craft perturbations on few
BS and not all those of the bigger areas. Furthermore, this
methodology allows testing extensively BS/cell relevance
across space, which would be impossible by only training
one DNN model to forecast directly the capacity/traffic in
all the 21× 21 cells. Following such evaluation methodology,
we have trained 441 models for the two datasets and two
predictors, which makes a total of 1764 models. Training
each set of 441 models requires approximately 4 hours on an
Intel® Core™ i9-11900K Processor operating at 3.5 GHz and
equipped with an Nvidia RTX 3090 GPU. For the actual
evaluation of DEEXP, we utilized 2 AMD™ EPYC 7543
Processors operating at 2.8 GHz and 4 Nvidia A100 SX
GPUs. Finally, the CAP predictor uses a parameter named α,
which can be interpreted as the amount of overprovisioned
capacity units that determine a penalty equivalent to one
SLA violation. A larger α implies higher SLA violation
fees for the operator, thus influencing the balance between
overprovisioning and SLA violations. We make sure to
properly calibrate the α parameter of the CAP predictor
with an offline analysis. For the Milan dataset, we set α so
as to accept 1% of SLA violations over the entire test set.
For the EUMA, we accept 3% of SLA violations over the
entire test set. Both predictors use the same number of past
observations, i.e., S = 3.

5.3 Attack Strategies
In our setting, perturbing Xt given the different loss func-
tions for capacity and traffic forecasting predictors implies
that the baseline attacks are applied to the whole grid of cells
C that is used to predict the central one ct. By contrast, with
DEEXP, we can pinpoint which are the most relevant cells
in the grid where to perform the perturbations. Therefore,
we directly perturb the time-series of those cells. To have a
fair comparison, we make sure to inject the same amount
of traffic B. First, we define FGSM and brute force attacks,
which serve as our baseline strategies. However, it is worth
noting that FGSM injects perturbations to multiple BSs
and BruteOV P is calculated exhaustively in advance. This
exhaustive calculation means that BruteOV P acts as an oracle
attack that cannot be realistically implemented in real-time
scenarios. First, we define FGSM and brute force attacks,
which serve as our baseline strategies:
• FGSM computes the gradient of the cost function relative

to the neural network input and crafts adversarial inputs
X

t
= Xt + η with η = ϵ · sign(▽iJm(Xt, X̂t)), where

Xt is the input, X
t

the adversarial one, Jm the loss
function of the model m and ▽i the gradient of the
model computed with respect to the ground truth Xt.
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In our setting, we focus on injecting traffic rather than
taking it away because the only feasible way to remove
traffic is through radio-level jamming, which is easily
detectable and less practical for simultaneous attacks
on multiple BSs. We modify FGSM so that when the
gradient is negative, the perturbation is zero. This forces
the attacks to only inject traffic and not subtract traffic
volumes. For the amount of injected traffic, we set a
fixed ϵ, which controls the intensity of the perturbation.
By fixing the ϵ, we ensure that the total amount of
traffic injected is consistent across different strategies,
allowing for a fair comparison of their impacts. We use
the amount of traffic injected by FGSM as a baseline for
other attack strategies. This approach ensures that all
strategies inject a comparable amount of traffic for a fair
comparison.

• BruteOV P : This strategy conducts an exhaustive search
to find the cell perturbation that maximizes resource
overprovisioning. The cell, when perturbed, that
leads to the highest increase in overprovisioning
is identified by the following expression:
OVP_cost∗max = argmaxOVP∈OVPt{(r, c) : xt

(r,c) = OVP}
where OVPt represents the set of overprovisioning
costs at time t.

• BruteSLA: Similar to BruteOVP, but it aims to maximize
Service Level Agreement (SLA) violations by
perturbing the cell that has the most significant
impact when perturbed and is defined by:
SLA_cost∗max = argmaxSLA∈SLAt{(r, c) : xt

(r,c) = SLA}.
Both brute force approaches are computationally intensive
and act as oracle attacks that cannot be realistically im-
plemented in real-time scenarios. This is because brute
force requires systematically injecting traffic into each BS,
observing the impact, and iteratively selecting the BS causing
the highest damage. In a real-world scenario, this would
necessitate going back in time to attack a different BS at
each step, which is impossible. However, these approaches
provide valuable baselines for identifying the most impactful
cell perturbations in terms of overprovisioning and SLA
violations. Specifically, brute force is 25 times more computa-
tionally expensive than other methods, as it requires injecting
traffic into each BS one by one, predicting outcomes, and
computing errors for every iteration within the grid.

We also consider strategies that choose the BS where
traffic is injected in random fashion. Specifically, we denote
RandomOVP and RandomSLA to assess respectively over-
provisioning and SLA violations.

Here we define our strategies using DEEXP:
• StrategyOV P as the strategy that consistently perturbs

the most relevant cell within the set C. Specifically, we
select z∗max = argmaxz∈Zt{(r, c) : xt

(r,c) = z}.
• StrategySLA is characterized by perturb-

ing the least relevant cell in C. That is,
z∗min = argminz∈Zt{(r, c) : xt

(r,c) = z}.
The results presented in Section 6 are derived as follows. We
analyze 2 datasets. For each dataset, we vary the amount
of injected traffic B by fixing 5 different values of ϵ (i.e.,
ϵ = {0.001, 0.005, 0.01, 0.03, 0.1}). We benchmark 2 predic-
tors and 13 strategies FGSM, BruteOV P , BruteSLA, Grad-
CAMOV P (GCOV P ), Grad-CAMSLA (GCSLA), LRPOV P ,

LRPSLA, SHAPOV P , SHAPSLA, LIMEOV P , LIMESLA,
RandomOV P , RandomSLA; which makes a total of 260
different configurations tested.

5.4 Adaptive GC Ranking

The ranking of GC scores is a critical step in our analysis,
providing a basis for prioritizing network adjustments and
understanding potential vulnerabilities. We implement a
dual-ranking system based on distinct criteria:

• Overprovisioning: We prioritize identifying BSs with
the highest potential for reducing unnecessary resource
allocation without impacting performance. GC scores
related to overprovisioning are ranked highest to lowest.

• Service Level Agreement (SLA): We prioritize identify-
ing BSs most likely to violate SLAs. GC scores related to
SLAs are ranked lowest to highest.

An initial ranking is performed for each criterion. For
overprovisioning, the GC scores are ranked from highest to
lowest, highlighting the BSs that can most effectively reduce
resource overprovisioning. For SLAs, the scores are ranked
from lowest to highest, identifying the BSs with the highest
likelihood of causing SLA violations.

5.4.1 Adaptive Ranking Based on Gradient Analysis

The initial rankings based on simple metrics might not
fully capture the true impact of each BS on the network’s
performance. Therefore, refining these rankings is crucial.
To further refine the rankings, we employ a gradient-based
adjustment method. We evaluate the GC score and gradient
of the center BS within a 5x5 grid around each BS. If:

• The gradient is negative, indicating a potential reduction
in impact by altering this BS.

• The overprovisioning rank score is lower than the
absolute value of the SLA rank score.

We then flip the ranks between overprovisioning and SLA
for that BS. The reasons behind these adjustments are the
following:

• Negative Gradient: A negative gradient means that
decreasing the influence of the center cell could lower
prediction errors, addressing overprovisioning more
effectively. This indicates that the current influence of
the center cell is contributing to an overestimation of
traffic volumes, leading to overprovisioning.

• When the overprovisioning rank score is lower than the
absolute value of the SLA rank score, it implies that
the impact of SLA violations is potentially more severe
than overprovisioning. SLA violations directly affect
service quality and customer satisfaction, making it
crucial to prioritize mitigating these issues over resource
overprovisioning.

By incorporating these criteria, our adaptive ranking process
ensures that our analysis prioritizes addressing potential SLA
violations when both conditions are met, thereby optimizing
network performance and service quality. Additionally, we
invite the reader to visit Appendix for the comparison of
rankings across all strategies, including GC, LRP, SHAP, and
LIME, with respect to the brute force method.
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Fig. 5. Ratios of top three occurrences matching the top-ranked BS identified by brute force rankings, comparing different strategies across various ϵ
settings for the city of Milan

5.5 Validation of XAI tools
To benchmark the effectiveness of the primary XAI tools GC
and LRP, in understanding and prioritizing the influence of
different BSs within mobile traffic forecasting models, we
conduct a comparative analysis alongside FGSM, brute force,
SHAP, LIME and Random attack strategies. While GC and
LRP are the main XAI methods we use, SHAP and LIME
are also included for completeness of evaluation, though we
do not explain them in detail due to space constraints. This
comparison allows us to unravel the capabilities of each XAI
technique in identifying vulnerabilities within the network.

In Fig. 5, we observe the ratios of matches where any
of the top 3 ranked BSs identified by GC, LRP, SHAP and
LIME strategies matches the top-ranked BS identified by
the brute force method in overprovisioning (Fig. 5(a)) and
SLA violations (Fig. 5(b)) categories in all BSs and all time
instances . The colors represent different values of ϵ (i.e.,
attack intensities) for different strategies.

Fig. 5(a) shows that for lower ϵ values, GC methods
yield a ratio near one, indicating that one of top 3 ranked
GC BSs match with the brute force method. However, this
matching ratio decreases as ϵ increases. LRP demonstrates a
slightly better performance in detecting overprovisioning at
highest ϵ value, outperforming the rest of the strategies.
In Fig. 5(b), GC shows greater sensitivity to different ϵ
values, consistently outperforming LRP in detecting SLA
violations. This sensitivity allows GC to excel in scenarios
where finer details and subtle deviations are critical for
accurate detection.

Our findings illustrate differences in the response of GC
and LRP and the rest of the strategies to varying attack inten-
sities for Milan dataset, highlighting their distinct capabilities
and limitations. GC exhibits a heightened sensitivity to attack
intensities, which proves advantageous in detecting subtle,
stealthier attacks.

6 RESULTS

To demonstrate the capabilities of DEEXP, we carry out a
comprehensive evaluation encompassing a broad range of
scenarios, including different DNN predictors, different real-
world datasets, and adversarial attacks.

Demonstration. In this subsection, we showcase that across
the spatio-temporal domain, not all BSs contribute equally
to the prediction. The demonstration encompasses represen-
tative scenarios from the analysis of the 441 trained models
on 5× 5 grids for both predictors. Our main findings from
the quantitative analysis are the following:
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Fig. 6. Ranked BSs based on most influential with brute force method
from the analysis of the MILAN dataset with the capacity forecasting
predictor with ϵ = 0.005
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Fig. 7. Ranked GC scores from the analysis of the MILAN dataset with
the capacity forecasting predictor with ϵ = 0.005
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Fig. 8. Ranked LRP scores from the analysis of the MILAN dataset with
the capacity forecasting predictor with ϵ = 0.005

F1: The relevance scores for the same cell vary over time (i.e.,
different instances of the test set), which is expected.

F2: Our findings reveal that different XAI strategies, point
to distinct vulnerabilities within the network.

F3: GC exhibits heightened sensitivity to intensity of the
attacks, performing well with low injections and subtle
attacks.

F4: LRP demonstrates strength in pinpointing vulnerabilities
that when attacked show more sensitivity to high traffic
injection, providing clear indication of overprovisioning
when subjected to high-level injections.

This contrast in performance underscores the strategic
value of each tool based on the attack scenario, with GC
suited for fine-grained analysis and LRP for scenarios
demanding resilience to more pronounced adversarial tactics.

We present heatmaps that display the ranked GC and
LRP scores, along with brute force rankings for a specific 5×5
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grid across various time steps in Fig. 6 to Fig. 8 the colorbars
represent the rankings of the BSs from lowest to highest.
These heatmaps allow us to compare the effectiveness of
GC and LRP in identifying the most influential cells for
the prediction of the next time-instance. For example, in
Fig. 6c and Fig. 7c, we observe a high correlation in the
bottom-right cell of the grids. This indicates that the GC
method correctly identifies this cell as the most relevant for
future prediction of the center cell of the same 5 × 5 grid,
matching the ranking provided by the brute force method.
Such correlations highlight the accuracy and reliability of GC
in detecting critical cells within the network. In contrast, the
LRP heatmap in Fig. 8c shows a different pattern of relevance
scores.

6.1 Benchmarking Model Robustness

6.1.1 Methodology
In this subsection we explain how we performed the attacks.
In a nutshell, we measure the drop in accuracy that the
different predictors cause with different attacks. We use two
main different types of attacks:
• Baseline attacks We utilize both FGSM [47] and brute

force attacks as our baseline strategies. FGSM is a state-
of-the-art adversarial attack that crafts perturbations by
exploiting the knowledge of the DNN models’ weights.
brute force attacks involve systematically injecting traffic
perturbations into each BS one by one and evaluating
the resulting damage to the model’s predictive accuracy.
These exhaustive searches identify the most vulnerable
BSs by determining which perturbations maximize
resource overprovisioning and SLA violations.

• DEEXP: We use our tool to pinpoint the most influential
BSs for the model to perform the predictions and craft
perturbations with consideration of the model weights.

6.1.2 Collateral Damage on Predictors
As we know so far, perturbing cell C in the 5x5 region causes
a damage to the predictor. But this cell also exists in various
5× 5 grids. We aim to assess the damage done to the center
cell, caused by continuously perturbing the cell C in the
regions it exists. The damage is measured in terms of the
Mean Absolute Error (MAE) percentage increase compared
to the baseline prediction without an attack.

Given a cell C located at coordinates (i, j) in the 21× 21
grid, the set of possible center cells Ccenter (a, b) of the 5× 5
grids that include cell C is defined by:

Ccenter ∈ {(a, b) | max(3, i− 2) ≤ a ≤ min(19, i+ 2)

and max(3, j − 2) ≤ b ≤ min(19, j + 2)} . (13)

This set represents all the center cells of the 5× 5 grids that
contain cell C. By considering these center cells, we can
understand the influence of cell C across multiple regions
within the grid.

We have devised a systematic approach for quantifying
this impact. We construct Ccenter = [c1, c2, ...cn] as the list of
the center cells each of which includes cell C within their 5x5
neighborhood. For each center cell ci in the Ccenter set, we
perturb cell C within the region centered by ci and calculate
the resultant MAE damage to ci. This process is repeated for

all center cells within the Ccenter set, enabling us to assess the
impact of perturbations on each ci based on their proximity
to cell C. We repeat this for all the cells over 21×21 grid. The
total collateral damage D for cell C is calculated by summing
the individual damages d(ci) for each center cell ci and then
normalizing by the length of timeseries T and the number of
center cells |Ccenter|:

D =
1

T · |Ccenter|
∑

ci∈Ccenter

d(ci). (14)

This method provides a comprehensive assessment of the
combined damages incurred by each cell in its respective
regions. Fig. 9 illustrates the heterogeneous nature of the
damage across all BSs/cells for both datasets and predictors.
This highlights that the impact of the perturbations is not
uniform across all cells.

6.2 Spotting Vulnerable BSs with DEEXP

The accurate identification of vulnerable BSs is a critical
task that plays a huge role in ensuring reliability in mobile
network predictors. In this subsection we illuminate the
vulnerabilities of BSs by instantiating DEEXP with GC and
LRP techniques.

6.2.1 Heatmap Analysis of MAE Increase
We now elaborate on the results. From an operator perspec-
tive, provisioning an excess of capacity compared to the
actual demand is less costly than dealing with an insufficient
resource allocation which translates into SLA violations
in the context of network slicing and directly affects the
user perceived Quality of Service (QoS) [4]. The attacks to
the predictors are measured in terms of the drop on MAE
compared to the no-attack strategy.

Across all settings FGSM and BruteOV P attacks cause
the highest MAE. We present heatmaps in Fig. 10 and
Fig. 11, illustrating the MAE distribution for most introduced
adversarial strategies and their corresponding MAE increase
compared to the MAE of the prediction with no-attack both
averaged over the entire timeseries length. The colorbars in
the first row of each figure represent MAE values and the
colorbars of the second row of each figure are the percentage
of MAE increase. These heatmaps provide a spatial repre-
sentation of where the forecasting models experience the
highest error rates, highlighting the regions most susceptible
to adversarial attacks. Due to space constraints, we have
provided heatmaps for ϵ = 0.001 and Milan dataset for both
predictors. Across all adversarial strategies and across all
regions, BruteOV P tends to have the highest MAE increase
compared to the no-attack case. We see a high correlation
between MAE error increase for GCOV P and BruteOV P .
This high correlation indicates that over the spatio-temporal
heatmap, the same BSs have high values, suggesting they
are particularly vulnerable to these types of perturbations.
Furthermore, BruteSLA has the lowest MAE error increase
and we also see a high correlation between MAE error
increase for GCSLA and BruteSLA. Due to space constraints,
we have not included the heatmaps for other strategies;
however, GC performs best across different DEEXP strategies
for ϵ = 0.001. The full results for all strategies are presented
later in Fig. 12. It is worth mentioning that both our strategies
only target one cell and they are not as costly as the brute
force or FGSM strategies.
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Fig. 9. Collateral damage of the cities of Milan and EUMA with both predictors
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(a) MAE FGSM attack
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(b) MAE GCOV P attack
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(c) MAE GCSLA attack
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(d) MAE BruteSLA
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(f) FGSM attack
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Fig. 10. Comparison of MAE heatmaps (first row) and corresponding accuracy drops (second row) for various attacks on the city of MILAN
with ϵ = 0.001 and Capacity forecasting predictor
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(b) MAE GCOV P attack
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(c) MAE GCSLA attack
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(f) FGSM attack
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Fig. 11. Comparison of MAE heatmaps (first row) and corresponding accuracy drops (second row) for various attacks on the city of MILAN
with ϵ = 0.001 and Traffic forecasting predictor
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6.2.2 Quantifying Overprovisioning and SLA Impacts

In this subsection, we perform a more comprehensive eval-
uation of the impact of adversarial attacks on mobile traffic
forecasting models. Specifically, we compute the relative er-
ror increase for overprovisioning and SLA violations for each
attack strategy with respect to the no-attack case. These evalu-
ations help us understand the effectiveness of different attack
strategies in causing resource mismanagement or service
quality degradation. Our comprehensive evaluation catego-
rizes strategies into overprovisioning (e.g., FGSM, BruteOV P ,
GCOV P , LRPOV P , SHAPOV P , LIMEOV P , RandomOV P ) and
SLA (e.g., FGSM, BruteSLA, GCSLA, LRPSLA, SHAPSLA,
LIMESLA, RandomSLA). To quantify the error increase, we
calculate the difference between the perturbed timeseries and
the real timeseries, and then compare this to the real value.
We compute the error in two ways: for overprovisioning
error, we measure how much the predicted value is higher
than the real value, and for SLA violation error, we measure
how much the predicted value is lower than the real value.
We focus on the 90-th percentile of all instances across the
21×21 grid to highlight significant performance degradation
across the most affected BSs, offering a robust measure of
impact while minimizing the influence of extreme outliers
allowing for a clearer comparison of different strategies.
brute force methods serve as our oracle baselines, though
they are impractical for real-world scenarios, as they require
exhaustive searches, identifying the most impactful BSs
by perturbing each BS individually at each time instance.
FGSM, on the other hand, is a state-of-the-art attack that
can perturb multiple BSs at each time instance, potentially
leading to higher relative errors than the brute force method
in overprovisioning category. The results, presented in
Fig. 12, highlight the distinct impacts of each provisioning
strategy on the prediction performance, confirming that
the strategic perturbation of specific BSs can significantly
influence prediction accuracy. In overprovisioning category,
injecting traffic at BSs using FGSM and Brute

OV P
techniques

results in a low number of SLA violations but incurs a very
high overprovisioning cost. In SLA category, the Brute

SLA

strategy generates significant SLA violations. Additionally,
we observe very small or often negative errors for FGSM in
this category. This occurs because FGSM inherently causes
overprovisioning by injecting traffic into multiple BSs and is
not suitable for causing SLA violations.

In Milan dataset and in overprovisioning category,
GCOV P and LRPOV P exhibit competitive performances at
lower ϵ values, achieving results comparable to BruteOV P .
However LRPOV P outperforms GCOV P when ϵ increases
making it more suitable for spotting vulnerable BSs
when moderate/high traffic is injected. While SHAPOV P ,
LIMEOV P have very poor performances no better than
RandomOV P . In the SLA category, GCSLA generally out-
performs other strategies, with the exception of BruteSLA. At
lower ϵ values, GCSLA achieves performance comparable to
BruteSLA; however, similar to the overprovisioning category,
its effectiveness decreases as ϵ increases. The rest of the strate-
gies show poor performance, no better than RandomSLA.
For the EUMA dataset we see the same trend, except for
the overprovisioning category where we see GCOV P slightly
outperforming LRPOV P .

As expected, in both SLA violations and overprovisioning
categories, relative errors increase with the increase of the
injected traffic but this error increase in not linear. All in
all, these findings confirm our intuition: not all BSs are
equally important from a spatio-temporal perspective for
the predictors. Upon understanding and harnessing these
hidden characteristics, adversaries could potentially hinder
the predictor’s accuracy significantly.

We demonstrate that DEEXP proves to be highly effective
in identifying the most influential BSs in the prediction of
future traffic, which, when attacked with subtle or strong
traffic injection, can significantly degrade the predictor’s
accuracy. By leveraging the insights provided by DEEXP,
network operators can better understand which BSs are
most susceptible to attacks and implement robust defense
mechanisms (demonstrated in Section 7.2).

7 DISCUSSION

In the pursuit of robust mobile traffic forecasting, we have
identified DEEXP as an important tool in spotting potential
vulnerabilities of DNN models in spatio-temporal domain.
Our tool employs different XAI techniques, each offering
distinct advantages depending on the scenario.

Using more than one XAI technique enriches our under-
standing and adds transparency to the model’s predictions.
Specifically, modified GC’s ability to leverage gradients from
hidden layers that enhances the granularity of our analyses,
enabling targeted exploration of model behavior. This is
juxtaposed with the stability of LRP, which shows promise
in detecting and defending against more aggressive and
pronounced adversarial attacks. The DEEXP tool is positioned
to become key to spotting vulnerabilities of mobile traffic
predictors in production networks.

Next, we discuss in more detail what DEEXP enables,
limitations and areas of future work.

7.1 Capabilities Enabled by DEEXP

Benchmarking XAI Techniques. As highlighted in Section
4, different XAI techniques can be plugged into DEEXP. In
this paper, due to space constraints, we focused on four
prominent XAI techniques, GC, LRP, SHAP and LIME.

However, most of the other existing techniques rely
on perturbations. Because of its design, DEEXP allows
benchmarking different techniques from a unique standpoint.
This opens the doors for even deeper analyses than the one
carried out in this work.
Benchmarking DNN Models. Besides enabling XAI tech-
niques benchmarking, the vulnerability analysis workflow
we developed is instrumental in model design and veri-
fication. Given a baseline model, this workflow can spot
whether changes in the hyperparameter setting of a new
model or model re-training still provide a similar compact
representation (which can be defined in terms of the KL
divergence of the respective distributions of explanations).
Potential Countermeasures and Mitigation Strategies As
DEEXP identifies the most influential BSs for the models,
operators can implement targeted mitigation strategies to
enhance the resilience of the models to adversarial attacks
like traffic injection. A practical mitigation strategy is as
follows: upon identification of a significant drop of the
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Fig. 12. 90th percentile of error increase from real data: Strategy vs. Predicted time-series without attack for all instances
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Fig. 13. The effect of the mitigation strategy

predictor’s accuracy using tools for anomaly detection like
ADWIN [61], the subsequent traffic of the compromised
BS can be replaced with historical data from the same
hour of the previous week. We implemented and tested
this strategy that is simple but effective in neutralizing
traffic injection. Fig. 13 compares the predictions in scenarios
without attack, with attack, and with the mitigation strategy
in place. The latter provides a prediction accuracy that is
very close to the result obtained by the original predictor.
Other potential countermeasures include load balancing to
reduce congestion risks, and traffic shaping or data clipping
to prevent malicious traffic from overwhelming the network.

7.2 Limitations
Scalability of Model Training One limitation of applying
DEEXP to large mobile network deployments is the compu-
tational burden associated with training individual models
for each BS. Although this challenge relates to the scalability
of the training process, it marginally affects the scalability of
DEEXP itself because the lower the number of models, the
lower the time it takes for the legacy techniques to compute
their scores. Techniques such as clustering or developing
generalized models for groups of BSs could address this
limitation.
Dataset Limitations We acknowledge that the Milan dataset,
despite being widely used by the community, is outdated.

For this reason, we experimented with the EUMA dataset
too that is more recent than the Milan one. Unfortunately, to
the best of our knowledge, there are not public 5G datasets
with city-scale operator-level data to allow training models
tailored to the characteristics of 5G traffic.

7.3 Future Directions

Deployment Framework. Deploying DEEXP requires in-
tegration with operator infrastructure, such as centralized
data centers or edge computing nodes. To enable seamless
operation, traffic forecasting models and DEEXP must be
deployed in a pipeline with telemetry data collection. Works
such as [62], [63] provide architectural blueprints for inte-
grating forecasting tools with telemetry systems. Following
the recent trend of Open RAN and similarly to other XAI
techniques [44], [64], DEEXP could be implemented as an
rApp interconnected with other rApps that make use of the
information provided by the forecaster for specific network
operations like load balancing.
Other attacks and Vulnerabilities. While this paper focuses
on identifying BSs vulnerable to specific traffic injections
(moderate/low and high traffic), other potential adversarial
attacks could also impact model performance. A broader
discussion on adversarial techniques can be found in recent
surveys on AML [65]. The feasibility of jamming multiple
transmissions at a BS to decrease its load is extremely hard as,
to be successful, it requires knowledge of the exact timing of
data transmission and of the time-varying characteristics of
the channels from the BS to the users and from the jammers
to the users. Regarding traffic injection, while in this paper
we used a basic version that already proved successful, there
may exists more complex form of injecting traffic to disrupt
the patterns that the AI models focus on, such as trends or
seasonality components.
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8 RELATED WORKS

Relevant to our work are studies on DNN-based mobile
network traffic forecasting, and on XAI and AML applied to
mobile and wireless networks.
Mobile Network Traffic Forecasting. In recent years, DNN
architectures have established themselves as the reference
tool for forecasting because entail higher quality predictions
than other approaches like statistical models [66]. In the
broad area of mobile traffic forecasting, we can categorize
the literature depending on the spatial scope of the analysis,
i.e., at the level of individual or multiple BSs.

There is a wealth of literature on mobile traffic forecast-
ing taking into consideration both temporal and spatial
components. These works typically leverage information
of traffic demands from BSs deployed at city-level scale [7],
[13], [14], [15], [16], [67], [68], [69], [70]. The DNN used for
such predictions employ convolutional layers, in their vanilla
version [68], as three-dimensional structures [15], with graph
representation [14], [69] or with attention layers [16]. These
solutions have been used in different settings, including traf-
fic forecasting over medium (in the order of 10 minutes) [7],
[16], [67], [71] and long (30 minutes, 1 hour) [13], [14], [15]
time horizons, on traffic aggregates [13], [15], [69], and at the
level of individual applications [68].

Several works focus on single-BS traffic volume fore-
casting, for anomaly detection [10], possibly for single-user
throughput prediction [72] or joint prediction of traffic load
of pauses between subsequent traffic transmissions over
short time scales [73]. In all these works, only the temporal
component is important and LSTM models are applied.

In this work, we provide intelligible explanations of how
DNN models operate in spatio-temporal scenarios. Thus, this
paper is orthogonal to the above studies because our aim is
not to improve existing predictors or design new ones.
XAI in Mobile and Wireless Networks. In the context of
mobile networks, XAI is at an early stage of conceptualization
and adoption. Seminal works [74], [75] motivate the need
for XAI in future 6G networks and remark that the lack of
explainability leads to poor AI/ML model design and is
detrimental to adversarial attacks. The statement is valid
for both centralized and distributed models of federated
learning [76]. More recently [77], the authors point out as
shortcomings of the existing XAI tools the lack of deep rela-
tion between input data and the explanations for the problem
of mobile traffic forecasting with univariate time-series. Our
work separates itself from [77] since our explanations are not
constrained to the temporal domain, but apply to the more
general spatio-temporal case.

All the areas where AI is applied for mobile networking
tasks can benefit from explainability. These include the
physical and MAC layer design, network security mobility
management and localization [78]. Specifically, in [29] the
authors show that fuzzy binary trees can enrich the semantics
of a Quality of Experience multimedia classifier. In [79],
the authors provide explanations for a specific DNN that
performs online learning for image classification in IoT
context. In [80], a double dueling deep Q-network (DDDQN)
approximates the Markov Decision Problem of UAVs path
planning. Explanations on the model show for example
when a UAV decides not to explore a new area to save

battery. Finally, [30] analyzes SLA violations in network
slice management for 5G networks and highlights how
XAI enables a better understanding of the cause of the
violations than using expert knowledge. This work compares
different techniques including SHAP, LIME, Eli5 and casual
dataframe to reveal the most relevant features that produce
SLA violations. Unlike the above works, our work focuses on
mobile traffic forecasting at a scale for which decision trees
and reinforcement learning techniques are not applicable.
AML in Mobile and Wireless Networks. Most adversarial
attacks were initially introduced and studied in the context
of computer vision, where they demonstrated significant
vulnerabilities in deep learning models. Adversarial attacks
into wireless communications were first introduced in [81]
where the authors initiated a direct, digital attack. Most of
the existing literature in this regard tackle physical layer
operations of wireless and mobile networks. We direct the
readers to the surveys [19], [82] for a complete taxonomy
of AML jargon and a detailed explanation of the attacks.
Related to 5G, the work in [83] presents three case studies that
encompass supervised (automatic modulation classification),
unsupervised (channel autoencoder), and reinforcement
learning (end-to-end DRL autoencoder with a noisy channel
feedback system). The work in [84] presents new jamming
and waveform synthesis techniques able to keep the bit error
rate and the radiated power among other metrics below a
given threshold, sufficient to degrade the accuracy of a radio
fingerprinting DL classifier by a factor of 3.

9 CONCLUSIONS

In this paper, we assessed the robustness and resilience of
DNN models used for spatio-temporal mobile traffic fore-
casting. We did this by proposing DEEXP, a technique that
synthesizes actionable explanations building on top of legacy
XAI techniques. We designed DEEXP to be flexible in the way
it incorporates existing legacy XAI techniques. To validate
the effectiveness of DEEXP, we performed an extensive
evaluation under a broad range of scenarios, parameter set-
tings, real-world datasets, predictors, and adversarial attacks,
which made a total of 140 different configurations tested
and 1764 DNN models. Our analyses exploited two different
legacy XAI techniques, i.e., LRP and GC and confirmed the
ability of DEEXP in identifying vulnerable BSs. These are BSs
whose traffic load, if modified via injection, would degrade
the performance of their predictors significantly. We found
that (i) the relevance of BSs is not necessarily tied to traffic
volumes and (ii) different legacy XAI techniques would spot
different types of vulnerabilities.
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