
DUNE: Distributed Inference in the User Plane
Beyza Bütün∗†, David de Andres Hernandez∗†, Michele Gucciardo‡, and Marco Fiore∗

∗IMDEA Networks Institute, Spain, †Universidad Carlos III de Madrid, Spain, ‡NEC Laboratories Europe, Spain
∗{beyza.butun, david.deandres, marco.fiore}@imdea.org, ‡michele.gucciardo@neclab.eu

This is the author’s accepted version of the article. The final version published by IEEE is B. Bütün, D.A. Hernandez, M. Gucciardo and M. Fiore, “DUNE:
Distributed Inference in the User Plane,” IEEE INFOCOM 2025 - IEEE International Conference on Computer Communications, doi: TBD.

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—The deployment of Machine Learning (ML) mod-
els in the user plane enables line-rate in-network inference,
significantly reducing latency and improving the scalability of
functions like traffic monitoring. Yet, integrating ML models
into programmable network devices requires meeting stringent
constraints in terms of memory resources and computing capabil-
ities. Previous solutions have focused on implementing monolithic
ML models within individual programmable network devices,
which are limited by hardware constraints, especially while
executing challenging classification use cases. In this paper, we
propose DUNE, a novel framework that realizes for the first time
a user plane inference that is distributed across the multiple
devices that compose the programmable network. DUNE adopts
fully automated approaches to (i) breaking large ML models
into simpler sub-models that preserve inference accuracy while
minimizing resource usage, (ii) designing the sub-models and
their sequencing so as to enable an efficient distributed execution
of joint packet- and flow-level inference. We implement DUNE
using P4, deploy it in an experimental network with multiple
industry-grade programmable switches, and run tests with real-
world traffic measurements for two complex classification use
cases. Our results demonstrate that DUNE not only reduces per-
switch resource utilization with respect to legacy monolithic ML
designs but also improves their inference accuracy by up to 7.5%.

I. INTRODUCTION

User plane programmability is enabling innovation across a
range of traditional network functions that include monitoring
and telemetry, load balancing, caching, intrusion detection and
verification, just to name a few among the many surveyed by
recent reviews [1]–[3]. Among the many applications above,
programmable network hardware has also paved the road for
the deployment of Machine Learning (ML) models in the user
plane for in-network inference. Indeed, ML models trained off-
line can be implemented into programmable switches or smart
Network Interface Cards (smartNICs), where they are applied
to every transiting packet at line rate [4]. In-network ML
allows performing inference tasks at the equipment forwarding
capacity (e.g., on Tbps traffic in modern switches) and with
ultra-low latency (e.g., in the order of tens of nanoseconds).

The advantages of user-plane inference over traditional
control-plane ML are substantial, since the elimination of
cross-plane interactions improves delays (cut down by orders
of magnitude), scalability (eliminating overheads, e.g., for
traffic mirroring) and costs (removing the need for expensive
dedicated hardware, e.g., for Deep Packet Inspection). Yet,
embedding ML models into programmable network equipment
also entails remarkable challenges, due in particular to the
severe limitations of the hardware in terms of compute capab-
ilities and memory resources as well as to internal architectures

(a) Monolithic (b) Distributed

Figure 1: Conceptual illustration of (a) traditional monolithic
and (b) proposed distributed user-plane inference strategies.

that are purposed for forwarding and not for ML operations.
Ultimately, these restrictions let user-plane ML pay a price in
terms of inference accuracy as the task complexity grows [5].

A variety of solutions have been proposed in the past few
years to adapt ML models to user plane environments, by
carefully tailoring the design and mapping of the original
ML architectures to the highly constrained programmable
network hardware targets. Prior works have explored different
ways to perform inference in switches [6] possibly augmented
with external accelerators [7] and in smartNICs [8], using
Decision Trees (DTs) [9], Random Forests (RFs) [10] or
Neural Networks (NNs) [11] operating on features extracted at
packet-level [12], flow-level [13] or at both levels jointly [5].

However, proposals in the literature have invariably sought
to implement monolithic ML models into a single network
equipment. We argue that this strategy is curbing the po-
tential of ML-driven inference in network user planes that
are inherently composed of tens or hundreds of switches
and middleboxes. A much more flexible strategy is that of
distributing the ML model across multiple network devices
so that the inference task is performed over packets and
flows as they traverse the network rather than at one specific
point. Figure 1 illustrates this concept. In previous studies, the
whole ML model (e.g., a DT in the example) is coded as P4
programs and fitted into a single network device (e.g., a switch
in the example), abiding by its strict resource constraints.
Our proposal is to decompose the operation of the original
monolithic ML model into sub-models that (i) can be deployed
as P4 programs into different devices and (ii) jointly execute
the target inference task. As per the figure, this lets each device

solve a portion of the problem (e.g., identifying a specific
traffic class) and leave the rest to the downstream network.

While the concept is simple, its realization poses a number
of challenges. How to best decompose the original ML model
in order to preserve accuracy while keeping the sub-model
resource usage under control, how to order the resulting sub-
models, and how to ensure automation of such a decomposi-
tion process for any inference task are hard and open questions.

In this paper, we present DUNE, the first practical framework
for the execution of distributed user plane inference in real-
world programmable hardware. DUNE focuses on a specific
type of inference, i.e., classification, since this is the relevant
task in the vast majority of network functions that include
traffic classification, intrusion detection, application identific-
ation, spam filtering, bandwidth management, and congestion
management. The design, implementation and evaluation of
DUNE yield the following main contributions.

• We propose a novel framework to decompose large ML
models trained to solve complex inference tasks into sim-
pler sub-models that jointly perform the same operation.
The framework is fully automated, can be applied to any
class of input ML model, and solves original optimization
problems in order to preserve the inference accuracy
while minimizing the complexity of the sub-models.

• We introduce a design of the sub-models and of their
interactions that allows executing joint packet- and flow-
level inference in a distributed way across multiple pro-
grammable network devices.

• We implement DUNE in an experimental testbed with
industry-grade programmable switches and test it with
real-world measurement data, demonstrating its viability
in practical scenarios.

• We show how distributed inference grants higher accur-
acy than the traditional single-device monolithic approach
by up to 7.5%, while also using less resources per switch.

II. RELATED WORK

User-plane inference, also referred to as in-network ML, has
been postulated as a viable paradigm only a few years ago [12],
[14], [15], and has since attracted a growing attention by the
research community. The field is now very active and even a
recent first survey published this year [4] does not capture the
substantial innovation that occurred in the past six months.

Solutions to deploy trained ML models in programmable
network hardware have considered different targets, including
network accelerators [7] and SmartNICs [8], yet program-
mable switches stay the favourite environment for user-plane
inference and the focus of all researches summarized next.
Monolithic tree-based models. The vast majority of the
literature proposes models based on tree structures, i.e., DTs
or RFs, that are implemented in individual switches. Early
solutions deal with the efficient mapping of trees to the
switch Application Specific Integrated Circuit (ASIC) [6],
[16], [17], considering individual DTs [18]–[21] or special-
purpose solutions tailored to one inference tasks [22], [23].
Subsequent works propose knowledge distillation approaches

to cope with the limited switch resources [9], exploit both
ingress and egress stages of the switch ASIC [24], provide sup-
port for inference based on flow-level features [13] or consider
additional tree-based models [10]. Recent efforts achieve joint
packet- and flow-level inference by automatically selecting the
best option based on stateful information about each traffic
flow [5], [25]. All these works invariably aim at deploying
monolithic ML models that perform all inference operations,
including feature extraction, state maintenance, tree traversal
and consensus resolution, in a single programmable switch.
Monolithic neural networks. Neural architectures are signi-
ficantly more involved than DTs or RFs, and embedding them
in programmable switches has proven especially challenging.
Still, after early attempts [26] several breakthroughs have led
to workable implementations that rely upon custom activation
functions [27] or Recurrent Neural Network (RNN) architec-
tures adapted to the limited data plane stages [11]. Again, all
these approaches propose to implement one NN in one switch.
Distributed ML. There exist several ways in which user-
plane ML-driven inference can be distributed. In a first model,
inference is distributed across planes, with part of the process
run in a programmable network equipment and part in a more
powerful control-plane server; several works have explored
this direction [28]–[30] but all assume that user-plane oper-
ations happen in a same device.

A second notion of distribution is the separation of feature
extraction from the rest of the inference process, with the
former run in different devices than the latter; the position
paper proposing this strategy [31] still considers the ML
models to be monolithic and deployed in single switches.

The third acceptation is that of our interest, and intends to
distribute the operation of the ML model itself across multiple
user-plane devices, as depicted in Figure 1b. To the best of our
knowledge, the only solution proposed to date in this direction
is the very recent NetNN [32], which deploys a NN across
a programmable network by implementing different layers
of the neural architecture in subsequent switches. However,
NetNN realizes a specific neural model with a precise se-
quence of convolutional and dense layers trained for one task,
i.e., intrusion detection; instead, we seek a general-purpose
solution that can distribute any ML model across a given
programmable network. Moreover, NetNN is only emulated
with the bmv2 behavioral model that is known to simplify
many of the limitations of the real-world ASICs, and may
result in performance losses and a need for partial model re-
design when porting the solution to actual hardware [33].
Dataplane Disaggregation. The concept of dataplane program
disaggregation was introduced by Flightplan [34], a toolchain
that splits a P4 program into subprograms that can be executed
across devices. This approach allows for the combination of
heterogeneous hardware to overcome the limitations of single-
target execution and efficient resource usage. While Flightplan
provides a framework for automated splitting, placement,
and runtime support, the splitting task relies on a manual
segmentation approach. Automating the splitting task is not
straightforward nor easily generalizable, as each NF type

...

Database

Unconstrained ML
model training

1

Monolithic
ML model

2

Feature importance
extraction

Importance
and accuracy

3

ML model
partitioning

Hardware-compliant
ML sub-models training

4...

ML sub-models

5

ML sub-model
sequencing

6

ML sub-model
P4 build

...

User
plane

...

Ordered ML
sub-models

1

n

...

W, f

Figure 2: Overview of the DUNE workflow for the design of
distributed ML compatible with programmable user planes.

might require specific segmentation procedures, constraints,
and goals. More recently, DINC [35] has also addressed the
challenges of distributed in-network computing, with special
attention to routing through the network. Like Flightplan,
DINC also relies on manual markers to identify the program
segments, but unlike Flightplan which focuses on single path
scenarios, DINC considers multiple paths in the network and
aims to ensure that the service is provided for any set of paths
without routing changes.
Progress beyond the state of the art. We present DUNE, a
solution that can automatically disaggregate any ML model for
classification so that it can be deployed over a programmable
network. Our solution is practical as its design is tailored to
real-world hardware and its operation is demonstrated with
industry-grade programmable switches. We stress that DUNE
is orthogonal and complementary to solutions like Flightplan
[34] or DINC [35]; indeed DUNE produces the task segmenta-
tion that is an input to such solutions.

III. DISTRIBUTED ML TRAINING WITH DUNE

As any other solution for user-plane ML [5]–[27], DUNE is
composed by an off-line phase for the design and training of
the ML model that is run in the control plane, and an on-line
phase where the trained model deployed in the programmable
network performs line-rate inference on the traffic. We present
in this section the first phase, and in Section IV the second.

A. Workflow overview

The high-level workflow of DUNE during the off-line phase
is outlined in Figure 2. Here, the goal of the framework is to
generate a set of ML sub-models that (i) are compatible with
the programmable network constraints and (ii) jointly execute
the desired inference task. To this end, historical measurement
data about the target inference task, suitably labeled for super-
vised learning, is initially fed to a first ML model training stage
1⃝. At this stage, the goal is to train the most accurate ML

model possible, ignoring constraints from the programmable
network hardware, and the framework can accommodate any
ML paradigm, e.g., deep neural architectures, support vector
machines or tree-based models, as expounded in Section III-B.

The output of stage 1⃝ is a trained complex monolithic model
that maximizes accuracy for the target traffic analysis task.

In stage 2⃝, the monolithic ML model is examined so as
to extract values that describe the importance of each input
feature (e.g., packet header fields or flow-level statistics) to
estimate every model output (e.g., a class of network traffic).
Different tools can be used to that end as outlined in Sec-
tion III-C, producing an importance matrix WWW that expresses
the relevance of features in explaining output variables and an
accuracy vector fff of the inference quality for each class.

The information in WWW and fff is used in stage 3⃝ to compute a
partitioning of the original inference task in to sub-tasks. Each
sub-task employs a subset of the input features to estimate
a specific disjoint subset of the output variables, and the
partitioning aims at creating groups of variables that can be
well explained by a compact set of features. To identify the
best partitioning, DUNE hinges upon an original optimization
problem solved via an efficient heuristic, as per Section III-D.

For each sub-tasks, stage 4⃝ trains a dedicated ML sub-
model that predicts the sub-task variables using the sub-task
input features. In this case, the ML sub-models are designed
abiding by the user-plane hardware constraints so as to ensure
their compatibility with the target programmable network, as
described in Section III-E.

As the ML sub-models tackle different portions of the whole
inference task on the same network traffic, they must be run in
sequence to execute the original function, similar to the chain-
ing of Virtual Network Functions (VNFs). However, chaining
ML sub-models propagates inference errors, which makes it
critical to account for their (diverse) reciprocal accuracy when
establishing an order of execution. As an intuitive example,
it is critical to avoid deploying at the entry of the chain a
ML model with a high rate of false positives: this leads to a
large number of early misclassified flows, which are then never
received by the downstream sub-models intended to infer the
true category of such flows. As discussed in Section III-F,
stage 5⃝ of DUNE solves a dedicated optimization problem
based on the reciprocal accuracy of the sub-models to identify
their ordering yielding the highest inference performance.

Finally, in the last stage 6⃝, each ML sub-model is coded
as a P4 program and injected into a programmable user-plane
device. It is worth noting that the problem of identifying (e.g.,
within a complex network topology) the exact devices where
the sequence of ML sub-models shall be deployed goes beyond
the scope of DUNE and can be addressed with solutions already
present the literature. In fact, one can consider the ordered sub-
models generated by DUNE as a chain of user-plane VNFs and
apply one of the many algorithms proposed in the literature for
VNF chaining optimization [36]; or, regard the output of our
framework as a segmentation of an in-network computation
task and employ a dedicated solution like DINC [35].

B. Unconstrained ML model training

Stage 1⃝ consists of the definition, hyper-parametrization
and training of a single ML model that solves the desired
inference task. As anticipated, this model is unconstrained,

i.e., is not limited by the programmable hardware memory or
compute constraints, hence can be as complex as the control-
plane ML Operations (MLops) resources allow. The exclusive
objective of this unconstrained ML model is achieving the
maximum accuracy possible in the target inference task.

While this stage of DUNE is general and can accommodate
different ML paradigms, in our implementation we opt for
using a large RF as the unconstrained model. The motivation
is twofold: first, RFs are inherently more explainable than
neural architectures, making the extraction of feature import-
ance from a trained model much faster and more precise, as
explained in Section III-C; second, for the challenging traffic
classification use cases employed to evaluate the performance
of DUNE and presented later in Section V, using NNs based
on Mutit-Layer Perceptron (MLP) as the unconstrained ML
models returned sensibly lower accuracy than that of RFs.

To design the unconstrained RF, we start from the RF model
recently proposed by Jewel [5], a tree-based architecture that
can perform packet-level inference (i.e., using only features
extracted from the header of the current packet, such as
payload length) on the first packets of a flow and automatically
switch to a more accurate flow-level inference (i.e., using
features that relate to all received packets in a same flow, such
as the average inter-arrival time) as soon as enough packets in
the flow have been seen to build reliable flow statistics. Note
that we consider the monolithic version of this type of tree
that is originally implemented in Jewel as a benchmark in the
comparative evaluation in Section VI.
DUNE hyper-parametrizes the joint packet- and flow-level RF

model by training it with an exhaustive grid search over the
space of hyper-parameters, i.e., the maximum number of trees,
the maximum depth of each tree, and the rank of the packet for
which the flow-level inference is triggered. The grid search is
iterated so as to also identify the optimal set of input features
that maximizes the unconstrained model accuracy: specifically,
we start from a model trained with the full set of all available
features, compute the Mean Decrease in Impurity (MDI) to
remove the least relevant feature, re-run the grid search and
iterate. In the end, we select the RF model that achieves the
highest macro F1 score (see Section V-C for a definition).

C. Feature importance extraction

Stage 2⃝ extracts the relationships between input features
and output variables from the unconstrained model produced
by the previous stage. It is worth highlighting that here we
do not seek to rank the importance of the input features for
the inference task as a whole, for which standard techniques
such as the MDI used in stage 1⃝ exist. Instead, we need to
quantify the explanatory power of each input feature for each
individual output class, which is a sensibly harder problem.
DUNE takes advantage of the design choice of adopting

an RF model in stage 1⃝ to extract feature importance in
an efficient way. Specifically, it leverages the Per-Class Fea-
ture Importance (PCFI) method [37], which operates on tree
structures and extends MDI by considering the paths (i.e.,
sequences of nodes from the root node to a leaf that contains

the inference decision) that compose in the trained RF. For
each path in every RF tree, PCFI calculates the importance of a
given feature as the total MDI at nodes that split their sub-trees
based on that feature; it then associates such an MDI value to
the class in the leaf at the end of the path. Once all paths have
been processed, PCFI computes the final importance values for
a feature-class pair as the mean of all MDI values of the input
feature associated to the target class.

The PCFI approach is not the only one possible. For
instance, the well-known SHapley Additive exPlanations
(SHAP) [38] offer an alternative way to derive from a trained
model how much each input feature contributes to the infer-
ence of an individual output variable. SHAP computes so-
called Shapley values for each feature and produced inference
output by evaluating all possible permutations of the features
and determining the marginal contribution of the feature to
the prediction as the difference caused by its absence. While
SHAP has the advantage of being applicable to any ML
model, suffers from poor exponential scalability in the model
complexity [39] that makes it impractical in many cases.

In the case of tree-based models, a compute-efficient variant
of SHAP exists: TreeSHAP [40] leverages the structure of trees
to compute exact Shapley values in polynomial time. Yet, the
complexity of PCFI and TreeSHAP is still very different. Let
us denote by t, L, and d the number of trees, the maximum
number of leaves in a tree, and the maximum depth of each tree
in the unconstrained RF model, respectively: then PCFI has a
complexity O(t·L·d) whereas that of TreeSHAP is O(t·L·d2).
As tests with the reference use cases in Section V show
similar accuracy in the feature importance returned by PCFI
and TreeSHAP, we opt for the former in our implementation.

D. ML model partitioning

Stage 3⃝ breaks down the original inference task into a
series of smaller sub-tasks that jointly achieve the same goal.
To this end, DUNE solves an original Set Partitioning Problem
(SPP) to identify sub-tasks as disjoint groups of output classes
that can be explained with high accuracy by a compact set of
input features each. We next formalize SPP as an optimization
problem and present the efficient heuristic used to solve it.

1) Formulation: Let V = {v1, . . . , vm} be the set of all
m output variables (i.e., classes) that must be explained with
the set of r features in the inference task. Also, let us denote
by S = {S1, . . . , Sn} the set of all possible blocks (i.e., class
groups). P ⊂ {1, . . . , n} is a partition of V if and only if⋃

i∈P

Si = V and Si ∩ Sj = ∅ ∀i, j ∈ P, i ̸= j. (1)

The goal of the SPP is to find the partition P that best bal-
ances inference accuracy and programmable network resource
use. This translates into the two following requirements.
(i) Compactness. P shall be formed by the smallest possible

number of blocks. This requirement stems from the fact
that each block will be later mapped by our framework
into a separate ML sub-model, and every added sub-
model yields overhead (as it requires, e.g., maintaining its

own flow state registers or mapping its ML logic to a user-
plane device) and grows the number of network devices
required to implement the full distributed solution.

(ii) Effectiveness. Each block in P shall maximize the accur-
acy of inference for the variables it includes by using
a minimum number of features. The rationale is that
accuracy must be preserved with limited feature sets,
which later translate in less complex ML sub-models.

It is worth noting that the two requirements above entail a clear
trade-off: the best accuracy using small feature sets is achieved
with tiny blocks each dedicated to very few variables; yet, that
also creates a large number of ML-models, which ultimately
harms resource usage. The SPP thus aims at finding the best
partition that solves such a trade-off.

The optimization problem can be formalized using a matrix
representation. Let sssi ∈ Zm

2 , i ∈ {1, . . . , n} be an indicator
vector designating which variables in V are part of a block
Si, i.e., the k-th element of sssi is 1 if class k is in Si and 0
otherwise. We then construct a matrix AAA ∈ Zm×n

2 with the
sssi vectors as the n columns. By defining a vector of binary
decision variables xxx ∈ Zn

2 whose i-th element indicates if a
block Si is selected as part of the output partition P , we can
write the constraints in (1) as AxAxAx = 111. The formal definition
of the optimization problem is then

max
xxx

1

c(xxx)
· gggTxxx s.t. AxAxAx = 111, (2)

where c(xxx) captures requirement (i) above and denotes the cost
of partitioning the inference task into the number of blocks
defined by xxx, whereas gggTxxx models requirement (ii) as the
accuracy achieved for the blocks in xxx with minimum features.

More precisely, the cost c(xxx) is expressed as

c(xxx) =
m− 1

m− 111Tnxxx
, (3)

where 111n ∈ Zn
2 is a vector of 1’s hence 111Txxx is a scalar

corresponding to the number of non-zero elements of xxx, i.e.,
the number of blocks in the selected partition. This entails a
linearly decreasing advantage 1/c(xxx) as the number of blocks
grows up to the total number of variables m.

As far as the second factor of the objective function in (2)
is concerned, ggg ∈ Rn is a vector of the gains gi associated
with all of the possible blocks Si, which is expressed as

gi = Θ(sssi) ·Ψ(sssi), where (4)

Θ(sssi) = max
ϕϕϕ

sssTi WϕWϕWϕ− (1r (111
T
nsssi)111r)

Tϕϕϕ (5)

Ψ(sssi) = 1/(1 + max
vk|sssi(k)=1

fk − min
vk|sssi(k)=1

fk). (6)

In the expression in (5), the matrix WWW ∈ Rm×r contains
the per-class feature importance values returned by stage 2⃝,
while ϕϕϕ ∈ Zr

2 is an array denoting a feature subset, i.e., the h-th
element is 1 if feature h is in ϕϕϕ, and 0 otherwise. Then, sssTi WϕWϕWϕ
is the cumulative importance retained by the selected features
in ϕϕϕ for classes in Si, whereas (1r (111

T
nsssi)111r)

Tϕϕϕ is a penalty on
the number of features used to achieve such importance.

In (6), fk is the k-th element of array fff ∈ Rn provided by
stage 2⃝ and denotes the accuracy (e.g., the F1 score defined
in Section V-C) achieved by the unconstrained ML model in
inferring class vk. The expression introduces a penalty propor-
tional to the maximum difference in accuracy for two variables
in the block Si: high differences indicate inherently diverse
complexity of the inference process for the corresponding
classes, suggesting that they need ML sub-models of sensibly
different size and are thus not good candidates for grouping.

2) Solution: The SPP is known to be NP-hard even in its
basic optimization problem formulation where the objective
function is linear in the decision variables xxx. Yet, in that
case the SPP can be rendered as an Integer Linear Problem
(ILP) and solved using standard solvers up to a reasonable
size. Unfortunately, the objective function in (2) is non-linear,
impeding such a simplification and making an optimal solution
computationally impractical.

Algorithm 1 SPP greedy algorithm

1: level← m, gain← 0, (blocks)← all single-element blocks
2: for i = m, . . . , 2 do
3: tuples← COMBINATIONS(blocks, 2)
4: for all tuple ∈ tuples do
5: gains← COMPUTEBLOCKGAIN(tuple)
6: end for
7: best tuple← argmax(gains)
8: for all block ∈ blocks do
9: for all element ∈ best-tuple do

10: if element ∈ block then
11: REMOVE(element, blocks)
12: end if
13: end for
14: end for
15: ADD(best-tuple, blocks)
16: gain← COMPUTEPARTITIONGAIN(blocks)
17: if gain > gain-max then
18: level← i
19: gain-max← gain
20: end if
21: end for

We propose a greedy approach, summarized in Algorithm 1,
to approximate (2). The algorithm mimics an agglomerative
clustering process where the gain in (4) is used as the
similarity metric to merge at every iteration the two (blocks of)
variables with maximum similarity. The algorithm performs
m− 1 iterations (line 2); at each iteration, it computes gains1

among all current blocks (lines 4–6), identifies the pair of
blocks with maximum gain (line 7), and updates the blocks
data structure with the new merged block (lines 8–15). Each
iteration returns a partition whose total gain is computed
using (2) and possibly stored as the maximum gain achieved
(lines 16–20). Such gains are not monotonic in general with
respect to the iterations, but take different shapes depending
on the target inference task. Figure 3a shows the evolution of
the gain matching our objective function (2) over iterations,
for one of the reference use cases we will present in Section V.

1Gains calculated at a previous iteration are cached and not re-computed.

20 10 7 1

b locks

0.0

0.2

0.4

0.6

0.8

1.0
T
ot

al
 G

ai
n

(a) Blocks selection

1 4 7 10 13 15

Feature Index

1

0

1

N
et

 I
m

po
rt

an
ce

Si = [100100110000111110001001]

Ignored

Selected

(b) Feature selection

Figure 3: Greedy solution to the SPP in (2) in the UNSW use
case. The plots show (a) the gain versus the number of blocks
and (b) the feature selection for a given block Si.

3 6 9 12 15 18 21 24

Classes

0.0

0.2

0.4

0.6

0.8

G
ai

n

Optimal

Greedy

Random

(a) Gain performance

3 12 24

Classes

0

2

4

6

8

T
im

e
[m

in
]

(b) Execution time

Figure 4: SPP algorithms comparison over the UNSW dataset.

The computation of the gain in (4) needs to be especially
efficient since it is profusely used in Algorithm 1, hence we
propose a computationally viable implementation with cost
O(r). The gain is a product of (6) and (5): while the factor
in (6) is inexpensive, we decompose the calculation of (5)
into r sub-problems leveraging its structure. In each of sub-
problem, a feature is selected if the importance gain, i.e.,
the minuend in (5), overcomes the uniform penalty, i.e., the
subtrahend in (5). For example, Figure 3b shows in green the
features with a positive net importance gain for a given block
si of the SPP for to the same inference task of Figure 3a.

Figure 4 provides a visualization of the accuracy-complexity
trade-off of the greedy algorithm solving the SPP. We consider
again the same inference task of Figure 3, but limiting it
to a given number of classes, shown in the abscissa of the
plots: when considering, e.g., 9 classes, we randomly select
9 of the 24 classes that constitute the problem and run the
greedy algorithm to identify a good partition of such 9 classes.
Figure 4a shows that our proposed heuristic (green) performs
substantially better than stochastic partitions (orange) with a
gain that tends to increase as the complexity of the SPP grows.
The optimal solution (blue) clearly outperforms the greedy
solution, yet Figure 4b shows that it also has an exponentially
growing execution time that does not allow solving the SPP for
more than a handful of classes. Instead, the greedy algorithm
has a reasonable computational cost O(m2) in Figure 4b.

E. Hardware-compliant ML sub-model training

Stage 4⃝ trains one ML sub-model for each block in the
partition P ∗ output above. Unlike the unconstrained model
trained in stage 1⃝, these sub-models are designed to comply
with the constraints of the target programmable network
devices. Each sub-model aims at classifying the variables (i.e.,
classes) present in the corresponding block, plus one additional
others category that gathers all classes that are part of the total
inference problem but are not included in the current block.

Our implementation of DUNE relies on RFs to realize each
ML sub-model. This choice is grounded in the significant
success that RFs had as a reference ML paradigm for user-
plane inference, as reported in Section II. The model design,
hyper-parametrization and training are thus similar to those
described in Section III-B and rely on a joint packet- and
flow-level inference model. The difference is that the bit
representation of the features, the maximum umber of trees
and the maximum number of leaves per tree are now con-
strained to abide by the limitations of user-plane hardware.
Indeed, the limited size of register entries, the small amount
of memory, and the finite number of stages in programmable
devices force restrictions that must be accounted for at design
stage to ensure the compatibility of the ML models with the
network equipment. Since we target a user plane composed of
programmable switches, we adopt the techniques introduced
in Flowrest [13] to (i) engineer features and (ii) limit tree
dimension, thus ensuring that the design of the ML sub-models
is fully compatible with the network hardware.

The best RF sub-model for each block is identified from
the grid search over the (constrained) hyper-parameters by
balancing accuracy and resource usage. Specifically, we select
the RF that maximizes α ·F1+(1−α) ·UTCAM, where F1 is the
macro F1 score defined in Section V-C, UTCAM is the expected
usage of Ternary Content-Addressable Memory (TCAM) in
the switch, and α is a tunable parameter that we set to 0.5 in
our experiments to fairly balance the two contributions.

F. ML sub-model sequencing

Stage 5⃝ orders the ML sub-models so as to optimize the
inference performance. The sub-model sequencing impacts the
distributed inference accuracy due to the following aspects.

• Confusion between sub-models addressing different parts
of the global inference. The problem arises due to false
positives from an upstream sub-model that generate in-
correct early decisions on flows that in fact belong to the
target classes of downstream sub-models.

• Diverse accuracy of each sub-model. Sub-tasks have non-
uniform complexity, and each sub-model has a different
error rate that affects all downstream sub-models.

The goal of this stage is then to generate an ordering such that
ML sub-models with a low rate of false positives and a high
accuracy are deployed earlier in the sequence. DUNE solves a
simple optimization problem to that end. The objective is

min
XXX

∑
i,j∈P∗, i ̸=j

pji · (1− f ′
i) · xij , xij ∈XXX (7)

A

Forwarding

Non-target
traffic

...
Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6 A

Sub-model 1

B

N = 3 Sub-model 2 N = 2 Sub-model 3 N = 4

A
A
A

A

A
B

A

Flow management
Inference

D

R R

Flow state collection
Flow state eviction

X Classification Others

Control plane

User plane

Figure 5: Toy example of the DUNE user plane operation
with a distributed ML model over three switches performing
inference on packets of one target flow.

where pij is the rate of false positives2 that the ML sub-model
of block Si generates with respect to classes in block Sj of
the partition P ∗, f ′

i is the macro F1 score of the sub-model
for block Si trained in Stage 3⃝, and xij are binary decision
variables that take value one if the ML-model of block Si

precedes that of block Sj in the ordering.
In order to ensure that each ML sub-model is executed only

once in a valid order, we define the two following constraints.

xij + xji = 1, ∀i, j ∈ P ∗, i ̸= j, (8)

ui − uj + xij · ∥P ∗∥ ≤ ∥P ∗∥ − 1 ∀i, j ∈ P ∗, i ̸= j, (9)

where ui is an auxiliary variable associated with the block Si

used to enforce the order of deployed sub-models and ∥P ∗∥ is
the total number of blocks. The problem in (7)–(9) is a version
of the well-known Travelling Salesman Problem and can be
formulated as an ILP and solved efficiently.

IV. DUNE USER-PLANE OPERATION

Once the preparation of the ordered ML sub-models is
complete, each RF can be coded as a P4 program and deployed
in the target programmable user plane for distributed inference,
as per stage 6⃝ in Figure 2. While the general framework we
propose can be adapted to different user-plane configurations
potentially combining diverse types of programmable network
devices, the implementation of DUNE we produce and test in
this paper is intended for a network of programmable switches.

The high-level operation of DUNE in the user plane is
illustrated in a simple example in Figure 5, where a sequence
of three ML sub-models are deployed into three switches. Each
switch is programmed so as to perform three sets of operations
on each transiting packet: (i) forwarding is the baseline
function of the switch and consists in redirecting incoming

2Since each ML sub-model is trained on the entire set of classes, it is
possible to calculate the false positives across blocks. For instance, for the
sub-model associated to block Si we can compute the rate of flows belonging
to the classes in block Sj that such a model misclassifies as its own.

traffic to its next hop or to the ML processing, depending
on whether the flow is a target for inference or not; (ii) flow
management is only applied to flows for which inference needs
to be run, and stores stateful information about the flow-
level features and situation (e.g., classified or not) of every
target flow; (iii) inference is the actual joint packet- and flow-
level RF operation that classifies each packet using its packet-
level features and, for the N-th packet that triggers flow-level
inference, flow-level features as well. We implement these
three sets of operations as thoroughly described in [5], and
adopt the well-known Planter strategy [16] to map efficiently
RFs to the Match-Action Units (MAU) of each switch ASIC.

Once the network is programmed, the operation proceeds as
illustrated in Figure 5. Traffic that is not a target for inference
is normally forwarded by the entry switch according to its
legacy forwarding table. When the first packet of a flow that
has to be classified is received by the entry switch (e.g., packet
1 in the figure, whose flow we assume to belong to class A),
it is forwarded to the local flow management stage, where
flow-level information is collected and stored, and then moved
to the inference stage. Since the first ML sub-model in this
example performs flow-level inference on packet N=3, packet
1 of the flow is classified using packet-level features only, and
in this specific example, is misclassified as belonging to class
B. The packet is then moved along the distributed ML pipeline,
and traverses the two remaining switches: in each case, it is
identified as a packet to be classified, flow-level information
is collected, but the packet skips the inference stage since it
has already been tagged with a class, although incorrectly.

When packet 2 arrives, it follows a similar path. However,
let us assume that this time the packet-level inference run
by the first switch does not tag packet 2 with a class, but
marks it as others, i.e., belonging to a class pertaining to
a downstream ML sub-model as discussed in Section III-E.
Hence, packet 2 is forwarded to the second switch, which
updates its internal flow-level state with information from this
packet. In the example, the second ML sub-model is, in fact,
responsible for inferring packets and flow belonging to class
A; also, the flow-level inference point in this model is N=2.
The sub-model tags packet 2 as pertaining to class A, and
updates its local flow management to automatically associate
all following packets for the same flow to class A. Note that
packet 2 is still forwarded to the third switch, which lets it
evict the associated flow-level data from the flow management
registers. The classification of the flow also triggers a digest
message D from the second switch to the control plane; this
lets the centralized controller inject new forwarding rules R
in all switches so that the forwarding stage takes care of
redirecting the traffic according to the inference result (as it
happens to packet 6 that is received after the rule update), and
all flow-level registers can be freed.

It is worth noting that simple sub-models can be imple-
mented in the same switch, in which case they share flow
management registers and any common features. We open-
source our code [41] for full reproducibility of the solution and
complete transparency of our DUNE user-plane implementation.

V. EXPERIMENTAL SETUP

A. Programmable network testbed

The network testbed where we test DUNE comprises 2 serv-
ers and 3 switches. The servers are equipped with AMD EPYC
24-core processors running at 2.8GHz, with 128GB of RAM,
and QSFP28 interfaces. The switches are Edgecore Wedge
100BF-QS programmable switches, featuring Intel Tofino
BFN-T10-032Q chipsets and 32 100GbE QSFP28 ports. All
switches run the Open Network Linux (ONL) operating sys-
tem, and the Intel Software Development Environment (SDE)
version 9.7.0 used for compiling P4 programs. During the
experiments, our solution, DUNE, is deployed in a distributed
fashion across the three switches, with one server dedicated
to implementing the control plane. The functionality of the
control plane is to host controller that binds to the Barefoot
Runtime Interface (BRI) of the switch and performs the initial
setup of the switch, activating ports, loading the trained ML
models as table entries via a P4 program, and getting the digest
from the user plane to collect classification results and update
registers and tables throughout the experiment. Another server
is used to inject traffic into the switches. The experimental
testbed operates as a comprehensive 100-Gbps platform.

B. Inference use cases

We select two complex classification tasks in device iden-
tification and attack detection that are based on publicly
available real-world measurement data to show how DUNE

performs across different and demanding use cases.
UNSW-IoT [42] is a device identification use case based

on a traffic measurement data collected from 26 Internet of
Things (IoT) and several non-IoT devices. Measurements are
conducted in a living lab emulating a smart environment over a
period of 6 months. In order to detect which of the 26 devices
that traffic flows belong to, we train ML models with 15 days
of data and test with one day of data.

ToN-IoT [43] is an attack detection use case where benign
and 9 types of cyberattacks are generated within a repres-
entative medium-scale testbed. This testbed comprises several
IoT and industrial IoT (IIoT) devices, along with various non-
IoT devices. For our analysis, we use 75% of the data for
training and the remaining 25% for testing. Despite the dataset
containing one benign and nine types of cyberattacks, three of
the target classes with quite lower samples in the test set.
Hence, we exclude these classes during training, resulting in
the classification of seven classes instead of the original ten.

C. Inference accuracy metrics

We assess the performance of DUNE and selected bench-
marks using F1 score metric, which is commonly used for
evaluating classification solutions. This metric is calculated
based on three key measures: true positives (TP), false posit-
ives (FP), and false negatives (FN) as F1=2TP/(2TP+FP+FN).
We compute the F1 score by averaging with three different
methods: (i) micro average, which sums the TP, FP, and FN
across all classes before calculating the metric; (ii) macro
average, which is the mean of the F1 scores of each class;

and (iii) weighted average, which weights the F1 scores of
each class by the number of samples in the dataset. For a fair
assessment of the performance of the different models, we use
a flow-level metric that operates on packets but removes the
bias caused by long flows [44]: the score is calculated with
packet-level TP, FP, and FN where each packet has a weight
w = 1/l, being l the length of the flow the packet belongs to.

D. Benchmarks

We benchmark DUNE against four state-of-the-art in-switch
classification solutions: Mousika [9], Flowrest [13], Net-
beacon [25], and Jewel [5]. All use monolithic ML models.

Mousika is a packet-level (PL) classifier leveraging know-
ledge distillation. In this approach, a Random Forest (RF) or
Decision Tree (DT) is trained and distilled into a single Binar-
ized Decision Tree (BDT). We implement Mousika using the
publicly available source code [45] and use our model analysis
approach to run a grid search over the hyperparameters and
PL features, which are later binarized and used to train the
teacher RF or DT model. As the BDT student model uses a
compact binary-tree representation, we need not limit its size.

Flowrest is a resource-aware, tree-based solution for flow-
level (FL) inference. Thanks to its flow management strategy, it
allows tracking and classifying flows directly in the data plane.
Yet, during the flow feature collection phase, it is unable to
classify packets; thus, it is not suitable for classifying traffic
with predominantly short-lived flows. The Flowrest instance
we use is based on the available source code [46].

Netbeacon is a tree-based solution capable of performing
PL classification for short flows and FL classification oth-
erwise. To this end, Netbeacon deploys 3 sets of models:
an XGBoost model to predict flow sizes; a PL classifier for
short flows, collided flows, and pre-FL-inference packets; and
FL classifiers with variable inference points—depending on
the flow length— to classify long flows. Depending on the
flow-size classification result, FL features are computed and
stored—for long flows—or not. Our implementation is based
on the publicly available source code [47].

Jewel is a joint packet- and flow-level inference solution. As
the previously discussed benchmarks, it is based on tree mod-
els. However, unlike NetBeacon, which uses multiple models,
Jewel uses a single model for both PL and FL classification.
Packets in a new flow are initially classified based on stateless
PL features but are used to collect FL statistics. Once a
predetermined n-th packet is received, FL features are used for
inference. Unlike NetBeacon, Jewel employs a unified RF for
both PL and FL inference: during the PL phase, the FL features
are assigned constant values, and upon the arrival of the n-th
packet, the model switches to FL inference since FL features
become available. The FL decision on the n-th packet is then
applied to all subsequent packets of the flow. We implement
Jewel using the publicly available code [48].

VI. EVALUATION

Accuracy. We begin by comparing the performance of
distributed inference executed by DUNE with the benchmarks

no
rm

al

ra
ns

om
w
ar

e

dd
os xs
s

sc
an

ni
ng

in
je

ct
io

n

pa
ss

w
or

ds

0

20

40

60

80

100

A
cc

ur
ac

y
[%

]

Mousika

0

20

40

60

80

100
Netbeacon

no
rm
al

ra
ns
om
w
ar
e

dd
os xs
s

sc
an
ni
ng

in
je
ct
io
n

pa
ss
w
or
ds

Flowrest

0

20

40

60

80

100

no
rm
al

ra
ns
om
w
ar
e

dd
os xs
s

sc
an
ni
ng

in
je
ct
io
n

pa
ss
w
or
ds

Jewel

0

20

40

60

80

100

no
rm
al

ra
ns
om
w
ar
e

dd
os xs
s

sc
an
ni
ng

in
je
ct
io
n

pa
ss
w
or
ds

Dune

no
rm
al

ra
ns
om
w
ar
e

dd
os xs
s

sc
an
ni
ng

in
je
ct
io
n

pa
ss
w
or
ds

0

20

40

60

80

100

Figure 6: Accuracy per-class obtained by DUNE and the benchmarks in ToN-IoT.

Dataset F1-Score Mousika Flowrest Netbeacon Jewel Dune

UNSW
Macro 64.921% 40.100% 46.057% 65.718% 70.263%
Micro 83.568% 41.918% 58.192% 79.132% 84.291%

Weighted 83.96% 40.614% 59.278% 79.776% 83.296%

ToN-IoT
Macro 47.099% 55.367% 47.468% 61.718% 67.541%
Micro 42.335% 62,038% 42.380% 67.045% 73.037%

Weighted 37.826% 61.723% 38.024% 65.153% 72.647%

Table I: Performance of DUNE versus the selected benchmarks.

Benchmarks Dune

Dataset Resource Mousika Flowrest Netbeacon Jewel SW1 SW2 SW3

UNSW TCAM 27.80% 14.90% 36.10% 15.60% 9.40% 8.70% 8.70%
SRAM 0.70% 10.10% 13.50% 12.40% 17.00% 13.00% 16.10%

ToN-IoT TCAM 1.40% 14.20% 20.50% 5.60% 2.40% 5.60% 8.00%
SRAM 5.50% 14.70% 19.50% 15.10% 12.70% 16.40% 15.90%

Table II: TCAM and SRAM usage across all models.

performing monolithic inference across three different metrics.
As shown in Table I, DUNE consistently outperforms all
monolithic solutions across all metrics in both use cases, with
the exception of the Weighted F1 score in the UNSW dataset,
where the PL solution Mousika performs slightly better. The
performance improvement of DUNE, compared to the second-
best model in both use cases, ranges from 0.7% to 7.5% in all
metrics, with an average gain of 5.2% in the Macro F1 score.
It is typically 20% or more over the worst benchmark.

Figure 6 details the accuracy per class for the different solu-
tions. Mousika and NetBeacon exhibit a significant imbalance
across classes, whereas NetBeacon and Jewel have more bal-
anced performance yet still encounter challenges in accurately
classifying certain classes compared to others. DUNE, on the
other hand, shows a balanced accuracy, except for the class
representing benign traffic, which is best classified by all the
solutions. DUNE achieves a more homogeneous accuracy across
all classes by breaking down the main inference task into
dedicated sub-models, as represented with different hatches,
ensuring that each class receives adequate attention.

Resource usage. Due to the constraints of programmable
network hardware, evaluating resource usage is essential.
Table II shows the SRAM and TCAM resource usage of all the
benchmarks and DUNE in both use cases. We show the resource
consumption of all the switches in which the sub-models
are deployed. In UNSW, we implement two sub-models per
switch, while in ToN-IoT, we implement two models in the
last switch and one in the other two. In terms of SRAM
consumption, Mousika is the most efficient as it does not
require flow-level management. There is no general gain or

Dataset No inference Mousika Flowrest Netbeacon Jewel Dune

UNSW 852.54 871.64 966.72 989.67 981.47 1137,70
ToN-IoT 852.54 869.18 1001.97 1004.43 1015.08 1183,61

Table III: Latency in ns of all models across three switches.

loss in the consumption across switches hosting distributed
models compared to FL and hybrid solutions. However, given
the fact that multiple models are typically deployed per switch,
the SRAM consumption of individual sub-models is lower than
that of monolithic models, except for Mousika. The reason
is that we utilize only one register if multiple sub-models
use the same FL features in each switch. Regarding TCAM,
the scarcest resource in programmable switches, DUNE shows,
in UNSW, lower consumption across all switches compared
to other benchmarks, despite deploying two sub-models per
switch. In ToN-IoT, besides Mousika, which consumes less
but brings a lower score, the TCAM usage in the switches
running a single model is lower than the monolithic solutions.

Latency. Finally, we calculate the end-to-end latency of the
benchmarks and DUNE in all use cases across three switches,
in Table VI. The no inference case is a baseline where packets
are simply forwarded by the switches. For monolithic models,
packets passing through the first switch incur both forwarding
and inference latency, while packets traversing subsequent
switches are subject only to forwarding latency. In DUNE, all
switches combine the latency of forwarding and inference.
The results show how DUNE realizes line-rate inference with
a negligible added delay of around 100 ns per switch with
respect to a pure forwarding operation. This delay is on par
with that of solutions with a flow-management functionality.

VII. CONCLUSIONS

We propose DUNE, the first framework that automatically
distributes user-plane classification models across multiple
programmable network devices. Extensive experiments show
that DUNE yields higher accuracy than traditional single-device
approaches, with lower resource usage and comparable delay.
The authors have provided public access to their code at [41].

ACKNOWLEDGMENTS

This research was supported by the SNS JU and the
European Union’s Horizon Europe research and innovation
program under Grant Agreement No. 101139270 (ORIGAMI).
M. Fiore is Talent Attraction fellow (2023-5A/TIC-28944) and
B. Bütün predoctoral fellow (PIPF-2022/COM-24867), both
being co-financed by Comunidad de Madrid.

REFERENCES

[1] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming
with p4: Fundamentals, advances, and applied research,” ArXiv, vol.
abs/2101.10632, 2021.

[2] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey
on p4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE Access, vol. 9, pp. 87 094–87 155,
2021.

[3] S. Kaur, K. Kumar, and N. Aggarwal, “A review on p4-programmable
data planes: Architecture, research efforts, and future directions,” Com-
puter Communications, vol. 170, pp. 109–129, 2021.

[4] C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, and N. Zil-
berman, “In-network machine learning using programmable network
devices: A survey,” IEEE Communications Surveys & Tutorials, vol. 26,
no. 2, pp. 1171–1200, 2024.

[5] A. T.-J. Akem, B. Bütün, M. Gucciardo, and M. Fiore, “Jewel:
Resource-efficient joint packet and flow level inference in programmable
switches,” in IEEE INFOCOM 2024, 2024, pp. 1–10.

[6] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Van-
bever, “pForest: In-network inference with random forests,” CoRR, vol.
abs/1909.05680, 2019.

[7] T. Swamy, A. Rucker, M. Shahbaz, I. Gaur, and K. Olukotun, “Taurus:
A data plane architecture for per-packet ml,” ASPLOS, 2022.

[8] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh, H. Haddadi,
G. Antichi, and R. Bifulco, “Re-architecting traffic analysis with neural
network interface cards,” in NSDI. Renton, WA: USENIX, Apr. 2022.

[9] G. Xie, Q. Li, G. Duan, J. Lin, Y. Dong, Y. Jiang, D. Zhao, and Y. Yang,
“Empowering in-network classification in programmable switches by
binary decision tree and knowledge distillation,” IEEE/ACM Trans.
Netw., 2023.

[10] C. Zheng, M. Zang, X. Hong, L. Perreault, R. Bensoussane, S. Vargaftik,
Y. Ben-Itzhak, and N. Zilberman, “Planter: Rapid Prototyping of In-
Network Machine Learning Inference,” ACM SIGCOMM Computer
Communication Review, 2024.

[11] J. Yan, H. Xu, Z. Liu, Q. Li, K. Xu, M. Xu, and J. Wu,
“Brain-on-Switch: Towards advanced intelligent network data plane
via NN-Driven traffic analysis at Line-Speed,” in 21st NSDI. Santa
Clara, CA: USENIX Association, Apr. 2024, pp. 419–440. [Online].
Available: https://www.usenix.org/conference/nsdi24/presentation/yan

[12] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
toward in-network classification,” in Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, ser. HotNets ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 25–33.

[13] A. T.-J. Akem, M. Gucciardo, and M. Fiore, “Flowrest: Practical flow-
level inference in programmable switches with random forests,” in IEEE
INFOCOM 2023, 2023.

[14] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-
network computation is a dumb idea whose time has come,” in Hot-
Nets’17. NY, USA: ACM, 2017.

[15] D. Sanvito, G. Siracusano, and R. Bifulco, “Can the network be the ai
accelerator?” NetCompute ’18, 2018.

[16] C. Zheng and N. Zilberman, “Planter: Seeding trees within switches,”
in SIGCOMM ’21. NY, USA: ACM, 2021, p. 12–14.

[17] J. Lee and K. P. Singh, “Switchtree: in-network computing and traffic
analyses with random forests,” Neural Computing and Applications, pp.
1–12, 2020.

[18] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello,
“Programmable switches for in-networking classification,” in IEEE
INFOCOM 2021, pp. 1–10.

[19] G. Xie, Q. Li, C. Cui, P. Zhu, D. Zhao, W. Shi, Z. Qi, Y. Jiang, and
X. Xiao, “Soter: Deep learning enhanced in-network attack detection
based on programmable switches,” in SRDS, 2022.

[20] H. Siddique, M. Neves, C. Kuzniar, and I. Haque, “Towards network-
accelerated ML-based distributed computer vision systems,” in IEEE
ICPADS, 2021, pp. 122–129.

[21] K. Friday, E. Bou-Harb, and J. Crichigno, “A learning methodology
for line-rate ransomware mitigation with p4 switches,” in Network and
System Security. Springer Nature Switzerland, 2022, pp. 120–139.

[22] X. Zhang, L. Cui, F. P. Tso, and W. Jia, “pHeavy: Predicting heavy
flows in the programmable data plane,” IEEE Transactions on Network
and Service Management, vol. 18, no. 4, pp. 4353–4364, 2021.

[23] K. Friday, E. Kfoury, E. Bou-Harb, and J. Crichigno, “INC: In-network
classification of botnet propagation at line rate,” in Computer Security –
ESORICS 2022. Springer International Publishing, 2022, pp. 551–569.

[24] A. T.-J. Akem, B. Bütün, M. Gucciardo, and M. Fiore, “Henna:
Hierarchical machine learning inference in programmable switches,” in
NativeNI 22. ACM, 2022, p. 1–7.

[25] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of
intelligent network data plane,” in USENIX symposium on security, 2023.

[26] G. Siracusano and R. Bifulco, “In-network neural networks,” CoRR, vol.
abs/1801.05731, 2018.

[27] Z. Zhao, Z. Li, Z. Song, F. Zhang, and B. Chen, “Rids: Towards
advanced ids via rnn model and programmable switches co-designed
approaches,” in IEEE INFOCOM 2024, 2024, pp. 1–10.

[28] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón,
M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett,
G. Estrada, K. Ma’ruf, F. Coras, V. Ermagan, H. Latapie, C. Cassar,
J. Evans, F. Maino, J. Walrand, and A. Cabellos, “Knowledge-defined
networking,” SIGCOMM Comput. Commun. Rev., vol. 47, no. 3, p. 2–10,
sep 2017.

[29] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. Ports, and P. Richtarik, “Scaling distrib-
uted machine learning with In-Network aggregation,” in 18th NSDI.
USENIX, Apr. 2021, pp. 785–808.

[30] M. Seufert, K. Dietz, N. Wehner, S. Geißler, J. Schüler, M. Wolz,
A. Hotho, P. Casas, T. Hoßfeld, and A. Feldmann, “Marina: Realizing
ml-driven real-time network traffic monitoring at terabit scale,” IEEE
Transactions on Network and Service Management, vol. 21, no. 3, pp.
2773–2790, 2024.

[31] L. Bracciale, T. Swamy, M. Shahbaz, P. Loreti, S. Salsano, and H. El-
bakoury, “The case for native multi-node in-network machine learning,”
in NativeNI 22, ser. NativeNi ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 8–13.

[32] K. Razavi, S. D. Fard, G. Karlos, V. Nigade, M. Mühlhäuser, and
L. Wang, “Netnn: Neural intrusion detection system in programmable
networks,” in IEEE ISCC, 2024.

[33] H. Kim, X. Chen, J. Brassil, and J. Rexford, “Experience-driven re-
search on programmable networks,” SIGCOMM Comput. Commun. Rev.,
vol. 51, no. 1, p. 10–17, 2021.

[34] N. Sultana, J. Sonchack, H. Giesen, I. Pedisich, Z. Han, N. Shyamkumar,
S. Burad, A. DeHon, and B. T. Loo, “Flightplan: Dataplane disaggrega-
tion and placement for p4 programs,” pp. 571–592. [Online]. Available:
https://www.usenix.org/conference/nsdi21/presentation/sultana

[35] C. Zheng, H. Tang, M. Zang, X. Hong, A. Feng, L. Tassiulas, and
N. Zilberman, “Dinc: Toward distributed in-network computing,” Proc.
ACM Netw., vol. 1, no. CoNEXT3, nov 2023.

[36] F. Schardong, I. Nunes, and A. Schaeffer-Filho, “Nfv resource al-
location: a systematic review and taxonomy of vnf forwarding graph
embedding,” Computer Networks, vol. 185, p. 107726, 2021.

[37] E. Cramer and G. Prevedello, “Per-Class Feature Importance,” Aug.
2020.

[38] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017.

[39] S. Arora and B. Barak, Computational complexity: a modern approach.
Cambridge University Press, 2009.

[40] S. M. Lundberg, G. G. Erion, and S. Lee, “Consistent individualized
feature attribution for tree ensembles,” CoRR, vol. abs/1802.03888,
2018.

[41] B. Bütün et al., “Dune,” https://github.com/nds-group/Dune.
[42] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,

A. Vishwanath, and V. Sivaraman, “Classifying IoT devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, 2019.

[43] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar,
“TON IoT telemetry dataset: A new generation dataset of IoT and IIoT
for data-driven intrusion detection systems,” 2020.

[44] M. Gucciardo, B. Bütün, A. T.-J. Akem, and M. Fiore, “Evaluating
the impact of flow length on the performance of in-switch inference
solutions,” in CNERT 24. IEEE INFOCOM 2024.

[45] G. Xie et al., “Mousika,” https://github.com/xgr19/Mousika.
[46] A.T-J. Akem et al., “Flowrest,” https://github.com/nds-group/Flowrest.
[47] G. Zhou et al., “Netbeacon,” https://github.com/IDP-code/NetBeacon.
[48] A.T-J. Akem et al., “Jewel,” https://github.com/nds-group/Jewel.

https://www.usenix.org/conference/nsdi24/presentation/yan
https://www.usenix.org/conference/nsdi21/presentation/sultana
https://github.com/nds-group/Dune
https://github.com/xgr19/Mousika
https://github.com/nds-group/Flowrest
https://github.com/IDP-code/NetBeacon
https://github.com/nds-group/Jewel

	Introduction
	Related work
	Distributed ML training with DUNE
	Workflow overview
	Unconstrained ML model training
	Feature importance extraction
	ML model partitioning
	Formulation
	Solution

	Hardware-compliant ML sub-model training
	ML sub-model sequencing

	DUNE user-plane operation
	Experimental setup
	Programmable network testbed
	Inference use cases
	Inference accuracy metrics
	Benchmarks

	Evaluation
	Conclusions
	References

