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Abstract—An established policy for updating systems is zero- 

wait: a source immediately sends a new sample as soon as the 
sink acknowledges the receipt of the previous one. The rationale 
of zero-wait is that with instantaneous feedback, the transmission 
of samples can fully utilize the forward link without ever causing 
a queue. However, this ideal behavior does not extend to multi- 
hop networks and two-way delay. One approach to generalize 
zero-wait for use in larger networks is message pipelining, where 
there is a fixed number of samples and acknowledgments k ≥ 1 
in the network at any time. 

We analyze the peak age-of-information of updating systems 
with pipelining in multi-hop networks with arbitrarily many 
queues in the forward and feedback paths. While pipelining 
improves network utilization, it also increases queuing delays, 
and the optimal degree k must strike a balance between the two. 

We show how this depends on the diameter and topology of the 
network, the presence of bottlenecks, and the statistical distri- 
bution of service times. In an a priori unknown and changing 
network, it is beneficial to adjust the pipelining adaptively. We 
demonstrate how basic delay-based congestion control can be 
effectively used to achieve this goal. 

I. INTRODUCTION 

We consider an information updating system in which a 

source samples a sensor and transmits the samples as messages 

via a network to a sink. A variety of such cases can be 

found in cyber-physical systems, e.g., in the remote estimation 

of a physical process [1], [2], and in networked feedback 

control [3], [4]. Applications arise in industrial automation, 

robotics, and intelligent transportation systems [5], [6]. An 

important performance metric for updating systems is the 

age-of-information, or in short ‘age’, which quantifies the 

freshness of information at the sink. Considering the latest 

sample available at the sink, the age-of-information is defined 

as the difference between the generation time of this sample 

and the current time. Whenever a new sample is received at 

the sink, the age is reduced, resulting in a characteristic saw- 

tooth function with peaks in the age immediately before the 

reception of each new update message. Generally, the goal is 

to find policies that minimize the (peak) age-of-information. 

In recent years, age-of-information has been a very active 

area of research and today analytical solutions for a wide range 

of queuing models [6]–[11], wireless channel models [12], 

[13], tandem queues [14], [15], and parallel channels [16]– 

[18], to name a few, are known. Recent, comprehensive 
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Fig. 1. Updating system with zero-wait policy and two-way delays. 

 

surveys are [19], [20]. Next to the queuing and scheduling 

discipline, the sampling process also has a major impact on the 

age. Typically periodic or random sampling such as Poisson 

is used, e.g., [6]. In addition to these open-loop models, 

there is significant interest in closed-loop systems, where the 

generation of a new sample is controlled by feedback about 

the transmission of the previous sample. 

A closed-loop system comprises a forward path for the 

transmission of samples and an additional feedback path. 

Feedback can be generated by the transmission system in the 

forward path or as acknowledgment messages from the sink. 

An accepted closed-loop policy is zero-wait, where feedback 

about the delivery of one sample immediately triggers the 

transmission of a new sample. Typically, the forward path 

is assumed to be a single link characterized by a random 

transmission time, while feedback is instantaneous. Because 

there is always exactly one message in the loop, zero-wait 

achieves full utilization of the forward link without creating a 

queue, i.e., no buffer is required. Interestingly, it turns out that 

the zero-wait policy is not optimal. Instead, an update-or-wait 

policy is better, which in certain cases when the transmission 

time of a sample is short, adds an extra waiting time before 

taking the next sample [21], [22]. 

In general, closed-loop policies are studied under the as- 

sumption that feedback is not delayed. Only recently, two-way 

delays have been included and both the forward and feedback 

paths have been characterized by a link model [23]–[28]. Fig. 1 

shows an example with one queuing system in the forward path 

and one in the feedback path (only consider the black queues 

and not the gray ones). Most closely related to our work is [28] 

which proposes a zero-wait-2 policy that maintains a pipeline 

of two active messages to deal with two-way delays. 

Compared to [28], ours is the first work to consider networks 

with an arbitrary number of buffered links in the forward 

and the feedback path (including any number of gray queues 

in Fig. 1) and an arbitrary degree of pipelining k, where k 

messages are in the network at any time. The contributions 

... 
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of our work are as follows. We map the updating system in 

Fig. 1 with pipelining to a closed queuing network and derive 

the peak age-of-information. The peak age is composed of 

the inter-sample time and the delay of the forward path. Both 

are determined by the pipelining degree k. Particularly, the 

generation of messages, and hence the network utilization is 

not controlled externally but arises intrinsically through self- 

clocking via the feedback. It depends on network parameters, 

such as diameter, statistical distribution of the service times, 

propagation times, and on the degree of pipelining k. The 

optimal degree of pipelining achieves a message rate that 

balances the inter-sample times and the queuing delays in 

the forward path. Stop-and-wait k = 1 is the preferable 

option if the network diameter is small and if feedback is 

fast. Otherwise, in most practical cases, pipelining k ≥ 2 
performs better. The optimal degree of pipelining is larger, 
if the feedback path is the bottleneck, since queuing delays in 

the feedback path do not contribute to the age. Conversely, the 

optimal degree of pipelining is smaller, if the forward path is 

the bottleneck. Further, if the variability of the service times 

is larger, a smaller degree of pipelining k performs better. 

This is also a consequence of self-clocking, which transfers 

the variability of service times to the burstiness of message 

generation. For a given but unknown network, we adjust k 

adaptively. Our adaptation logic uses the basic approach of 

delay-based congestion control which proves to be effective. 

The remainder of this work is organized as follows. Sec. II 

presents related works. In Sec. III we model the updating 

system with pipelining as a closed queuing network and derive 

the age-of-information thereof. Sec. IV evaluates how the 

degree of pipelining affects the age under different network 

topologies and parameters. In Sec. V we show how the source 

can adaptively adjust the degree of pipelining to the network. 

Sec. VI presents brief conclusions. 

II. RELATED WORKS 

Only recently, a few papers have addressed the difficulties 

of closed-loop updating systems under two-way delays [23]– 

[28]. In [23], the authors study the update-or-wait policy with 

constant feedback delay. For general service time distribution, 

they characterized the optimal sampling policy for minimizing 

the mean peak age by allowing service preemptions. 

In [24], [25], the authors study a generalization of the 

update-or-wait policy under two-way delays, where samples 

in the forward channel, as well as acknowledgments in the 

feedback channel, have a random transmission time. In [25], 

the decision when to take a new sample and when to wait is 

a joint decision that is distributed among the source, moni- 

toring a Wiener process, and the sink: upon reception of an 

acknowledgment, the source may decide to wait before taking 

a new sample; similarly, when receiving the sample the sink 

may decide to wait before sending the acknowledgment. The 

authors of [26] study remote estimation of a sensor process 

in an updating system with an unreliable forward channel and 

a reliable feedback channel, both with random transmission 

times. In their solution, a new sample is sent immediately if the 

previous transmission fails. Otherwise, the source waits until 

the expected estimation error exceeds a threshold. Different 

from our work, the papers [23]–[26] use variants of a stop- 

and-wait policy that ensures that there is only one message in 

the loop at any time. Hence, queuing delays do not occur and 

channels only cause a random transmission time. 

Systems with queues, one in the forward and one in the 

feedback path are studied in [27], [28], both using a discrete- 

time model. The author of [27] compares variants of update- 

and-wait, zero-wait, and open-loop with periodic sampling and 

derives a lower and an upper bound of the age-of-information 

of an optimal policy under two-way delay. Following our 

results in Fig. 3, the authors conclude that it is advantageous 

to switch to the open-loop system if the mean service times 

in the feedback path are larger than in the forward path. The 

authors in [28] consider a source that sends samples at will and 

a sink that generates control packets to trigger new samples. 

Service times in the forward and the feedback channels are 

geometric. They phrase optimal control of the sampler as a 

Markov decision process and derive the average age of three 

policies wait-1, zero-wait-1, and zero-wait-2, that use either 

stop-and-wait, i.e., k = 1, or pipelining of degree k = 2. 

Depending on the forward and feedback service rates, either 

zero-wait-1 or zero-wait-2 is shown to achieve a smaller age. 

In contrast to [27], [28] we consider arbitrary numbers of 

queues in the forward and feedback paths, and an arbitrary 

degree of pipelining k ≥ 1, using closed queuing networks. 

In the Internet, congestion control adjusts the degree of 

pipelining at the transport layer, e.g., the Transmission Control 

Protocol (TCP) uses feedback provided by acknowledgments. 

While throughput is a primary focus of TCP, the recently 

proposed Age Control Protocol ACP+ develops an algorithm 

that adjusts the rate of update messages to control network 

backlog and therefore the age-of-information [29]. In our 

work, we contribute an analysis of a queuing model of the 

feedback loop that is part of congestion control. 

 

III. QUEUING ANALYSIS 

We define a queuing model of an updating system with 

two-way delays and message pipelining and analyze the age- 

of-information in steady-state. First numerical results illustrate 

how pipelining benefits the age. 

 

A. System Model 

We investigate the queuing network shown in Fig. 1 as a 
generic model of an updating system with two-way delays 

and message pipelining. Samples n ∈ N are generated and 
transmitted as messages at times A(n). The messages arrive 

at the sink at times D(n). The sink immediately confirms the 

receipt of each sample through feedback, i.e., acknowledgment 

messages. When a feedback message is received at the source, 

a new sample is generated and transmitted. The system uses 

pipelining of degree k ∈ N, i.e., there are exactly k messages 
(samples plus feedback messages = k) in the system at any 

given time. The system starts with k messages in the first 
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Fig. 2. State transition diagram. 

 

queue and any new message is sent to the first queue only 

when a feedback message is received from the last queue. 

Optionally, feedback messages can contain additional in- 

formation beyond the acknowledgments. An example is net- 

worked feedback control, where the feedback messages also 

contain an actuator signal. 

The queuing network consists of a variable number of work- 

conserving, lossless, first-come first-served queues l ∈ N, of 

which ls ∈ {1, 2, . . . , l} queues are in the forward path and 

lf = l − ls queues are in the feedback path. We model the 
service times of messages carrying samples in the forward 

path as exponential random variables with mean 1/µs and the 

service times of feedback messages as exponential with mean 

1/µf . Different mean service times for the individual queues 

in the forward and feedback path are possible at the expense 

of additional notation. 

For the special case ls = 1, lf = 0, and k = 1, we 
have the well-known instantaneous feedback model with zero- 

wait policy, whereas for lf ≥ 1 there is feedback delay. 

Furthermore, for l ≥ 2, messages may reside in any of the 
queues of the network, so that even in case of instantaneous 

feedback, i.e., lf = 0, the sender does not know, how far 

the messages have traveled and which forward queues are 

idle. The problem increases with l, where we explore how 

pipelining can help and evaluate how the degree of pipelining 

k affects the age. 

We consider the mean peak age-of-information that can be 

expressed as, e.g., [19], 

∆̂ = E[T (n − 1)] + E[D(n − 1, n)], (1) 

where T (n) = D(n) − A(n) is the system time of the forward 

path and D(n−1, n) = D(n)−D(n−1) is the inter-departure 
time of messages at the sink. 

B. Steady-state Analysis 

The updating system that we consider, Fig. 1, is a closed 
queuing network. We denote the state of the network k = 

(k1, k2, . . . , kl) where ki ∈ N0 is the number of messages at 

queue i ∈ {1, 2, . . . , l}, the head of the line message is in 
service and the subsequent messages are waiting, if any. At 

every point in time it holds that 
Σl  

ki = k, so that the state 

sink and an acknowledgment message is sent in the feedback 

path. In the case of i = ls + lf = l, an acknowledgment 

message arrives at the source and triggers a new sample that 

is transmitted in the forward path. 

The process of the state of the queues is visualized as a 

state transition diagram in Fig. 2 for the example ls = lf = 1. 

This corresponds to the network comprising the two queues 

depicted in black in Fig. 1. With larger networks, the dimen- 

sion of the state increases. The transition rates are the service 

rates of the queues µs and µf and due to the memorylessness 

of the service times, the process is a Markov chain. 

We denote by Q the transition matrix of the Markov chain 

and the state probabilities in equilibrium by π(k). The state 

probabilities can be obtained as the solution of the global 

balance equations, see e.g. [30], expressed as 

πQ = 0. 

The marginal state probabilities, i.e., the probability that 

there are κ messages in queue i ∈ {1, 2, . . . , l}, are denoted 
by 

πi(κ) = π(k). (3) 

∈S(k,l):ki=κ 

For the example of the Markov chain for l = 2 queues 
in Fig. 2 and a pipelining degree of k = 2, we have a two- 

dimensional state space S(2, 2) = {(2, 0), (1, 1), (0, 2)} that 
comprises three possible states. The state transition matrix is 

−µs µs 0 

Q = µf −µs − µf µs . 

0 µf −µf 

The state probabilities are π = (π(2, 0), π(1, 1), π(0, 2)) and 

the marginal state probabilities are simply π1(κ) = π(κ, k−κ) 

and π2(κ) = π(k − κ, κ) where κ ∈ {0, 1, 2} and k = 2. 
The performance measures result directly from the state 

probabilities [30]. The utilization of queue i is ρi = 1 − πi(0). 

The throughput of all queues i ∈ {1, 2,  , l} is identical 

λ = µi(1 − πi(0)), 

and the mean inter-departure time is 

1 
E[D(n − 1, n)] = . 

λ 

The mean number of messages at queue i is 
 

E[Ki] = κπi(κ) 

κ=1 

and with Little’s theorem, the mean system time at queue i is 

E[T ] = 
E[Ki] 

. 
space can be formally written as i λ 

 
S(k, l) = k ∈ Nl  : 

Σ
  ki = k 

 
. (2) The mean peak age follows by insertion into Eq. (1) as 

0 
1 + 

Σls
 E[K ] 1 + 

Σls  
Σk κπ (κ) 

i=1 

State transitions occur whenever a message finishes service 
∆̂ =  i=1 i 

λ 
=  i=1 κ=1 i 

. (4) 

µ1(1 − π1(0)) 

at queue i and moves to the next queue i (mod l) + 1. In the 

special case i = ls, a message departs from the network to the 

In case of larger networks, the Markov chain of the state- 

transition diagram in Fig. 2 becomes cumbersome due to 

l 
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Y  1  

G(k, l) ki 

i i=1 

6  a) µf ≫ µs: If µf is large, in the limit µf → ∞, the 
case of instantaneous feedback is approached. In this case, 

5 the zero-wait policy, i.e., k = 1, converges towards a mean 

peak age of ∆̂ = 2 and starting at µf > 2.7 it outperforms 
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Fig. 3. Mean peak age of a network with l = 3 queues. 

 

the increasing dimensionality. Therefore, we use Gordon and 

Newell’s product-form solution for closed queuing networks, 

see e.g., [30]. For the updating system in Fig. 1 the state 

probabilities in equilibrium are 

π(k) = 
  1  Y  1  

, 
 

where µi = µs for i ∈ {1, . . . , ls}, µi = µf for i ∈ {ls + 

1, . . . , ls +lf }, and G(k, l) is a normalization constant defined 

the system with pipelining, k ≥ 2. The reason for this is that 
feedback messages are delivered with negligible delay so that 

all k ≥ 2 messages of the system with pipelining tend to be 
found in the forward path. In the given example, the forward 

path has only one queue and the size of this queue grows 

linearly with the degree of pipelining k. This generalizes an 

observation that is made in [28] for pipelining degree k = 2 

compared to k = 1 for a network with l = 2 queues. 

b) µf < µs: The service rate of the feedback path is 

smaller than that of the forward path. This may occur, e.g., if 

feedback messages carry additional information that increases 

their service time. In this case, the feedback path is the bot- 

tleneck and the forward path is under-utilized. Increasing the 

degree of pipelining k helps somewhat, but with decreasing µf 

even a large k cannot fix the problem. As a consequence, the 

open-loop system performs better starting at µf < 0.6. Here, 

a different feedback strategy, e.g., fewer feedback messages 

 
forward path, would be preferable. 

c) µf ≳ µs: In the practical case where the feedback 
path is neither instantaneous nor a serious bottleneck, here 

as 

G(k, l) = 
Σ

 

 
l 

, 
µki 

0.6 ≤ µf ≤ 2.7, the system with pipelining outperforms 
the zero-wait policy. Ideally pipelining achieves a continuous 
flow of update messages, while a careful choice of the degree 

∈S(k,l) i=1 i 

where S(k, l) is the state-space defined in Eq. (2). The 

marginal state probabilities Eq. (3) and the mean peak age 

Eq. (4) follow as before. 

C. Case Study 

We begin our evaluation with a comparatively small network 

with l = 3 queues, ls = 1 in the forward path, and lf = 2 in 

the feedback path. We make this choice because it allows us 

to illustrate some relevant effects. A wider range of networks 

is elaborated in more detail in Sec. IV. 

The mean peak age of the updating system is shown in 

Fig. 3. The service rate in the forward path is normalized µs = 

1, and the service rate in the feedback path µf is varied. Also, 

we show results for different degrees of pipelining k. For k = 

1 message in the network, the updating system uses the well- 

known zero-wait policy. For this case the mean peak age can 

be easily computed as ∆̂ = 2/µs +2/µf , that is the sum of the 

mean service times of a sample, of a feedback message (that 

traverses two queues), and of the following sample. For k > 1 

we have an updating system with pipelining. For comparison, 

we also show results for an open-loop M|M|1 queue that does 
not use the feedback channel. In this case, the arrival rate is 

set so that the utilization of the forward path is ρs = 0.5, 
which minimizes the mean peak age (cf. [8]) of the open-loop 

system resulting in ∆̂ = 4. 

Regarding the service rate of the feedback path µf , we can 

distinguish three regions: 

k avoids congestion in the forward path. For such a small 

network a moderate degree of pipelining is already sufficient. 

However, there is no limit to k, and in some of the networks 

we consider in Sec. IV, significantly larger k are required. 

For the example network used for Fig. 3, Fig. 4 shows 

details of the different effects that occur. Here, we vary the 

degree of pipelining k and show curves for different feedback 

service rates µf , clustered in the three regions identified 

above. Since the mean peak age Eq. (1) is composed of 

the mean system time of the forward path T and the mean 

inter-departure time at the sink, that is the reciprocal of the 

throughput λ, we also show these quantities on their own. 

The system time of the forward path shown in Fig. 4(a) 

increases with k. This is to be expected as more messages 

can cause queues to build up. However, it is important to 

distinguish where these queues form. When µf is small, 

queuing occurs predominantly in the feedback path and the 

system time of the forward path is only slightly affected by 

k. As µf increases, there is less queuing in the feedback path 

and more in the forward path. In this case, the increase of the 

forward path system time with k becomes more pronounced 

and it is becoming increasingly important to set k well. 

Due to the feedback mechanism, the throughput λ as well 

as the arrival rate of new sample messages are intrinsically de- 

termined by the queuing network and the degree of pipelining 

k. The throughput shown in Fig. 4(b) increases as k increases 
and approaches the service rate of the forward path µs = 1 

when the rate of the feedback path µf ≥ µs, i.e. when the 

with cumulative acknowledgments for several messages in the µ 
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Fig. 4. Network with l = 3 queues as used for Fig. 3. 

(c) Mean peak age 

 

forward path is the bottleneck. Otherwise, if µf < µs, the 

feedback path is the bottleneck and the throughput is limited 

by µf . The throughput is reflected in the age via the mean 

inter-departure time 1/λ. 

The mean peak age depicted in Fig. 4 is composed of the 

mean system time of the forward path and the mean inter- 

departure time. If µf < µs, the forward channel is under- 

utilized due to slow feedback and the age is affected by large 

inter-departure times. This effect can be mitigated somewhat 

by pipelining, but cannot be prevented. If µf ≥ µs, careful 
pipelining improves the age. A lower degree of pipelining is 

required when the feedback service rate is higher, i.e., when 

the delay in the feedback path is low. 

IV. EVALUATION 

To evaluate further relevant service time distributions such 

as deterministic and Pareto and to include propagation times, 

we implement the model in Fig. 1 in the OMNeT++ simulator. 

We show the mean peak age and the network utilization for 

ls = lf = 1 and different degrees of pipelining k. 

1) Deterministic service times: First, we use deterministic 

service times for the forward and feedback channels. We also 

add a fixed propagation time W to each channel. We evaluate 

the mean peak age for different k increasing from 1 to 40. We 

compare the results regarding the service rates of the forward 

and feedback paths in two different regions: 

a) µf ≥ µs: The service rate of the feedback channel 
surpasses that of the forward channel, e.g., µs = 1, µf = 2 in 
Fig. 5(a). Thus, the forward path is the bottleneck and since 
the system is purely deterministic, queuing occurs only in the 

forward path, if at all. These queuing delays directly impact 

the age. Depending on the propagation times W in both paths, 

different degrees of pipelining achieve the minimal age. If 

the propagation time W = 0, the feedback loop is almost 

instantaneous and increasing k quickly results in a queue in the 

forward path, which increases the age. When W is larger the 

feedback loop gets slower and more messages can be in flight 

at the same time. This requires a larger degree of pipelining. 

The optimal k that minimizes the age achieves full utilization 

of the forward path as can be seen in Fig. 5(c). Eventually, 

when k is increased beyond the optimal value, a queue begins 

to build in the forward path that increases the age, e.g., in the 

case of W = 5ms a queue starts to build at k ≥ 12. 
b) µf < µs: In contrast to the previous case, here, the 

service rate of the feedback path is lower than that of the 

forward path, e.g., µs = 2, µf = 1 in Fig. 5(b). Queuing now 

only occurs in the feedback path, as it is the bottleneck. As 

before, larger propagation times W require a higher degree 

of pipelining. However, since the bottleneck in the feedback 

path determines the sampling rate, the forward path generally 

cannot be fully utilized and the utilization is limited by µf , 

as shown in Fig. 5(c). Increasing k further does not affect the 

age, since queuing only forms in the feedback path. 

2) Random service times: In Fig. 6, we consider two 

random service time distributions, exponential and Pareto. In 

case of the Pareto distribution, we set the shape parameter 

α = 1.5, which causes an infinite variance of the service times. 

In these experiments, the service times of the forward and the 

feedback path have the same distribution and the same mean 

rate µf = µs = 1. We omit to show results for deterministic 

service times for this case since they match Fig. 5(a) closely. 

Compared to the case of deterministic service times, the 

variability of random service times results in transient queuing 

even when the mean network utilization is less than one. In 

addition, due to the nature of the closed queuing network, the 

variability of service times results in an increased burstiness of 

the arrival process. As a consequence, the degree of pipelining 

that minimizes the age gets smaller. Due to the high burstiness, 

the effect is even stronger with Pareto service times. The 

optimal k that minimizes the age in the different cases is 
summarized in the following table: 

 

Service times W = 5ms W = 10ms W = 15ms 

Deterministic 12 22 32 

Exponential 8 12 18 

Pareto 8 10 14 

The burstiness also impacts the average network utilization. 

When a large burst of messages is queued in the feedback 

path, the forward path can become idle. We show the effect 

on the utilization in Fig. 6(c) for W = 0ms and W = 10ms 

propagation time. It can be seen that the utilization is generally 

lower in case of random service times and converges slowly 
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Fig. 5. Mean peak age of a network for different propagation times W , with different deterministic service times in (a), (b), and their utilization in (c). 
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Fig. 6. Mean peak age of a network with different service time distributions with a mean of µs = µf = 1. 
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methods that are adaptive, such as the Age Control Protocol 

ACP+ [29]. Inspired by the basic approach of delay-based 

congestion control of TCP Vegas and BBR, e.g., [31], we 

use an adaptation logic that estimates the size of queues in 

the network to adapt the degree of pipelining k dynamically. 

Different from [29], we do not explicitly calculate a target 

message rate, as in our case this is controlled by k. 

The algorithm operates as follows. The source monitors the 

round-trip time RTT , measured as the time between sending 
Fig. 7. Adaptive pipelining for exponential service times and µs = µf = 1. 

 
as k is increased. Since the Pareto distribution causes a higher 

burstiness, the utilization is even smaller in this case. 

Since we consider the case µf = µs = 1, queuing occurs 

equally in both the forward and the feedback paths. The 

situation is different in the deterministic case: when k is 

increased beyond full network utilization, only the queue in the 

forward path grows. Since queuing delays in the forward path 

but not in the feedback path affect the age, we see a different 

slope of the age with increasing k in Fig. 5(a) for deterministic 

service compared to Figs. 6(a) and 6(b) for random service. 

V. ADAPTIVE DEGREE OF PIPELINING 

We have shown how the correct setting of k can minimize 

the age-of-information of the pipelining protocol in different 

network scenarios. In practice, relevant network parameters 

including link service rates and delays are unknown a priori 

and may change during operation. It is important to develop 

a sample and receiving the corresponding acknowledgment. 

Using the current RTT and a baseRTT , which is an ob- 

servation of the smallest RTT that is updated regularly, the 

source can estimate the queuing delay in the network as 

RTT − baseRTT . Since k/RTT is the current throughput 
of the pipelining protocol, an estimate of the queue size in the 

network is Q = (RTT − baseRTT ) · k/RTT . The goal is to 
maintain a small queue in the network to achieve good utiliza- 

tion without causing noticeable delays. Hence, the algorithm 

starts with a small number of k and increments/decrements k 

by one per RTT depending on the estimate of Q. It increases 

k when the condition Q < a holds and it decreases k when 

the condition Q > b is met, where a = 2 and b = 5 [31]. 

We show simulation results in Fig. 7 for a network with 

exponential service times (µs = µf = 1) and propagation 

times (W = 5, 10, 15ms). The convergence of k to a steady- 

state value can be seen. The value is slightly higher than the 

optimal value of k observed in Fig 6(a) since the algorithm 

strives to maintain a queue of size 2 to 5 messages in the 
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pp. 350–358. 

[6] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should 
one update?” in Proc. of IEEE INFOCOM, Mar. 2012, pp. 2731–2735. 

[7] C. Kam, S. Kompella, and A. Ephremides, “Age of information under 
random updates,” in Proc. of IEEE International Symposium on Infor- 
mation Theory, Jul. 2013, pp. 66–70. 

[8] L. Huang and E. Modiano, “Optimizing age-of-information in a multi- 
class queueing system,” in Proc. of IEEE International Symposium on 
Information Theory, Jun. 2015, pp. 1681–1685. 

[9] J. P. Champati, H. Al-Zubaidy, and J. Gross, “On the distribution of 
AoI for the GI/GI/1/1 and GI/GI/1/2* systems: Exact expressions and 
bounds,” in Proc. of IEEE INFOCOM, Apr. 2019, pp. 37–45. 

Fig. 8. Adaptive pipelining using EWMA in a network with changing delay. 

 
network. In case of higher propagation times, the convergence 

takes longer since the acknowledgments are delayed. 

We evaluate two different policies to update the degree 

of pipelining. First, we use the current RTT to estimate Q 

as can be seen in Fig. 7(a). Second, we use an exponential 

weighted moving average (EWMA) of the RTT . We compute 

EWMAn = γRTTn + (1 − γ) EWMAn−1 where RTTn is 
the RTT observed by message n and γ = 0.1. We use the 

EWMA of the RTT to estimate Q. This makes the adaption 

significantly smoother, as shown in Fig. 7(b). 

In another experiment, we change the network properties by 

reducing the propagation time after 1s from the beginning of 

the simulation. In one scenario, we start with W = 10ms and 

reduce to W = 5ms, in the other W = 15ms drops to W = 

5ms. We use the EWMA procedure and exponential service 

times as before. In the first 1s, Fig. 8 shows the same behavior 

as we saw in Fig. 7(b). After 1s, however, the algorithm starts 

to adapt to the smaller delay and it reduces k, showing a good 

performance of the adaptation logic. 

VI. CONCLUSIONS 

We explored an update policy with message pipelining 

to deal with two-way delays and multi-hop networks. We 

modeled the updating system as a closed queuing network 

and derived the mean peak age-of-information. The degree of 

pipelining k determines the mean update rate and the extent 

of queuing delays. The optimal choice of k causes a trade-off 

between the two. We performed a comprehensive numerical 

study that showed how k can be adjusted to minimize the 

age-of-information. In practice, a basic delay-based conges- 

tion control protocol that monitors the round-trip time can 

adaptively adjust the degree of pipelining. 
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