
Gaming on the Edge:
Performance Issues of Distributed Online Gaming

D. Olliaro1, V. Mancuso2, P. Castagno3, M. Sereno3,4, M. Ajmone Marsan2
1 Ca’ Foscari University of Venice, Venice, Italy
2 IMDEA Networks Institute, Leganes, Spain

3 Università di Torino, Torino, Italy
4 Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Italy

Abstract—We study the performance of online games played
over a platform that implements gaming as a service (GaaS) in
a mobile network slice that hosts concatenated virtual network
functions (VNFs) at the edge. The distributed gaming architecture
is based on edge computing facilities, whose utilization must be
carefully planned and managed, so as to satisfy the stringent per-
formance requirements of game applications. The game manager
must consider the latency between players and edge server VNFs,
the capacity and load of edge servers, and the latency between
edge servers used by interacting players. This calls for a careful
choice about the allocation of players to edge server VNFs, aiming
at extremely low latency in interactions resulting from player’s
commands. We develop an analytical model, which we validate
with experiments in the wild, and show that, under several
combinations of system parameters, deploying gaming VNFs at
the edge can deliver better performance with respect to cloud
gaming, in spite of the complexities arising from the distribution
of gaming VNFs over edge servers. Our analytical model provides
a useful tool for edge gaming systems performance prediction,
thus supporting the management of GaaS applications.

Index Terms—Online gaming; GaaS; Performance model.

I. INTRODUCTION

In the early days, video games demanded expensive spe-
cialized hardware consoles with advanced graphics processing
capabilities. Network connections were primarily for player
interactions, limited to those not on the same gaming console.
Today, the landscape has shifted dramatically. People now seek
to indulge in their favorite games using their smartphones any-
time, anywhere. Games have evolved into services delivered
via ad hoc virtual network functions (VNFs), following the
Gaming as a Service (GaaS) paradigm. Game logic and video
processing occur within a VNF housed in a computing infras-
tructure, typically a cloud data center [1]. Players transmit their
game commands to the cloud, where the VNF amalgamates
them with others’ commands to construct the video scene,
which is then encoded and streamed back to players. RTP
streams via UDP ports facilitate bidirectional communication.
Additionally, the game VNF in the cloud must assess the

This work has been supported by the Project AEON-CPS (TSI-063000-
2021-38), funded by the Ministry of Economic Affairs and Digital Transfor-
mation and the European Union NextGeneration-EU in the framework of the
Spanish Recovery, Transformation and Resilience Plan and by the RESTART
Program, financed by the Italian government with the resources of the Italian
Recovery, Transformation and Resilience Plan – Mission 4, Component 2,
Investment 1.3, theme 14 “Telecommunications of the future” (PE00000001 -
program “RESTART”, CUP D93C22000910001, projects R4R and ITA NTN).

player’s connection quality to determine the appropriate video
quality. Consequently, the player’s device is tasked solely with
collecting commands, transmitting them along with connection
feedback to the VNF, and decoding and displaying the received
video stream. Only network customers with broadband access
and low latency to game VNFs can properly experience online
gaming. Hence, considering the increasing relevance of mobile
gaming, and the evolutionary trend of radio access networks
(RANs), we can expect that game VNFs will soon move from
cloud to edge networks. Hence, we propose and study a GaaS
framework built on VNFs residing on edge networks.

Processing player’s commands with a VNF residing on one
of the edge computing facilities, and generating the corre-
sponding video stream at the edge, has obvious advantages
in terms of response delay and network resource utilization.
However, one of the most relevant issues is the allocation of
players to VNFs, as players that connect to VNFs residing
in different computing facilities could experience consistency
issues. Since we cannot expect that all interacting players will
connect to the same VNF, it will be necessary to transfer
relevant commands from one VNF to the other.

We look at those issues considering a slice of a cellular
network. When players join from distant locations, the slice
management, and operation (MANO) VNF must map players
onto edge VNFs, considering latency between edge VNFs and
players, load, and processing capacity of edge VNFs, as well
as the latency between VNFs that serve interacting players.
In the following, we use “edge server” and “game VNF”
interchangeably, as well as “gamer” and ‘player”.

Our primary contribution is the development of the first
stochastic model for the evaluation of edge gaming success
probability, i.e., the probability that player’s commands be in-
corporated in the rendered game within a deadline compatible
with the players’ reaction time. Additional contributions are:
i) the comparison of predictions obtained with our stochastic
model with results of experiments that validate the simplifying
model assumptions; ii) the assessment of the impact of the
main system parameters on edge gaming success probability,
using data derived from measurements of real gaming plat-
forms; iii) a comparison of success probabilities achievable
with edge or cloud gaming approaches.

II. RELATED WORK

The concept of cloud gaming emerged around 2009 and
brought to the online gaming domain the streaming tech-
nologies that Spotify and Netflix introduced in music and
video domains about a decade earlier. However, cloud gam-
ing designers soon realized that the quality of experience
(QoE) requirements for online gaming are quite different from
those for music and video. This led the ITU (International
Telecommunications Union) Study Group 12, focusing on
Performance, QoS and QoE [2] to work on the identification
of factors that influence online gaming QoE and on approaches
to predict, plan, and manage QoE [3]. Building on this
initial activity, ITU SG 12 produced three recommendations:
G.1032, P.809, and G.1072 [4]–[6]. Recommendation G.1032
identifies factors that influence cloud gaming QoE, while
Recommendation P.809 identifies approaches for subjective
evaluation of gaming QoE. Finally, Recommendation G.1072
describes QoE models for cloud gaming, accounting for the
effect of underlying networks. Our work goes in the direction
of Recommendation G.1072, except we develop a probabilistic
approach for the estimation of the gaming QoS (which is not
present in G.1072).

In [7] the authors define a methodology for the assessment
of the user-perceived quality of cloud gaming systems and
conduct extensive experiments. Other recent papers report
measurement studies of cloud gaming applications [8]–[10],
and the very recent paper [11] looks at the specific case of
gamers connected through a cellular network. These works
identify the main network characteristics of cloud gaming and
look at achievable QoS metrics, from which they infer the most
relevant drivers of user’s QoE. Measurements reported in these
studies determined the choice of parameters we use later in
this paper for the performance analysis of edge gaming.

It is interesting to note that all the above-mentioned works
consider cloud gaming systems, i.e., systems where game
control and graphics engines that generate video streams for
gamers reside in the cloud. Instead, Kim et al. [12] propose
to separate game control, which remains in the cloud, from
rendering, that is brought to the edge, hence closer to the end
user, with the advantage of reduced latency in video delivery,
and lower impact on network resources, especially in the case
of ultra high definition video. We bring this concept one step
forward, allocating both game control and rendering engines
on the edge, with additional benefits in terms of latency and
resource consumption, at the cost resulting from coordinating
edge computing facilities used by interacting gamers.

In [13], gaming is mentioned as a relevant use case for
the IETF Reliable and Available Wireless (RAW) architecture.
Moreover, in [14] the authors propose an emulation framework
to investigate QoE in a real-time video streaming scenario.

Related studies explore architectural propositions for online
games, relevant to our work. For instance, [15] proposes a
distributed engine for online gaming. The paper [16] discusses
edge computing’s role in addressing latency and network
resource efficiency in online gaming. Unlike our work, these

proposals lack analytical insights for game service providers.
Some studies propose architectures for online gaming that

prioritize the economical utilization of resources, encompass-
ing bandwidth, computational resources, and energy. E.g.,
the authors of [17] leverage software migrations to optimize
energy consumption, and [18]–[21] propose efficient resource
allocation for massive multiplayer online gaming with latency
constraints. Our work is complementary to resource alloca-
tion, because we analyze the compound importance of server
characteristics, given the amount of allocated resources.

Demanding QoS prerequisites of massive multiplayer online
gaming with strict latency constraints call for optimal and
adaptable resource management of both computational and
network resources. This particular challenge can be addressed
through VNF optimization techniques similar to those pro-
posed, for instance, in [22], [23]. For the specific case of
online gaming, we offer a tool that permits to identify VNF
requirements and VNF chaining to achieve high QoS.

III. SYSTEM MODEL AND GAME REQUIREMENTS

We consider a mobile network that supports a multiparty
distributed gaming application with strict latency requirements.
Gaming engines are located on the edge, spread across multi-
ple game VNFs, with the goal of minimizing the delay experi-
enced by end users. We cast the required gaming architecture
onto the standard 3GPP (3rd Generation Partnership Project)
architecture for communication and computing.

A. Connect-compute architecture

In a 3GPP network there are four main network functions
that we need to consider [24]:
• User Equipment (UE) is the equipment on top of which

the gamer plays. We consider wireless-connected gamers.
• (Radio) Access Network, or (R)AN is the (wireless) infras-

tructure that connects user’s devices to the core network.
It includes several facilities enabling communication. We
consider wireless access networks.

• User Plane Function (UPF) is a vital element in 3GPP (5G)
networks, as it is responsible for managing data traffic and
handles tasks such as packet forwarding, traffic routing,
and QoS enforcement.

• Edge is a computing facility under the control of the
cellular network, that brings computation resources closer
to gamers, improving response times. Edges are deployed
as VNFs accessible through the user plane (via UPFs).
Their proximity enhances real-time interaction.

As shown in Fig. 1, the interaction between the mentioned
components determines a chaining of VNFs. RAN establishes
wireless links for reliable connectivity, while UPFs manage
data transmission and routing. Different edge computing facil-
ities can be reached from different UPFs with different delays.

B. Application requirements

Latency requirements depend on the level of interaction
between gamers. If two gamers are closely interacting (e.g.,
fighting against the same monster), it is necessary that the

Edge1

RAN1
UE2

RAN2

UE1

Edge2

d11 d12d21 d22

ldown

lup
ldown

lup

𝜆!
(#) 𝜆%

(#)

UPF1
UPF2

𝑑!!
(&)

Fig. 1. Reference scenario

latency with which they observe each other’s actions (and
those of the monster) is as small and as equal as possible.

The most important QoS KPIs (key performance indicators)
for online gaming are upstream and downstream data rates
available between game server and user, upstream and down-
stream packet loss probabilities, and round trip latency. Ac-
cording to [8]–[10], typical requirements for immersive games
are of the order of 1 Mb/s upstream (a small part for gamer’s
commands, the rest for feedback on network connection KPIs)
and between 5 and 50 Mb/s downstream (for game video
stream; of course, the downstream data rate depends on the
gamer’s screen size, and heavily impacts the quality of the
video received by the gamer, hence the immersivity of the
game). Packet loss probabilities are tolerated up to 10-30% in
upstream (the KPI feedback is very redundant) and to a few
percent in downstream. Latency requirements are of the order
of 100 ms, which refer to the whole game response delay that
includes all latency components due to network, processing,
and buffering [7], [12].

IV. ANALYSIS AND PROBLEM FORMULATION

A. Reference scenario

The reference scenario for this work is depicted in Fig. 1,
which is modeled as shown in Fig. 2. We consider a network
with two or more base stations (BSs) where the (R)AN
network function is accessed by UEs as a necessary step
to access UPFs and two or more game VNFs. To simplify
the description of the considered scenario, and given the
geographically distributed nature of the service jointly with
the extreme RAN densification process envisioned by 5G
and beyond architectures, we assume that within the gaming
slice, each BS hosts a single gamer and each UPF serves
a single BS. Therefore, we use a single index to refer to a
user/BS/UPF chain. This assumption can be easily removed—
and was actually removed in the implementation of the model
that will be described later in this section.

We assume that communicating between BS i and Edge j
incurs three delay components: (i) a fixed delay dij ; (ii) a
random component that accounts for user mobility, signal fluc-
tuations, noise, scheduling, as well as other factors, including
retransmissions due to losses; (iii) a variable queueing and
processing time, which is modeled by means of an M/M/1
queue in uplink (from BS to Edge) and an M/M/1 queue in

Edgej

M/M/1

UEi / BSi / UPFi

ldown

lup

𝜆!
(#)

…

M/M/n/k
dij

dij

ds
…

to Edge1

to Edge2

to EdgeE

From other
Edge VNFs 𝑑!%

(&)

𝑑!'
(&)

𝑑!(
(&)

Game
streamer

Fig. 2. Network model (detail for a generic gamer)

downlink (from Edge to BS). The sojourn time in the uplink
(respectively downlink) queue associated with BS i and Edge j
is a random variable denoted as Uij (respectively Dij).

An online gamer produces a flow of λup packets per second
in uplink, and receives a multimedia stream of λdown packets
per second in downlink. For simplicity, we assume that the
intensity of streams does not change over time. The stationary
assumption is used because it allows to design and plan the
service by considering periods of peak utilization. All uplink
packets of a user are delivered by the BS to a game VNF,
where they are processed by the edge server to which the user
is associated. We model this uplink flow processing with a
queue. We will primarily use a M/M/n/k model, k≥n (and
we will present our modeling approach in this case), but we
will also compare results against other models (and we will
validate our assumptions with experiments). Hence, the game
VNF is represented as an ensemble of n processors with a
waiting room of k−n packets. These parameters represent
how resources are allocated within the network slice dedicated
to online gaming. The time Tj spent by an uplink packet in
Edge j is a random variable.

When a game VNF receives any instruction from a gamer
that requires implementing changes in the downlink stream
(e.g., a change of view, a movement that has to be reflected in
the multimedia stream, etc.), the change is implemented with
a fixed delay ds, which represents the time needed to start
producing the modified stream within the VNF.

B. Distributed gaming server model

Since gamers that are closely interacting are not necessarily
close in the network, they may interface with different game
VNFs and even different physical edge facilities. Thus, when
two or more gamers interact, all streams they receive have
to be adapted synchronously, with a tolerance of few tens
of milliseconds. Hence, commands/moves issued by a gamer
must be notified not only to the game VNF that manages the
stream of that user but also to all other game VNFs involved.

We assume that gamers are not aware of the location of all
game VNFs to be notified, while the serving game VNF of a
gamer is. Therefore, when a command issued by a gamer is
served by her Edge j, it is also forwarded to any Edge j′ of any
other gamer involved in the game scene, with a latency d

(s)
jj′

between serving game VNFs, which we model as a constant.
This simplification is possible since edge servers are connected
via high-speed networks (typically optical rings).

Guaranteeing a good level of interaction between gamers
implies that the latency with which actions of one gamer are

visible to other gamers remain below a fixed threshold TO (for
example 100 ms) with sufficiently high probability (e.g., 0.8)
and acceptable packet loss rate (a few percent) [7], [9].

C. Latency

In the simple case of two users, in the worst case, the close
interaction of gamers involves two game VNFs and two BSs
(each of which has a separate uplink and downlink processor)
in addition to the VNFs located on gamers’ terminals. In
general, the worst case number of involved entities scales
linearly with the number of interacting gamers. The resulting
latency depends on communication and computing delays, and
there are two groups of delays to evaluate:
• First, the self-latency, i.e., the delay with which a gamer i

connected to Edge j sees her own actions reflected in her
game’s multimedia streaming, i.e.,

L
(j)
ii = dij + Uij + Tj + ds +Dij + dij , (1)

where the fixed latency between gamer i and Edge j is
reasonably taken as symmetric in uplink and downlink.

• Second, the cross-latency, i.e., the latency between the
moment a gamer i issues a command and any other gamer
i′ interacting with i and connected to Edge j′ sees the
effect of that command on her multimedia stream, i.e.,

L
(j′)

ii′ = dij+Uij+Tj+d
(s)
jj′+Tj′+ ds+Di′j′+ di′j′ . (2)

Let us consider for example the simple case of two gamers
(indicated as g1 and g2) connected to two game VNFs (in-
dicated as e1 and e2, respectively). We need to account for
four latency values: the round trip time between gamer g1 and
Edge e1, the latency of the path g1→e1→e2→g2, the latency
of the symmetric path, g2→e2→e1→g1, and the round trip
time between gamer g2 and game VNF e2.

Assuming that it is possible to model with simple queues
the delay introduced by individual system components (com-
munication between gamers and game VNFs, and processing
at game VNFs), and assuming independence among latency
components, it is possible to compute probability distributions
for relevant latency variables. E.g., it is possible to compute
convolutions of distributions of additive delays or, equiva-
lently, obtain the LST (Laplace–Stieltjes transform) of the
delay pdf (probability distribution function) as the product of
LSTs of pdfs of individual delay components.

D. Success probability

In addition to latency, if some queues have a finite capacity,
we have to consider network losses. Hence, the success
of multiparty communication depends on a combination of
latency and loss. The success rate is the fraction of game
control messages that are not lost and are processed on
time to cause an observable change in the game multimedia
streaming delivered to gamers in the same game scene, within
a maximum latency TO from message generation.

In our model, queues that can incur loss are the ones
representing game VNFs, and the associated loss probability is

the probability that the buffer is full, which can be computed
with standard queueing theory results.

Thus, once we know the loss probabilities at queues and the
pdf of the latency, it is possible to compute the probability that
the game interaction be completed within TO for all gamers
in the same game scene.

For the specific case of M/M/1, M/M/n/k and M/D/1-PS
(M/D/1 with processor sharing) queues used in this paper, the
following results hold:
• The LST of the sojourn time in an M/M/1 queue with

arrival rate λ and service rate µ is

f̂M/M/1(s) =
µ− λ

s+ µ− λ
. (3)

• The LST of the sojourn time in an M/M/n/k queue with
arrival rate λ and individual server service rate µ is

f̂M/M/n/k(s)=
1

1−p(k)

µ

s+µ

k−1∑
j=0

p(j)

(
nµ

s+nµ

)[j−n+1]+

,

(4)
with

p(j) = p(0)
(λ/µ)j

min(j, n)! n[j−n]+
, j = 0, · · · , k, (5)

where p(0) is found by solving
∑

j p(j) = 1 and [x]+

indicates the max between 0 and x.
• The LST of the sojourn time in an M/D/1-PS queue with

arrival rate λ and service time 1/µ can be computed from
(5.16) in [25], i.e.:

f̂M/D/1−PS(s)=

(
1− λ

µ

)
(λ+ s)

2
e−

λ+s
µ

s2 + λ
(
s+ (λ+ s)

(
1− λ

µ

))
e−

λ+s
µ

. (6)

The random component of the latency due to the RAN
activity is modeled through a random variable with limited
variability. As suggested by experimental results reported in
[26], [27], the RAN latency is close to the average most of the
time, although values can vary in a relatively narrow interval.
We therefore use a triangular distribution between latency
values tm and tM , whose LST is as follows:

f̂RAN(s)=

(
2

tM−tm
· e

− 3tM+tm
4 s − e−

tM+3tm
4 s

s

)2

. (7)

The above expression, with appropriate parameters tm and tM
will be incorporated into network delays Uij and Dij .

The additive delay due to different path components has an
LST equal to the product of the LSTs of the components. Of
course, each LST related to processing must be tailored to
the game VNF capacity in terms of number of servers, buffer
capacity, server speed, and request arrival rate. Similarly, the
LST relating to communication hops must be tailored to the
link data rate, message size, and load. We omit here the
specific expressions of latency LSTs because their derivation
is straightforward.

The loss probability relative to arrivals at the game VNF
is the probability that an arrival finds all k positions busy
(k includes positions in service and in the waiting line).
This probability, denoted by p(k), equals the steady state
probability of k positions busy, due to the assumption that
the arrival process is Poisson, and is expressed as:

πloss = p(k) = p(0)
(λ/µ)k

n! nj−n
. (8)

We use F (j′)
Lii′

(t) to indicate the CDF (cumulative distribution
function) of the cross-latency observed by game commands
issued by a gamer i served by Edge j, and whose game
control messages have to reach another gamer i′ connected
to a different Edge j′. F (j)

Lii
(t) indicates the self-latency. The

probability of not exceeding the timeout is therefore simply
computed as F

(j′)
Lii′

(TO) and F
(j)
Lii

(TO), for cross- and self-
latency, respectively. Notice that we assume that packet loss is
negligible, including it in the RAN behavior. This assumption
holds because gamer’s transmissions use a modulation and
coding scheme at which the bit error rate is very low, hence
errors on a few bits can be recovered and the occurrence of
error bursts can be obviated by means the HARQ protocol
adopted at the BS. The impact of HARQ is accounted for in
the model within the variable delay described by f̂RAN(s).

Performance results depend on the intensity of flows that
are offered to the modeled queues. In particular, apart from
the above-mentioned λup and λdown, we denote by λ

(b)
j the

background traffic of Edge j, generated by other gamers on
the same server, playing in other game scenes. Notice that here
we have neglected background traffic of communication links
between gamers and game VNFs because we have assumed
to use a network slice dedicated to a specific online game.

More complex and intertwined is the computation of
the traffic offered to game VNFs. If we consider Edge j

where multiparty gamers Gj={g(j)1 , g
(j)
2 , · · · , g(j)ℓj

} are con-
nected and play also with remote groups of gamers
Gj′={g(j

′)
1 , g

(j′)
2 , · · · , g(j

′)
ℓj′

}, the offered traffic is as follows:

λj =

ℓj + α
∑
j′ ̸=i

ℓj′
(
1− π

(j′)
loss

)λup + λ
(b)
j , (9)

where π
(j′)
loss is the loss probability of Edge j′ and α is

the fraction of uplink messages that convey game control
instructions instead of simple streaming feedback to the game
server, hence they have to be forwarded to Edge j even when
the gamers are served by Edge j′.

Eventually, the success probability of a gamer i in a
multiparty game involving gamers connected to a set of E
game VNFs can be expressed as the probability that all self
and cross latency values originated at that gamer be below the
timeout, after having discounted lost messages:

Si = F
(j)
Lii

(TO)
(
1−π

(i)
loss

)
·
∏
j′∈E

∏
i′∈Gj′\{i}

(
F

(j′)
Lii′

(TO)
(
1−π

(i)
loss

)(
1−π

(i′)
loss

))
. (10)

The success of a multiparty game can be seen as the success
of all interacting gamers:

S =
∏

i∈∪jGj

Si. (11)

which represents the fraction of players’ actions that are
incorporated into the video stream and visualized on gamer
screens within the specified timeout TO (i.e., those that are
neither lost nor late).

V. PERFORMANCE EVALUATION

In this section we present the results of our analytical
model, and we validate the model through experiments over
the Internet. With experiments, we consider non-exponential
distributions for the times between game commands generated
by players, and for the VNF service times. In addition, we
obviously remove independence assumptions.

Unless otherwise specified, we consider two edge servers
(named e1 and e2) and a multitude of gamers. Two gamers
(named g1 and g2) are modeled in detail, and individual
performance metrics are collected for them. Other gamers are
collectively modeled through the load they impose on game
VNFs, which represents background traffic for the selected
pair of gamers whose performance we study. Game VNFs are
modeled as M/M/n/k queues with k taking values n (hence
no buffering), 2n (hence the buffer space is as large as the
number of servers n), or ∞ (hence an M/M/n queue). We
assume n=5 at e1 and n=10 at e2 for the considered GaaS
slice. We also consider an M/D/1-PS queue (where PS stands
for Processor Sharing) at the edge servers, to approximate
the analysis of realistic systems that implement round-robin
execution of tasks (i.e., portions of jobs) rather than sequential
processing of whole jobs.

The two gamers generate 1 Mb/s in uplink toward the game
VNF to which they are connected, that is 1 000 packets per
second, of 1 000 bits each; 10 of those packets correspond
to game commands (1%), the rest is QoS feedback. Game
VNFs generate 30 Mb/s in downlink toward each gamer (3 000
packets per second, each of 10 000 bits) to provide gamers with
their game video stream. The time to prepare the video stream
is assumed to be ds=10 ms.

The values we use to parametrize our model were selected
so as to reflect what was measured over popular online game
platforms by independent studies, e.g., [8], [10]. We further
assume that a single thread of a single processor on a server
is able, on average, to serve a gamer. Thus, we fix µ=1000
packets/s for the purposes of this numerical evaluation. The
uplink and downlink data rate for the connection of gamers
to their BS through the GaaS slice is set to 10 Mb/s and 50
Mb/s, respectively.

We consider four different scenarios, that correspond to the
available options for the association of the two gamers that
we monitor in detail to the two edge servers. Scenario (i, j)
assumes that g1 is connected to ei while g2 is connected to
ej , with i, j ∈ {1, 2}.

 d
22

 d
11

 = 10

 d
11

 = 15

 d
11

 = 20

 d
11

 = 25

 d
11

 = 30

Scenario (1,1)

1

1

1

1

0.8

 d
11

 d
22

 = 10

 d
22

 = 15

 d
22

 = 20

 d
22

 = 25

 d
22

 = 30

Scenario (2,2)

1

1

1

1

0.92

 d 22
 =

 1
0

 d 22
 =

 1
5

 d 22
 =

 2
0

 d 22
 =

 2
5

 d 22
 =

 3
0

 d
11

 = 10

 d
11

 = 15

 d
11

 = 20

 d
11

 = 25

 d
11

 = 30

Scenario (1,2)

0.28

0.34

0

0.34

0

0

0.34

0

0

0

0.32

0

0

0

0

1

1

0.99

0.9

1

0.99

0.9

0.99

0.9

0.9

Fig. 3. Success probability with two gamers playing together when
VNFs are modeled as M/M/n queues and ρ=0.9. Delay dij in ms.

 d
22

 d
11

 = 10

 d
11

 = 15

 d
11

 = 20

 d
11

 = 25

 d
11

 = 30

Scenario (1,1)

0.41

0.33

0.23

0.13

0.03

 d
11

 d
22

 = 10

 d
22

 = 15

 d
22

 = 20

 d
22

 = 25

 d
22

 = 30

Scenario (2,2)

0.67

0.48

0.15

0.83

0.78

 d 22
 =

 1
0

 d 22
 =

 1
5

 d 22
 =

 2
0

 d 22
 =

 2
5

 d 22
 =

 3
0

 d
11

 = 10

 d
11

 = 15

 d
11

 = 20

 d
11

 = 25

 d
11

 = 30

Scenario (1,2)

0.19

0.1

0.04

0.01

0

0.11

0.04

0.01

0

0

0.04

0.01

0

0

0

0.01

0

0

0

0

0

0

0

0

0

Fig. 4. Success probability with two gamers playing together when
VNFs are modeled as M/M/n queues and ρ=0.99. Delay dij in ms.

 d
22

 d
11

 = 10

 d
11

 = 15

 d
11

 = 20

 d
11

 = 25

 d
11

 = 30

Scenario (1,1)

0.73

0.73

0.73

0.73

0.7

 d
11

 d
22

 = 10

 d
22

 = 15

 d
22

 = 20

 d
22

 = 25

 d
22

 = 30

Scenario (2,2)

0.89

0.89

0.89

0.89

0.85

 d 22
 =

 1
0

 d 22
 =

 1
5

 d 22
 =

 2
0

 d 22
 =

 2
5

 d 22
 =

 3
0

 d
11

 = 10

 d
11

 = 15

 d
11

 = 20

 d
11

 = 25

 d
11

 = 30

Scenario (1,2)

0.72

0.72

0.72

0.72

0.48

0.72

0.72

0.72

0.5

0

0.72

0.72

0.5

0

0

0.72

0.5

0

0

0

0.48

0

0

0

0

Fig. 5. Success probability with two gamers playing together when
VNFs are modeled as M/M/n/k queues and ρ=0.9. Delay dij in ms.

 d
22

 d
11

 = 10

 d
11

 = 15

 d
11

 = 20

 d
11

 = 25

 d
11

 = 30

Scenario (1,1)

0.62

0.62

0.62

0.62

0.59

 d
11

 d
22

 = 10

 d
22

 = 15

 d
22

 = 20

 d
22

 = 25

 d
22

 = 30

Scenario (2,2)

0.73

0.77

0.77

0.77

0.77

 d 22
 =

 1
0

 d 22
 =

 1
5

 d 22
 =

 2
0

 d 22
 =

 2
5

 d 22
 =

 3
0

 d
11

 = 10

 d
11

 = 15

 d
11

 = 20

 d
11

 = 25

 d
11

 = 30

Scenario (1,2)

0.57

0.57

0.57

0.57

0.36

0.57

0.57

0.57

0.37

0

0.57

0.57

0.37

0

0

0.57

0.37

0

0

0

0.36

0

0

0

0

Fig. 6. Success probability with two gamers playing together when
VNFs are modeled as M/M/n/k queues and ρ=0.99. Delay dij in ms.

A. Impact of User-Edge Latency

We discuss the impact of latency between gamers and VNFs
by reporting in Figs. 3 to 6 success probabilities considering
five possible average values for one-way delays, assuming
symmetric paths, hence Uij=Dij : 10, 15, 20, 25, and 30 ms,
in different conditions of edge server load and buffering. On
top of the average delay we consider an additive random
value taken from a triangular distribution between tm=−2 ms
and tM=2 ms, to account for the variable component of the
delay incurred in the RAN (whereas the average RAN delay is
already counted in Uij and Dij). The timeout is set to TO=75
ms, while the delay between the two edge servers is 10 ms. For
a fair comparison of different scenarios, we impose the load of
used edge servers to be fixed to either 0.9 or 0.99, which, once
we have calculated the traffic due to the two reference gamers
g1 and g2, is obtained by appropriately tuning the quantity of
background traffic corresponding to other users. Notice that we
use as definition of the edge server load the ratio ρ= λ

nµ , so
that as ρ approaches 1, available computing resources saturate.

Figs. 3 and 4 report the success probability for the two
gamers with very large (actually, infinite) edge server buffers.
Figs. 5 and 6 show similar results, with k=2n, i.e., 5 proces-
sors and 5 positions in the buffer at e1, and 10 processors and
10 positions in the buffer at e2.

Note that in Scenario (1,1) results are invariant with respect
to d22, since e2 is not used; hence, we only report results for
variable d11. Conversely, in Scenario (2,2) results are invariant
with respect to d11, because e1 is not used; hence, we only
report results vs. d22. In Scenario (2,1) results are invariant to
both d11 and d22 because g1 connects to e2 and g2 to e1. Since
we set d12=d21=20 ms, results for Scenario (2,1) correspond
to those of Scenario (1,2) with d11=d22=20 ms.

We clearly see that performance degrades with higher
latency (i.e. higher distance) between gamers and VNFs, and
when approaching the edge server capacity. Both effects are

quite intuitive. We can also observe that very large buffers
are useful in some cases, not in others. E.g., Scenario (2, 1) at
90% load performs consistently better with shorter buffers, and
almost all scenarios at 99% load perform better with shorter
buffers, except for Scenario (2, 2), with d11=10 ms.

These results indicate that choosing a buffer size at game
VNFs is an important issue. Serving all incoming requests
is not useful when approaching saturation because this risks
increasing latency for all requests to the point that they miss
their deadline. It would be better to instead drop some requests
to ensure that those that are served meet their deadline. Not
excessively large buffers might be therefore preferable.

B. Impact of Buffers at the Edge
The next set of results looks more closely at the effect

of buffering in game VNFs. Figs. 7 and 8 plot the success
probability of g1 and g2 versus the load of the selected edge
servers. The distance between gamers and game VNFs is 20
ms for each gamer-VNF pair, while other parameters are like
before. Each figure contains five curves that correspond to (i)
no buffer, (ii) a number of positions in the buffer equal to the
number of servers (k=2n, with n=5 at e1 and n=10 at e2), or
(iii) 4 times the number of servers (k=5n), and infinite buffer
with either (iv) exponential service times, or (v) deterministic
service times—with one high-speed processor that, for fairness
of comparison, serves requests n times faster than the single
processor used with the other types of queues in which n
processors are used—and a PS scheduler.

In general, we see that with infinite buffers the success
probability drops to zero when ρ=1 because queues reach
saturation and delays diverge. On the contrary, the presence
of a finite buffer yields success probabilities that in some
cases remain at acceptable levels, even in (light) overload.
This is because the finite buffer generates losses that keep
the workload at a feasible level, thus allowing a fraction of
the gamers’ interactions to reach their destination within the

0.5 1 1.5

1

0

0.2

0.4

0.6

0.8

1

S
1

M/M/n/5n

M/M/n/2n

M/M/n/n

M/M/n

M/D/1/PS

(a) Scenario (1, 1)

0.5 1 1.5

1

0

0.2

0.4

0.6

0.8

1

S
1

M/M/n/5n

M/M/n/2n

M/M/n/n

M/M/n

M/D/1/PS

(b) Scenario (1, 2)

0.5 1 1.5

2

0

0.2

0.4

0.6

0.8

1

S
1

M/M/n/5n

M/M/n/2n

M/M/n/n

M/M/n

M/D/1/PS

(c) Scenario (2, 1)

0.5 1 1.5

2

0

0.2

0.4

0.6

0.8

1

S
1

M/M/n/5n

M/M/n/2n

M/M/n/n

M/M/n

M/D/1/PS

(d) Scenario (2, 2)

Fig. 7. Success probability of gamer g1 vs load on the associated edge with TO=75 ms and delays: dij=20 ms, ∀ i, j ∈ {1, 2} and ds=10 ms, d(s)12 =20 ms.
Experimental measures with confidence intervals are reported for the M/M/n/2n case

0.5 1 1.5

1

0

0.2

0.4

0.6

0.8

1

S
2

M/M/n/5n

M/M/n/2n

M/M/n/n

M/M/n

M/D/1/PS

(a) Scenario (1, 1)

0.5 1 1.5

2

0

0.2

0.4

0.6

0.8

1

S
2

M/M/n/5n

M/M/n/2n

M/M/n/n

M/M/n

M/D/1/PS

(b) Scenario (1, 2)

0.5 1 1.5

1

0

0.2

0.4

0.6

0.8

1

S
2

M/M/n/5n

M/M/n/2n

M/M/n/n

M/M/n

M/D/1/PS

(c) Scenario (2, 1)

0.5 1 1.5

2

0

0.2

0.4

0.6

0.8

1

S
2

M/M/n/5n

M/M/n/2n

M/M/n/n

M/M/n

M/D/1/PS

(d) Scenario (2, 2)

Fig. 8. Success probability of gamer g2 vs load on the associated edge with TO=75 ms and delays: dij=20 ms, ∀ i, j ∈ {1, 2} and ds=10 ms, d(s)12 =20 ms.
Experimental measures with confidence intervals are reported for the M/M/n/2n case

0.04 0.06 0.08 0.1

Timeout (s)

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

S
1
 - M/M/n/2n

S
1
 - M/M/n/n

S
1
 - M/M/n

S
1
 - M/D/1/PS

(a) Scenario (1, 1)

0.04 0.06 0.08 0.1

Timeout (s)

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

S
1
 - M/M/n/2n

S
1
 - M/M/n/n

S
1
 - M/M/n

S
1
 - M/D/1/PS

S
2
 - M/M/n/2n

S
2
 - M/M/n/n

S
2
 - M/M/n

S
2
 - M/D/1/PS

(b) Scenario (1, 2)

0.04 0.06 0.08 0.1

Timeout (s)

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

S
1
 - M/M/n/2n

S
1
 - M/M/n/n

S
1
 - M/M/n

S
1
 - M/D/1/PS

S
2
 - M/M/n/2n

S
2
 - M/M/n/n

S
2
 - M/M/n

S
2
 - M/D/1/PS

(c) Scenario (2, 1)

0.04 0.06 0.08 0.1

Timeout (s)

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

S
1
 - M/M/n/2n

S
1
 - M/M/n/n

S
1
 - M/M/n

S
1
 - M/D/1/PS

(d) Scenario (2, 2)

Fig. 9. Success probability of gamers g1 and g2 vs timeout, for variable buffer sizes; dij=20, ∀ i, j∈{1, 2}, d(s)12 =20, ds=10 and load on edges: ρ1=ρ2=0.9.
Results for S2 in scenarios (1, 1) and (2, 2) overlap those for S1, therefore the legend for S2 is omitted.

specified timeout. For example, in Scenario (2, 2) at load
1.25 both gamers see success probabilities of the order of
0.6. This implies that the gaming service can survive periods
of temporary overload with reduced performance, avoiding
blackouts. Indeed, slow variations of the number of gamers
or of their activity, hence of the VNF load, can translate into
the operating point moving along the curves in Figs. 7 and 8.

It is also interesting to observe that, with the chosen
parameters, the allocation of both gamers to the same game
VNF yields success probabilities equal to ∼1 for low loads,
which is not possible with the allocations to different game
VNFs (except for the case of the M/D/1-PS model), due to
the additional 20 ms necessary to go from one edge server
to the other. The reason why the M/D/1-PS model behaves
differently is twofold. First of all, in low load the probability
of a small number of customers in the queue is high so that
the whole processing capacity is divided among few, each
receiving a higher share than with a predefined division in
n shares. Second, the deterministic service time avoids long
service instances that result from sampling the tail of the
exponential distribution. This is on the one hand an indication

of the fact that using fewer powerful processors yields better
performance than using many slower ones, and on the other
of the fact that assuming exponential service times leads to
pessimistic estimates of the overall system performance.

C. Impact of Timeout

The delay with which a gamer visualizes the effect of the
actions of gamers that are playing in her game environment
is a key QoS metric for online gaming. Curves in Fig. 9
show the success probability of the two gamers in the four
possible scenarios with different values for the buffer sizes at
the two edge servers (buffer sizes are however proportional
to the number of processors at each server). The load of each
server is 0.9. Delays from gamers to game VNFs and between
game VNFs are like in the previous case.

In Scenario (1, 2) as well in (2, 1) we clearly see that with-
out buffering only about 50% of gamer’s commands at most
are represented in the video stream within the chosen timeout.
Very large (infinite) buffers allow success probabilities to reach
one, but only for timeouts of the order of about 85 ms or more
(with little benefit deriving from deterministic service times).

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16

Timeout (s)

0

0.5

1

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

 S
1
 , d

12
: 30

 S
2
 , d

22
: 30

 S
1
 , d

12
: 60

 S
2
 , d

22
: 60

Fig. 10. Cloud gaming scenario versus edge gaming scenario with server
load ρ=90%, ds=10 ms; servers modeled as M/M/n queues with n=50 in
the cloud and n=10 in the edge.

In the two scenarios in which a single game VNF is used,
timeouts are easily met in the very large buffer cases for values
as low as 60 ms. On the contrary, with small or no buffer,
the loss at edge servers prevents success probabilities to reach
desirable levels, with the possible exception of Scenario (2, 2),
provided a success probability around 95% is acceptable.

VI. CLOUD VERSUS EDGE GAMING

Our final set of results is reported in Fig. 10. Curves refer to
an edge gaming scenario in which both gamers are connected
to a GaaS slice hosting a game VNF on the edge (an “edge
VNF”) and a cloud gaming scenario, where both gamers
connect to the same “cloud VNF”. The distance of both gamers
from the edge VNF is 30 ms, and 60 ms from the cloud VNF.
The load of servers is 90%. The number of processors at the
edge VNF is 10 whereas at the cloud the number is 50. Buffers
are infinite in both cases. Note that fixing the load at the two
servers implies that the edge performs 20% of the work done
by the cloud, but this is reasonable since an edge architecture
replaces few (very powerful) cloud servers with many (less
powerful) edge servers. This implies a more distributed load
over edge servers for a given population of gamers.

We clearly see that the edge VNF cannot satisfy timeout
values less than 71 ms (30+30 to go and come back to the
game server, 10 for video preparation, 1 for processing at the
edge), while the cloud VNF cannot provide latency lower than
131 ms (60+60+10+1). Success probabilities grow rapidly
beyond those latency values and reach close to 1 at around 80
ms in the case of the edge VNF, and 140 ms in the cloud case.
Note also that the symmetry of the scenario is such that curves
overlap for the two gamers in both edge and cloud cases.

The advantage of the edge architecture is intrinsic in the
distribution of computing facilities over the network, whose
objective is to reduce the latency between users and computing
facilities, and is especially beneficial for latency-constrained
services, like the gaming application we are considering.

VII. VALIDATION

A. Measuring GaaS in the wild

To assess the GaaS performance in real-world edge com-
puting scenarios, we set up a distributed architecture akin to
the one described in Fig. 1. Specifically, we developed a flex-
ible set of instrumented microservices providing the building
blocks of our architecture. Three main blocks were defined:
client, server, and UPF. The setup architecture is depicted

in Fig. 11. The micro-services comprise QUIC endpoints, are
coded in Golang, and are containerized using Docker.

The client container consists of several elements contribut-
ing to setting up an active connection with the game server
and also to tracing and measuring packet receptions, losses,
and time statistics. The packet generator is responsible for
modulating the traffic flow, which subsequently gets marked
with the specific type—either control (Ctrl) or feedback (Fb),
respectively. Moreover, for the Ctrl flow, the marker adds a
timestamp, the client identifier, and a unique identifier for the
packet. Then, dedicated goroutines (i.e., lightweight Golang
threads) handle packet transmissions through QUIC connec-
tions; these goroutines are also responsible for collecting
data and computing statistics from the incoming packets by
matching identifiers, with the help of a list of pending control
threads (i.e., control packets already sent, whose incorporation
in the game stream is not yet completed). Uplink traffic
passes through the UPF container, emulating the behavior
of a tunnel between the player and the game server with a
QUIC connection. Specifically, the UPF implements a single
server with a finite but huge buffer size. At this point, requests
are routed toward the game server associated with the player
originating the traffic flow, obtaining the network setting of
Fig. 11. Packets incoming to the Edge containers are either
local—that is, incoming from the associated player—or Inter-
edge control packets coming from the other game server, see
the solid and dashed lines in Fig. 11 between the two edge
servers. Local packets get to the QUIC endpoint where Fb
packets get discarded, whereas Ctrl packets originate new
Inter-edge control packets (that are necessary for the remote
VNF to generate the video to be delivered to the remote
gamer). Also, identifiers and timestamps associated with Ctrl
packets get inserted in packets carrying the video stream,
marking the fact that such frames report the updates related
to players’ control instructions, as depicted at the bottom of
Fig. 11. Similarly, packets incoming from Inter-edge control
flow get integrated into the downlink stream, with the only
difference being that they are associated with a different QUIC
endpoint. These timestamps and identifiers are necessary for
the computation of the delays with which game commands are
incorporated in the video stream observed by players.

B. Experimental results

We validated our model by comparing model predictions
and experiment measurements with two game VNFs posi-
tioned at a distance of about 20 ms. Both gamers experienced
similar latency when connecting to their nearest game VNF,
also situated about 20 ms away.

Specifically, the game VNFs are 19.30 ms away from each
other, with a standard deviation (σ) of 2.23 ms. The two
players are 20.02 ms (σ=1.76 ms) and 19.77 ms (σ=2.55 ms)
away from their associated game VNF, respectively. The time
required to implement changes to the video stream in the
game VNF is set to ds=10 ms. Game VNFs have either 5
or 10 processors and the same number of positions in the
buffer. Gamers access their game VNF through their associated

Edge 1

Player 1
Packet

generator

Marker QUIC
Fb

Pending
list

UPF
Ctrl

Network
(Internet)

QUIC

QUIC for coordination

FilterSink
Ctrl

Duplicate Encoder

Stats

Fb

Player 2

Edge 2

UPF

UPF

UPF

Inter-edge
control

Game
Stream

DataPlayer
ID

Ctrl
Seq. # Stream DataLast seen

Player ID
Last seen

Ctrl Seq. #

Payload of a QUIC packet sent by a player Payload of a QUIC packet with stream data

Ctrl
Time

Ctrl
Time

Fig. 11. Experimental setup. To enable the computation of statistics, control
(Ctrl) and stream packets carry the relevant ID of players and control sequence
numbers, in addition to timestamps.

UPF, requiring constant times equal to 0.1 ms to process
uplink packets and 0.2 ms for the downlink ones. Gamers
generate an uplink stream of 1 000 control packets per second
of 1 000 bytes each, with only one in every one hundred
packets delivering commands to the game streamer.

We evaluate each gamer’s success probability considering a
latency threshold of 75 ms with different background traffic
intensity; in our experiments, the background traffic ranges
from ρi=0.5 to 1.5, with a step size of 0.1. The comparative
evaluation of our model with real-world measurements is
illustrated in Figs. 7 and 8, accompanied by 90% confidence
intervals. We can observe a very good match between model
predictions and experiments in spite of the many simplifica-
tions introduced in the model.

VIII. CONCLUSIONS

We have proposed an online gaming service deployed on
edge computing facilities and studied the performance of the
system. Through analysis and experiments, we have high-
lighted how our proposal is, on the one hand, very promising,
while being, on the other hand, also very challenging. Indeed,
the downside of the edge option is the need to coordinate
gaming engines on different edge facilities and VNFs.

Our analytical results show that, for a number of parameter
values that reflect real gaming systems, the edge gaming option
can yield lower latency than cloud gaming, provided that the
allocation of interacting gamers to edge servers is carefully
chosen. It often happens that better performance is achieved
by allocating gamers that closely interact on the same edge
server, but under some combinations of the system parameters,
an allocation of gamers to their closest game VNF can be more
effective, in spite of the need for interaction among servers.

Our model can provide a very effective tool for managers
of GaaS applications since it enables the choice of the best
performance option upon the arrival of new groups of gamers.
This allows the GaaS slice to operate at its best performance
and guarantee the best possible QoE to gamers.

In the future, we plan to analyze more realistic gaming
workloads as well as more realistic networking features, with
the constraints imposed by connect-compute architectures that
already exist or are under study in the 3GPP galaxy.

REFERENCES

[1] European Commission, “European Media Industry Outlook report,”
https://digital-strategy.ec.europa.eu/en/library/european-media-industry-
outlook, 2023.

[2] ITU. SG12: Performance, QoS and QoE.
[3] S. Möller et al., “Gaming taxonomy: An overview of concepts and

evaluation methods for computer gaming QoE,” in QoMEX, 2013.
[4] ITU, “ITU-T Recommendation ITU-T G.1032, Influence factors on

gaming quality of experience,” ITU, Tech. Rep., 2017.
[5] ——, “ITU-T Recommendation ITU-T P.809, Subjective evaluation

methods for gaming quality,” ITU, Tech. Rep., 2018.
[6] ——, “Recommendation ITU-T G.1072, Opinion model predicting

gaming quality of experience for cloud gaming services,” ITU, Tech.
Rep., 2020.

[7] K.-T. Chen et al., “On the Quality of Service of Cloud Gaming Systems,”
IEEE Trans. on Multimedia, vol. 16, 2014.

[8] A. Di Domenico et al., “A Network Analysis on Cloud Gaming: Stadia,
GeForce Now and PSNow,” Network, vol. 1, 2021.

[9] O. S. Peñaherrera-Pulla et al., “Measuring Key Quality Indicators in
Cloud Gaming: Framework and Assessment over Wireless Networks,”
Sensors, vol. 21, 2021.

[10] M. Carrascosa et al., “Cloud-gaming: Analysis of Google Stadia traffic,”
Computer Communications, vol. 188, 2022.

[11] X. Marchal et al., “An Analysis of Cloud Gaming Platforms Behaviour
Under Synthetic Network Constraints and Real Cellular Networks Con-
ditions,” J. Netw. Syst. Manage., vol. 31, 2023.

[12] Y. Kim et al., “E-Render: Enabling UHD-Quality Cloud Gaming
Through Edge Rendering,” IEEE Access, vol. 10, 2022.

[13] G. Z. Papadopoulos et al., “IETF Reliable and Available Wireless
(RAW): Use Cases and Problem Statement,” in Ad-Hoc, Mobile, and
Wireless Networks, L. A. Grieco et al., Eds. Springer

[14] M. Bacco et al., “A Simulation Framework for QoE-Aware Real-Time
Video Streaming in Multipath Scenarios,” in Ad-Hoc, Mobile, and
Wireless Networks, L. A. Grieco et al., Eds. Springer

[15] L. De Giovanni et al., “Revamping Cloud Gaming With Distributed
Engines,” Internet Computing, vol. 26, 2022.

[16] X. Zhang et al., “Improving Cloud Gaming Experience through Mobile
Edge Computing,” IEEE Wireless Comm., vol. 26, 2019.

[17] F. Spinelli et al., “Edge Gaming: A Greening Perspective,” Comp.
Comm., vol. 192, 2022.

[18] M. Ghobaei-Arani and et al, “An autonomous resource provisioning
framework for massively multiplayer online games in cloud environ-
ment,” J. of Netw. and Comp. Appl., vol. 142, 2019.

[19] Y. Gao et al., “Energy- and Quality of Experience-Aware Dynamic Re-
source Allocation for Massively Multiplayer Online Games in Heteroge-
neous Cloud Computing Systems,” IEEE Trans. on Services Computing,
vol. 16, 2023.

[20] Y. Liang et al., “Interaction-Oriented Service Entity Placement in Edge
Computing,” IEEE Trans. on Mobile Computing, vol. 20, 2021.

[21] Z. Chen et al., “Wireless Multiplayer Interactive Virtual Reality Game
Systems With Edge Computing: Modeling and Optimization,” IEEE
Trans. on Wireless Communications, vol. 21, 2022.

[22] S. Agarwal et al., “VNF Placement and Resource Allocation for the
Support of Vertical Services in 5G Networks,” IEEE/ACM Trans. Netw.,
vol. 27, 2019.

[23] G. Einziger et al., “Virtual Service Embedding with Time-Varying Load
and Provable Guarantees,” IEEE Trans. on Cloud Computing, vol. 11,
2022.

[24] E. T. S. Institute, “TS 123 501 - V15.3.0 - 5G; System Architecture for
the 5G System (3GPP TS 23.501 version 15.3.0 Release 15),” ETSI,
Tech. Rep., 2018.

[25] T. J. Ott, “The Sojourn-Time Distribution in the M/G/1 Queue with
Processor Sharing,” J. of Appl. Prob., vol. 21, 1984.

[26] Y. Pan et al., “The First 5G-LTE Comparative Study in Extreme
Mobility,” Proc. ACM Meas. Anal. Comput. Syst., vol. 6, 2022.

[27] R. A. K. Fezeu et al., “An In-Depth Measurement Analysis of 5G
mmWave PHY Latency and Its Impact on End-to-End Delay,” in PAM
Conference, 2023, 2023.

