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Abstract—Reducing energy consumption is a primary goal
for the mobile telecommunication industry, with strong environ-
mental and economic implications. The main target for savings
is the Radio Access Network (RAN), which is responsible for
more than 70% of the total energy costs incurred by operators.
Lowering energy costs at the RAN is possible by reducing the
number of active carriers at off-peak locations and times where
the demand can be served with a lower capacity than deployed.
While the scientific community has been proposing a plethora of
complex solutions to switch-off underutilized carriers, production
networks largely rely nowadays on threshold-based strategies that
run at individual RAN equipment and are typically enabled only
overnight. Moreover, there are no real-world evaluations of the
effectiveness of carrier switch-off approaches in reducing energy
consumption or their impact on the end users. In this paper, we
benchmark five fixed threshold-based cell sleep policies deployed
in a production network serving large geographical regions. The
study provides unprecedented insights on industry-grade RAN
sustainability at scale, in terms of actual energy savings and
trade-offs with user experience. Our insights suggest that the
capability of the tested policies in reducing the energy costs hits
a clear barrier if no degradation is admissible for any user, and
provides a strong empirical basis in support of more flexible
approaches to save energy at the RAN.

I. INTRODUCTION

Energy efficiency is one of the major challenges that mobile
network operators (MNOs) face today, as operating very large
and power-hungry mobile network infrastructures is becoming
increasingly complicated by rapidly growing energy costs and
global climate emergency awareness. There is therefore a
strong drive towards making mobile communication systems
more sustainable both in economic terms, i.e., reducing oper-
ating expenses linked with the power consumption of network
equipment, and environmental terms, i.e., improving the social
acceptability of the cost that pervasive digital services entail
for the planet. As a result, all major MNOs and equipment
vendors are nowadays making substantial efforts to investigate
strategies to reduce their energy and carbon footprint [1] and
meet the goals set by global policymakers [2], [3].

The bulk of the energy consumption in mobile networks is
associated to Radio Access Network (RAN) operation, which
accounts for 73% of the total energy costs incurred by a typical
operator according to GSMA [4]. Indeed, RAN equipment
performs power-intensive functions for signal processing and
transmission at tens of thousands of base stations that ensure
coverage across territories of thousands of square kilometers.
Moreover, the co-existence of overlaid Radio Access Tech-
nologies (RATs) belonging to different generations like 2G,
3G, 4G and 5G, coupled with challenges in sunsetting the older
ones, exacerbates the problem of high RAN energy footprint.

On the bright side, RANSs are also highly redundant systems,
since they have to cope with strong spatial and temporal
fluctuations in the user demands. For instance, mobile traffic
loads are dramatically different in urban and rural areas [5], are
known to feature circadian rthythms with high volumes during
daylight hours that drop overnight [6], [7], and show prominent
peaks occurring at specific moments of the day that change
depending on the location considered [8]. To efficiently serve
such time-varying demands, modern RANs have a layered
design with multiple antennas that cover a same geographical
area at different frequency bands and that jointly provide the
capacity needed to serve the local traffic peaks.

This layered architecture paves the way for a dynamic man-
agement of the RAN where equipment that is not needed to
sustain the demand in a specific time period can be turned off,
hence reducing its associated energy cost. Options supported
by present RAN hardware include shutting down individual
symbols, radio channels or whole carriers, which offer diverse
levels of flexibility and savings [9], [10]. However, the problem
of deciding when to switch-off or switch-on RAN elements is
extremely complex since sustainability goals inherently con-
flict with the strict requirements that mobile networks are ex-
pected to meet in terms of availability, reliability, throughput,
or latency. While a plethora of proposals exist in the scientific
literature, they mostly are, as later expounded in Section VI,
theoretical or simulation studies that do not consider: (¢) the
limitations imposed by industry-grade RAN hardware that
cannot be instantaneously and perfectly controlled, (i¢) the
striking heterogeneity of real-world user demands that are
instead modeled with simplistic measurement data [9], [10],
or (#21) the exact impact of RAN configuration changes on
users’ experience that are arduous to establish [11]-[13].

These aspects are crucial for production mobile networks
serving actual users, where even minimal and localized degra-
dation of the users’ Quality of Experience (QoE) is unaccept-
able, since it would entail, e.g., bursts of calls to customer
service, the backlash on social media and ultimately churn
in a very competitive market. These very real and significant
penalties cause players in the mobile ecosystem to be highly
conservative in RAN sustainability. Even leading MNOs cur-
rently adopt basic and cautious strategies that only switch-off
a minimum portion of the RAN equipment overnight [14].

In this context, it is difficult to understand if more ambitious
targets for RAN sustainability can be achieved in production.
In this paper, we shed some light on this subject, by presenting
the setup, measurements and results of trials executed at
scale in a production network where diverse energy saving
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TABLE I: Energy saving strategies tested by the MNO.
Load Thresholds

Strategy Deployment time window  Policy ON  Policy OFF
Night-loose 23h - 6h (night) 5% 10%
Night-strict 23h - 6h (night) 10% 20%
Full-loose 24h (all day) 5% 10%
Full-moderate 24h (all day) 7% 12%
Full-strict 24h (all day) 10% 15%

strategies were tested for several weeks. Our work sets forth

the following main contributions.

o We present an unprecedented benchmarking of five different
cell sleep strategies for RAN energy savings that are based
on utilization thresholds and that were tested in the RAN
of a top-tier MNO in a Western European country, covering
two regions with diverse urbanization levels.

o We characterize the switch-on/off process that each strategy
induces on the real-world RAN using several Key Per-
formance Indicators (KPIs) for measuring cell downtime,
energy consumption, and impact on users’ throughput.

« We evaluate the gains of the different strategies in terms
of energy savings for the MNO, using a realistic energy
consumption model, and show that the reduction in power
consumption varies dramatically not only across strategies
but also among regions and individual carriers.

e We capture for each strategy the trade-off between the
achieved energy savings and the impact on end-user per-
formance, using user throughput as a reference. The results
reveal that throughput variations are remarkably heteroge-
neous across cells in different locations.

Ultimately, our work provides a first-of-its-kind deep dive
into the operation of energy saving policies in production, and
points at clear directions for the design of RAN sustainability
strategies that are both effective and viable in practice.

II. METHODOLOGY & DATASET

Our study focuses on the cellular network deployment of
a top-tier MNO in a Western European country with over 40
million connected devices. During February - March 2023, the
MNO tested five different energy efficiency strategies for the
RAN, each one over a week, using commercial solutions from
equipment vendors (see Table I). We focus here on strategies
that rely on cell sleep energy efficiency policies, where specific
cells within base stations are put into a lower-power sleep
mode during times of low traffic load.

We collect fine-grained KPIs at the cell level, and leverage
this data to evaluate the different strategies in terms of the
trade-off between estimated energy savings and the impact on
end-user performance.

A. RAN energy saving strategies

Figure 1 illustrates the general behavior of the commercial
energy saving solutions tested by the MNO. All solutions rely
on continuous monitoring of the Physical Resource Block
(PRB) utilization, i.e., the portion of fundamental radio re-
source units available in a cell that are allocated to users for
data transmission or reception. PRB utilization is tracked at the
level of each power group, i.e., the set of all cells covering a
same geographical area over different frequency bands.
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Fig. 1: Example of energy saving strategy. During the policy
deployment time window (purple intervals on the x-axis), a PRB
utilization (on the y-axis) dropping below the Policy ON threshold
puts the cell in sleep mode. A PRB utilization rising above the
Policy OFF threshold wakes the cell from sleep mode. The strategy
is disabled outside the policy deployment time window.

The tested solutions apply dynamic cell sleeping strategies
based on the time evolution of the average PRB utilization
in cells of a power group. With reference to Figure 1, the
following parameters define an energy efficiency strategy.

Policy deployment time window: the time period in which
the energy saving policy is enabled. In the strategies that
we analyze (Table I), Night-loose and Night-strict are active
during night time, i.e., the deployment time window spans
23:00 to 06:00. The other policies operate all day.

ON/OFF load thresholds: These thresholds set the PRB
utilization levels that trigger the activation (ON) or deactiva-
tion (OFF) of energy-saving policies. When the average PRB
utilization in a power group falls below the ON threshold,
the energy efficiency solution identifies the cell to send in
sleep mode.! Conversely, if PRB utilization exceeds the OFF
threshold and cells in the power group are in sleep mode,
then one of the sleeping cells is woken up. In the MNO
trials (Table I), each strategy sets different ON/OFF load
thresholds that represent various levels of aggressiveness:
higher thresholds entail higher energy saving, while they may
impact more the end-user performance. This characterization
of such a trade-off is part of the focus of our study.

Time to trigger: refers to the delay between exceeding
the ON/OFF load thresholds and the activation or deactivation
of the energy-saving mechanism, designed to prevent erratic
switching due to rapid load fluctuations. In our case, the MNO
has set this delay to 10 minutes for the cell sleep process and
5 minutes for reactivation. To minimize user impact, the cell
power is gradually reduced before a full shutdown, ensuring a
smooth transition for users from the cell edge to its center. All
tested solutions adopt the same time to trigger implementation.

'Due to non-disclosure agreements with the MNO, we cannot detail the
strategy adopted by the tested solutions to select the cell put to sleep.



F1 Coverage F2 'F3 Capacity

Fig. 2: Example of a three-sector site with cells deployed on three
different frequency bands, for coverage and capacity. Blue dots
represent base stations included in a specific trial.

B. Energy saving trials

In line with standard deployment strategies, the MNO
catalogs its licensed frequency bands into two classes: low-
frequency bands that are used to optimize coverage, and
mid- to high-frequency bands that are dedicated to enhanc-
ing capacity. From these, capacity cells are the only ones
that implement energy saving policies, while coverage cells
typically remain untouched to guarantee service availability
over the entire geography. Accordingly, each power group
comprises a set of capacity cells and one or more coverage
cells. Figure 2 shows an example of a cell site located in one
of the regions the MNO used for the pilot. A three-sectored
site uses cells operating in three frequency bands. Cells in the
F1 band are used for coverage, while F2 and F3 bands are
used for capacity and are dynamically put to sleep mode and
woken up as dictated by the deployed energy saving strategy.

The MNO performed trials of five energy saving strategies,
each over a one-week period (see Table I), and over two
geographic regions delimited by specific Tracking Area Codes
(TAC). Table II summarizes the RAN infrastructure features
in two trial regions, which include diverse population and cell
deployment densities (cells/sq. km.). Hereafter, we refer to
these regions as Dense and Sparse, respectively. Energy saving
strategies were only tested on LTE cells, which account for
71.51% and 54.14% of the cells deployed in the two regions,
and all other RATs, including 2G, 3G and 5G, were excluded
from the trial. Capacity cells, which are affected by the energy
saving policy, account for 23.05% of the tested cells in Dense
regions and 27.43% in Sparse regions.

C. Measurement data feeds

For our evaluation, we use cell-level measurements from
LTE cells in the two study regions (Table II), collected
throughout the whole trial period. Below, we describe the data
feeds that were processed and combined for our analysis.

Radio access network deployment: We collect an inven-
tory of all the cells deployed in the two regions of study. This
includes cell-level information such as the location (lat/lon
coordinates), the eNodeB ID, the orientation (azimuth), tilt,
antenna manufacturer and model, and the carrier (i.e., fre-
quency channels). This inventory is updated daily to reflect
changes in the network topology, such as the deployment of
new cells and the decommissioning of older technologies.

Radio access network KPIs: The MNO monitoring infras-
tructure collects more than 160 KPIs at the cell-level for all

the RATs deployed, including from GSM (2G) to the newest
5G NR cells. Measurements are collected every 15 minutes
and averaged over hourly intervals. In our study, we evaluate
the different energy-saving strategies using three main KPIs:
(1) cell availability, which measures the amount of time a cell
was woken up within a specific hour, with granularity down
to seconds; (ii) cell load, expressed as the PRB utilization in
downlink?; and (iii) average user throughput, which indicates
the average data rate served by the cell.

Mobility management signaling: We collect control-plane
signaling messages from the Mobility Management Entity
(MME) of the 4G Evolved Packet Core (EPC). This data cap-
tures all mobility-related events (e.g., attach, detach, handover)
at the LTE cells involved in the MNO trials, with timestamps
recorded to the millisecond. We use this data to analyze user
transitions during cell sleep or wake up events and identify
the fallback cells, i.e., the cells that absorb the load and UEs.

III. ENERGY SAVING POLICIES IN ACTION

Optimizing energy saving in the RAN presents a significant
challenge: evaluating the energy saved and its impact on users’
performance [14]. In this section, we focus on analyzing the
energy saving aspect by examining (¢) the cell downtime (i.e.,
the amount of time that cells were in sleep mode), and (%) the
energy consumption. We present the impact of energy saving
on user performance later in Section IV.

A. Cell downtime

As mentioned earlier in Section II-B the MNO applies cell
sleep strategies only on capacity cells, while coverage cells
remain always active. Hence, we measure the impact of the
different strategies taking as a reference the cell downtime, i.e.,
the amount of time that capacity cells were in sleep mode. For
this, we use the cell availability measurements collected from
the RAN monitoring infrastructure of the MNO, as described
in Section II-C. These values allow us to measure the cell
downtime with a granularity of seconds.

Figure 3 shows the percentage of capacity cells affected
by each of the strategies, i.e., cells that entered at least once
into sleep mode over the weekly trial periods, and the average
percent downtime of these cells. Overall, the strategies that
operate only over the nighttime (Night-loose and Night-strict)
exhibit significantly less downtime, while the number of cells
affected (at least once) is slightly larger. Full-day strategies
(24h) affect more cells as the strategy is more aggressive (i.e.,
higher ON/OFF thresholds are higher).

The figure also reports the average and standard deviation
of the total percent of the time during which cells remain
in sleep mode for each strategy. This statistic grows with
the aggressiveness of the strategy. For example, in the Dense
region, we observe a rise in the mean downtime from 40.6%
with the Full-loose strategy (5/10 for ON/OFF load thresholds)
to 51.5% with the Full-strict strategy (10/15% for ON/OFF
thresholds). It is interesting to note that although the Full-
loose strategy has the same ON/OFF load thresholds as the

2As most frequency bands use FDD, downlink channels get congested
earlier than uplink ones, hence downlink PRB utilization is a better indicator.



TABLE II: Description of the regions under study

Region name Area km? LTE share LTE Density (cells/sq. km.) LTE cells / site  Capacity cells (%)
Dense region 189.28 71.51% 541 11.0£6.10 23.05%
Sparse region 4986.82 54.14% 0.21 8.5+ 5.98 27.43%
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Fig. 3: Percentage of capacity cells affected by the energy saving
strategies and their corresponding mean downtime (i.e., the percent-
age of time that cells were in sleep mode). Error bars show the
standard deviation across all the measured capacity cells.

Night-loose, the fraction of capacity cells affected is slightly
larger in the latter. Upon verifying with the operation team of
the MNO, this was, in fact, a symptom of misbehavior by the
nighttime energy saving strategies, where the cells were failing
to wake up from cell sleep, even when the load was reaching
levels above the OFF threshold. Nevertheless, the results are
still consistent when we look at the average cell downtime.
The mean downtime increased by 25.0% and 36.3% in the
Dense and Sparse regions, respectively, when comparing the
Full-strict with the Night-loose strategies.

To further dig into the behavior of the different strategies,
Figure 4 shows the distribution of cell-level downtime. We
observe that policies operating only during nighttime exhibit
some inconsistency in their distribution across the two regions,
likely due to the issue mentioned above. In contrast, full-
day strategies show more consistent behavior across cells.
For these strategies, a main takeaway is that as the policy
becomes more aggressive (e.g., Full-strict), cells display a
more heterogeneous behavior, observing sparser distributions
as the strategy becomes stricter, e.g., more cells experience
considerably higher downtime, suggesting that these strategies
even keep a small portion of cells inactive for most of the
time (see right part of the distributions). While these less-
conservative behaviors can help save more energy, they may
also have some impact on end-user performance —and aspect
that we further investigate in Section IV.

We complete the characterization of the downtime by
looking at the temporal evolution of the amount of time
that cells spend in sleep mode over different moments of
the day. Figure 5 shows the hourly evolution of the mean
downtime of capacity cells across all the different strategies,
each tested for a one-week period. Overall, we observe clear
day-night patterns, where all strategies benefit from the low
traffic load over the night period, as shown by downtime peaks
occurring during the nighttime for all strategies. Likewise, full-
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Fig. 4: Distribution of cell-level downtime (in %) of capacity cells
for the energy saving strategies tested by the MNO.

day strategies consistently show increased downtime as they
become stricter, both during the day (valleys of the curve)
and at night (peaks of the curve). In addition, the Night-strict
strategy shows longer sustained peak periods during the night,
this is mainly due to the higher OFF loading threshold (20%
PRB utilization) which forces the cells to remain in sleep mode
for longer periods of time while the policy is active.

B. Energy consumption

In this section, we translate the cell downtime into actual
energy savings. For this, we focus on the energy consumed at
the cell level, and rely on an operational energy consumption
model that estimates the energy usage of a full base station
[15]. The energy consumption model is expressed in Eq. 1 as:

Eps=Eppu + Y Egrpu. (1)
i
where Eppy accounts for the energy consumed by the pro-
cessing of baseband signals and remains relatively constant
and not affected by traffic load, while E%p;; is the cost
associated with the radio unit and expressed as follows:

2

where Rpgrp represents the fraction of PRBs used (i.e., the
load), and P, denotes the maximum transmit power of the
antenna (set by the operator). o and ~ account for the power
amplifier efficiency and fixed circuit power, respectively, and
are specific to the antenna type, frequency, and number of
transmitters.>

In the analyzed MNO trials, coverage cells remain always
active, hence base stations never turn off. This means that
the Eppy element of the energy consumption model remains
always active for all base stations. Consequently, energy
savings are only reflected on the Erpry component: when a
cell enters in sleep mode the consumption related to the radio
unit drops to zero according to the energy consumption model
(i.e., ERRU =0 kWh)

Erry = o - Rprp - P + 7,

3For confidentiality reasons we cannot disclose the values of the model
parameters used in the two formulas, which were empirically obtained.
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Figure 6a shows the relationship between the cell downtime
and the corresponding cell-level energy consumption on daily
intervals for all capacity cells in the two studied regions.
Since measurements are at the cell level, we show only energy
consumption due to the Erpy component; note that Eppy
applies at the base station level and does not depend on
cell downtime. Here we observe that v produces a constant
contribution to the energy consumption (see Eq. 2), which is
proportional to the time that the cell is active (i.e., inversely
proportional to the downtime). Likewise, traffic load plays a
crucial role in energy consumption, which affects the Rpgrp
component in Eq. 2. We would expect that capacity cells
that go into cell sleep more often (i.e., higher downtime)
consistently handle low daily traffic loads. This is reflected in
the results, where we see that energy consumption experiences
greater variability as cell uptime becomes longer (left part).
This is explained by the increasing heterogeneity of daily traf-
fic loads on those antennas that remain active for a longer time
period. To complement our analysis, we show in Figure 6b the
average daily energy consumption per antenna for all coverage
cells — which remain active all day. The distribution shows
that energy consumption also varies significantly among cells
of this type, with a median consumption of 3.94 kWh.

During the trial periods, we observed some variability in
the aggregated traffic load in the two studied regions. These
changes in the user traffic demand typically depend on external
factors, such as local holidays and social or sports events.

Specifically, we see a traffic variability of 3.2% for the Dense
region and 3.7% for the Sparse region over the different weeks
of the trials. Note that all strategies were tested for an entire
week, which mitigates variability due to the difference in
traffic between weekdays and weekends across the different
strategies. To make a fair comparison, we take as a reference
a model that represents a reverse trial, i.e., what would have
been the energy consumption of cells in the absence of the
energy saving strategies. In this case capacity cells do not enter
into cell sleep mode, hence the energy consumption model
always accounts for the fixed circuit power y on all radio units,
even if the cell load drops to zero. Conversely, in the tested
strategies the model considers Erry=0 (i.e., v=0; Rprp=0)
when cells enter into sleep mode. This no-sleep configuration
allows us to compare the various energy saving strategies in
relative terms, reporting their percent saving with respect to
a no-sleep scenario so that the results are robust to possible
traffic load fluctuations over the trial periods.

Figure 7 (top) shows the energy-saving improvement with
respect to the benchmark model (in %) in the two regions.
Overall, all strategies exhibit significant energy savings, which
are clearly correlated with the policy time windows (night
vs full-day) and the ON/OFF thresholds that each strategy
implements. The most aggressive Full-strict strategy exhibits
an energy saving of 34.5% and 30.2% in the Dense and Sparse
regions, respectively. To further investigate the behavior of
these strategies along the day, we differentiate between energy
savings during daytime (06-23h) and nighttime (23-06h). The
nighttime coincides with the time window where Night-loose
and Night-strict strategies are deployed. Figure 7 (bottom)
shows the distributions of energy savings per cell over the two
periods of time. The results reveal that most cells experience
greater savings during the night (see median values), which is
expected due to the lower traffic load during this time period.

However, we observe an interesting behavior over day-
time on full-day strategies: as the thresholds become higher
(i.e., more aggressiveness) some cells start to experience
significant energy savings during this period. Although the
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Fig. 7: Top - Percentage of energy saving obtained by capacity cells
in the two regions; Bottom - Distribution of energy savings over the
capacity cells during day and night periods.

median cells achieve similar energy savings across strategies
over daytime, a portion of the cells experience considerably
greater savings with more aggressive thresholds. Particularly,
if we look at the saving of top-25% cells during daytime
(i.e., pct-75), these cells achieve savings of 15.8% (8.8%),
21.8% (11.2%), and 42.7% (17.2%) for the Full-loose, Full-
moderate, and Full-strict strategies, respectively, in the Dense
(Sparse) regions. These results reveal that a considerable
portion of the cells can achieve more energy savings during
daytime than during the nighttime. Note that these results are
subject to the definition of night period, which is 7 hours, and
daytime, which extends over the remaining 17 hours in our
case.

IV. IMPACT OF ENERGY SAVINGS ON USER PERFORMANCE
The main goal of energy saving strategies is to minimize the
energy consumption while ensuring no impact on the Quality
of Experience of end-users. MNOs employ several metrics
and approaches to quantify service quality, ranging from end-
users reporting anomalies to user equipment testing devices
deployed across the country and server-end KPIs. We focus
here on an objective metric —the average user throughput at
the cell level- which is an average estimation of the throughput
served to UEs by a specific cell. The question we aim to
answer in this section is: when a capacity cell enters into
sleep mode, are the fallback cells (i.e., the active cells that
receive the load previously accommodated by the now sleeping
capacity cell) able to deliver a good service performance?

A. Characterizing post-sleep handovers

Related work [16]-[18] assumes that when the capacity cell
enters into the energy saving mode and slowly decreases, the

emitting power causes the UE to trigger a detach and attach to
a specific cell that also fully overlaps the area of the capacity
cell. In practice, this is a far more complex phenomenon, and
UEs attach to a variety of nearby cells.

We propose a data-driven approach to gain insights into
these transitions, and rely on the detach and attach events using
logs from the MME that we captured during the trials. We use
the following methodology:

o Given the set of capacity cells and the specific time with
1-second resolution, when the cell sleep mode is activated:
(Ci, [t1, b2y ons ).

o For each capacity cell C; and for each time instance t;,
we obtain the set of UEs [UE;, UE,,...,UE,,] whose last
service request was served by C; inside the time windows
(t; — Ostart, t;]- This time window is in place to ensure that
the interaction was recent.

o Next, we identify the cells F' where the UEs are attached
to during the time windows (¢;,t; + denal.

o Finally, we obtain a set of tuple (C;,t;, UEy, F;) that
represents that the UE; was attached to capacity cell C;
and when this enters into sleep mode, reattached from it,
and attach to a fallback cell Fj.

We tested different values for §s¢q,+ and 6.,,q for one day
of experimentation. Empirical results showed that using a
symmetric Window §s¢qrt = 0eng = 30min provided a good
trade-off to ensure that the transfer was due to the activation
of the sleeping mode and that the number of samples collected
is sufficient. With this, we collect the final measurements in
the two trial regions for more than one week, and obtained
more than 81,000 transfer tuples.

These results show that 40% of the transfers in the Dense
region and 44% in the Sparse region occur to relatively nearby
cells located in other cell sites (within 1.8km and 3.9km,
respectively; note that these distances vary in function of the
cell deployment and density). Conversely, 60% and 56% of
the attachments happen to active cells in the same site as
the capacity cell C;, of which around 80% of these happen
to cells in the same sector. Although more than 40% of the
transfers happen to other base stations, they are geographically
sparse, meaning that the UEs spread across these cells and
their density decays with the increase in distance. Meanwhile,
the cells in the same sector as the capacity cell provide service
to a more cohesive group of UEs, which may affect network
performance. Therefore, we focus on these cells, which we
refer to as the fallback cells in the rest of the paper.

B. Quantifying critical cell sleep decisions

Our objective is to identify fallback cells that were adversely
affected by the UEs transfer after cell sleep events, i.e., by a
critical decrease in their offered user average throughput. In
order to ensure that the user average throughput decrease was
related to an increase in demand, we also analyzed the fallback
cell utilization to disambiguate the cases where the throughput
can decay because of low resource utilization (e.g., by users
with little traffic demands) or due to the impact of the new
UEs absorbed by the cell.
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Fig. 8: TTI utilization and user average throughput of fallback cells
instants before the corresponding capacity cell enters into sleep mode.

Figure 8 shows how the Transmission Time Interval (TTI)
utilization —which, similarly to PRB utilization, is a proxy for
the level of saturation of a cell- and user average throughput
are related; each sample corresponds to one fallback cell, for
which we report the two metrics above in the aftermath of a
sleep event of a capacity cell in the same site and sector. We
then define two thresholds that allow distinguishing between
normal/low user throughput and normal/high cell utilization.
For TTI utilization the threshold is set at 45% (horizontal line
in Figure 8) based on the third quartile of the TTI utilization
distribution over the full period of the trials; the average user
throughput is considered low below 8Mbps (vertical line in the
figure), based on literature analysis, private communications
with the operations teams, and statistical analysis of the
empirical throughput distribution. Note that these thresholds
do indicate non-operational conditions that would trigger an
urgent intervention by the MNO but are symptomatic of a
significant degradation of the end-user experience.

Using these thresholds, we can define four quadrants in
Figure 8: I) low user average throughput and low utilization,
II) low average user throughput and high utilization, III)
within range user throughput and high utilization, and IV)
within range user throughput and low utilization. Based on
the transition between states on the fallback cells before and
after the corresponding capacity cells enter into sleep mode,
they can be classified into these four transition classes:

o Critical: The fallback cell average user throughput was
within the expected values, but after the capacity cells sleep,
it is lower than the 8Mbps threshold while the utilization
increases (i.e., quadrants I, III, and IV — quadrant II).

o Saturate: The fallback cell had below the threshold user
throughput and high utilization and remained in this state
after the capacity cells went to sleep (i.e., quadrant II —
quadrant II).

« Recovery: The fallback cell experiences below the threshold
user average throughput and high utilization, but after the
capacity cell go to sleep, the user average throughput is
within the expected range (i.e., quadrant II — quadrants I,
I or IV).

o Normal: All the cases where the fallback cell user’s average
throughput remains within the expected range before and
after the capacity cells sleep, indicating no impact.

With this, Figure 9 shows the percentage of times that
we categorized the fallback cells in a transaction class. We
find that () all policies generate all four situations in similar
fractions and (¢%) the fractions of ‘critical’ and ‘saturated’ cells
do not grow significantly with the aggressiveness of the policy.

When breaking down energy savings at the level of indi-
vidual capacity cells, we find a very heterogeneous behavior.
Figure 10 shows the energy saving distribution of the capacity
cells: there is high variability among the savings, especially
with more aggressive policies, in all four cases. This implies
that the same energy saving strategies may be extremely good
or bad, depending on the considered cell. For instance, even
a Full-loose policy can be very bad for some cell that saves
just 5% of energy, and cause severe saturation every time they
enter into sleep mode. Conversely, a Full-strict strategy can
work extremely well at some cells, with savings of 60%, that
have no impact on the end-user.

V. DISCUSSION

We now discuss the multiple implications of our study for
practical energy savings in production mobile networks.

Avenues for improvement in RAN sustainability. Our
results clearly show that the use of a single pair of ON/OFF
thresholds for all regions is sub-optimal. Fixed thresholds that
are indiscriminately applied to a whole RAN deployment,
even in the same TAC, risk being overly conservative for
some cells and just disruptive for others, as suggested by the
diversity seen in Figure 10. A more effective approach could
involve setting specific thresholds at the power group level or
grouping cells into different clusters with various treatments,
which could potentially help yield greater energy savings while
keeping an unnoticeable impact on QoE. These tailor-made
thresholds could also be dynamically updated using machine
learning techniques. Finally, incorporating information about
the load of neighboring cells and sites into the decision process
could enhance the effectiveness of cell sleep strategies.

Limited energy savings overall. Throughout the paper, we
have focused on energy savings at the capacity cells that are
allowed to go in sleep mode. We now take a broader view and
put the energy savings presented in previous sections in the
context of the whole RAN deployments in the target areas.

Figure 11 shows (i) the percentage of available cells
for each strategy along the day (hourly intervals), including
capacity and coverage cells, (i¢) the theoretical percentage
of cells required to meet the ongoing traffic demand in the
region, (i7i) the percentage of capacity cells subject to energy
saving strategies, and (iv) the percentage of coverage cells,
which ensure service along the region. There is a notable gap
between available cells, the fraction needed to meet demand,
and coverage cells. The Night-strict strategy comes closest to
putting all capacity cells to sleep at night, while during the day,
the Full-strict strategy is more effective, displaying a similar
behavior to other full-day strategies. These results indicate that
while these strategies reduce energy consumption, they are far
from optimal and could be significantly improved.

Furthermore, Figure 12 shows the total energy saving (in
% of improvement over the benchmark model), considering
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all cells deployed in each region — including both coverage
and capacity cells. Note that the previous results in Figure 7
considered only savings on capacity cells, which are the ones
affected by the cell sleep policies tested by the MNO. These
results of total savings reveal more reduced savings at the
RAN level, which evidences the conservative nature of current
strategies deployed nowadays in production networks.

Energy savings do not imply CO; savings. Although this
work primarily focuses on energy savings, we also evaluated
the impact on CO, emissions, specifically Scope 2 emissions
as defined by the GHG Protocol [19]. The Greenhouse Gas
(GHG)q Protocol categorizes emissions into three scopes:
Scope 1 includes direct emissions from company activities
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Fig. 12: Total energy saving in the two regions. Although there is a
gain in savings as strategies become more aggressive, the total savings
are significantly reduced w.r.t. those observed on capacity cells.

like burning fuels; Scope 2 covers indirect emissions from
purchased energy, such as electricity from the grid; and
Scope 3 encompasses all other indirect emissions across
the value chain. Our threshold-based energy-saving policies
directly influence Scope 2 emissions, measured in grams
of COy equivalent per kilowatt-hour (gCOqeq/kWh). While
reducing energy consumption decreases COq emissions, the
alignment between energy savings and emission reductions is
not always straightforward. Energy-saving policies focus on
reducing energy use without considering the carbon intensity
of energy production. In the country under study, carbon fuels
constitute a significant part of the energy grid, affecting the
overall impact of these policies. Figure 13 shows the carbon
emission in the country during the week of the Night-strict
trial. Although there is a regular pattern where emissions
decrease overnight and increase over daylight hours, there is
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Fig. 13: Estimated carbon intensity in gCO2eq/kWh and energy
consumption in the Sparse region during the week of the second
trial. Energy consumption values are normalized with respect to the
maximum hourly consumption for confidentiality reasons.

a significant variability along the days that we can exploit to
achieve more carbon-efficient policies.

VI. RELATED WORK

Energy-aware management of cellular access networks has
been extensively studied. A seminal work by Ajmone et al.
[20] characterized energy savings by reducing active cells
during low-traffic periods. However, this and subsequent stud-
ies often assume uniform traffic across cells and complete
offloading to a predefined set of fully overlapping neighboring
cells. Further research has focused on optimal sleeping policies
derived specifically for non-bursty traffic. These studies reveal
a two-threshold policy with a wait-and-see feature, where
the server waits to see if there are additional arrivals before
switching modes [21]. Despite the lack of theoretical results
for multiple servers, these findings align with current carrier
shutdown solutions that implement distinct conditions for
shutdown and reactivation [13].

While numerous studies have explored enhancing energy
efficiency in telecommunication networks through energy con-
sumption measurement and policies for optimizing energy
consumption [9], [22], a gap remains in understanding the
real-world impact of these policies. To sensibly assess the
performance of different policies, it is necessary to conduct
regional trials. This approach would provide a real evaluation
of the energy gains or savings achieved by each policy.

Measuring energy consumption. The energy consumption
of mobile networks is a major concern for the telecom industry.
To evaluate the energy-related performance of the RAN, the
industry has defined various measurement methods and metrics
across different network levels—network [23], site [24], base
station (BS) [25], and user equipment [26]—as well as for dif-
ferent scenarios such as dense urban, urban, and rural coverage
[23], and services including enhanced mobile broadband, ultra-
reliable low-latency communications, and massive machine-
type communications [27]. Piovesan et al. [28] propose a
model for characterizing the power consumption of 5G multi-
carrier BSs, built on extensive data collection. Additionally,
Lopes et al. [9] conducted a survey outlining the primary en-
ergy efficiency technologies provided by 3GPP NR, detailing
their benefits and challenges. The community recognizes the
importance of sustainability, with efforts underway to quantify
the carbon footprint of communication networks [29] and
optimize network routing [30], alongside general efforts for

computer systems [31]. In this study, we present utilization
and performance data collected at various times throughout
the day. This information is instrumental in assessing whether
base station utilization can benefit from temporal flexibility, a
crucial aspect in achieving greater carbon efficiency.

Optimizing energy saving policies. Cell sleep policies
involve the dynamic shutdown of cells during low-traffic
periods and their subsequent reactivation as traffic increases.
Accurately predicting traffic loads in the near future is cru-
cial for determining the appropriate times to switch base
stations on and off. Marsan et al. [32] [33] evaluated various
fixed switching-off schemes in cellular networks, finding that
optimal configurations vary with traffic profiles. They later
showed that cooperative strategies achieve significant savings
among operators for user roaming and energy savings [34].
Donevski et al [35] propose using dense Neural Network and
Recurrent Neural Network paradigms, although their approach
lacks empirical validation through real-world trials. Moreover,
Domenico et al. [10] focus on the carrier shutdown approach,
enabling base stations to autonomously power down during
low-traffic periods by transferring their load to neighboring
active base stations. Other researchers have employed rein-
forcing learning methods [36] [37], but such approaches have
been tested only in simulated environments. It is crucial to ac-
knowledge that such optimization involves the sudden removal
and addition of carriers to the network. Therefore, there is a
need to develop automated and precise methods for generating
configuration parameters for newly added carriers in cellular
networks (i.e., planning), as suggested by [11]. These types of
solutions are orthogonal to previously mentioned works and
to the energy-saving strategies analyzed in this paper.

VII. CONCLUSIONS
We analyzed five fixed threshold-based cell sleep energy
saving strategies deployed in a production network, examining
various dimensions such as downtime, energy consumption,
and impact on user performance. The unprecedented visibility
into practical solutions for RAN sustainability lets us shed
light on the performance and current limitations of these
strategies, as well as provide recommendations for the design
of new and more effective approaches that can still be deployed

in real-world production-grade networks.
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