
Optimal Allocation of Tasks to Networked
Computing Facilities

Vincenzo Mancuso1[0000−0002−4661−381X], Paolo Castagno2[0000−0002−1349−1844],
Leonardo Badia3[0000−0001−5770−1199], Matteo Sereno2[0000−0002−5339−3456], and

Marco Ajmone Marsan1[0000−0002−9560−7053]

1 IMDEA Networks Institute, Madrid, Spain
{vincenzo.mancuso, marco.ajmone}@imdea.org

2 Department of Informatics, University of Turin, Turin, Italy
{paolo.castagno, matteo.sereno}@unito.it

3 University of Padova, Padua, Italy leonardo.badia@unipd.it

Abstract. Distributed allocation of computing tasks over network re-
sources is meant to decrease the cost of centralized allocation. How-
ever, existing analytical models consider practically indistinguishable re-
sources, e.g., located in the data center. With the rise of edge computing,
it becomes important to account for the impact of diverse latency values
imposed by edge/cloud data center locations. In this paper, we study the
optimization of computing task allocation considering both the delays to
reach edge/cloud data centers and the response times of servers. We ex-
plicitly evaluate the resulting performance under different scenarios. We
show, through numerical analysis and real experiments, that differences
in delays to reach data center locations cannot be neglected. We also
study the price of anarchy of a distributed implementation of the com-
puting task allocation and unveil important properties such as the price
of anarchy being generally small, except when the system is overloaded,
and its maximum can be computed with low complexity.

Keywords: Network servers; Optimization with network latency constraints;
Next generation networking; Game Theory; Price of Anarchy

1 Introduction

Meeting latency requirements is fundamental to achieve the desired quality of
service for real-time applications [23, 28]. A paradigm often adopted in mobile
Internet architectures to tackle this issue is that of edge computing, i.e., bringing
computing resources closer to end users, rather than processing all data in the
cloud [12]. However, as the mobile Internet becomes more pervasive, the manage-
ment of distributed computing infrastructure is evolving towards an edge-cloud
continuum, rather than a dichotomy between edge or cloud [3].

From the standpoint of an individual user, the problem is limited to the
choice of the best (i.e., minimum latency) path [13]. When a global perspective is
adopted, establishing coordination among multiple users becomes of formidable

2 V. Mancuso et al.

complexity and is practically infeasible. The crux of the matter becomes whether
distributed approaches to server selection in extremely variegate network archi-
tectures can still be efficient [1].

While this problem received attention in the past, we argue that the available
frameworks are inadequate to represent the edge-cloud continuum. Most inves-
tigations consider a homogeneous latency model among the alternatives [10], so
that the comparisons involve, e.g., fast vs slow servers but just with different
parameters in the same formula. Instead, the alternatives in the mobile Internet
are different not just in quantitative but also in qualitative terms.

One particular instance of this aspect is the fixed component of the latency,
which comes for the most from the physical distance of the server in the edge-
cloud continuum [15]. We will show how neglecting this aspect leads to subopti-
mal choices. To complicate things further, one can observe that, while service ca-
pacity and fixed latency can be possibly known to the user, the final performance
depends on congestion at the chosen server, which is harder to estimate [25].

Following an algorithmic game theory pathway [19], we consider service
choices made by a multitude of atomic non-cooperative agents interested in
minimizing their own latency, and we derive the price of anarchy (PoA) [11].
Compared to results available in the literature, we take a general approach ap-
plicable to any functional relationship describing the latency, under very mild
assumptions of positive first and second derivative. This results in a direct
low-complexity implementation akin to water-filling algorithms [27]. Moreover,
thanks to the generality of our approach, we can validate our quantitative results
with real-world experiments.

Thus, we present multiple contributions: First, we evaluate the efficiency
of distributed choices by network users in the edge-cloud continuum, under a
general framework not found in the previous literature. We investigate the Nash
equilibrium (NE) of distributed selections, which is found to be unique. Second,
we formulate exact algorithms to find the optimal allocation point and the NE.
Third, we compute the PoA as a function of network load. The worst-case PoA
is proven to be the maximum among a finite number of cases. Eventually, we
perform an extensive evaluation corroborated by experimental results.

2 Related Work

Server selection for a computing task typically represents and compares the
servers as queues. The novelty of this paper is to include a fixed delay term
to reach the selected server, after which the waiting and service time in the
queue depend on the load as a general function with positive first and second
derivatives. This resonates in the literature at many levels. To start, research
in transportation optimization, led by Braess [2] and Pigou [17], has yielded
significant findings that have applications in computer networks, routing, and
server selection optimization. In-depth discussions can be found in [6] or [19].

A close alignment with our setup of server selection can be found in [1, 10, 26].
These works compare a selfish strategy, where users choose servers to minimize

Optimal Allocation of Tasks to Networked Computing Facilities 3

their own mean waiting time, against the social (i.e., global) optimization. In [16],
the problem is addressed as a network routing problem, where each user aims
to optimize its own performance. This leads to a non-cooperative game, with an
emphasis on the conditions for an NE. Studies [1] and [10] analyze n exponential
servers with FCFS discipline and develop a closed-form solution for the PoA.
They consider service (i.e., queue response time) as the only parameter. If we
introduce a fixed delay for each server, these PoA derivations become unfeasible.

Many more works exist in this area, since multiple authors worked on this and
related issues. The highly influential work [18] led to scrutinizing the problem
through diverse lenses, exploring numerous variants. For instance, an attempt
to go beyond an exponential service time distribution is made in [26] for M/G/1
servers. An exact analysis of the PoA is presented only for a processor-sharing
queuing discipline, where it is known that the average delay depends on the
service time distribution only through its mean. Paper [26] highlights the math-
ematical difficulty of scenarios with FCFS M/G/1 servers, where it is inevitable
to deal with choices depending on two parameters: mean and coefficient of vari-
ation of the service time distribution. [1] investigates a choice among M/G/1
servers focusing on the service rate and the coefficient of variation of the ser-
vice time distribution. However, that analysis is valid only under the assumption
that all servers share a common coefficient of variation. Another approach at-
tempting, in various ways, to address server selection as characterized by two
parameters is presented in [20], where heterogeneous costs and service times
across different paths are studied. In there, the PoA is derived by applying sim-
plifications or reducing the analysis to specific scenarios. A different approach
that circumvents the use of two parameters in the service selection is presented
in [21], with servers of type M/G/1 and GI/GI/1, but only under heavy traffic
conditions that greatly simplifies the analysis.

Yet, we show that using multiple parameters is tractable. Indeed, we char-
acterize each server with at least two independent parameters, i.e., delays in
addition to service rates. Also, we generalize the delay function, as it can be
defined by an arbitrary number of parameters, and admit, e.g., heterogeneous
coefficients of variance, showing that obtaining exact solutions is still possible.
In particular, we show that optimal solutions and NEs can be computed with
exact algorithms in polynomial time.

Evaluations of the impact of the distance in cloud/edge scenarios generally
pertain the problem of server placement [24]. More recently, with the evolution
of multi-server architectures towards a horizontal edge-cloud continuum without
hierarchy, the issue of choosing the servers from the individual user perspective
has gained momentum [22]. However, most of the proposals advocate for heuristic
low-complexity solutions or reinforcement learning strategies, which are found to
be efficient. Our analysis shows that this does not happen by accident, but rather
is grounded in the problem as characterized by useful structural properties [4]
that we rigorously prove to hold even with the inclusion of the delay terms.

In conclusion, we present the first analysis that does not neglect the delay
term to reach the servers—a practice that previous studies have regularly in-

4 V. Mancuso et al.

Server	#1
𝜇!

Server	#3
𝜇"

Server	#2
𝜇#𝑑!

𝑑"

𝑑#

End	users

Fig. 1. Reference scenario: a group of users on a single network slice with computing
resources accessible through the network in the edge-cloud continuum

troduced, to make analytical expressions tractable. Our results solve a problem
that has been open for many years, and avoid erroneous solutions to the server
selection, computing instead the real optimal choices (in selfish or global terms).

3 Analysis with Fixed Path Delay

Assume that a group of users is connected to a network with n servers, as shown
in Fig. 1. Although the servers are accessible at different distances, they belong
to the same network slice, created and deployed over the edge-cloud continuum,
as typical of modern 3GPP networks [5]. Servers are sorted in increasing order
according to the average delay to serve a job, in turn determined by the sum of
path latency and average service time, excluding queuing delays, that is,

∀i, j ∈ S = {1, · · · , n}, i < j =⇒ di+1/µi ≤ dj+1/µj , (1)

where di is the two-way delay to reach server i and 1/µi is the average service
time at the same server. Offset values di≥0 make our study different from existing
works, because they can make slow but close servers preferable to fast but far
ones. Indeed, all previously published results only hold for the case di=0 and
some of them can be extended to the case di=dj , ∀i, j.

In the following, p⋆ = {p⋆i }i=1,··· ,n denotes a probability vector that allocates
load to servers so as to minimize the average latency, and p† = {p†i}i=1,··· ,n
denotes the probability vector at the NE, i.e., where the users selfishly split
their load with a stochastic strategy, to minimize their own expected latency.

3.1 Optimal load allocation problem

We aim to minimize the average system latency U(p). If ℓi(x) > 0 is the average
latency of server i with capacity µi when it receives traffic with intensity 0≤x<µi,
and Λ is the aggregate offered traffic, the average latency is

U(p) =

n∑
i=1

pi ℓi(pi Λ). (2)

The above latency has to be minimized subject to the following constraints:

pi ≥ 0, ∀i; piΛ ≤ µi, ∀i;
∑
i

pi = 1. (3)

Optimal Allocation of Tasks to Networked Computing Facilities 5

Function ℓi(x) accounts for path latency (di), average service capacity (µi),
and can also account for additional parameters (e.g., the variance of the service
time). The minimum average latency must be the sum of distance plus one ser-
vice interval, i.e., ℓi(0) = di + 1/µi. Besides, in systems subject to congestion,
ℓi(x) monotonically increases with x. Also, ℓi(x) is a convex function, as com-
monly observed for the latency of a queueing system. Hence, ℓi(x) and its first
and second derivatives are positive functions, which makes the problem strictly
convex. Thus, the solution is unique.

Lagrangian—with multipliers αi, βi, and γ—and KKT necessary conditions
for the optimal solution p⋆, are as follows:

L =
∑
i

piℓi(pi Λ)−
∑
i

αi pi +
∑
i

βi (pi Λ− µi) + γ

(
1−

∑
i

pi

)
;

∂L
∂pi

= ℓi(pi Λ) + pi Λℓ
′
i(pi Λ)− αi + Λβi − γ = 0, ∀i;

αi pi = 0, βi (piΛ− µi) = 0, ∀i;

γ
(
1−

∑
i pi
)
= 0.

Notice that ℓi(x) + pi Λℓ
′
i(x) is the derivative of the weighted latency of the i-th

server, with weight pi. Multipliers αi and βi must be non-negative, while γ can
take any real value (because it is associated to an equality constraint).

To identify which servers will receive traffic, consider the KKT conditions at
p⋆, which is a solution of the formulated problem. There are two cases:

Case p⋆j = 0. If the optimal solution consists in assigning zero load to server
j, then the KTT conditions imply that

αj ≥ 0, βj = 0, ℓj(0)− αj − γ = 0, ⇒ ℓj(0) ≥ γ, (4)

i.e., servers that do not need to be active are those for which the latency com-
puted at empty queue is not less than γ. However, with no queueing, a job is
served in ℓj(0) = dj + 1/µj , for any function ℓj . Therefore, if server j is not
active, then server i > j, for which di +1/µi ≥ dj +1/µj , is also inactive. Being
the set of servers ordered, there exists an integer j⋆ ≤ n such that all servers
from 1 to j⋆ receive some traffic, while the remaining ones are inactive.

Finding γ and j⋆ is part of the optimization. Moreover, their values are
related, as it will emerge from the analysis of KKT conditions for p⋆j>0.

Case p⋆j > 0. For all nodes j = 1, · · · , j⋆, which receive non-zero load in the
optimal configuration, the following conditions must hold:

αj = βj = 0, γ = ℓj(p
⋆
j Λ) + p⋆j Λℓ

′
j(p

⋆
j Λ). (5)

Thus, in a sense, we are following a water-filling approach on the derivative of
the weighted latency. Moreover, term γ is larger than the largest latency of any
server, and thus we will refer to it as to the augmented latency. The latter must
also be positive and, since p⋆j > 0, must also be greater than any ℓj(0) for any
active server, which leads to

6 V. Mancuso et al.

γ > dj⋆ + 1/µj⋆ . (6)

These results are coherent with (4), which defines when a server receives no load.
They also prove γ to be a monotonically increasing—hence invertible—function
hj(x) = ℓj(x) + xℓ′j(x), which has to be computed at x = p⋆j Λ at the optimum.
If h−1

j indicates the inverse function, we have

p⋆j = h−1
j (γ)/Λ. (7)

Considering that the latency functions ℓj and the corresponding derivatives are
defined only for offered traffic comprised between 0 and µj , the above function
h−1
j (γ) can only take values in the interval [1, µj] (or [1, µj), if the latency func-

tion diverges at µj). Hence, h−1
j /Λ cannot be larger than 1. Indeed, the sum of

all non-zero probabilities must be 1, so:

1 =

j⋆∑
j=1

p⋆j =
1

Λ

j⋆∑
j=1

h−1
j (γ). (8)

Since the sum of increasing functions is also increasing, the RHS of (8) is invert-
ible. In addition, the RHS must be between 0 and

∑j⋆

j=1 µj/Λ ≥ 1, so that all
the offered traffic can be served. Thus, there exists a unique γ satisfying (8).

Because of conditions (4) computed on j⋆+1 and (6) for j⋆, γ must be found
in a specific interval, i.e., γ ∈

(
dj⋆ + 1

µj⋆
, dj⋆+1 +

1
µj⋆+1

]
, where dj⋆+1+

1
µj⋆+1

has to be taken as infinite if j⋆=n.
Determining j⋆ beforehand is key to compute the problem solution efficiently.

Indeed, once j⋆ is known, by inverting normalization (8), one can compute γ,
which in turn can be used in (7) to compute the optimal probabilities p⋆j .

To find j⋆, we need to consider that probabilities p⋆j depend on Λ, although
so far we have treated Λ as a constant. Notice that γ must be monotonically
increasing in Λ, because so are all ℓj and the associated derivatives that define
γ through (5). Thus, as traffic Λ increases, the augmented latency γ increases
too, so that servers are progressively activated following the order of (1). Thus,
when server j is activated at Λ

(Opt)
j , load p⋆j is still 0 and, according to (5),

γ = ℓj(0) = dj +
1
µj

. Hence, at Λ
(Opt)
j we have:

p⋆i Λ
(Opt)
j = h−1

i

(
dj +

1

µj

)
, ∀i ≤ j, (9)

and by summing over servers with non-zero probability p⋆i , i.e., from 1 to j − 1,
we obtain the traffic threshold:

Λ
(Opt)
j =

j−1∑
i=1

h−1
i

(
dj +

1

µj

)
. (10)

A comparison between the activation thresholds Λ(Opt)
j and the offered traffic

Λ thus reveals the value of j⋆. Of course, Λ(Opt)
1 = 0 since at least the first server

has to be active as soon as non-zero traffic is offered to the network.

Optimal Allocation of Tasks to Networked Computing Facilities 7

This optimization requires the inversion of a few monotonic functions, which
admits closed form only in specific cases; in general, it can be done numeri-
cally with lightweight algorithms such as the dichotomous search. The following
MIND-IT(Opt) (Minimum Delay Independent of Traffic and Service - Optimum)
algorithm finds probability vector p⋆ minimizing the average system latency.

MIND-IT(Opt)
Input: Sorted servers j ∈ {1, · · · , n}, Λ.
Step 1: Compute activation thresholds Λ

(Opt)
j with (10).

Step 2: Compute j⋆ by comparing Λ to the thresholds.
Step 3: Set p⋆j = 0,∀j>j⋆ and compute γ by inverting (8).
Step 4: Compute p⋆j , ∀j ≤ j⋆, with (7).
Output: p⋆j , j ∈ {1, · · · , n}.

Theorem 1. The MIND-IT(Opt) algorithm is exact and polynomial.

Proof. The optimality of feasible p⋆ follows from it satisfying all KKT con-
ditions. Evaluating the activation thresholds requires computing a number of
terms quadratic in n and inverting (8). The latter consists of finding the zero of
a monotonically increasing function with up to n+1 invertible terms, which can
be done, e.g., with a dichotomous search on each one, with complexity O(n log r),
where r is the target numerical resolution. The complexity of computing each of
the n probabilities, with (7), is that of one inversion, i.e., O(log r). Therefore,
the complexity of MIND-It(Opt) is O(n2 + n log r), polynomial for any r.

3.2 The Nash equilibrium

We can consider a distributed version for the minimization of (2), in which each
user sending traffic minimizes her latency with a probabilistic strategy p†

u.
With sorted servers, a user sends traffic to j only if the observed average

latency is above the minimum possible latency at that server, ℓj(0). An NE
exists and is unique due to U(p) being strictly convex [1]. Such a NE can be
approached through subsequent approximations, in a water-filling form [7]. At
the NE, all users choose a strategy p†

u = p†, which is also the same for all users
due to symmetry, where the servers that receive traffic experience the same
average latency τ , so that no user has an incentive to deviate from p†:

ℓj(p
†
j Λ) = τ, p†j > 0, ∀j ≤ j†, (11)

where j† is the number of used servers (p†j = 0 for other servers j > j†).
As Λ increases, τ has to increase as well because, to maintain the same latency

at all active servers, the incremental arrival rate has to be distributed over all of
them and no server can receive less traffic than before the increase. Notice that,
for a server j with p†j > 0, the latency’s lower bound is

τ > ℓj(0) = dj + 1/µj , ∀j ≤ j†. (12)

8 V. Mancuso et al.

Expressing probabilities versus the average latency τ and normalizing, we obtain:

p†j = ℓ−1
j (τ)/Λ, ∀j ≤ j†; (13)

1 =

j†∑
j=1

ℓ−1
j (τ)/Λ, (14)

where ℓ−1
j indicates the inverse function of ℓj .

Inverting the above expression yields the value of τ > 0, which must be
unique since the RHS of (14) is monotonic increasing and upper-bounded by
(1/Λ)

∑j†

j=1 µj ≥ 1, as the traffic offered to each server cannot exceed the ca-
pacity (i.e., ℓ−1

j (τ) ≤ µj) and Λ cannot exceed the aggregate capacity of active
servers. Notice that τ must be dj† +1/µj† when server j† gets switched on, and
as soon as p†

j†
becomes larger than zero, τ must be comprised in the interval

τ ∈
(
dj† + 1/µj† , dj†+1 + 1/µj†+1

)
, at p†

j†
> 0 and p†j = 0 ∀j > j†. (15)

This implies that the average latency τ has to increase when a new server is
activated because of an increase of Λ. We conclude that τ increases with Λ and
servers are progressively activated following the sorting order (1), as Λ increases.

Since at activation of j the value of p†j is 0 and therefore τ = dj+1/µj , and
the sum of non-zero probabilities must be equal to 1, the threshold Λ

(NE)
j can be

computed similarly to the threshold in the optimal case (of course, Λ(NE)
1 = 0):

Λ
(NE)
j =

j−1∑
i=1

ℓ−1
j (di + 1/µi) . (16)

In the NE calculation, function ℓj plays the role that hj plays in the calcula-
tion of the optimum. Since both functions are positive and increasing, the algo-
rithm for finding the NE is very similar, as shown in the following MIND-IT(NE)
(Minimum Delay Independent of Traffic and Service – at the NE) algorithm.

MIND-IT(NE)
Input: Sorted servers j ∈ {1, · · · , n}, Λ.
Step 1: Compute thresholds Λ

(NE)
j with (16).

Step 2: Compute j† by comparing Λ to the thresholds.
Step 3: Set p†j = 0,∀j > j† and compute τ inverting (14).
Step 4: Compute p†j , ∀j ≤ j⋆, with (13).
Output: p†j , j ∈ {1, · · · , n}.

Theorem 2. The MIND-IT(NE) calculation algorithm is polynomial.

Proof. The proof proceeds as for Theorem 1 and finds complexity O(n2+n log r)
for any inversion precision r.

Optimal Allocation of Tasks to Networked Computing Facilities 9

3.3 Properties

Here we present a few interesting properties, which will help comparing NE and
optimal working points as the offered traffic changes. Proofs are omitted due to
lack of space, but can be found in [14] jointly with more properties.

Lemma 1. The augmented latency γ is an upper bound for the optimal latency.
The distance of the bound is proportional to the derivative of optimal latency,
which is a continuous function of traffic Λ:

d

dΛ
U(p⋆) =

γ − U(p⋆)

Λ
=

j⋆∑
j=1

(
p⋆j
)2

ℓ′j(p
⋆
j Λ) > 0. (17)

Beside being an upper bound for the optimal latency, it is useful to see that
γ is also larger than the latency at the NE, as expressed in the following lemma.

Lemma 2. Λ > 0 =⇒ γ > τ .

Lemma 3. Λ
(NEP)
j ≥ Λ

(Opt)
j ,∀j ∈ {1, · · · , n}.

Lemma 4. τ ′ ≥ 0 and τ ′′ ≥ 0 at any traffic Λ ≥ 0.

3.4 Price of anarchy

The PoA in the studied system is the ratio between average latency at the NE and
average latency at the optimum. It is a function of the offered traffic—denoted
as η(Λ)—and can only assume values greater than or equal to 1:

η(Λ) =
U(p†)

U(p⋆)
=

τ

U(p⋆)
≥ 1. (18)

Conjecture 1. The PoA curve vs Λ is piece-wise convex.

The conjecture is motivated as follows. The PoA is the ratio of continuous
functions of Λ, with the additional property that the denominator has also con-
tinuous and positive derivative because the condition used to compute γ at the
optimum preserves the continuity of the derivative (cf. also Lemma 1). The nu-
merator is non-decreasing and convex (cf. Lemma 4), but its derivative can be
discontinuous at the activation points of servers at the NE, which occur after
the activation of servers at the optimum (cf. Lemma 3). Therefore, consider the
adjacent segments [Λ

(NE)
j , Λ

(NE)
j+1]. At Λ

(NE)
j , server j is activated and the NE

assigns probabilities p† so that the curve of τ vs Λ be continuous. Immediately
before and after the activation of server j the same latency is observed with
a different number of servers, so that the last activated server j absorbs some
load and the rest of servers observe a slowdown in the rate of increase of their
latency. This corresponds to a sudden decrease of the derivative of τ . This means
that while τ vs Λ experiences a drop in its growth rate at any point at which
a new server is incorporated in the NE, the latency at the optimum does not

10 V. Mancuso et al.

observe such a discontinuity in the derivative. The result is that, for arrival rates
slightly larger than Λ

(NE)
j , the PoA can decrease. However, the growth rate of

τ must quickly increase again and faster than the growth rate of the latency at
the optimum because the NE does not allow any server, not even the faster, to
experience less latency than the slower. Therefore, the growth rate of τ is that of
the slowest active server, while at the optimum this cannot occur by construc-
tion. Since the numerator of the PoA increases faster than the denominator,
the PoA curve between two consecutive server activations at the NE must be
convex. This behavior holds for all feasible load segments, including from Λ

(NE)
n

to
∑n

j=1 µj .
If the above conjecture holds, as confirmed by our experiments, then search-

ing for the worst-case PoA becomes simple.

Result 1 The maximum of the PoA vs Λ occurs at Λ > 0, at a point of activa-
tion of a server at the NE or at ρ = 1.

Result 1 tells that finding the maximum PoA can be done by evaluating a
finite set of points, each of which requires to run in polynomial time the exact
algorithms MIND-IT(NE) and MIND-IT(Opt). Hence, the cost of evaluating the
worst case behavior of the distributed approach is polynomial and comparable
to the complexity of the exact algorithms for the optimum and NE.

4 Special case: M/M/1 queues

With M/M/1 queues, ℓi and hi can be inverted in closed form as

ℓi(x) = di +
1

µi − x
; hi(x) = di +

µi

(µi − x)
2 . (19)

General case expressions for optimization simplify into:

γ = dj +
µj(

µj − p⋆jΛ
)2 , p⋆j > 0, ∀j ≤ j⋆; (20)

p⋆j =
1

Λ

(
µj −

√
µj

γ − dj

)
, ∀j ≤ j⋆; (21)

1

Λ

j⋆∑
j=1

(
µj −

√
µj

γ − dj

)
= 1. (22)

The complexity of inverting (22) is O(log r) instead of O(n log r) observed in
the general case, because the inversion can be done over the sum directly. How-
ever, the overall complexity of the exact optimization remains O(n2 + n log r).

The expressions needed to study the NE become:

τ = dj +
1

µj − p†jΛ
, p†j > 0, ∀j ≤ j†; (23)

p†j =
1

Λ

(
µj −

1

τ − dj

)
, ∀j ≤ j†; (24)

Optimal Allocation of Tasks to Networked Computing Facilities 11

1

Λ

j†∑
j=1

(
µj −

1

τ − dj

)
= 1. (25)

In the very special case of M/M/1 queues with equal delays dj=d⋆,
closed forms can be found from the above formulas, which generalizes the con-
clusions of [10] for the optimization and NE of systems with M/M/1 queues with
d⋆=0. In particular, if dj = d⋆ for all active servers, then we obtain:

p⋆i =
1

Λ

(
µi −

√
µi

∑j⋆

j=1 µj − Λ∑j⋆

j=1

√
µj

)
, (26)

U(p⋆) = d⋆ +
1

Λ

(∑j⋆

j=1

√
µj

)2
∑j⋆

j=1 µj − Λ
− j⋆

 . (27)

The price of anarchy with M/M/1 and equal fixed delays is

η =

(
d⋆ +

j†∑j†

j=1 µj − Λ

)/d⋆ +
1

Λ

(∑j⋆

j=1

√
µj

)2
∑j⋆

j=1 µj − Λ
− j⋆

 . (28)

We conclude that, with M/M/1 queues and homogeneous delays dj = d⋆, all
quantities of interest can be expressed in closed form. However, this is in general
not true when fixed latency terms dj are not homogeneous. Nonetheless, the
PoA at the border of the stability region of the system can be always computed
in closed form, as shown in the following theorem.

Theorem 3. With M/M/1 queues,

lim
Λ→

∑n
j=1 µj

η(Λ) = n

n∑
j=1

µj

/(n∑
j=1

√
µj

)2

. (29)

Proof (Sketch). The average latency at the NE tends to diverge and can be
computed in closed form by neglecting the fixed delay. By comparing p⋆j vs γ in
near-saturation conditions, with γ≫dj , and summing all probabilities, we get the
asymptotic expression for γ, hence obtain p⋆j and the average optimal latency.

5 Performance evaluation

Experimental platform — We set up a distributed measurement apparatus
to obtain a ground truth and compare it with the predictions of our model. The
apparatus enables the configuration of a group of servers (3 in our evaluations)
with varying service capacities and diverse locations. This tool is coded in Golang
[8], utilizing microservices for deployment, and employs QUIC as transport layer
protocol [9]. The tool specifies three entities: clients, servers, and routing nodes.

12 V. Mancuso et al.

0 0.2 0.4 0.6 0.8 1
10

1

10
2

A
v
e
ra

g
e
 s

y
s
te

m
 l
a
te

n
c
y
 (

m
s
)

Opt

NEP

Exp. Opt

Exp. NEP

Fig. 2. Validation in Scenario 0

The server instantiates a configurable web processor that exposes one or multiple
services with distinct computational demands. Client and server support a fine-
tuning of applications and traffic shape characteristics. The routing element
manages the traffic generated by other entities, directing it to its destination.

The tool collects and stores networking and routing events, including packet
arrivals and departures to and from various elements, real-time monitoring of
memory occupancy, and the count of available threads dedicated to handling
incoming traffic. It also enables deploying application-specific measurements.

The experimental setting uses 3 servers deployed across Europe, each with
deterministic service times, practically no bounds on available memory, and one
working thread. The application requires clients to issue requests of 100 bytes
to any available server; the server replies to each request by sending it back.

In our setting, several co-located clients issue packets to the three servers;
the first two elements generate a traffic load equal to 5% of the overall system
capacity—and this is the traffic being measured—while the last element provides
background traffic. We measure the round trip time between each client and the
three servers; then, we use it to compute the allocation of traffic to servers, and
we feed this configuration to the routing element. The NE is found directly under
the assumption of rational players, computing it beforehand.

Results and validation — We used a few significant scenarios to validate
our analytical model and showcase the results derived in this paper. Due to
space limitations, we only reports results for model validation and with simple
queueing discipline, stressing the importance of taking into account fixed delays
in the presence of servers deployed in the edge-cloud continuum.

Scenario 0—Validation. We start by validating our model via experiments
in a real network context. We observed the two-way delay between users and
servers with ping packets, and used the average RTT (round trip time) to run
our analytical model. The characteristics of the available servers, in order of
activation, are d = [20, 34, 43.5] ms, and µ = [4.66, 5.00, 10.20] services/s.

Optimal Allocation of Tasks to Networked Computing Facilities 13

Fig. 2 reports results generated by model and experiments (averages are
reported as crosses, while 90% confidence intervals are delimited by dots). The
figure also shows the activation thresholds of the servers, with vertical dotted
lines (using the same color as the corresponding latency curves). Thresholds are
computed analytically, based on the observed average two-way delay.

Analytical results show that differences between the optimum and the NE are
generally small and can only be experienced when at least two servers are active.
Experimental results match the analysis, which tells that considering a constant
two-way delay instead of a stochastic model yields an affordable simplification.

Scenario 1—M/M/1 Edge & Cloud. We consider three M/M/1 servers
with different capacity. One of the three servers is much farther apart from users
than the other two servers, but it is faster. This represents a case in which
two servers are within the edge area of the network and one is in the cloud. The
characteristics of the available servers, in order of activation, are d = [40, 30, 150]
ms, and µ = [15, 9, 20] services/s. Latency and PoA as functions of the offered
load in this scenario are shown in Fig. 3. As the second server gets activated at the
optimum, the latency at the NE starts increasing faster than in the optimized
system, and the PoA becomes larger than 1. However, the activation of the
second server at the NE causes a temporary decrease in the PoA, after which it
goes up quickly. The PoA curve is visibly piece-wise convex and the peak of the
PoA is reached at the activation of the last server at the NE. The corresponding
value is neither negligible nor very large (below 1.15). It is interesting that the
PoA can be quite different at different loads, and a distributed implementation
of the job allocation could work well at quite high loads.

Scenario 2—The importance of accounting for fixed delays. Fig. 4
reports results for a network configuration like the one of Scenario 1, although
the optimization and the NE are computed under different assumptions and
circumstances.

We first compare results discussed for Scenario 1 with the case in which fixed
delays dj are actually set to zero (“Without delays”, in the figures). In this case,
results are sensibly better than in the originally considered setup (“With delays”),
at least in terms of latency, and only until the load becomes high. This means
that fixed delays play an important role and neglecting them is not possible
before the average sojourn time into servers becomes predominant.

Secondly, we consider a modified Scenario 1 in which fixed delays are equal
for all servers (labeled as “Equal delays” in the figures). Such a delay is set to
the average value observed in the original Scenario 1 (i.e., we set here dj=73.3
ms for all servers). Latency curves in this case are smoother than for Scenario 1,
although the difference with Scenario 1 and with the case without fixed delays
vanishes as the load approaches 1. Hence, the heterogeneity of fixed delays plays
a non-negligible role as well, at least for low-medium loads.

We eventually consider the case in which the existence of fixed delays is ne-
glected. This case is labeled as “Ignoring delays” in the figures. We remark that
fixed delays are present in this case, and therefore latency and PoA values re-
ported in the figures do account for their presence, although neither optimization

14 V. Mancuso et al.

0 0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

A
v
e
ra

g
e
 s

y
s
te

m
 l
a
te

n
c
y
 (

m
s
)

Opt

NEP

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

P
ri
c
e
 o

f
a
n
a
rc

h
y
 (

)

PoA

PoA at full load

Fig. 3. Scenario 1. Top: latency, bottom PoA, vs offered load. The marked point indi-
cates the PoA value computed with (29)

nor NE calculation considered them (as if they were set to zero although they are
not). Notice that this approach reflects exactly what analytical state-of-the-art
solutions could do in similar cases. Interestingly, obtained curves shows large er-
rors with respect to the correct traffic allocation optimization or NE calculation,
which remarks how accounting for the presence of fixed delays makes a huge
difference.

Note that the dotted curve in the figure, obtained by ignoring the presence
of fixed delays in optimization and NE calculation, is not even convex. This
result does not contradict Conjecture 1 as the dotted curve is the result of
an inaccurate mathematical approximation that leads optimizations and NE
calculations astray—for the latter case, selfish users acting distributedly can
easily see it. The dotted curve is intentionally included in the figures with the
purpose to show that inaccurate assumptions might not only lead to wrong
decisions, but also hide important properties.

As a final remark, Figure 4 shows that differences in terms of the maximum
value for the PoA are not necessarily small and (i) when delays are uniform (and
possibly tend to zero) the PoA tends to be smaller, whereas (ii) the shape of PoA

Optimal Allocation of Tasks to Networked Computing Facilities 15

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

A
v
e

ra
g

e
 s

y
s
te

m
 l
a

te
n

c
y
 (

m
s
)

Opt (w/ delays)

NEP (w/ delays)

Opt (w/out delays)

NEP (w/out delays)

Opt (equal delays)

NEP (equal delays)

Opt (Ignore delay)

NEP (Ignore delay)

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

P
ri
c
e

 o
f

a
n

a
rc

h
y
 (

) With delays

Without delays

Equal delays

Ignoring delays

Fig. 4. Scenario 2. Left: latency, right PoA, vs offered load with variants on the eval-
uation and consideration of fixed delays

curves does not match, with peaks occurring at different loads in the different
cases. The latter tells that a correct incorporation of fixed latency is paramount
to design a system meant for distributed optimization, as it would be otherwise
impossible to predict the load at which the PoA will be maximum—hence more
critical—and its associated value.

6 Conclusions

The analysis and optimization of computing task allocation in the edge-cloud
continuum requires attention to system delays, whose effect is traditionally ne-
glected. We have shown that incorporating such delays in the analysis of the
latency experienced by end-users complicates the optimization and the NE iden-
tification with respect to the simpler cases commonly studied. Yet, the optimal
allocation and the NE can be characterized analytically, and computed with the
algorithms derived in this paper. Our analysis is general, and only requires the
sojourn time of a task to be an increasing and convex function of the server load,
which is a common property of non-fully-deterministic systems.

16 V. Mancuso et al.

Our findings were validated through a real deployment spanning over a mul-
tiparty laboratory across different countries. We showed that (i) optimal config-
urations and selfish NEs can exhibit a strong dependency on relative differences
between servers in terms of capacity and distance from the user, and (ii) dis-
tributed and selfish optimizations incur limited costs, unless the system is driven
into deep saturation and the service time variance becomes unrealistically high.

The next steps of our work will consider multiserver systems, and queues
with limited buffer, where losses can occur.

Acknowledgements

This work has been supported by the Project AEON-CPS (TSI-063000-2021-
38), funded by the Ministry of Economic Affairs and Digital Transformation
and the European Union NextGeneration-EU in the framework of the Spanish
Recovery, Transformation and Resilience Plan, and the Italian National Recovery
and Resilience Plan (NRRP), partnership on “Telecommunications of the Future”
(PE0000001 - program “RESTART”).

References

1. Bell, C.E., Stidham, S.: Individual versus social optimization in the allocation of
customers to alternative servers. Manag. Sc. 29, 831–839 (1983)

2. Braess, D.: Uber ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung
12 (1969)

3. Cheng, Z., Gao, Z., Liwang, M., Huang, L., Du, X., Guizani, M.: Intelligent task
offloading and energy allocation in the uav-aided mobile edge-cloud continuum.
IEEE Netw. 35(5), 42–49 (2021)

4. Ding, Y., Li, K., Liu, C., Li, K.: A potential game theoretic approach to compu-
tation offloading strategy optimization in end-edge-cloud computing. IEEE Trans.
Parallel Distrib. Syst. 33(6), 1503–1519 (2021)

5. ETSI: TS 128 531 - V18.2.0 - 5G; Management and orchestration; Provisioning
(Release 16). Technical specification, ETSI (2023)

6. Feldmann, R., Gairing, M., Lucking, T., Monien, B., Rode, M.: Selfish routing in
non-cooperative networks: a survey. In: Proc. MFCS. p. 21–45. Springer (2003)

7. Garnaev, A., Trappe, W., Petropulu, A.: Equilibrium strategies for an OFDM
network that might be under a jamming attack. In: Proc. IEEE CISS (2017)

8. Golang developers: Golang, https://go.dev
9. Hamilton, R., Iyengar, J., Swett, I., Wilk, A.: QUIC: A UDP-based secure and

reliable transport for HTTP/2, tools.ietf.org/html/draft-tsvwg-quic-protocol-02
10. Haviv, M., Roughgarden, T.: The price of anarchy in an exponential multi-server.

Op. Res. Lett. 35(4), 421–426 (2007)
11. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2),

65–69 (2009)
12. Luo, Q., Hu, S., Li, C., Li, G., Shi, W.: Resource scheduling in edge computing: A

survey. IEEE Commun. Surveys Tuts. 23(4), 2131–2165 (2021)
13. Mancuso, V., Badia, L., Castagno, P., Sereno, M., Marsan, M.A.: Efficiency of

distributed selection of edge or cloud servers under latency constraints. In: Proc.
IEEE MedComNet. pp. 158–166 (2023)

Optimal Allocation of Tasks to Networked Computing Facilities 17

14. Mancuso, V., Castagno, P., Badia, L., Sereno, M., Ajmone Marsan, M.: Opti-
mal Allocation of Tasks and Price of Anarchy of Distributed Optimization in
Networked Computing Facilities. Tech. rep., arXiv:2404.05543 [cs.GT] (2024),
https://arxiv.org/abs/2404.05543

15. Milojicic, D.: The edge-to-cloud continuum. Computer 53(11), 16–25 (2020)
16. Orda, A., Rom, R., Shimkin, N.: Competitive routing in multiuser communication

networks. IEEE/ACM Trans. Netw. 1(5), 510–521 (1993)
17. Pigou, A.C.: The Economics of Welfare. Macmillan, London (1920)
18. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person

games. Econometrica: Journal of the Econometric Society pp. 520–534 (1965)
19. Roughgarden, T.: Routing and the Price of Anarchy. The MIT Press: Cambridge,

MA, USA (2005)
20. Stidham, S.: Optimal Design of Queueing Systems. Chapman & Hall/CRC (2009)
21. Stidham, S.: The Price of Anarchy for a Network of Queues in Heavy Traffic, pp.

91–121. Springer US, Boston, MA (2014)
22. Thai, M.T., Lin, Y.D., Lai, Y.C., Chien, H.T.: Workload and capacity optimization

for cloud-edge computing systems with vertical and horizontal offloading. IEEE
Trans. Netw. Service Manag. 17(1), 227–238 (2020)

23. Wang, C.X., You, X., et al.: On the road to 6G: Visions, requirements, key tech-
nologies and testbeds. IEEE Commun. Surveys Tuts. 25(2), 905–974 (2023)

24. Wang, S., Zhao, Y., Xu, J., Yuan, J., Hsu, C.H.: Edge server placement in mobile
edge computing. J. Parall. Distrib. Comput. 127, 160–168 (2019)

25. Wang, T., Bauer, K., Forero, C., Goldberg, I.: Congestion-aware path selection for
Tor. In: Proc. Financial Crypt. Data Sec. Conf. pp. 98–113. Springer (2012)

26. Wu, T., Starobinski, D.: A comparative analysis of server selection in content
replication networks. IEEE/ACM Trans. Netw. 16(6), 1461–1474 (2008)

27. Yu, W., Cioffi, J.M.: Constant-power waterfilling: performance bound and low-
complexity implementation. IEEE Trans. Commun. 54(1), 23–28 (2006)

28. Zhang, J., Letaief, K.B.: Mobile edge intelligence and computing for the Internet
of vehicles. Proc. IEEE 108(2), 246–261 (2019)

