
SYMBXRL: Symbolic Explainable Deep
Reinforcement Learning for Mobile Networks

Abhishek Duttagupta∗†♢, MohammadErfan Jabbari∗♢, Claudio Fiandrino∗, Marco Fiore∗ and Joerg Widmer∗
∗IMDEA Networks Institute, Spain, †Universidad Carlos III de Madrid, Spain

Email: {name.surname}@imdea.org

This is the author’s accepted version of the article. The final version published by IEEE is S. Duttagupta, M. Jabbari, C. Fiandrino, M. Fiore, and J.
Widmer, “SYMBXRL: Symbolic Explainable Deep Reinforcement Learning for Mobile Networks," IEEE INFOCOM 2025 - IEEE Conference on Computer
Communications, doi: TBD.

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—The operation of future 6th-generation (6G) mobile
networks will increasingly rely on the ability of Deep Rein-
forcement Learning (DRL) to optimize network decisions in
real-time. DRL yields demonstrated efficacy in various resource
allocation problems, such as joint decisions on user scheduling and
antenna allocation or simultaneous control of computing resources
and modulation. However, trained DRL agents are closed-boxes
and inherently difficult to explain, which hinders their adoption
in production settings. In this paper, we make a step towards
removing this critical barrier by presenting SYMBXRL, a novel
technique for EXplainable Reinforcement Learning (XRL) that
synthesizes human-interpretable explanations for DRL agents.
SYMBXRL leverages symbolic AI to produce explanations where
key concepts and their relationships are described via intuitive
symbols and rules; coupling such a representation with logical
reasoning exposes the decision process of DRL agents and offers
more comprehensible descriptions of their behaviors compared to
existing approaches. We validate SYMBXRL in practical network
management use cases supported by DRL, proving that it not
only improves the semantics of the explanations but also paves the
way for explicit agent control: for instance, it enables intent-based
programmatic action steering that improves by 12% the median
cumulative reward over a pure DRL solution.

I. INTRODUCTION

The future 6th generation (6G) of mobile networks promises
unprecedented connectivity with ultra-high data rates, minimal
latency, and massive device support [1]. Recent reports predict
global mobile network data traffic will reach 466 exabytes per
month by 2029, driven by the proliferation of connected devices
and data-intensive applications [2]. As network complexity
increases, Artificial Intelligence (AI) emerges as a crucial
enabler for network management and optimization [3]. The
integration of AI is expected to enhance network efficiency
and enable new services and applications [4].

A specific AI paradigm that shows significant promise
for 6G is DRL, which combines Deep Learning (DL)
with Reinforcement Learning (RL) to tackle complex mobile
network challenges [5]. DRL enables agents to learn optimal
policies through interaction with their environment and has
been successfully applied to resource allocation [6] and network
slicing [7] in 5G systems. More advanced DRL applications
are emerging for 6G, including dynamic spectrum manage-
ment [8] and multi-agent coordination for network slicing [9],
showcasing potential throughout the network ecosystem [10].

However, these DRL applications operate as closed boxes
that inherently lack interpretability, which makes debug-
ging and troubleshooting hard [11], may compromise per-

♢These authors contributed equally to this work.

formance [12] and generally curbs adoption by network
providers [13]. Recent advances in EXplainable Artificial Intel-
ligence (XAI) address this lack of transparency, yet current XAI
solutions for DRL agents, such as EXPLORA [14], METIS [15]
and post-hoc interpretation methods like SHAP [16] and
LIME [17] often fall short in providing meaningful, human-
understandable explanations for complex network management
systems [18], as we will also detail in our study.

In this paper, we propose SYMBXRL, a novel XRL tech-
nique leveraging symbolic AI, specifically First-Order Logic
(FOL), to synthesize comprehensible explanations with rich
semantics from symbolic representations of the states and
actions of DRL agents. SYMBXRL employs FOL to formalize
the agent’s behavior and decision-making process, allowing for
more intuitive and interpretable explanations. This approach
serves three primary objectives: (1) providing simple, logically
structured explanations to understand and compare DRL agents;
(2) enabling Intent-based Action Steering (IAS) through logical
rules in the form of FOL representation; and (3) leveraging
symbolic knowledge to identify flaws in the design process of
new agents by analyzing logical inconsistencies or unexpected
patterns in the agent’s behavior. By translating complex
numerical states and actions into symbolic logic statements,
SYMBXRL offers a unique perspective on DRL agent behavior,
bridging the gap between low-level operations and high-level,
human-interpretable concepts and addressing current limitations
of XRL solutions.

We validate our approach with two distinct DRL use
cases addressing critical 5G and 6G challenges. In the first
application, a DRL agent [19] controls Radio Access Network
(RAN) slicing and scheduling on a next Generation Node
B (gNB) as an O-RAN compliant xApp for three network
slices serving different traffic categories. The second use case
employs a DRL agent [20] for resource scheduling in Massive
MIMO. These agents offer diverse decision-making contexts:
the first has a multi-modal action space with both continuous
and discrete factors, where the actions affect all of its next state
input Key Performance Indicator (KPI)s; the second agent has
a discrete action space that affects a subset of the input KPIs.
This diversity allows showcasing the flexibility of SYMBXRL
across different scenarios.

The key contributions (“C”) and findings (“F”) of our study
are summarized as follows.

C1. We propose SYMBXRL, a novel explainer for DRL agents
using symbolic representations with FOL to synthesize
human-interpretable explanations.

C2. We validate SYMBXRL in two diverse use cases that rely
on DRL agents for network slicing and Massive MIMO
scheduling, and demonstrate the superior intelligibility and
detailed level of our solution compared to state-of-the-art
approaches.

C3. For reproducibility and to further stimulate the research
in the field, we release the artifacts of our study (code of
RL agents and SYMBXRL) at:https://github.com/RAINet-
Lab/symbxrl.

F1. We prove that SYMBXRL provides human-readable and
comprehensible symbolic explanations, which improve
explanations of state-of-the-art methods and bridge the gap
between DRL agent behavior and human understanding.

F2. We show that SYMBXRL’s symbolic representation en-
ables flexible IAS policies, which (i) improve the cumu-
lative reward of DRL agents and (ii) enable enforcement
of operational constraints on the agent actions. Our
experiments demonstrate that these capabilities result in
a 12% median improvement in cumulative reward over
baseline performance, which outperforms existing XRL
methods like METIS.

II. BACKGROUND AND TECHNICAL FOUNDATIONS

This section provides the necessary background and technical
foundations for understanding our proposed approach. We
cover the key concepts of RL and DRL, explainability in AI,
and Symbolic AI with a focus on FOL.

A. Reinforcement Learning and Deep Reinforcement Learning
Reinforcement Learning (RL) is a computational approach
to learn from interaction with an environment. RL agents
learn optimal policies by taking actions in an environment to
maximize cumulative reward signal. The RL process is typically
modeled as a Markov Decision Process (MDP), defined by
the tuple (S,A, P,R, γ), where S is the set of states, A is the
set of actions, P (st+1|st, at) are state transition probabilities,
R(st, at) is the reward, and γ ∈ [0, 1] is the discount factor.

At each time step t, the agent observes the current state
st ∈ S, takes an action at ∈ A following a policy π : S →
P (A), receives a reward rt, and transitions to the next state
st+1. The agent’s goal is to learn an optimal policy π∗ that
maximizes the expected cumulative discounted reward:

π∗ = argmax
π

E

[∞∑
t=0

γtrt|π
]
. (1)

DRL extends RL by utilizing Deep Neural Networks (DNN)
to approximate value functions or policies, enabling RL to
scale to high-dimensional state and action spaces [21]. DRL
has been successfully applied to various domains, including
playing complex games [22] and robotic control [23].

B. Explainability and XAI
XAI refers to techniques and methods that make the behavior
of AI systems comprehensible to humans. The primary goal
of XAI is to create models that can provide clear and
understandable explanations for their decisions, facilitating
trust and adoption in critical applications [24].

In the context of DRL, explainability is particularly chal-
lenging due to the complex interactions between the agent and
the environment over time [12]. To address these challenges,
Explainable Reinforcement Learning (XRL) techniques have
been developed to provide insights into the decision-making
process of DRL agents [25]. XRL methods can be either
intrinsic when they modify the RL algorithm itself to be
explainable [26] or post-hoc if the explanations are produced
without altering the original model [14]–[17].

Existing XRL methods, however, often fall short in providing
meaningful, human-understandable explanations for complex
network management systems [27]. METIS [15], an explainer
using a mixture of Decision Tree (DT) and hypergraphs,
requires multiple rollouts of the whole RL environment to
improve the DT efficiency, with a time complexity that
makes this approach unsuitable for continuous, complex, multi-
modal environments. EXPLORA [14], an attribute graph-based
explainer, uses low-level agent numerical data that complicates
the synthesis of compact and easy-to-understand insights.

To address the shortcomings of the state of the art, we
leverage FOL, a form of symbolic AI, to explain the behavior
and decision-making process of DRL agents.

C. Symbolic AI and First-Order Logic
Symbolic AI, in contrast to Statistical AI approaches like DL,
uses human-readable symbols and rules to represent knowledge
and reason about it. First-Order Logic (FOL) is a powerful
formalism within Symbolic AI that allows for the representation
of complex relationships and reasoning.

FOL consists of the following key components:

• Constants: Represent specific objects in the domain.
• Variables: Stand for arbitrary objects.
• Predicates: Express properties of objects or relation-
ships between objects.
• Quantifiers: "For all" (∀) and “There exists” (∃).
• Logical connectives: AND (∧), OR (∨), NOT (¬),
IMPLIES (⇒).

To illustrate how FOL can represent policies in a networking
context, consider the example: “If a user’s data consumption
exceeds the plan’s limit at 10 GB, throttle their connection
speed.” We can formalize this policy in FOL as follows.

• Predicates:
– Exceeds(x, y): “user x’s data usage exceeds y GB.”
– Throttle(x): “throttle user x’s connection speed.”

• Constants and Variables:
– u: a user.
– L: the plan’s limit, which is a constant value of 10 GB.

• FOL Statement: ∀u (Exceeds(u, L) ⇒ Throttle(u)).
This FOL statement reads as: “For all users u, if user u’s

data usage exceeds the plan’s limit L (which the operator has
set at 10 GB), then throttle user u’s connection speed.”

We chose FOL for our work due to its balance between
expressiveness and simplicity. Unlike propositional logic, FOL

Environment DRL Agent
st

rt

SRG ❶

EE ❷

IAS ❸DB

SYMBXRL

at

at/a∗t

a∗t

Fig. 1. SYMBXRL’s architecture and interaction with a DRL agent operating
on a target environment.

can define predicates, variables, and constants, capturing the
complexity of our agent’s behavior. At the same time, it avoids
the advanced features of higher-order logic that are beyond
our current requirements [28].

By leveraging FOL, we can create a symbolic representation
of DRL agents’ behavior, enabling more intuitive and inter-
pretable explanations of their decision-making processes [29].
This approach bridges the gap between the low-level numerical
operations of DRL and high-level, human-understandable
concepts, addressing limitations of current XRL techniques.

III. SYMBXRL
In this section, we describe the details of SYMBXRL and
provide a comprehensive overview of its framework. This
includes creating symbolic representations for the state and
action space of the agent, generating explanations, and inte-
grating these representations into the explainability pipeline.
We also describe how we leverage this symbolic representation
to provide IAS for the agents.

A. Overview of SYMBXRL
SYMBXRL leverages FOL to produce explanations for DRL
agents. The symbolic representation offers the following three
key advantages:
• Enhanced Interpretability: By representing agent behavior in
logical terms, SYMBXRL enables formal reasoning techniques
for analyzing and verifying agent behavior. This approach
produces explanations that are more intuitive compared to
previous works [15].
• Concise Representation: The symbolic representation pro-
vides a more concise and compact representation of the state-
action space, facilitating easier analysis and visualization
compared to state-of-the-art explainability tools [14].
• Flexible Action Steering: This symbolic framework allows
the definition of high-level rules to guide agent behavior,
enhancing performance tuning and ensuring better compliance
with operational constraints.

Fig. 1 illustrates SYMBXRL’s architecture and integration
with DRL pipelines. The key components are:
1) Symbolic Representation Generator (SRG ❶): Trans-
forms numerical states and actions into FOL terms and stores
this information in a database.

2) Explanation Engine (EE ❷): Utilizes symbolic repre-
sentations to generate human-readable explanations of agent
behavior in the form of a Knowledge Graph (KG).
3) Intent-based Action Steering (IAS ❸): This optional
module enables real-time fine-tuning of agent behavior by
translating high-level intents via FOL representation.

B. Symbolic Representation Generator (❶)
The cornerstone of SYMBXRL is creating symbolic represen-
tations for the DRL agent’s state and action spaces, mapping
numerical or categorical values into logical terms in FOL. The
process begins by defining the explanation goal that guides
the selection of relevant variables and the level of abstraction.

For each selected variable, we define FOL terms that capture
essential information:

• For continuous variables: predicate(variable, quartile),
where the predicate indicates the direction of change
(increase, decrease, or constant).

• For categorical variables: toCategory(variable).

The quartiles (Q1, Q2, Q3, Q4) represent the relative
magnitude of the value, calculated efficiently using the P2
algorithm [30] for online computation of quartile markers.
These symbolic representations are stored in a database (DB)
for use by other components and services.
An Example. To clarify, consider a DRL agent performing
resource allocation on a gNB. Its state might include the
number of connected users (integer), average user throughput
(float, Mbps), and interference level (categorical: Low, Medium,
High). The action space could involve adjusting transmission
power (float, dBm) and changing frequency band (categorical:
Low, Mid, High). In this context, inc(users, Q4) represents
a significant increase in user numbers, while toHigh(interf)
indicates high interference levels. The choice of predicates and
granularity balances expressiveness and complexity, optimized
for the specific application and explanatory goal.

C. Explanation Engine (❷)
The Explanation Engine (EE) leverages the symbolic represen-
tations created by the SRG module (❶) to generate insights
into the agent’s behavior. This approach enables two analytical
methods: probabilistic analysis and KG analysis.

In probabilistic analysis, the EE performs four main steps:
collects symbolic representations of states and actions from
the DB, counts occurrences of each unique symbolic state
and action, calculates probabilities or frequencies of these
occurrences, and visualizes the results through probability
distributions, correlation density maps, or KGs. This provides
insights into both input state distributions and the correlation
of agent’s actions and their effects effects on the environment.

In KG analysis, EE constructs a graph where nodes represent
symbolic actions and edges are transitions between them. The
weight of each node and edge corresponds to the frequency
of that action and transition. KG reveals the agent’s learned
decision-making strategies and overall behavior patterns.
An Example. Applying these analyses to our toy example: The
correlation density map reveals that the agent maintains average

throughput in Q3 (const(throughput, Q3)) by keeping trans-
mission power in Q4 (const(tx_power, Q4)). The KG shows
the agent frequently switches between mid and high frequency
bands, represented as transitions between toMid(freq_band)
and toHigh(freq_band) nodes.

These analytical approaches offer several advantages over
state-of-the-art methods [14], [15]: (i) direct insights into the
agent’s decision-making process, (ii) revealing patterns not
apparent from reward analysis, and (iii) enabling comparison
between different agents or versions. While our framework
generalizes to various DRL agents and environments, the choice
of symbolic representations and FOL definitions is use-case
specific. Though discretization may lead to some loss of detail,
a well-defined explanation goal can mitigate this limitation.

By combining these analytical approaches with symbolic
representation, the EE ❷ module generates intelligible ex-
planations of the agent’s behavior, bridging the gap between
closed-box DRL agents and human understanding.

D. Intent-based Action Steering (❸)

We introduce Intent-based Action Steering (IAS), a mechanism
integrating symbolic representation to guide agent behavior to-
wards network operators’ specific intents. Inspired by decision
shielding in reinforcement learning [31], SYMBXRL’s IAS
leverages symbolic knowledge to surpass traditional methods.
Unlike approaches that may reduce rewards or introduce
unfamiliar states or actions, IAS selects actions from the agent’s
prior experiences, ensuring both constraint satisfaction and
performance optimization.

SYMBXRL’s unique IAS approach operates on discretized
and concise state and action spaces, unlike previous methods
such as EXPLORA [14]. This design offers two key advantages:
it (i) enables efficient and accurate matching between current
and past states and actions, reducing computational complexity;
(ii) allows operators to define intents using the same FOL
format as agent explanations, seamlessly integrating intents
without compromising learned behavior.

We demonstrate the versatility of SYMBXRL’s IAS through
three distinct use cases:

1) Reward maximization: enhances the cumulative reward of
the agent by maximizing each step’s reward through targeted
action steering (a∗t), achieving:

a∗t = argmax
a1,...,aT

T∑
t=1

rt(st, at) s.t. at ∈ A(st). (2)

where A(st) is the set of actions the agent has previously
taken for state st plus the current timestep action. a∗t is the
optimal action chosen to maximize the reward at each step.
2) Decision conditioning: applies constraints to the agent’s
actions to enforce operational limits or policy requirements
without excluding reward maximization. For example:

• Schedule a specific user: Schedule(at,UserID)
• Do not schedule users in a group: ∀ UserID ∈ Group :
notSchedule(at,UserID)

These examples illustrate the flexibility in defining policies
beyond simple reward or throughput maximization [14]. This
mode allows us to improve the agent’s cumulative reward while
applying operational constraints.
3) Accelerated learning: Reducing training time for DRL
agents is crucial for faster deployment and resource effi-
ciency [32]. By effectively leveraging the agent’s acquired
knowledge, IAS allows agents trained for fewer episodes to
achieve competitive cumulative rewards compared to those
trained for longer periods.
An Example. Applying IAS for reward maximization to our
toy example: Given the environment’s input state and agent’s
action, IAS checks the KG for a potentially better action
(transmission power and frequency band) that could yield a
higher expected reward. This replacement action is chosen
based on the similarity between the current state and the state
where the action was previously applied.

IV. APPLICATION TO PRACTICAL USE CASES

The operation and advantages of SYMBXRL are best demon-
strated through practical applications. This section presents
a comprehensive empirical evaluation of SYMBXRL using
two RL use cases for network management. We detail the eval-
uation framework and experimental setup (§IV-A and §IV-B),
followed by our findings on DRL agent behavior (§IV-C) and
performance improvements achieved through IAS (§IV-D).

A. Evaluation Framework
Our evaluation of SYMBXRL focuses on two main objectives.
First, we assess the explanation quality and interpretability
through a qualitative analysis of compactness and clarity of
the generated explanations. Second, we quantify performance
improvements achieved with IAS by measuring changes in
cumulative reward and training efficiency.

B. Symbolic Representations for the Agents
To validate SYMBXRL, we employ two distinct DRL agents
addressing challenging resource allocation and scheduling
problems in mobile networks. By selecting these agents, we
demonstrate the versatility of SYMBXRL. Table I summarizes
state-action space and the FOL representations for each agent.
A1 Network Slicing and Scheduling Agent [19]: This agent
jointly controls RAN slicing and scheduling policies for three
slices L = {eMBB, mMTC, URLLC} in an OpenAI Gym
environment with O-RAN compliant xApps. The agent is
trained and evaluated in the Colosseum emulator using two
traffic profiles: TRF1 (slice-based) and TRF2 (uniform). It
operates in two modes, each favoring one slice (i.e., eMBB or
URLLC) by adjusting the weight of each slice’s KPI effect in
the reward function (tx_brate for eMBB and dl_buffer
for URLLC).
For FOL-based symbolic representation, we use the format
predicate(variable, Quartile) for continuous, unbounded vari-
ables (e.g., KPIs). For bounded discrete variables (e.g., PRB
allocation), we define categories and use predicate(variable,
starting-category, final-category). Categorical variables are
represented as toCategory(variable). Quartiles are not used

TABLE I
STATE AND ACTION SPACES AND THEIR SYMBOLIC REPRESENTATIONS OF THE TWO DRL AGENTS USED FOR VALIDATION

Agents A1: Network Slicing and Scheduling Agent A2: Massive MIMO Scheduling Agent

State Space st ∈ S = RM×K×|L| where:
• M: Measurements, M = 10
• L: Slices, L = {eMBB, mMTC, URLLC}
• K: KPIs, K = {tx_brate, tx_pkts, dl_buffer}

st ∈ S = RK×|N| where:
• N : Number of Users, N = 7
• K: KPIs, K = {MSE, DTU, G}

Symbolic Representation of
State Space

For each k ∈ K and l ∈ L:
• k̄l → Pred(k̄l, Q), where k̄l =

1
M

∑M
m=1 kl,m

• Pred ∈ Predicate = {inc, dec, const}
• Q ∈ Quartile = {Q1, Q2, Q3, Q4}
• M = 10: Number of measurements

For each k ∈ K and g ∈ G:
• k̄g → Pred(k̄g , Q), where k̄g = 1

|Ug|
∑

u∈Ug
ku

• Pred ∈ Predicate = {inc, dec, const}
• Q ∈ Quartile = {Q1, Q2, Q3, Q4, MAX}
• Ug : Set of users in group g

Action Space at ∈ A = PRB|L| × SP|L| where:
• PRB: Physical Resource Block = {1, 2, . . . , 50}
• SP: Scheduling Policy = {WF, RR, PF}
• L: Slices

at ∈ A = {0, 1}N where:
• N : Number of users, N = 7
• 0: Do not schedule a user
• 1: Schedule a user

Symbolic Representation of
Action Space

For each l ∈ L:
• PRBl → Pred(PRB,Cstart,Cfinal)
• SPl → toPolicy(sched)
• Pred: Predicate ∈ {inc, dec, const}
• C: PRB Category ∈ {C1, C2, C3, C4, C5}
• toPolicy ∈ Scheduling Policy = {toWF, toRR, toPF}

For each g ∈ G:
• ag → Pred(g,Q, Percentage)
• Pred: Predicate ∈ {sched}
• g: Group number, g ∈ G
• Q: Quartile ∈ {Q1, Q2, Q3, Q4, MAX}
• Percentage: Round{0,25,...,100}

(
|Sched. users in g|
|Total users in g| × 100

)
for PRB allocation as categories offer adjustable intervals for
operator goals. Here, we define categories such that each cate-
gory covers 10% of the available PRB range. Mathematically,
the interval for category Ci is defined as

[
(i−1)×PRB

10 , i×PRB
10

)
,

where i ranges from 1 to 10 and PRB is 50. For space reasons,
we only present results for TRF1 in §IV.

A2 Massive MIMO Scheduling Agent [33]: This agent
focuses on resource scheduling in Massive MIMO networks
to maximize spectral efficiency while maintaining fairness
among users. We evaluate two DRL agents: the SMART
scheduler based on Soft Actor-Critic (SAC) [34] proposed
by the authors [33], and a Deep Q-Network (DQN)-based
implementation [35]. The evaluation uses the Indoor Mobil-
ity Channel Measurements dataset [33], providing channel
state information for Line of Sight (LoS) and Non-Line
of Sight (NLoS) scenarios, as well as low-speed and high-
speed mobility profiles. The agent’s state space includes
KPIs such as Maximum Available Spectral Efficiency (MSE),
Data Transmitted of User (DTU), and User Group Label (G).
User’s G are assigned based on their channel state correlation.
For FOL-based symbolic representation, we focus on groups
rather than individual users to assess if the agent learns
to avoid interference from joint scheduling of different
group’s users. Continuous variables (MSE, DTU) use predi-
cate(variable, Quartile). The agent’s decision is represented as
sched(group_number, quartile, percentage), where percentage
is the proportion of scheduled users in the group and quartile
is calculated for the number of scheduled users in the group
with respect to the total number of users. For DTU and user
scheduling, we also use the MAX quartile to represent the
highest observed value up to the current timestep, provided by
the P2 algorithm [30]. This approach enables comparison of
decisions across groups and assesses interference mitigation.

The diverse nature and purpose of these agents allow us

to assess SYMBXRL’s capabilities across different network
management scenarios and DRL architectures.

Table II demonstrates the efficiency of SYMBXRL in
converting the agent’s action space to symbolic representations,
compared to EXPLORA [14], which operates on low-level
numerical representations. The FOL definition of SYMBXRL
requires approximately 99.5% fewer nodes to model the
behavior of Agent A1 and 40% fewer nodes for Agent A2.
Unlike EXPLORA, where the node count increases as the agent
discovers new states and actions, SYMBXRL’s KG is bounded
by the FOL definition. This enables SYMBXRL to generate
bounded KGs, regardless of action space size.

C. Understanding Agents’ Behavior
We analyze the explanations generated by SYMBXRL for
agents A1 and A2.

For agent A1, Fig. 2(a) and 2(b) illustrate the probability
distribution of symbolic effects (changes in input KPIs due
to the agent’s decisions) for both eMBB and URLLC slices
under TRF1 traffic. The figures provide insights into how each
variant of the agent manages different slices under the same
traffic profile. Key observations are:

O1: High Throughput Maintenance for eMBB Slice: The
eMBB agent effectively maintains high throughput (tx_b-
rate) for the eMBB slice, as shown by the high probability
of tx_brate remaining constant in Q4 (const(KPI,Q4)) and

TABLE II
COMPARING ACTION SPACE SIZES

Agents SYMBXRL EXPLORA

A1 |L| · |PredPRB| · |CatPRB| · |toPolicy|
(PRB−1

2

)
· |SP||L|

Node Count = 180 Node Count = 31,752

A2 |G| · |Q| · |Percentage| 2N

Node Count = 75 Node Count = 128

co
nst(

KPI, Q
1)

dec(
KPI, Q

1)

inc(K
PI, Q

1)

co
nst(

KPI, Q
2)

dec(
KPI, Q

2)

inc(K
PI, Q

2)

co
nst(

KPI, Q
3)

dec(
KPI, Q

3)

inc(K
PI, Q

3)

co
nst(

KPI, Q
4)

dec(
KPI, Q

4)

inc(K
PI, Q

4)
0.0
0.2
0.4
0.6
0.8
1.0

tx_brate

Effect

Pr
ob

ab
ili

ty

co
nst(

KPI, Q
1)

dec(
KPI, Q

1)

inc(K
PI, Q

1)

co
nst(

KPI, Q
2)

dec(
KPI, Q

2)

inc(K
PI, Q

2)

co
nst(

KPI, Q
3)

dec(
KPI, Q

3)

inc(K
PI, Q

3)

co
nst(

KPI, Q
4)

dec(
KPI, Q

4)

inc(K
PI, Q

4)

tx_pkts

Effect

eMBB URLLC

co
nst(

KPI, Q
1)

dec(
KPI, Q

1)

inc(K
PI, Q

1)

co
nst(

KPI, Q
2)

dec(
KPI, Q

2)

inc(K
PI, Q

2)

co
nst(

KPI, Q
3)

dec(
KPI, Q

3)

inc(K
PI, Q

3)

co
nst(

KPI, Q
4)

dec(
KPI, Q

4)

inc(K
PI, Q

4)

dl_buffer

Effect

(a) Slice eMBB

co
nst(

KPI, Q
1)

dec(
KPI, Q

1)

inc(K
PI, Q

1)

co
nst(

KPI, Q
2)

dec(
KPI, Q

2)

inc(K
PI, Q

2)

co
nst(

KPI, Q
3)

dec(
KPI, Q

3)

inc(K
PI, Q

3)

co
nst(

KPI, Q
4)

dec(
KPI, Q

4)

inc(K
PI, Q

4)
0.0
0.2
0.4
0.6
0.8
1.0

tx_brate

Effect

Pr
ob

ab
ili

ty

co
nst(

KPI, Q
1)

dec(
KPI, Q

1)

inc(K
PI, Q

1)

co
nst(

KPI, Q
2)

dec(
KPI, Q

2)

inc(K
PI, Q

2)

co
nst(

KPI, Q
3)

dec(
KPI, Q

3)

inc(K
PI, Q

3)

co
nst(

KPI, Q
4)

dec(
KPI, Q

4)

inc(K
PI, Q

4)

tx_pkts

Effect

eMBB URLLC

co
nst(

KPI, Q
1)

dec(
KPI, Q

1)

inc(K
PI, Q

1)

co
nst(

KPI, Q
2)

dec(
KPI, Q

2)

inc(K
PI, Q

2)

co
nst(

KPI, Q
3)

dec(
KPI, Q

3)

inc(K
PI, Q

3)

co
nst(

KPI, Q
4)

dec(
KPI, Q

4)

inc(K
PI, Q

4)

dl_buffer

(b) Slice URLLC
Fig. 2. Probabilistic analysis of SYMBXRL showing the probability distribution of decision effects for agent A1’s variants under TRF1.

const(prb, C4) - const(sched)

const(prb, C4) - toWF(sched)

const(prb, C4) - toPF(sched)

4 93

2

1

D
ec

is
io

ns
(e

M
B

B
)

tx_brate

11 6 13 44 24

1

2

tx_pkts

19 19 5 13 7 35

1

dl_buffer

0

20

40

60

80

100

D
en

si
ty

Pr
ob

ab
ili

ty
in

%

dec(
KPI, Q

3)

co
nst(

KPI, Q
3)

dec(
KPI, Q

4)

co
nst(

KPI, Q
4)

inc(K
PI, Q

4)

const(prb, C2) - const(sched)
dec(prb, C2, C1) - toWF(sched)

inc(prb, C1, C2) - toPF(sched)
const(prb, C1) - const(sched)
const(prb, C2) - toRR(sched)
const(prb, C2) - toPF(sched)

dec(prb, C2, C1) - const(sched)
inc(prb, C1, C2) - toRR(sched)
inc(prb, C1, C2) - const(sched)

7 33

14 3

14

3 7

3 3

3

3

4

3

Effects

D
ec

is
io

ns
(U

R
L

L
C

)

dec(
KPI, Q

3)

co
nst(

KPI, Q
3)

dec(
KPI, Q

4)

co
nst(

KPI, Q
4)

inc(K
PI, Q

4)

7 32

12 4

14

12

4 2

4

4

3

Effects

dec(
KPI, Q

1)

co
nst(

KPI, Q
1)

dec(
KPI, Q

3)

co
nst(

KPI, Q
3)

inc(K
PI, Q

3)

dec(
KPI, Q

4)

co
nst(

KPI, Q
4)

inc(K
PI, Q

4)

15 4 11 13

17

12

9 4

2 2

3

3

3

Effects

Fig. 3. Correlation density map of input KPIs and decisions for two variants of agent A1 favoring eMBB (first row) or URLLC (second row) slices.

low probability of other changes.
O2: Buffer Management in URLLC Slice: Both agents aim to
keep buffer occupancy (dl_buffer) low in the URLLC slice,
with the URLLC agent performing slightly better, indicated by
a higher probability of const(KPI,Q1) for this agent versus
the eMBB agent’s counterpart.
O3: Takeaway: The performance of the URLLC agent is not
significantly superior to the eMBB agent for the URLLC slice,
suggesting that merely adjusting the reward function weights
is insufficient for optimal agent action tuning.

To further analyze the behavior of the two variants of
agent A1, we examine the correlation density map of its
decisions and their effects on the eMBB slice (Fig. 3). In eMBB
mode, the agent consistently allocates high PRB resources
(const(PRB,C4), 93% density) and adapts to traffic variations
mainly through scheduling policy adjustments. Conversely,
in URLLC mode, the agent exhibits more diverse decision
frequencies across PRB allocations and scheduling policies,

const(G0, MAX, 100)
prob: 58.1%

dec(G0, Q2, 50)
prob: 4.0%

inc(G0, Q3, 100)
prob: 2.4%

const(G0, Q3, 100)
prob: 26.1%

inc(G0, MAX, 100)
prob: 9.4%

90.3

2.8

11.1

88.9

2.4
92.7
4.9

94.2
5.89.9

90.1

(a) Strategy: DQN

inc(G0, Q4, 75)
prob: 30.6%

const(G0, Q4, 75)
prob: 15.5%

dec(G0, Q3, 75)
prob: 15.2% const(G0, Q3, 75)

prob: 20.6%

dec(G0, Q2, 50)
prob: 18.1%

43.3

6.9 36.0

13.8

31.0
48.4

20.7
48.8

31.8

19.4

5.5
94.5

3.6

37.3

40.1

19.0

(b) Strategy: SAC

Fig. 4. KGs produced by SYMBXRL for each implementation of agent A2.
indicating a less stable approach than the eMBB counterpart.

Let us now move to agent A2. Fig. 4 compares the KGs for
SAC and DQN models in Group 0, revealing their learned

dec(
DTU, Q

3)

co
nst(

DTU, Q
3)

inc(D
TU, Q

3)

dec(
DTU, Q

4)

co
nst(

DTU, Q
4)

inc(D
TU, Q

4)

dec(
DTU, M

AX)

co
nst(

DTU, M
AX)

inc(D
TU, M

AX)
0.0
0.2
0.4
0.6
0.8
1.0

Effect

Pr
ob

ab
ili

ty
Group 0

dec(
DTU, Q

3)

co
nst(

DTU, Q
3)

inc(D
TU, Q

3)

dec(
DTU, Q

4)

co
nst(

DTU, Q
4)

inc(D
TU, Q

4)

dec(
DTU, M

AX)

co
nst(

DTU, M
AX)

inc(D
TU, M

AX)

Effect

Other GroupsSAC DQN

(a) Mean DTU

dec(
M

SE, Q
1)

co
nst(

M
SE, Q

1)

inc(M
SE, Q

1)

dec(
M

SE, Q
2)

co
nst(

M
SE, Q

2)

inc(M
SE, Q

2)

dec(
M

SE, Q
3)

co
nst(

M
SE, Q

3)

inc(M
SE, Q

3)

dec(
M

SE, Q
4)

co
nst(

M
SE, Q

4)

inc(M
SE, Q

4)
0.0
0.1
0.2
0.3
0.4
0.5

Effect

Pr
ob

ab
ili

ty

LOS

dec(
M

SE, Q
1)

co
nst(

M
SE, Q

1)

inc(M
SE, Q

1)

dec(
M

SE, Q
2)

co
nst(

M
SE, Q

2)

inc(M
SE, Q

2)

dec(
M

SE, Q
3)

co
nst(

M
SE, Q

3)

inc(M
SE, Q

3)

dec(
M

SE, Q
4)

co
nst(

M
SE, Q

4)

inc(M
SE, Q

4)

Effect

NLOSLow S. High S.

(b) Mean MSE
Fig. 5. Agent A2: Probability distribution of input KPIs (DTU and MSE)

strategies. The SAC agent (Fig. 4(b)) shows a stochastic
decision-making pattern by distributing actions across various
quartiles. One frequent transition path (Q2 → Q4 → Q3)
indicates fluctuations between scheduling fewer and more users.
In contrast, the DQN agent (Fig. 4(a)) demonstrates a more
deterministic approach, with a dominant node representing a
58% probability of scheduling users in the MAX quartile and
a 90% likelihood of maintaining this action. This suggests the
DQN agent’s deterministic policy is more efficient for Group 0
scheduling, consistently maximizing the number of scheduled
users. SYMBXRL’s KGs provide valuable insights into agent
decision trends, highlighting the effectiveness of deterministic
policies in this scenario.

Fig. 5 shows the symbolic effect analysis of agent A2 using
SYMBXRL, focusing on DTU and MSE. Fig. 5(a) depicts
the probability distribution of mean DTU for SAC and DQN
models. For Group 0, both agents consistently achieve mean
DTU in Q4, indicating efficient scheduling. For other groups,
the distribution varies: SAC favors Q4 or MAX quartiles,
while DQN leans towards Q3 or Q4. Similarly, Fig. 5(b)
presents the mean MSE distribution across different channel
conditions (LoS and NLoS) and mobility profiles (low and
high speed). In LoS scenarios, MSE is concentrated in Q2 and
Q3 for both speed profiles. NLoS conditions show a broader
distribution. High-speed scenarios exhibit mean MSE spread
across all quartiles, indicating higher variability, while low-
speed scenarios concentrate in Q3 and Q4. This analysis reveals
the impact of user speed on MSE distribution, especially in
NLoS conditions. While this may seem obvious to experts,
SYMBXRL is crucial for explaining how these effects unfold
within the DRL agent’s decision process.

D. Improving Agent’s Behavior

This section analyzes the performance of IAS (module ❸ in
Fig. 1), focusing on agent A2. We present quantitative analyses

for three key use cases described in §III-D to demonstrate
SYMBXRL’s capability to enhance agent performance in
complex network scenarios.

1) Reward Maximization
As discussed in Section III-D, SYMBXRL IAS can auto-

matically improve agent behavior to maximize cumulative
reward (2). We apply reward maximization IAS to agent A2
using the NLoS dataset with high-speed mobility over 10 test
episodes. Fig. 6 illustrates how this functionality affects the
probability distribution of symbolic actions for the target agent.
We observe that:

• Group 0: Before IAS, the agent predominantly scheduled
either 25% or 75% of users. After IAS, there is a notable
increase in scheduling 75% or 100% of users, with a
substantial reduction in scheduling 25% of users.

• Group 1: After IAS, the agent shows a 13.2% increase
in not scheduling any users from this group, indicating a
strategy to avoid inter-group interference.

Analysis of changes before and after applying IAS suggests
that IAS’s reward maximization mode alters agent behavior
towards more efficient resource use, reducing inter-group
interference while maximizing utilization for Group 0.

Fig. 7 shows how these changes translate to cumulative
reward (2) improvement. Here, we benchmark SYMBXRL
against METIS [15], which uses a decision tree-based approach
to improve RL agent performance. The figure reports the
cumulative reward attained by the baseline A2 agent, by the
same A2 agent improved by Metis, and by agent A2 improved
by SYMBXRL’s IAS.

We observe that SYMBXRL achieves a median 11.76%
improvement in cumulative reward compared to the basic
agent, whereas Metis only provides a 0.07% gain. This
highlights SYMBXRL’s ability to leverage symbolic knowledge
effectively to identifying suboptimal decisions and replacing
them with better alternatives from similar past states. Metis’s
marginal improvement suggests limitations in fully character-
izing and exploiting agent knowledge.

The right portion of Fig. 7 shows the impact of initiating
IAS at different points during the test episode. Starting late
yields diminishing performance gains compared to starting
early. While a late start can leverage more knowledge, it can
only enact changes for a limited time, ultimately determining
the lower cumulative reward. However, a late start yields
reduced variance in performance improvements, due to more
refined action replacements resulting from more knowledge
gathered. These results show SYMBXRL’s significant potential
to enhance RL agent performance through knowledge-based
action steering, outperforming other existing explainers and
being effective even after a minimal amount of data has been
collected about the target agent’s behavior.

2) Decision Conditioning
IAS can enforce high-level intents for flexible control

of agent behavior without excluding reward maximization,
as discussed in Section III-D. This capability is crucial
for network management scenarios with specific operational
requirements like prioritization. We use SYMBXRL to prohibit

0 5 10 15 20

const(G0, Q2, 25)
const(G0, Q1, 25)

inc(G0, Q4, 25)
dec(G0, Q1, 25)

const(G0, Q3, 25)
dec(G0, Q2, 25)
inc(G0, Q4, 50)

const(G0, Q3, 75)
dec(G0, Q3, 75)
inc(G0, Q4, 75)
dec(G0, Q4, 75)

const(G0, MAX, 100)
const(G0, Q4, 75)

inc(G0, MAX, 100)

Probability (%)

U
ni

qu
e

D
ec

is
io

ns
Group 0: Probability Distribution

Before IAS
After IAS

−10 −5 0 5 10

-9.2 %
-4.4 %
-3.8 %
-3.6 %
-3.0 %
-2.6 %
-2.5 %

+2.3 %
+2.9 %
+2.9 %

+4.1 %
+4.6 %

+6.2 %
+7.4 %

Diff. (Before/After IAS) in %

Group 0: Change

0 10 20 30 40 50 60

inc(G1, Q2, 100)

const(G1, Q2, 100)

dec(G1, Q1, 0)

const(G1, Q1, 0)

Probability (%)

U
ni

qu
e

D
ec

is
io

ns

Group 1: Probability Distribution

−5 0 5 10

-2.7 %

-2.5 %

-2.5 %

+13.2 %

Diff. (Before/After IAS) in %

Group 1: Change

Fig. 6. Comparison of agent A2 decisions before and after applying Action Steering IAS, showing the effect of IAS on agent behavior.

N
o

IA
S

M
E

T
IS

IA
S

100

105

110

115

R
el

.C
um

.R
ew

ar
d

(%
)

0 % 25 % 50 % 75 %
IAS Variants

Fig. 7. Comparing relative cumulative reward of different benchmarks for
Agent A2. "No IAS" indicates the basic agent, METIS shows improvement
with [15], and the other boxplots show improvements with SYMBXRL by
starting IAS at different fractions of the test set (0%, 25%, 50%, and 75%).

0 500 1000 1500 2000 2500
0
1
2
3
4
5
6

start end

Timestep

U
se

r

G. 0 G. 1 G. 2 IAS:

(a) Decision Conditioning: notSchedule(at, 6)

0 500 1000 1500 2000 2500
−20
−10

0
10
20

start end

Timestep

R
ew

ar
d

D
iff

er
en

ce

IAS Forcing

IAS:

(b) Reward improvement with IAS versus direct forcing

Fig. 8. Intent-based operation of enforcing not scheduling a specific user
with A2. IAS allows the agent to achieve high reward compared to blindly
forcing actions.
agent A2 from scheduling user 6 for about 500 timesteps
(t ∈ [1700, 2200]), achieved by conditioning the agent’s
behavior using the FOL term notSchedule(at, 6). To apply
this constraint, IAS uses both KG and DB to find previously
seen states similar to the current state where the agent’s decision
did not include scheduling user 6. If multiple timesteps satisfy
the condition, we choose the action that provided the best
reward when applied previously.

The outcome is shown in Fig. 8(a), where user 6 is not
scheduled in any group (denoted by different colors) in the

target interval. Fig. 8(b) compares the performance of IAS and
direct action forcing i.e., explicitly removing user 6 from the
agent’s decision without considering any consequences of this
change.

The cumulative reward differences attained by each tech-
nique with respect to the original agent A2 show that:

• IAS enhances the reward over time while applying
constraints which indicates that IAS can choose actions
with the highest reward from the KG for replacement.

• Direct forcing leads to a rapid decline in cumulative
reward compared to the baseline, indicating performance
degradation. This is because removing one of the sched-
uled users reduces the spectral efficiency factor of the
reward function.

These results demonstrate SYMBXRL’s superiority in ap-
plying constraint. By leveraging symbolic knowledge, IAS
adjusts the agent’s actions to accommodate constraints while
optimizing overall performance. This shows SYMBXRL’s
potential to enhance the flexibility and efficiency of RL agents
in real-world telecommunication systems, balancing operational
requirements with system optimization.

3) Accelerated Learning
Fig. 9 demonstrates IAS’s ability to reduce training time

for RL agents. We compare agent A2’s performance at three
training Checkpoints (CHKPs): the final model, used until now
in the evaluation, is trained for 205 episodes (CHKP 205, the
baseline). Next, we create variants with fewer training episodes,
stopping the training earlier at episodes 68 and 115. Note that
all these CHKPs are in the stable region of cumulative reward
upon training.

The left portion of Fig. 9 shows the cumulative reward
difference of CHKP 68 and CHKP 115 relative to the baseline
CHKP 205 without IAS. As expected, the cumulative reward
without IAS is lower for CHKP 68 and CHKP 115 compared
to CHKP 205. The right portion of the figure illustrates the
impact of applying IAS after the first 25% of the testing episode
(denoted by the dashed line in the figure):

• Before IAS for accelerated learning is enabled, the agents
trained up to CHKPs 68 and 115 yield a lower cumulative
reward compared to the baseline, similar to the left plot.

• Upon IAS activation, the agents trained up to CHKPs 68
and 115 start leveraging the KG through IAS to replace
low-reward actions with higher-reward ones, as detailed in
Section IV-D1. This effectively boosts cumulative reward

0 1000 2000

−200

−100

0

100

2500

No IAS

188

Timestep

C
um

.R
ew

.D
iff

.

0 1000 2000
2500

104

IAS

Timestep

CHKP 115 CHKP 68 IAS start

Fig. 9. Relative cumulative reward of CHKPs 115 and 68 compared to the
final model (CHKP 205) without IAS (left) and with IAS enabled after the
first 25% of the test episode (right).

with respect to the baseline agent and eventually surpasses
it by the end of the episode.

• Using IAS by the end of the test episode reduces the
performance gap between CHKP 115 and 68 by 45%
(from 188 to 104), indicating more consistent performance
improvement across different training stages.

These results show SYMBXRL’s ability to leverage an
agent’s acquired knowledge during its operation effectively,
even at earlier training stages. IAS’s accelerated learning makes
it possible for an agent trained up to CHKP 68 to perform
as well as an agent trained up to CHKP 205, with a 66.7%
training time reduction, equivalent to 13 hours and 41 minutes.
Both are trained on an NVIDIA A100 40 GB GPU cluster.

This suggests that DRL agents accumulate valuable knowl-
edge early in training but may not fully exploit it without
further assistance until later episodes. The IAS’s accelerated
learning strategy provides a mechanism to fully exploit this
latent knowledge, thereby providing high performance.

4) Summary of Insights
The analyses of reward maximization, decision conditioning,

and accelerated learning collectively demonstrate the flexibility
and effectiveness of SYMBXRL’s IAS approach. By leveraging
symbolic knowledge, IAS not only improves overall agent
performance but also enables precise control over agent
behavior with flexible intents and makes early stopping of
the training process viable. These capabilities are particularly
valuable in dynamic network environments, where adaptive
management and efficient resource utilization are crucial.

V. RELATED WORK

Relevant to our work are studies on the use of DRL for mobile
networking, XAI at large, and XRL techniques, especially
those applicable to mobile networking.
DRL in Mobile Networking. DRL in Mobile Networking.
DRL models have gained prominence for handling high-
dimensional data in dynamic environments, excelling at rapid
parameter reconfiguration during exploitation [36]. Unlike
DTs which suit rule-based configurations using historical
data (e.g., Auric for Base Stations (BSs) [13], Configanator
for content-delivery [37]), DRL applications span diverse
areas: dynamic spectrum access [8], joint user scheduling
with antenna allocation [38] and mmWave configuration [39],
resource management [40], network slicing [19], [41], mobility
management [42], [43], service coverage [44], and anomaly
detection [43], [45].

XAI For Mobile Networks. Future 6G networks embrace the
vision for native, explainable network intelligence. Seminal
works [46], [47] motivate the need for XAI and stress that
the lack of explainability may lead to poor AI/ML model
design. This has been proved detrimental in the presence of
adversarial attacks [48]. All areas where AI is applied to mobile
networking tasks can benefit from explainability. These include
physical and MAC layer design, network security, mobility
management, and localization [49].

Related Works on XRL. The analysis of transitions between
actions is not new [50], [51]. HIGHLIGHTS [51] produces
summaries of agent behavior for general audience, while [50]
focuses on expert explanations by highlighting influential tran-
sitions whose removal significantly affects rewards. However,
this approach fails with autoencoders masking real input as in
Agent A1. DeepSynth [52] reveals patterns in reward sequences
to reduce exploration time. PIRL [53] generates interpretable
and verifiable policies using domain-specific languages, but
designing primitives per RAN scenario is inefficient unlike
SYMBXRL’s symbolic representation. The work [54] uses
reward decomposition with Large Language Model (LLM) for
text explanations. EXPLORA [14] is closest to our work but
synthesizes network-aware explanations using attributed graphs
rather than symbolic AI like SYMBXRL.

VI. CONCLUSIONS

In this paper, we proposed SYMBXRL, a new XRL technique
that generates explanations for DRL agents. SYMBXRL lever-
ages symbolic AI to represent concepts and their relationships,
coupled with logical reasoning. In this way, SYMBXRL
provides a competitive advantage over existing explainers
because it clarifies how DRL agents arrive at their decisions
in an understandable manner to the human observer.

We validated our approach extensively with agents trained on
both real-world datasets and datasets generated through Colos-
seum. We demonstrated that SYMBXRL not only improves
the clarity of the explanations but also enables performance
improvements for the agents by using the knowledge generated
by the explanations. Specifically, we show that intent-based
action steering IAS achieves a median 12% improvement
in cumulative reward over the baseline DRL solution. The
authors have provided public access to their code and/or data
at https://github.com/RAINet-Lab/symbxrl

ACKNOWLEDGMENT

This work is partially supported by bRAIN project
PID2021-128250NB-I00 funded by MCIN/ AEI
/10.13039/501100011033/ and the European Union ERDF
“A way of making Europe”; by Spanish Ministry of
Economic Affairs and Digital Transformation, European
Union NextGeneration-EU/PRTR projects MAP-6G TSI-
063000-2021-63, RISC-6G TSI-063000-2021-59 and
AEON-ZERO TSI-063000-2021-52; C. Fiandrino is a
Ramón y Cajal awardee (RYC2022-036375-I), funded by
MCIU/AEI/10.13039/501100011033 and the ESF+.

REFERENCES

[1] W. Saad, M. Bennis et al., “A vision of 6G wireless systems: Applications,
trends, technologies, and open research problems,” IEEE network, vol. 34,
no. 3, pp. 134–142, 2019.

[2] Ericsson, “Mobility Report, June 2024. Technical Report.” 2024, Ac-
cessed on 07/08/2024: https://rb.gy/hzpqoi.

[3] K. B. Letaief, W. Chen et al., “The roadmap to 6G: AI empowered
wireless networks,” IEEE communications magazine, vol. 57, no. 8, pp.
84–90, 2019.

[4] G. Wikström, J. Peisa et al., “Challenges and technologies for 6G,” in
2020 2nd 6G wireless summit (6G SUMMIT). IEEE, 2020, pp. 1–5.

[5] N. C. Luong, D. T. Hoang et al., “Applications of deep reinforcement
learning in communications and networking: A survey,” IEEE communi-
cations surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[6] Y. Wei, F. R. Yu et al., “Joint optimization of caching, computing,
and radio resources for fog-enabled iot using natural actor–critic deep
reinforcement learning,” IEEE Internet of Things Journal, vol. 6, no. 2,
pp. 2061–2073, 2018.

[7] D. Bega, M. Gramaglia et al., “AI-based autonomous control, manage-
ment, and orchestration in 5G: From standards to algorithms,” IEEE
Network, vol. 34, no. 6, pp. 14–20, 2020.

[8] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning
for distributed dynamic spectrum access,” IEEE transactions on wireless
communications, vol. 18, no. 1, pp. 310–323, 2018.

[9] Y. Kim and H. Lim, “Multi-agent reinforcement learning-based resource
management for end-to-end network slicing,” IEEE Access, vol. 9, pp.
56 178–56 190, 2021.

[10] Y. Sun, J. Liu et al., “When machine learning meets privacy in 6G: A
survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp.
2694–2724, 2020.

[11] M. M. Morovati, F. Tambon et al., “Common challenges of deep
reinforcement learning applications development: an empirical study,”
Empirical Software Engineering, vol. 29, no. 4, p. 95, 2024.

[12] A. Heuillet, F. Couthouis et al., “Explainability in deep reinforcement
learning,” Knowledge-Based Systems, vol. 214, p. 106685, 2021.

[13] A. Mahimkar, A. Sivakumar et al., “Auric: Using data-driven recom-
mendation to automatically generate cellular configuration,” in Proc. of
the ACM SIGCOMM, 2021, p. 807–820.

[14] C. Fiandrino, L. Bonati et al., “EXPLORA: AI/ML explainability for the
open RAN,” Proc. of the ACM on Networking, vol. 1, no. CoNEXT3,
pp. 1–26, 2023.

[15] Z. Meng, M. Wang et al., “Interpreting deep learning-based networking
systems,” in Proc. of ACM SIGCOMM, 2020, pp. 154–171.

[16] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proc. of NIPS, 2017, pp. 4768–4777.

[17] M. T. Ribeiro, S. Singh et al., ““Why Should I Trust You?”: Explaining
the predictions of any classifier,” in Proc. of ACM SIGKDD, 2016, p.
1135–1144.

[18] S. Milani, N. Topin et al., “Explainable reinforcement learning: A survey
and comparative review,” ACM Computing Surveys, vol. 56, no. 7, pp.
1–36, 2024.

[19] M. Polese, L. Bonati et al., “ColO-RAN: Developing machine learning-
based xApps for open RAN closed-loop control on programmable
experimental platforms,” IEEE Transactions on Mobile Computing,
vol. 22, no. 10, pp. 5787–5800, 2022.

[20] Q. An, S. Segarra et al., “A deep reinforcement learning-based resource
scheduler for massive mimo networks,” IEEE Transactions on Machine
Learning in Communications and Networking, 2023.

[21] V. Mnih, K. Kavukcuoglu et al., “Human-level control through deep
reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[22] O. Vinyals, I. Babuschkin et al., “Grandmaster level in starcraft ii using
multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp.
350–354, 2019.

[23] T. Haarnoja, B. Moran et al., “Learning agile soccer skills for a bipedal
robot with deep reinforcement learning,” arXiv:2304.13653, 2023.

[24] D. Gunning and D. Aha, “Darpa’s explainable artificial intelligence (xai)
program,” AI magazine, vol. 40, no. 2, pp. 44–58, 2019.

[25] E. Puiutta and E. M. S. P. Veith, “Explainable reinforcement learning:
A survey,” in Machine Learning and Knowledge Extraction, 2020, pp.
77–95.

[26] Z. Juozapaitis, A. Koul et al., “Explainable reinforcement learning via
reward decomposition,” in IJCAI/ECAI Workshop on XAI, 2019.

[27] R. Dazeley and et al., “Explainable reinforcement learning for broad-XAI:
a conceptual framework and survey,” arXiv:2108.09003, 2021.

[28] J. Y. Halpern and V. Weissman, “Using first-order logic to reason about
policies,” ACM Transactions on Information and System Security, vol. 11,
no. 4, pp. 1–41, 2008.

[29] Z. Ma, Y. Zhuang et al., “Learning symbolic rules for interpretable deep
reinforcement learning,” arXiv:2103.08228, 2021.

[30] R. Jain and I. Chlamtac, “The p2 algorithm for dynamic calculation of
quantiles and histograms without storing observations,” Communications
of the ACM, vol. 28, no. 10, pp. 1076–1085, 1985.

[31] M. Alshiekh, R. Bloem et al., “Safe reinforcement learning via shielding,”
Proc. of AAAI, vol. 32, no. 1, Apr. 2018.

[32] J. Queeney, Y. Paschalidis et al., “Generalized proximal policy optimiza-
tion with sample reuse,” Proc. of NeurIPS, vol. 34, pp. 11 909–11 919,
2021.

[33] Q. An, S. Segarra et al., “A deep reinforcement learning-based resource
scheduler for massive MIMO networks,” IEEE Transactions on Machine
Learning in Communications and Networking, vol. 1, pp. 242–257, 2023.

[34] T. Haarnoja, A. Zhou et al., “Soft actor-critic algorithms and applications,”
arXiv:1812.05905, 2018.

[35] V. Mnih, K. Kavukcuoglu et al., “Playing atari with deep reinforcement
learning,” arXiv:1312.5602, 2013.

[36] C. Ge, Z. Ge et al., “Chroma: Learning and using network contexts
to reinforce performance improving configurations,” in Proc. of ACM
MobiCom, 2023.

[37] U. Naseer and T. A. Benson, “Configanator: A data-driven approach to
improving CDN performance,” in Proc. of USENIX NSDI, Apr 2022,
pp. 1135–1158.

[38] M. Naeem, A. Coronato et al., “Optimal user scheduling in multi antenna
system using multi agent reinforcement learning,” Sensors, vol. 22, no. 21,
p. 8278, 2022.

[39] Y. Zhang and R. W. Heath, “Reinforcement learning-based joint user
scheduling and link configuration in millimeter-wave networks,” IEEE
Transactions on Wireless Communications, 2022.

[40] J. A. Ayala-Romero, A. Garcia-Saavedra et al., “VrAIn: A deep learning
approach tailoring computing and radio resources in virtualized RANs,”
in Proc. of ACM MobiCom, 2019.

[41] J. J. Alcaraz, F. Losilla et al., “Model-based reinforcement learning with
kernels for resource allocation in RAN slices,” IEEE Transactions on
Wireless Communications, vol. 22, no. 1, pp. 486–501, 2023.

[42] T. M. Ho and K.-K. Nguyen, “Joint Server Selection, Cooperative
Offloading and Handover in Multi-Access Edge Computing Wireless
Network: A Deep Reinforcement Learning Approach,” IEEE Transactions
on Mobile Computing, vol. 21, no. 7, pp. 2421–2435, July 2022.

[43] X. Ma and W. Shi, “Aesmote: Adversarial reinforcement learning with
smote for anomaly detection,” IEEE Transactions on Network Science
and Engineering, vol. 8, no. 2, pp. 943–956, 2020.

[44] Y. Yang, Y. Li et al., “Decco: Deep-learning enabled coverage and
capacity optimization for massive mimo systems,” IEEE Access, vol. 6,
pp. 23 361–23 371, 2018.

[45] G. Caminero, M. Lopez-Martin et al., “Adversarial environment reinforce-
ment learning algorithm for intrusion detection,” Computer Networks,
vol. 159, pp. 96–109, 2019.

[46] W. Guo, “Explainable artificial intelligence for 6G: Improving trust
between human and machine,” IEEE Communications Magazine, vol. 58,
no. 6, pp. 39–45, 2020.

[47] C. Li, W. Guo et al., “Trustworthy deep learning in 6G-enabled mass
autonomy: From concept to quality-of-trust key performance indicators,”
IEEE Vehicular Technology Magazine, vol. 15, no. 4, pp. 112–121, 2020.

[48] S. Moghadas Gholian, C. Fiandrino et al., “Spotting deep neural network
vulnerabilities in mobile traffic forecasting with an explainable AI lens,”
in IEEE INFOCOM, 2023.

[49] U. Challita, H. Ryden et al., “When machine learning meets wireless
cellular networks: Deployment, challenges, and applications,” IEEE
Communications Magazine, vol. 58, no. 6, pp. 12–18, 2020.

[50] O. Gottesman, J. Futoma et al., “Interpretable off-policy evaluation
in reinforcement learning by highlighting influential transitions,” in
Proc. of ICML, vol. 119, Jul 2020, pp. 3658–3667.

[51] D. Amir and O. Amir, “Highlights: Summarizing agent behavior to
people,” in Proc. of AAMS, 2018, pp. 1168–1176.

[52] M. Hasanbeig, N. Yogananda Jeppu et al., “DeepSynth: Automata
synthesis for automatic task segmentation in deep reinforcement learning,”
Proc. of AAAI, vol. 35, no. 9, pp. 7647–7656, May 2021.

https://rb.gy/hzpqoi

[53] A. Verma, V. Murali et al., “Programmatically interpretable reinforcement
learning,” in Proc. of ICML, vol. 80, 2018, pp. 5045–5054.

[54] M. Ameur, B. Brik et al., “Leveraging LLMs to explain DRL decisions
for transparent 6G network slicing,” in Proc. of IEEE NetSoft, 2024, pp.
204–212.

	Introduction
	Background and Technical Foundations
	Reinforcement Learning and Deep Reinforcement Learning
	Explainability and XAI
	Symbolic AI and First-Order Logic

	SymbXRL
	Overview of SymbXRL
	Symbolic Representation Generator (❶)
	Explanation Engine (❷)
	Intent-based Action Steering (❸)

	Application to Practical Use Cases
	Evaluation Framework
	Symbolic Representations for the Agents
	Understanding Agents' Behavior
	Improving Agent's Behavior
	Reward Maximization
	Decision Conditioning
	Accelerated Learning
	Summary of Insights

	Related Work
	Conclusions
	References

