
Effectiveness of Distributed Stateless Network Server
Selection under Strict Latency Constraints

Vincenzo Mancusoa,⇤, Leonardo Badiab,⇤, Paolo Castagnoc, Matteo Serenoc,d,
Marco Ajmone Marsana

aIMDEA Networks Institute, Madrid, Spain
bDept. of Information Engineering, University of Padova, Padova, Italy

cDept. of Computer Science, University of Turin, Turin, Italy
dConsorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Italy

Abstract

We consider a set of network users (nodes), each generating latency-constrained service
requests corresponding to the execution of computational tasks on servers positioned
either within a cloud infrastructure or at the network edge. Within this framework,
we systematically assess the efficacy of a distributed stateless server selection strategy,
strategically performed by individual nodes. Leveraging principles from game theory,
our study allows for a comparative analysis between the optimality achieved through
globally orchestrated stateless allocation and a decentralized stateless server selection
mechanism driven by the self-interested objectives of individual nodes.

Our emphasis on stateless server allocation, rooted in a probabilistic selection
framework between edge and cloud servers, stems from prior empirical revelations
demonstrating the advantageous outcomes of determining the optimal distribution of
edge and cloud tasks based on static network characteristics. Importantly, this determi-
nation occurs irrespective of the real-time network state.

The suboptimal nature of the selfish allocation is quantified by the so called “price
of anarchy,” a metric shown to approximate unity closely. This observation substan-
tiates the justification for a distributed strategic implementation of stateless policies.
This elucidation serves as a pivotal guide for crafting algorithms governing server se-
lection, providing a quantitative validation of the efficacy inherent in distributed self-
interested approaches.

Keywords: Edge computing, Game theory, Radio access network, Distributed
policies, Performance evaluation
2000 MSC: Primary: 68M14; Secondary: 68M20, 91A10

⇤Please address correspondence to Vincenzo Mancuso or Leonardo Badia
Email addresses: vincenzo.mancuso@imdea.org (Vincenzo Mancuso),

badia@dei.unipd.it (Leonardo Badia), paolo.castagno@unito.it (Paolo Castagno),
matteo.sereno@unito.it (Matteo Sereno), ajmone@polito.it (
Marco Ajmone Marsan)

1This is an extended version of [1], published in IEEE MedComNet 2023.

Preprint submitted to Elsevier



1. Introduction

Future mobile communication networks will provide ubiquitous availability of ser-
vices based on pervasive storage and computing [1], provided by either resource-
abundant computing entities physically located in the network core, or less powerful
peripheral servers offering the advantage of proximity to the end user [2].

A fundamental distinction is implied in many studies, and similarly reflected in
our investigation, between cloud and edge servers [3, 4, 5]. Under an extreme simpli-
fication, cloud computing is generally entangled with longer latency, but also higher
capacity than invoking a server located at the edge of the network. Since the ulti-
mate performance experienced by service requests strongly depends on the congestion
encountered at the chosen server, under operational network conditions no choice be-
tween the two server types dominates the other. Rather, the choices of where to direct
individual service requests are interconnected and should be harmonized so as to avoid
overloads.

In this paper, we consider a network scenario where users issue service instances
that must be completed within a strict deadline. Computing is performed in the net-
work, either at the edge or in the cloud [6].

The network control can exploit multiple criteria to allocate service requests to the
more convenient type of server. In [7], we discussed various algorithms, with the objec-
tive of investigating how network state information affects the overall management and
can be captured through different parameters that lead to optimize network allocation.
We performed a comparison between stateless and stateful policies [8] used to route
incoming requests, to either cloud or edge servers. With “stateless” we refer to a policy
that relies on network parameters (such as the server capacity and the overall service
arrival rate) that are relatively stationary and easy to estimate. Stateless policies do not
need to track the status of any client or server. Instead, a “stateful” policy exploits the
instantaneous network conditions and tracks the status of servers and/or clients. A key
result that goes in favor of a low-complexity implementation of the selection policy is
that the performance improvements brought by stateful policies are minimal and also
vulnerable to errors in the parameter estimation that can sometimes lead to worse per-
formance with respect to stateless policies [7]. Thus, it might be more convenient to
apply simple stateless policies, like the one called RANDALPH (randomized alpha) in
[7], which translates in the random assignment of a given fraction ↵ of requests to the
edge server, while the remaining share 1�↵ is executed in the cloud. The computation
of ↵ is centralized, which is proven to be overall efficient in practical contexts.

In [1], we pushed this further by analyzing whether stateless approaches for service
request allocation can be made in a distributed fashion, still achieving efficient control,
without awareness of the network state that would be expensive to acquire. To do so,
we used game theory [9, 10] to solve a distributed selection of a local parameter ↵i for
each request i, chosen by a strategic agent with only local information driven towards
an individualistic objective. This resulted in a game theoretic implementation of the
randomized alpha policy, therefore called GANDALPH (game theoretic RANDALPH).
In the same paper we performed a preliminary quantitative comparison of the perfor-
mance of the centralized policy RANDALPH against the distributed policy GANDALPH,
in particular by considering the globally best assignment of the former and the Nash

2



equilibrium (NE) achieved by the latter, and to compute the Price of Anarchy (PoA)
[11]. We provided analytical justifications about why the PoA is expected to be con-
tained, and we presented results showing that it practically falls within ranges of less
than 10%, thereby supporting a fully distributed and scalable implementation of the
selection policy.

This paper is an extended version of [1], where we present a much more compre-
hensive set of results for the comparison of RANDALPH against GANDALPH, as well
as the results of a fictitious play (FP) with two users, which serves to show how the
NE can be achieved in practice, with no need to disseminate information on server
capacities and on the presence of other users. We have implemented the FP both in
an artificial environment using MATLAB, and in a testbed comprising data centers in
Italy and Spain.

In a nutshell, the main contributions of this paper are the following.

• We prove that a distributed selection of either edge or cloud servers is viable.

• We show that the NE of edge or cloud server selection is near-optimal.

• We show that the PoA of distributed edge or cloud server selection is close to 1.

• We validate the game theoretic model results through an artificial and over-the-
network controlled experimental setups, relying on operational networks.

It is worth noting that in experimental setups the endpoints (i.e., users and servers)
are under the experimenter’s control, so that the system parameters and workload can
be controlled and varied as desired. In the case of artificial experimental setups, we
use Matlab simulations in which the behavior of the network connecting end users to
servers is controlled by the experimenter. On the contrary, in the case of over-the-
network controlled experimental setups, the end users and the servers are connected
over the Internet, and are thus subject to load and latency fluctuations deriving from
the interactions with whatever traffic shares the same network resources as the experi-
ment data. Experiments executed over the network serve to validate the simple model
proposed in this work, and in particular the fact that model assumptions are reasonable.

The rest of this paper is organized as follows. Section 2 addresses related works.
Section 3 describes our scenario and how to evaluate a centralized stateless allocation
of jobs to edge and cloud servers. We present the distributed allocation modeled as a
static game of complete information in Section 4, where we discuss the resulting NE
and its properties, which explains why the resulting solution is near-optimal. Section 5
presents numerical results comparing centralized and distributed allocations. Section 6
describes the implemented FP and reports the results obtained over MATLAB as well as
in a testbed operated over the Internet. Eventually, conclusions are drawn in Section 7.

2. Related Work

The problem of selecting between cloud and edge servers can also be alternatively
termed as computation offloading or request routing. This issue, or to be more pre-
cise, these variations or instances of the problem, have been examined in numerous

3



studies, including [8, 12, 13, 14, 15, 16]. It’s worth emphasizing that this class of
problems can be framed within the research stream that compares global (centralized)
with individual (decentralized) optimizations [17]. This issue has been investigated
across various domains, including communication services, queueing systems, and
transport optimization, among others (a non-exhaustive list of contributions includes
[18, 19, 20, 21, 22, 23]).

In [3, 24], a taxonomy of different approaches to this problem is presented, accord-
ing to which a centralized offloading scheme makes decisions about directing traffic to
either edge or cloud through a single agent that may or may not use information on the
status of the servers, according to which the policy is called either stateful or stateless.

In [7] we showed that ideal stateful policies, with access to instantaneous infor-
mation on either of the available servers or both of them, can outperform stateless
policies. However, stateful policies are prone to errors, and small uncertainty on the
status of the servers dramatically reduces their performance, well below the level that
can be achieved by stateless and simple policies. Indeed, the advantage of stateless
policies is that they are not affected by state estimate errors by definition. In that work,
we only considered centralized policies, whereas here, expanding on [1], we discuss
distributed implementations with their specific challenges.

In general, selfish routing leads to performance degradation, and factors like net-
work topology [15] and load [16] play an important role in performance degradation.
However, the authors of [25] show via analysis and experiments that the performance
loss is minimized if selfish players have little context information, which means that
conveying too much path-load context information to service customers is counterpro-
ductive when they can make decisions on their own. This justifies why here we focus
on stateless routing strategies and do not investigate more complex operational scenar-
ios, although it is known that providing appropriately “curated” and “persuasive” data
to routing deciders can improve performance [26, 27].

In all the studies cited previously, including ours, the comparison between the de-
centralized or selfish approach and the centralized (globally optimized) approach is
conducted using the concept of PoA (Price of Anarchy) introduced by [28], which
serves as a metric to quantify how much system performance suffers from the lack of
regulation.

Contributions that share similar objectives have been investigated in other papers.
For example, [29] proposes a scheduling algorithm aimed at minimizing task execu-
tion time. In other works, offloading is optimized alongside complementary aspects,
such as power allocation [30, 4]. A stateful, distributed, globally optimized solution
is presented in [31], while [32] suggests user clustering, enabling a globally optimized
solution while addressing scalability issues.

With respect to our previous conference contribution [1], in this extended version
we present many more numerical results and design new types of realistic experiments,
to show that the performance of the distributed approach of GANDALPH comes close to
that of the centralized approach of RANDALPH. We do this both by computing the NE
of GANDALPH with game theory approaches, as well as by implementing a fictitious
play (FP) that we play either in an artificial MATLAB environment, or in the wild,
using two data centers (in Italy and Spain) together with their Internet connections.

4



Cloud server

Edge server

BS

Uplink network 
processorRACH

Downlink network processor

Backhaul

Transport/Core
and Internet transit

Figure 1: Reference scenario

3. Preliminaries

The structure of the system considered in our investigation is as follows. We take
the perspective of a service provider that wants to implement an online computing
service for mobile users. The service provider relies on edge and cloud computing
premises. We further assume that the network infrastructure offers the tools necessary
to instantiate network slices. In other words, we assume that the computing service be
implemented through network function virtualization (NFV) and managed through the
gears of software-defined networking (SDN).

Following 3GPP standards, we consider that mobile users (UEs) of a network slice
are connected through a random access channel (RACH) to a base station (BS) that em-
ploys two separate network processors for uplink and downlink messages. The RACH
is assumed to use dedicated resources, so it is seen as isolated from other network
slices on the same BS. The BS is, in turn, attached to a backhaul (BH), where an
edge server is directly connected and can be used for computing tasks requested by the
UEs, albeit with limited capacity. Alternatively, tasks can be sent from the BH through
the transport network and the Internet to a physically distant but more powerful cloud
server [8, 5]. Edge computing resources are potentially convenient for UEs, because
they are close to the UEs, although they can cost more than cloud resources. However,
the cost incurred by the user is oblivious to the use of edge or cloud servers, since the
user pays the operator based on the computing service, not based on where computing
happens. Hence, UEs would tend to use the edge, due to its proximity. Since edge
resources are typically not sufficient to satisfy the demand of all UEs, some UEs will
nonetheless opt for the use of more distant resources at the cloud. Figure 1 illustrates
the reference scenario used in this work, with the backhaul represented as a simple
logical switch although it could be an optical ring. Transport and core of the cellu-
lar network, jointly with the Internet, are symbolically represented as a transit cloud,
which may include several high-speed routing devices. Uplink and downlink messages
are in different colors because they carry different information.

For simplicity, only one server of each kind (cloud or edge) is considered, but the
analysis and the presented expressions can be extended to multiple servers. In particu-
lar, to extend the analysis to the case of more than two servers, it is enough to observe

5



that the workload of UEs splits across servers according to a vector of service selection
probabilities whose values sum to one. In the two-server case, such a vector is simply
given by [↵i, 1 � ↵i], being ↵i the probability that UE i selects the edge server. This
means that we can discuss the two-server case considering just one scalar per UE, and
avoid complicating the notation with vectors in this manuscript. Notice also that per-
formance metrics like loss or failure probabilities will be expressed as average values
over the loss or failure observed at any of the available servers. Also, our model allows
for inserting background traffic whenever needed. This would be necessary when-
ever a quantitative comparison with practical implementations is performed because
the presence of background traffic is unavoidable in any real-world scenario, such as
our testbed, and sometimes its impact is significant [33]. However, in the present eval-
uations, the background traffic does not affect the discussion that we bring forward
related to the distributed implementation of the server selection policies.

UEs are assumed to generate service requests with rate �u. If these requests are
directed to a server whose capacity is saturated, then the request is discarded, and
we consider this to be a loss event. Moreover, we impose a delay constraint on the
execution of the request so that a failure can occur both if the request is discarded
and if a non-discarded request violates the timeout condition (i.e., if the result of the
computation associated with the request does not reach the UE before the timeout ex-
piration). This means that failures happen with probability Pfail that is greater than the
loss probability Ploss as failures are a broader condition. We also distinguish between
P(E)
fail and P(C)

fail (or analogously P(E)
loss and P(C)

loss) as the conditional probability of fail-
ures (or losses) of requests that have been directed to the edge or to the cloud server,
respectively.

The foundation of our analysis is to characterize all the system components as
work-conserving FIFO queues and therefore evaluate the experienced latency as the
convolution of the delay terms at each step. If we represent all the delay terms of
these individual components through the Laplace-Stjeltjes transform (LST) of their
probability distribution function (pdf), the resulting overall delay has an LST obtained
by a chain multiplication of all terms.

Let ↵i be the probability that a request of UE i is sent to the edge server. Hence,
the pdf of the delay of a request that is not lost, has an LST bfT (s) that can be written
as

bfT (s) = bfR(s) bfLu(s) bfLd(s) bfBu(s) bfBd(s)
1

1� Ploss

·
⇣
↵i

⇣
1� P(E)

loss

⌘
bfE(s) + (1� ↵i)

⇣
1� P(C)

loss

⌘
bfTu(s) bfTd(s) bfC(s)

⌘
, (1)

where subscripts indicate individual sources of delay: the RACH (R), the link between
the BS and the network processor (Lu and Ld for uplink and downlink, respectively),
the BH connection (Bu and Bd for uplink and downlink, respectively), the transport
network (Tu and Td for uplink and downlink, respectively), and the time spent in the
edge or in the cloud server (E and C, respectively). With the above, the overall distri-
bution of latency incurred by requests depends on the load of each system component.
Therefore, it is straightforward to use the above formulation either by accounting or
not for the intensity of background traffic.

6



The failure probability Pfail of UE i is the sum of the loss probability and the
probability that service exceeds the timeout. The former is computed as a weighted
average over edge and cloud servers, i.e.,

Ploss = ↵iP
(E)
loss + (1� ↵i)P

(C)
loss, (2)

The probability that service exceeds the timeout is given by 1 � FT (TO). As a
result, the failure probability of UE i has the following expression:

Pfail = Ploss +
�
1� Ploss

��
1� FT (TO)

�
= 1� FT (TO)

�
1� Ploss

�
, (3)

where TO is the timeout value and FT (t) is the cumulative distribution function of
the latency computed as the inverse LST of bfT (s)/s via numerical techniques.2 Notice
that, as described in [7], loss at edge and cloud, and timeout probabilities, depend on
the average of ↵i across all UEs.

Now, we sketch how these components can be modeled, with a more detailed anal-
ysis that can be found in [7]. The RACH model is taken from [33] and considers that
user requests experience a delay due to the transmission over the channel, possibly en-
countering collisions and subsequent backoffs. We take a sufficiently high number of
allowed retransmission attempts to prevent the RACH from losing service requests by
itself. However, losses can occur due to the capacity of the servers being saturated, as
previously discussed. Thus, from [7] we get the following approximate expression for
the LST of the sojourn time in the RACH:

bfR(s) =
1�e�s(Tx+Wx)

s(Tx +Wx)

kxX

i=1

1� e�i

ei(i�1)/2

✓
e�sTx

1 + ⌧̄B

◆
, (4)

where Tx, Wx, kx, and ⌧̄B are RACH parameters corresponding to the maximum time
to reply to a RACH request, the maximum time to establish a connection after a RACH
exchange, the maximum number of transmission attempts, and the average backoff
time in case of collisions. In (4), we consider a traffic-independent expression for
the probability that the RACH request is successful in i attempts, which holds true if
RACH losses are negligible and we adopt power ramping over multiple transmission
attempts.

From the implementation standpoint, the BH consists of individual links and dedi-
cated resources interconnecting the BS, the edge server, and the transport network that
bridges to the cloud. The BH can be considered reliable, i.e., not introducing any loss,
and with high capacity. Both the edge and the cloud servers are assumed to run on
virtual machines (VMs), whose numbers are nE and nC, respectively. Service requests
coming from UEs can be allocated to one VM equivalently located in either server,
after being queued in a buffer with finite capacity. The maximum number of requests

2The division by s in the LST domain corresponds to an integration in the probability domain, so that
while by inverting bfT (s) one would obtain a probability density function, by inverting bfT (s)/s we will
obtain the corresponding cumulative distribution function.

7



that can be held (either queued or undergoing service) at the edge or cloud server is kE
and kC, respectively. Such number represents the capacity of the queue. Hence, a loss
event happens if the number of allocated requests exceeds the queue capacity.

We model the network processor as an M/D/1-PS queue, because time-frequency
resources of a base station are shared among all active transmissions, which can occur
in parallel. All the intermediate queues (backhaul and transport networks) are more
simplistically modeled as M/M/1 queues because of the serial nature of transmission
over many wired link technologies [24]. For all these systems, we just repeat this
model for both uplink and downlink directions. Finally, the edge and cloud servers are
represented as M/M/nE/kE and M/M/nC/kC queues, respectively.3 The multi-server
nature of edge and cloud queues reflects the fact that they are essentially computing
stations with multiple processors available for service [6]. This promptly gives us
expressions for the LST terms in (1). Additionally, the loss probabilities P (E)

loss and
P (C)
loss are computed from the probabilities that the buffer at the queues is full, that is,

the queue is occupied by kE or kC requests, respectively.
Note that we model the (uplink and downlink) network processor delays as deter-

ministic because we consider the case of a lightly loaded BS slice. On the contrary,
we model computing times at both the edge and cloud servers with exponential distri-
butions because of their intrinsic variability and because of our focus on the latency
introduced by those computing elements.

4. Game theoretic model

The idea of RANDALPH is to set the same ↵i = ↵ for all service requests. This
value is computed in a centralized way as a global optimum so that all service requests
are randomly directed to either the edge or the cloud server with respective probabil-
ities ↵ and 1�↵, without constant monitoring of the network state. This centralized
globally-optimized stateless approach is suitable for a simpler implementation, whose
efficiency is still comparable to more complex stateful policies [7].

However, in light of the drawbacks of a centralized computation, we want to ex-
plore a game theoretic approach to determine whether the ↵–values can be efficiently
computed through a distributed evaluation by individual UEs seen as selfish (i.e., strate-
gic) agents. With our approach, selfish UEs would only be required to adjust their
server selection probability ↵i so as to minimize their own failure probability. Adjust-
ing ↵i might be implemented with or without explicit notifications sent by servers. We
opt for the latter operational style for the following reasons. First, implementing server
notifications would require a modifications at both servers and clients and the imple-
mentation of a message exchange. Second, how, when and what should be reported
by servers in order to obtain a robust protocol behavior would require further design,
analysis and evaluation, which goes beyond the scope of this paper. Third, UEs could
seamlessly infer how to adjust their ↵i by observing their failure probability.

3Note that this implies an exponential assumption for service times at both the edge and cloud servers.
This assumption will be validated through a comparison against the results of an experimental setup where
service times are taken to be deterministic.

8



This results in the game theoretic procedure that we named GANDALPH. The dif-
ferences with the original centralized global optimization approach are subtle but es-
sential. Firstly, we consider an individual value ↵i for each service request i. Since we
consider continuous ↵-values, it does not really matter if i identifies the atomic service
request or the UEs as this can be framed as either a fine-grained choice of individual
tasks or a probabilistic assignment of all the tasks of the same user.

Moreover, we do not assume any communication exchange between the agents, so
they all act independently. In the jargon of game theory, we consider a static game
of complete information [9, 19], where all the UEs are equally aware of the network
parameters but cannot communicate their choices. This sets a difference with other
game theoretic approaches based on auctions or bargaining [22, 34], in that our simpler
implementation does not require any subsequent interaction. Finally, the choice of each
agent is selfish, i.e., just driven toward the minimization of the failure probability Pfail

experienced by that player.
Notably, under this approach all users will still choose the same ↵ for symmetry

reasons. However, the rationale of RANDALPH and GANDALPH is different. In the
former, ↵ is a value chosen to be the same by a central optimizer so as to achieve the
best performance. In the latter, each strategic player chooses ↵i so as to optimize a
selfish goal while at the same time being aware that all other players will do the same
[11]. This results in a local optimum from the individual player’s perspective, and NEs
are found as the points without incentives for unilateral deviation towards another ↵i

(while the other ↵j , j 6= i, are kept as they are).
The analysis summarized in the previous section strongly motivates this approach

to be sensible. In practice, the failure probability Pfail that a single player can expect
to get depends on ↵i through a dependence that, avoiding the analytical intricacies, can
be summarized as (2), which uses the total probability on the conditions of choosing
the edge or the cloud server. For a selfish player, the best choice of ↵i happens where
the first derivative of Pfail is zero, but it is immediate to see that the failure probability
of a player is the average failure observed over the two available servers, so that

@Pfail

@↵i

=
@

@↵i

⇣
↵iP

(E)
fail + (1� ↵i)P

(C)
fail

⌘

= P(E)
fail � P(C)

fail + ↵i

@P(E)
fail

@↵i

+(1� ↵i)
@P(C)

fail

@↵i

. (5)

Therefore, equalizing the failure probability of edge and cloud, e.g., with a load balanc-
ing approach, is not necessarily enough to reach a NE. However, if failure probabilities
of edge and cloud can be equalized without incurring server saturation, partial deriva-
tives will be close to zero. In this case, (5) tells that the load balancing point will be
close to the NE. Hence, the analysis reveals that the NE would lead the system to op-
erate almost like in a centralized load balancing scenario when the system load is low.
Under those circumstances, load balancing is indeed near-optimal and very robust [7].
Instead, the operating point would progressively deviate from a balanced assignment
as the load increases and the partial derivative terms in (5) become predominant. This
must not surprise because, at high load, a load balance policy cannot work well as it
would fairly lead all jobs to fail.

9



In general, the partial derivative of the failure probability must be positive for the
edge at any ↵i, while at the cloud it must be negative. Thus, the difference P(E)

fail �P(C)
fail

is a monotonic increasing function of ↵i, ranging from a negative value �P(C)
fail |↵i=0

to a positive value P(E)
fail |↵i=1. The weighted sum of the partial derivatives in (5) has a

similar behavior, but it goes from a positive to a negative value instead. These consid-
erations support the uniqueness of the NE as a point where the failure probabilities at
the cloud and the edge must be different, unless edge and cloud servers have the same
characteristics. Besides, the role of the partial derivatives is important to determine
which server (edge or cloud) must experience a higher loss rate at the NE.

A key observation from the results of [7] is that Pfail is relatively flat around its
minimum in practical situations. This implies that: (i) a local search from an individual
standpoint is likely to achieve near-optimal values of ↵i; (ii) even if ↵i is not exactly
chosen by each individual user as the optimal value of ↵ for RANDALPH, the resulting
Pfail is still likely to be near-optimal.

Moreover, we are interested in obtaining a small average failure probability, other-
wise performance cannot be good and the system operation becomes pointless. Thus,
at least one server must be far from saturation, and if one server approaches satura-
tion, it must receive just a little portion of traffic. Hence, all terms of (5) are small
or slowly changing with ↵i, which explains why Pfail is flat around its minimum. In
particular, the last term describes the influence of a single request on the failures in the
cloud server, which again is sensible to assume to be minimal. The same can hold for
the third term but, while we can argue that the edge server can be more sensitive, we
remark at the same time that if this is the case, it is also likely that ↵i is small, thereby
causing the term to be close to 0.

As argued above, the NE of GANDALPH is necessarily unique because of the mono-
tonic trend that the failure probability of any selfish user must have if it deviates from
the behavior of the other UEs – in particular, it grows if ↵i goes to either 0 or 1, mean-
ing that only either the cloud or the edge server is used. To quantitatively juxtapose the
approaches, we can compare the two values of ↵ under a centralized-global optimiza-
tion or distributed-selfish management, i.e., the optimal value chosen by RANDALPH
and the NE of GANDALPH. A further comparison can quantify the impact that a pos-
sible difference of these ↵ values has on the failure probability. Thus, we compute the
PoA [11, 28] as PoA = PNash

fail /PCoordinated
fail with a clear meaning of the superscripts.

5. Evaluation

We designed a set of simulations and real network experiments to compare coordi-
nated globally-optimal decisions and selfish routing decision strategies in the reference
scenario considered in this paper. In particular, we analyze and compare performance
figures in terms of failure probability Pfail. The difference between RANDALPH and
GANDALPHwill be expressed in terms of PoA. We will also show how the two different
approaches result in routing strategies that can diverge substantially.

10



5.1. Coordinated optimum and NE search
The optimal configuration for RANDALPH is the value of edge routing probability

↵, commonly adopted by all users, that minimizes the failure probability Pfail. Since
this optimization problem is not convex in general, as we will show with an example at
the beginning of the numerical evaluation subsection, we resort to a discretized search.
In practice, we run a brute force search with resolution 10�3 on the value of ↵. The
search requires a few hours of computation of a dedicated 3 GHz processor. We do
not optimize the search of a coordinated optimum, because the object of the work is
not optimization per se, rather the evaluation of the performance and the PoA of a
distributed implementation of the server selection [17].

For what concerns the NE, using a brute force search on condition (5) is impractical,
since the computation of partial derivatives is prone to numerical errors. It would in any
case involve the computation of several values of failure probability for each candidate
value of edge routing probability, so as to be able to confidently estimate the partial
derivative function. Instead, we resort to design a search algorithm which is similar to
the well known binary search. To explain how our algorithm works, consider that Pfail

observed by a selfish user has a single minimum as her routing ↵i changes, while the
rest of users do not change their strategy. To see that, consider what can occur when
the traffic of the selfish user is routed in full to the cloud. The failure probability at the
edge, P(E)

fail |↵i=1 can be smaller, equal, or larger than the failure probability at the cloud,
P(C)
fail |↵i=1. In the first case, offloading some traffic from cloud to edge is beneficial,

although beyond some point the offload can become counterproductive, because P(E)
fail

can only increase while P(C)
fail can only decrease. The last case is similar, but this time

the offload cannot help and the minimum is observed at ↵i = 1. If instead the failure
probabilities are identical, we would need to compare the partial derivatives, to see
which failure probability changes faster, and would reach the same conclusions as in
the other two cases. In all cases, the value of Pfail observed by a selfish user has a
single absolute minimum value for ↵i 2 [0, 1].

From the above considerations, we infer that a selfish user would only deviate her
strategy toward a given direction, and in so doing, she would greedily find her best
routing probability. Moreover, as users have the same characteristics and are rational,
in a distributed implementation scenario they would all have the same incentive to
move like the selfish users we have taken as reference in the discussion so far. This
means that all users would move toward the same direction and iteratively converge
to a NE point. In particular, when we have identified the direction that a selfish user
would take, we can assume that the entire set of users will move in the same direction.

We therefore implement the following search for the NE configuration. We start
by considering a candidate interval for ↵ and take the central value of the interval
as the current routing probability of all users. The initial interval can simply be the
entire space of strategies, i.e., [0, 1]. We then split the interval into three equally sized
adjacent sub-intervals and compute the average value of the failure probability of a
selfish user under the hypothesis that she can decide to move toward a point in any of
the three intervals. We only take a few (3 to 5) evenly spaced samples per sub-interval,
to compute averages and identify the smallest of them. This shows in which direction a
selfish user would move if starting from the center of the interval. Since, as previously

11



Table 1: Parameters used in the numerical evaluation
Parameter Notation Default value

Number of UEs nu 50
Service request rate per UE �u 60 s�1

Number of servers at edge nE 1
Buffer size at edge kE 10 requests

Number of servers at cloud nC 10
Buffer size at cloud kC 50 requests

Average request service time µ�1 5 ms
Round trip time from UE to edge 26.955 ms
Round trip time from UE to cloud 52.498 ms

Number of RACH preambles 54
Max number of RACH retransmissions kx 10

RACH retransmission timeout 10 ms
Uplink packet size 2000 b

Downlink packet size 4000 b
Uplink radio slice capacity 10 Mb/s

Downlink radio slice capacity 25 Mb/s
Uplink BH slice capacity 20 Mb/s

Downlink BH slice capacity 35 Mb/s
Core network slice capacity 100 Mb/s

Service timeout TO 100 ms

noted, the rest of users would follow the target selfish user, we can next repeat the
procedure by considering a narrower search interval that corresponds to either (a) the
right half of the original interval if the selfish user had an incentive to increase ↵i,
(b) the left half is the incentive was toward decreasing ↵i, or (c) a half-sized interval
centered on the current value of ↵i otherwise. Using three partially overlapped intervals
rather than two separate intervals makes the search robust to numerical errors which
might appear when dealing with failure probability values of the order of 10�6 or less,
and adjusting the routing probability by 10�3 or smaller steps. Those errors might
otherwise cause the search to remain stuck in the wrong interval, which is relevant
for cases in which the failure probability is relatively flat and can be small as required
by many commercial applications. The procedure continues until the search interval
size becomes smaller than a threshold (10�4, in the numerical results shown in what
follows). The middle point of the last identified interval is considered as the NE point,
and the associated failure probability is computed.

5.2. Evaluation scenario
To illustrate the behavior of GANDALPH, we evaluate its performance in the con-

crete scenario described next, which allows us to evaluate the impact of several pa-
rameters like the system load and the granularity at which UEs contribute to the system
load, the distance of the cloud service and its capacity. Notation and default parameters
used in the numerical evaluation are indicated in the following text and are summarized
in Table 1.

12



Workload. We consider a radio access network (RAN) slice accessed by nu UEs,
each issuing �u requests per second (req/s), on average. In the plots, we use the value
of the system load ⇢, which is the workload of the system, calculated as the ratio of
the aggregate offered traffic nu�u divided by the total service capacity of the system
(nC+nE)µ, which in turn depends on the number of VMs in the edge and cloud servers
(nE and nC, respectively), and their capacity µ.

Request processing. All requests go through the RACH procedure for which they
use 54 orthogonal preambles with a RACH opportunity every millisecond. The max-
imum number of RACH transmission attempts is kx = 10, enough to guarantee full
reliability of the channel, since users adopt a power ramping algorithm to progressively
increase the transmission power of their RACH preambles after each failure. Retries
are spaced according to random backoff times with average duration 10 ms. With the
adopted configuration, the probability that the RACH will cause a request loss is below
3 · 10�18 and can be therefore neglected. After success on the RACH, requests are sent
in packets of 2000 bits and, as discussed in Section 3, served by a network processor
at the BS, modeled as an FCFS queue. After that, requests move to another queue
representing a BH from which requests are dispatched to either the edge server or to
another queue representing the core network segment between the BH and the cloud
server. The mentioned queues have infinite buffer space, and the RACH does not cause
losses, so that all requests eventually reach either the edge or the cloud server. Down-
link transmissions from the edge or cloud server follow the respective inverse path, and
are sent in individual packets of 4000 bits.

Edge server. All UEs see the same distance to an edge server, since users are
connected to the same BS, hence access the same backhaul. The edge server runs a
single VM, modeled as an M/M/1/kE queue with a finite buffer space (kE = 10
requests – one in service and up to 9 waiting – in the numerical evaluations) with an
exponential service at rate µ = 200 requests per second. In other words, a request
takes on average 5 ms to be served, thus representing short jobs typical of mobile
applications that require network assistance for parsing the local context and making
informed decisions, e.g., in assisted driving applications, steering of UAV fleets, and
so on [35]. The round-trip-time (RTT) between UEs and the edge server is the same as
between UEs and BH, which we set to 24.875 ms, plus an almost negligible extra delay
in accessing the edge server from the BH (we use 0.08 ms as the time needed to cross
the BH) plus 2 ms to account for internal edge data center latency. The resulting RTT
is 26.955 ms. These RTT values are the ones observed in a testbed built to evaluate
RANDALPH in [7].

Cloud server. The cloud is an M/M/nC/kC server with nC = 10 servers (each
akin to the edge server) and kC = 50 maximum requests by default (including requests
under service), although we also explore other values in specific experiments shown
later. The cloud is reachable through the same BH, and the RTT between the BH
and the cloud is set to 24.543 ms unless otherwise specified (again, we use the values
observed in [7]). We also add 1 ms to account for internal delay in the cloud data center.
Therefore, the total RTT between UEs and cloud is 26.955+24.543+1 = 52.498 ms,
without accounting for queueing and processing at the cloud.

Network slice. The capacity of the RAN slice radio link is 10 Mb/s in uplink and 25
Mb/s in downlink, representing a BS slice dedicated to the considered service. The BH

13



capacity is 20 and 35 Mb/s in uplink and downlink, respectively. These values consider
a service that accesses only a slice of the backhaul resources. The core network slice
capacity is 100 Mb/s in both uplink and downlink.

Application timeout. With these system parameters, the performance bottleneck
is at the edge and cloud sites, while network elements only cause random delays. This
implies that system performance is determined by edge/cloud losses and service time-
outs. The value of the latter is set to TO = 100 ms, in line with the requirements of
real-time services for autonomous driving, online gaming, and augmented reality, just
to mention a few use cases [35, 36].

5.3. Numerical evaluation
We evaluate the NE of GANDALPH as a function of the system load ⇢, the number

of cloud servers nC and the round-trip-time distance of the cloud from the backhaul,
as well as the number of UEs in the system. We compare the NE to the optimum ↵
computed by a centralized strategy that minimizes the failure probability. The NE is
numerically found as the value of a common edge selection probability ↵i = ↵Nash for
which the individual failure probability does not improve by selfishly deviating from
it, according to the procedure described in Section 5.1. Numerical results produced by
using MATLAB consist in loss probabilities computed as overflow at servers’ queue,
with queueing theory formulas. They also consist in probabilities of exceeding the
timeout, computed by inverting the LST of RTT. LST expressions take into account the
load partition between edge and cloud imposed by the chosen ↵i. Losses and timeouts
are put together by means of (3), thus yielding the failure probability. Our MATLAB
code needed to compute the NE and to search for the optimal coordinated strategy,
given a set of network and traffic parameters, has been publicly released on GitHub.4
Since with a centralized approach or at equilibrium all users adopt the same value of
↵, and because we only consider GANDALPH at the NE, in what follows we drop the
index i from the notation.

Table 1 summarizes the default parameters used in the numerical evaluation.
We start by showing that the optimization of RANDALPH is not necessarily a convex

problem and that multiple local minima can exist. Figure 2 shows the case with default
parameters, with three different values for the load. The figure zooms into the interval
in which the optimum can be found, which is marked with a blue dot on the curve of
Pfail vs ↵. Figure 2a illustrates a case with low/medium load (⇢ = 0.5), in which the
NE, marked with a red dot, is found at a higher value of the edge routing probability
than at the optimal point. In this case, the failure probability is practically flat until
↵ grows to saturate the edge server, after which we can observe a linearly increasing
failure probability, corresponding to the linear increase in loss at the edge server due
to its overload. Different is the case of Figure 2b, with ⇢ = 1, for which we observe
that the NE occurs at a lower edge routing probability than at the coordinated optimum,
and the region in which the optimum is found is not flat. In both cases, with ⇢ = 0.5
and ⇢ = 1, the optimization is convex (there is a single local minimum). Convexity is,
however, not guaranteed, as shown in Figure 2c. In this case, the failure probability is

4
https://github.com/VMancuso/gandaph

14



0 0.1 0.2 0.3 0.4

Edge routing probability ( )

0

0.05

0.1

0.15

0.2

0.25

P
fa

il
Coordinated
Best
Nash

(a) At ⇢ = 0.5 the function is convex and the
NE is reached at a value of ↵ higher than the
optimal

0 0.1 0.2 0.3 0.4

Edge routing probability ( )

0

0.1

0.2

0.3

P
fa

il

Coordinated
Best
Nash

(b) At ⇢ = 1, the function is convex and the
NE is reached at a value of ↵ lower than the
optimal

0 0.1 0.2 0.3 0.4

Edge routing probability ( )

0.3

0.32

0.34

0.36

0.38

P
fa

il

Coordinated
Best
Nash

(c) For ⇢ > 1, there is a non-convex depen-
dency of failure probability on edge routing
probability (⇢'1.36)

Figure 2: Example of failure probability dependency on edge routing strategy obtained
with nu = 50 users and network parameters as in Table 1. “Coordinated” indicates
results achieved with RANDALPH. “Best” and “Nash” mark the optimal coordinated
strategy and the NE found with GANDALPH, respectively.

somehow flat over a large portion of the interval, which makes the search tedious. Two
local minima are clearly visible, and the NE point is close to one of them, although
unfortunately not the one giving the absolute minimum. Here, to clearly show non-
convexity, we considered a case with very high load. Indeed, the total offered traffic is
nu �u = 3000 req/s, while the aggregate service capacity of edge and cloud servers is
(nC+nE)/0.005 = 2200 req/s, i.e., ⇢ = 1.36. This explains why the failure probability
observed in the figure is high. In particular, since at least 3000�2200 = 800 req/s
cannot be served (without considering timeouts), the bare minimum loss we observe
in the system is 800/3000 = 0.267. Values reported in the figure, just above 0.3, are
therefore not surprising.

It is important to notice that differences in failure probabilities at the two minima of
Figure 2c and the NE are however quite small. In general, in all the cases described in
Figure 2, the failure probability at the NE is very similar to the one at the coordinated
optimum.

For a more comprehensive analysis, we next consider a more extensive range of
loads that implies also more reasonable failure probabilities through the results illus-
trated in Figure 3 for coordinated optimization and NE. Results were obtained through
the centralized solution (i.e., RANDALPH) or the NE where the edge routing probabil-

15



0 0.2 0.4 0.6 0.8 1 1.2 1.4

System load ( )

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
fa

il

Coordinated
Nash

(a) Failure probability

0 0.2 0.4 0.6 0.8 1 1.2 1.4

System load ( )

0

0.2

0.4

0.6

0.8

1

E
d
g
e
 r

o
u
tin

g
 p

ro
b
a
b
ili

ty
 (

)

Coordinated
Nash

(b) Routing strategy

0 0.2 0.4 0.6 0.8 1 1.2 1.4

System load ( )

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

P
o

A
 (

P
fa

il
N

a
sh

 /
 P

fa
il

C
o

o
rd

in
a

te
d
)

(c) Price of anarchy

0 0.2 0.4 0.6 0.8 1 1.2 1.4

System load ( )

0

1

2

3

4

5

6

P
fa

il
N

a
sh

 -
 P

fa
il

C
o
o
rd

in
a
te

d

10-3

(d) Difference between failure probabilities
Figure 3: Performance achieved with optimized RANDALPH (Coordinated) and
GANDALPH (Nash) with the parameter values in Table 1 and variable system load (ob-
tained by varying �u only).

ity is chosen by each UE (i.e., GANDALPH) under the default system configuration of
Table 1, except for �u, which varies from 0 to 3000 req/s (⇢  1.36).

In particular, Figure 3a reports the failure probability as a function of load. Both
coordinated and Nash approaches achieve low and comparable failure probabilities as
far as the system load is below 1. In general, we can see that the two selection poli-
cies achieve very close results. Figure 3b shows that the slightly worse performance
at the NE is due to the fact that the Nash approach leads to higher edge routing prob-
abilities for low loads. This happens because, at low load, the edge server can handle
the majority if not the entire offered load, hence selfish users tend to opt more for the
edge server. The two curves of ↵ have a similar trend, with just a slight divergence
for values of the system load ⇢ higher than 1, which have limited relevance. Figure 3c
illustrates how the PoA (i.e., the ratio of the two curves for Pfail) evolves as the load
increases. We can notice a peak of 1.8 at about ⇢ = 0.1, whereas most of the values of
⇢ yield PoA values which are extremely limited, always below a decrease of efficiency
of 10% for ⇢ > 0.25. The high peak of PoA at ⇢ = 0.1 is occurring at very low failure
probabilities and so it is not very relevant. Indeed, Figure 3d shows that the maximum
difference between failure probabilities at NE and optimum at the PoA peak is below
0.004, which can be considered negligible. More interesting is the fact that the PoA
attains its lowest values for a system load value close to 90%, which is a more realis-
tic operation point. This consideration, jointly with the observation that the maximum
difference in the considered range is below 0.006, indicates that a distributed coordina-
tion, with GANDALPH, promises to be almost as efficient as a centralized coordination,

16



0 20 40 60 80 100 120 140 160 180 200

Number of UEs (n
u
)

0.00995

0.01

0.01005

0.0101

0.01015

0.0102

0.01025

0.0103

0.01035

P
fa

il

Coordinated
Nash

(a) Failure probability

0 20 40 60 80 100 120 140 160 180 200

Number of UEs (n
u
)

0.06

0.065

0.07

0.075

0.08

0.085

E
d
g
e
 s

e
le

ct
io

n
 p

ro
b
a
b
ili

ty
 (

)

Coordinated
Nash

(b) Routing strategies
Figure 4: Performance with optimized RANDALPH (Coordinated) vs. GANDALPH
(Nash) with a variable number of UEs at fixed aggregate traffic of nu�u = 1500 req/s,
and the default parameter values in Table 1 (⇢ = 0.682).

achieved through RANDALPH.
Figure 4 investigates the role of the granularity in the amount of traffic produced

by a single UE. In particular, the figure shows results for a fixed total arrival rate of
nu�u = 1500 req/s, i.e., a medium-high system load (⇢ = 0.682), as the number of
UEs that generate the load increases and hence the importance of each user on the sys-
tem dynamics progressively vanishes. The rest of parameters take their default values.
As can be seen in Figure 4a, the “size” of the UE (i.e., �u = 1500/nu) has little impact
on failure performance, which empirically confirms that using ↵ as the probability to
route a single service request of a UE does not matter, especially when the number
of UEs is high. To explain the result, note that only the aggregate traffic matters for
RANDALPH, as also confirmed by the plot of the edge routing probability shown in
Figure 4b. Instead, the efficiency of GANDALPH slightly decreases when more UEs are
considered (each with a smaller size so that the aggregate traffic is the same), and the
edge routing probability slowly increases. This follows from the principle known as
the tragedy of the commons [11], i.e., the system efficiency decreases when the role of
the individual in the community is less impactful, as selfish behaviors are encouraged.
In this case, however, the efficiency loss is just marginal (note the values on the vertical
axis). The oscillation in the curve of ↵ at the NE in Figure 4b are due to the fact that
we have set the resolution of the search for the optimal ↵ to 10�3.

Figure 5 shows the impact of the distance to the cloud, whose increasing value
deteriorates performance, because it causes more failures. Here, we use nu = 60
and �u = 250 req/s, and variable RTT between the cloud and the BH, while the rest of
parameters take their default values. Notice that the system load in the plots of Figure 5
is the same as in Figure 4.

As illustrated in Figure 5a, the distance between optimum and NE keeps increas-
ing when RTT increases, until both curves reach a plateau. Indeed, the inspection of
the edge routing probability, through Figure 5b, shows that the selfish allocation of
GANDALPH pushes up the edge routing probability ↵, i.e., the probability that the edge
server be selected, up to 100%. This value is reached when requests sent to the cloud
are often violating the timeout, which occurs almost certainly as soon as the edge-cloud
RTT approaches 73 ms, the RTT between UE and edge being just below 27 ms, and the
timeout 100 ms. The distributed assignment GANDALPH is not particularly worse than

17



0 10 20 30 40 50 60 70 80

Cloud RTT from edge (ms)

0

0.2

0.4

0.6

0.8

1

P
fa

il

Coordinated
Nash

(a) Failure probability

0 10 20 30 40 50 60 70 80

Cloud RTT from edge (ms)

0

0.2

0.4

0.6

0.8

1

E
d
g
e
 r

o
u
tin

g
 p

ro
b
a
b
ili

ty
 (

)

Coordinated
Nash

(b) Failure probability

0 10 20 30 40 50 60 70 80

Cloud RTT from edge (ms)

1

1.02

1.04

1.06

1.08

1.1

1.12

P
o

A
 (

P
fa

il
N

a
sh

 /
 P

fa
il

C
o
o
rd

in
a
te

d
)

(c) Price of anarchy
Figure 5: Performance of optimized centralized RANDALPH (Coordinated) and
GANDALPH (Nash) vs the distance of the cloud from the edge, with nu = 60 UEs,
�u = 250 req/s (⇢ = 0.682) and other default parameters.

the original centralized RANDALPH, once again keeping the loss of efficiency within
10%, as reported in Figure 5c. That figure also shows that the PoA diminishes at very
high delay. This is not surprising because when the RTT is too high, no strategy can
lead to good performance. In that case, almost all requests fail, either (i) because they
are routed to the cloud and violate the timeout constraint, as done by the coordinated-
global optimization approach, or (ii) because of the overflow of the edge queue to
which they are routed by the distributed-selfish approach.

Finally, the role of the cloud capacity is explored in Figures 6–7. In all plots,
the capacity of the cloud is changed by varying the number of VMs (nC). Figure 6
considers a fixed offered traffic (nu = 60, �u = 250 req/s, while ⇢ changes with
nC), whereas Figure 7 considers a fixed number of UEs and system load (nu = 60,
⇢ = 0.682, while �u changes with nC).

In these experiments, the buffer space at the cloud also scales with the number of
VMs, with a ratio 5:1, i.e., kC = 5nC. The rest of parameters are as described in
Table 1.

The figures show that (i) edge routing probabilities obtained with centralized and
distributed approaches are not distant (cf. Figures 6b and 7b), and (ii) the correspond-
ing failure probabilities are even closer (cf. Figures 6a and 7a), with PoA values of the
order of a few percent (cf. Figures 6c and 7c). In particular, Figures 6a and 7a show
that when the cloud contains fewer servers, the performance of both GANDALPH and
RANDALPH deteriorates, and both the coordinated and distributed approaches achieve
the same level of quality. They also dictate a more frequent selection of the edge server,
save for GANDALPH under fixed aggregate traffic, where a plateau is reached (see Fig-

18



0 2 4 6 8 10 12 14 16 18 20

Number of cloud VMs (n
C

)

10-2

10-1

100

P
fa

il

Coordinated
Nash

(a) Failure probability

0 2 4 6 8 10 12 14 16 18 20

Number of cloud VMs (n
C

)

0

0.1

0.2

0.3

0.4

0.5

E
d
g
e
 r

o
u
tin

g
 p

ro
b
a
b
ili

ty
 (

)

Coordinated
Nash

(b) Routing strategy

0 2 4 6 8 10 12 14 16 18 20

Number of cloud VMs (n
C

)

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

P
o
A

 (
P

fa
il

N
a
sh

 /
 P

fa
il

C
o
o
rd

in
a
te

d
)

(c) Price of anarchy
Figure 6: Performance of optimized RANDALPH (Coordinated) and GANDALPH

(Nash) with variable cloud capacity (i.e., variable nC, the number of virtual machines
(VMs)), with fixed aggregate traffic of 1500 req/s generated by nu = 60 UEs at
�u = 250 req/s. The buffer space of the cloud is kC = 5nC. Other parameters
are as in Table 1. Network capacity is less than offered traffic, hence ⇢ > 1, as long as
the number of VMs is below 7.

ure 6b). However, the resulting differences in terms of failure probability (Figures 6a
and 7a) are minimal.

With fixed request arrival rate (nu �u = 1500 req/s) and variable cloud capacity
(cf. Figure 6), the load ⇢ is below 1 with 7 or more VMs, because each VM contributes
with a capacity of 200 services per second (and the edge has one VM). This explains the
different behaviors of the curves before and after the point at 7 VMs. The behavior of
the algorithms with only one VM at the cloud is interesting. In that case, the capacities
of edge and cloud are the same, and the network is largely overloaded (1500 req/s
with a total capacity of 400 services per second). Edge and cloud servers are in this
case almost equivalent, since whenever a service request reaches a server, it has a high
chance of being lost due to a full buffer. However, if the request is accepted, it is very
likely to be the last in the buffer and, thus, have in front 9 services (one in progress and
8 in the buffer) at the edge, and 4 services (one in progress and 3 in the buffer) at the
cloud, since at nC = 1 we have just one VM. On average this implies 45 ms waiting
delay at the edge and 20 at the cloud, plus 5 ms for the request service, plus the RTT
from/to the UE. This means 76.955 ms at the edge server (24.875+0.08+2+45+5)
and 75.498 ms at the cloud server (24.875 + 0.08 + 24.543 + 1 + 20 + 5). Hence,
the cloud server is slightly better, and we see in Figure 6b that its choice probability
is slightly higher than 0.5 with the selfish approach. Instead, the best coordinated and
globally optimal strategy consists in sending only a small part of the traffic to the edge,

19



0 2 4 6 8 10 12 14 16 18 20

Number of cloud VMs (n
C

)

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
P

fa
il

Coordinated
Nash

(a) Failure probability

0 2 4 6 8 10 12 14 16 18 20

Number of cloud VMs (n
C

)

0

0.1

0.2

0.3

0.4

0.5

0.6

E
d
g
e
 r

o
u
tin

g
 p

ro
b
a
b
ili

ty
 (

)

Coordinated
Nash

(b) Routing strategy

0 2 4 6 8 10 12 14 16 18 20

Number of cloud VMs (n
C

)

1.01

1.02

1.03

1.04

1.05

1.06

P
o

A
 (

P
fa

il
N

a
sh

 /
 P

fa
il

C
o
o
rd

in
a
te

d
)

(c) Price of anarchy
Figure 7: Performance of optimized RANDALPH (Coordinated) and GANDALPH

(Nash) with variable cloud capacity (i.e., variable nC, the number of virtual machines
(VMs)), with fixed system load ⇢ = 0.682 generated by nu = 60 UEs and variable �u.
The buffer space of the cloud is kC = 5nC. Other parameters are as in Table 1.

and let the rest be lost. By pursuing the more appealing solution, GANDALPH incurs
higher losses, a few percent more than RANDALPH, although this effect is not well
visible in Figure 6a due to the adopted log scale.

Conversely, with fixed system load and variable offered traffic (cf. Figure 7), the
differences between GANDALPH and RANDALPH are less important. In this case, at the
NE point, the edge routing probability is always a bit higher than at the best coordinated
operation point found with RANDALPH. This happens because, being ⇢ < 1 and the
edge not saturated, any selfish UE sees an incentive in offloading some traffic from
cloud to edge, thus sparing some RTT and, in turn, reducing the timeout probability.

6. Fictitious Play Implementation

In this section we introduce a fictitious play (FP) that represents a distributed and
iterative implementation of GANDALPH. We used FP to evaluate the realistic case in
which players do not have complete information on the systems and the other players.
We consider two FP versions. The first consists in a Matlab implementation in which
we can control network and server features in full. The second is a live implementation
of FP over Docker containers connected through the Internet. In the following, we
describe FP, give details on the experimental setup, and compare results obtained with
FP with the ones obtained with our model.

20



Cloud server

Edge server

Internet transit

Lab. 2 
Players

Lab. 1 

Figure 8: FP experimental setup

6.1. Fictitious play and Nash equilibria
Also known as best response dynamics (BRD), FP is a game theoretic procedure

where iterative convergence to a NE is attempted in a distributed fashion [37]. In static
games of complete information, agents have full awareness of the game and therefore
can be assumed to immediately reach a NE as the outcome of the game. In setups with
incomplete or imperfect information, this can be approached through subsequent step-
wise convergence. In other words, agents take actions that maximize their expected
utilities in the current setup, while at the same time forming beliefs about the future
actions of others, also based on local information. While the two terms are equivalent
and often used interchangeably, the former action-taking part is more properly referred
to as BRD, whereas “fictitious play” usually includes the learning and dissemination
aspects as well.

In general, not every NE of a game can be reached through FP, since asymp-
totic convergence is guaranteed only for correlated equilibria, i.e., working points that
are also attractors [38]. However, specific equivalence holds in principle for specific
classes of problems such as congestion games (and more in general potential games),
to which the problem considered here belongs, and where best response dynamics is
actually an efficient way to find the NEs. FP is especially practical in communication
networks, for example, in routing or information spreading problems, where distributed
procedures are common [39]. In a sense, the Bellman-Ford algorithm can be framed
as a BRD, converging to the minimum-cost routing. Also in a similar fashion, FP can
be regarded as a distributed learning procedure, for example through reinforcement
learning [40].

For the particular problem investigated here, we modified the setup to make it dy-
namic (as opposed to a one-shot choice of the parameter ↵) and allowing players to
alternate their actions in rounds and wait to change their action profile until their next
turn. This way, players do not have complete information about the system and can
only observe the effects of the actions on their perceived Pfail. The available actions
are to increase, decrease, or keep ↵i constant. Players choose their actions according
to the Pfail observed at the end of the previous game rounds. If the previous action de-
creased Pfail, the player chooses the same action for the upcoming round, otherwise the
player changes action. Players do not change their previous action for small oscillation
of Pfail, smaller than a threshold �.

21



Table 2: Parameters used in the experimental evaluation
Parameter Notation Value

Number of UEs nu 2
Service request rate per UE �u 100 ⇠ 450 s�1

Number of virtual machines at edge nE 1
Request capacity at edge kE 5 requests

Number of virtual machines at cloud nC 3
Request capacity at cloud kC 15 requests

Average request service time µ�1 5 ms
RTT (UE—edge) 2 ms
RTT (UE—cloud) 40 ms
Service timeout TO 75 ms
Min step size �min 0.01
Max step size �max 0.1

Multiplicative step factor  1.1
Pfail threshold � 1% of Pfail at the previous game stage

6.2. Experimental setup
As shown in Figure 8, the experimental setting is based on a distributed measure-

ment infrastructure spanning two laboratories across Europe, one in Italy and one in
Spain. Labs are connected through the public Internet. Cloud and edge servers are de-
ployed in the two laboratories, and each server instance is configurable in the number
of available virtual machines, waiting room size, and average service time. There are
two players, located in only one of the two labs, so that the server which resides in the
same lab plays the role of the edge server, while the other server plays the role of the
cloud server. We only implement two players to be able to show the game dynamics in
a simple yet effective way.

Servers are implemented using Golang and communicate with players through
QUIC; for ease of deployment, servers are compounded within a Docker image that
we have publicly released on GitHub.5 Players are highly parameterized and follow
the same design pattern of the servers—hence, they are implemented in Golang as
well, and are deployed through Docker images. Players generate a traffic flow whose
intensity is parameterized, and the routing of outgoing traffic is probabilistic, accord-
ing to the selected ↵.6 At the beginning of an experiment, players have no record of
previous actions, and the prescribed action for the two initial stages is to increase ↵
by a fixed amount. Subsequent decisions are taken according to the effects on Pfail

measured during the previous game stages: every time a player needs to pick an action
among those available—namely, stay, increase, or decrease—she compares the past
two Pfail and chooses an action to improve the observed Pfail.

5
https://github.com/paolocastagno/gandalf.git

6In the FP, each player has her own ↵i at each stage of the interactive game, however, here and in what
follows, we omit the index i.

22



The observed average round trip time between players and edge server, all within
the same lab, is 2 ms, while the cloud server is located 39 ms away from the players, in
the other lab. Both servers use virtual machines: one at the edge (nE = 1) and three at
the cloud (nC = 3). All virtual machines implement a deterministic service time equal
to 5 ms, i.e., each of them can serve 200 req/sec. The edge server implements a buffer
hosting four requests, hence kE = 5, considering the single virtual machine used. The
cloud has three times the buffer space of the edge server, i.e., kC = 15, twelve slots
in the waiting room and three virtual machines. Service requests flowing through the
players have exponentially distributed inter-arrival times, and by varying the average
inter-arrival time it is possible to control the system offered load ⇢. Thus, the edge
server is an M/D/1/5 queue, while the cloud server is an M/D/3/15 queue. Table 2
summarizes all the relevant parameters of the experimental setup.

6.3. Comparative performance evaluation of FP, NE and global optimization
Before detailing the experiment’s results, we would like to point out similarities

and differences differences between the experimental settings in the FP implemented
over the Internet, the FP implemented over Matlab and the analytical models for NE
and centralized-global optimum:

1. Since we cannot control latency in the experimental setup, we measure the round
trip times of interest in there, and use them for implementing FP over Matlab and
for computing the model.

2. Servers are fully dedicated to players’ requests in all cases, although the experi-
mental implementation uses Docker containers over lab workstations, hence they
might see some noise due to the host operating system.

3. Similarly, network conditions are not necessarily stable in the experiments over
the Internet, in which some uncontrolled background traffic was present.

4. FP in experiments and in Matlab always uses an iterative algorithm in which
players alternate their moves, while in the model the users can directly calculate
the NE and jump to it.

5. In the experimental FP implementation, the service time is deterministic rather
than exponentially distributed like in FP over Matlab and in the model.

6. Since we implement FP with a tolerance � on Pfail, the two players might con-
verge to a strategy in which their failure probabilities differ slightly. Therefore,
for FP, the PoA is computed as the ratio between the average Pfail observed by
the two players and the optimal solution.

7. In experimental settings, testing players’ actions requires to dwell in the current
setting until a reliable evaluation of Pfail is made. To speed-up convergence of
FP, we implemented an adaptive step that is increased by a factor every time the
selected action reduces Pfail or halved otherwise. Also, to control the oscillation
arising from the interleaving choices of the players, the step length is bounded
within [�min,�max].

The FP implementation has been extensively evaluated, and Figure 9 reports the ac-
tions taken by the players at FP convergence and the corresponding Pfail observed for
different traffic loads in both the experimental and the MATLAB settings, compared

23



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

System load ( )

10-1

P
fa

il
Coordinated
Nash
Player 1 - Fictitious play (MATLAB)
Player 2 - Fictitious play (MATLAB)
Player 1 - Experimental
Player 2 - Experimental

(a) Players’ observed Pfail

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

System load ( )

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Coordinated
Nash
Player 1 - Fictitious play (MATLAB)
Player 2 - Fictitious play (MATLAB)
Player 1 - Experimental
Player 2 - Experimental

(b) Routing strategy
Figure 9: Players’ action profile for GANDALPH (Nash), for the analytical and experi-
mental implementations of FP with the parameter values in Table 2 and variable system
load (obtained by varying �u only).

5 10 15 20 25

Game stage

0.05

0.06

0.07

0.08

0.09

0.1

0.11

P
fa

il

Player 1 - Fictitious play (MATLAB)
Player 2 - Fictitious play (MATLAB)
Nash equilibrium point
Player 2 - Experimental
Player 1 - Experimental

(a) Evolution of failure probability

5 10 15 20 25

Game stage

0.15

0.2

0.25

0.3

0.35

Player 1 - Fictitious play (MATLAB)
Player 2 - Fictitious play (MATLAB)
Nash equilibrium point
Player 2 - Experimental
Player 1 - Experimental

(b) Evolution of edge routing strategy
Figure 10: Action profile for GANDALPH (Nash) with two players when implementing
FP (solid and dashed are MATLAB and experimental measures respectively) with fixed
system load ⇢ = 0.75 generated by nu = 2 UEs. The buffer space of the cloud is
kC = 15nC = 3 and in the edge is kE = 5nE = 1. Other parameters are as in Table 2.

to both the NE and the centralized global optimal solution. The iterative approach of
FP shows some variability around the expected routing choices; however, such oscilla-
tions barely impact the observed failure probabilities. The MATLAB implementation
of FP shows some differences in the failure probability for low traffic loads, but this is
due to the relatively flat shape of the Pfail in the surrounding of the NE. The iterative
approach easily reaches the plateau, but then struggles to reach the exact equilibrium
point due to the minor variations in the values of failure probability in this area. Indeed,
small variations of the failure probability–smaller than the threshold �–do not cause
the algorithm to change its previous decision. On the other hand, the variability of the
network conditions and the presence of unrelated background traffic cause the experi-
mental measure to slightly differ from the analytical solution. Also, small differences
in the observed Pfail depend on the reduced variability induced by the deterministic
service time used in the experimental measures to model services at the edge and cloud
servers, whereas the analytical implementations (i.e., FP over MATLAB, Nash, and
centralized global solutions) employ exponentially distributed service times.

Figure 10 shows the evolution of the iterative game for an offered load ⇢ = 0.75.
Specifically, Figure 10a reports the observed Pfail, while Figure 10b shows the evolu-
tion of the routing actions taken by the two players, i.e., the values of ↵ controlling

24



the routing of the service requests, which produce the failure probability of the previ-
ous figure. In this setup, the initial routing configuration is close to the NE, but due
to the algorithm design the early stages take players away from it. However, as soon
as players start to evaluate the effects of past choices, they invert the trend and start
approaching values close to the NE. Remarkably, already at the twelfth game stage, the
observed Pfail values converge to the desired equilibrium.

Notice that stochastic and dynamic system behaviors exist in reality and in our
specific implementation, while our model accounts for a mean-field analysis of per-
formance. Nonetheless, the results in this section have shown that our simple model
produces accurate predictions of the system performance.

7. Conclusions

We presented a game theoretic analysis of a randomized policy for edge/cloud
server selection to satisfy latency-constrained computing-based service requests.

Our objective was to quantify the efficiency of a distributed-selfish implementation
of the policy as compared to a centralized-global optimization of the server selection
probabilities. This is useful for system design purposes, as it offers the tools to predict
the system behavior of alternative policies in a temporal snapshot, under the worst case
operational conditions, with ⇢ representing the traffic load in the peak hour.

Our results are extremely encouraging, since they show that a selfish allocation by
strategic agents, through an algorithm called GANDALPH, behaves very similar to the
centralized-global optimal policy RANDALPH, with values of ↵ that are close, at least
when the system is not overloaded, and resulting performance metrics that are even
closer, in all cases, for the two approaches.

Furthermore, our experimental validation showed that a distributed allocation con-
verges to the Nash equilibrium in practical contexts, even when using the iterative
approach typical of selfish players following best response dynamics (with a “fictitious
play”).

Although the presented performance analysis is valid for homogeneous settings,
and a wider performance evaluation of more heterogeneous servers, users and scenar-
ios in general is left for future work, our results bear significant practical relevance.
They prove that a simple distributed server selection policy based on a distributed ap-
proach can provide performance quite close to the centralized globally optimum ap-
proach. Indeed, while our previous work in [7] proved that algorithms based on global
system parameters can be more effective than stateful algorithms due to the inherent
staleness of state information, in this paper we go one step further, proving that dis-
tributed selfish stateless algorithms perform almost as well as their centralized global
optimization counterparts. This provides solid ground for implementations based on
simple distributed approaches, which do not require continuous parameter monitoring
and reporting or a central controller.

Acknowledgments

This work has been supported by the Project AEON-CPS (TSI-063000-2021-38),
funded by the Ministry of Economic Affairs and Digital Transformation and the Eu-

25



ropean Union NextGeneration-EU in the framework of the Spanish Recovery, Trans-
formation and Resilience Plan and by the RESTART Program, financed by the Italian
government with the resources of the Italian Recovery, Transformation and Resilience
Plan – Mission 4, Component 2, Investment 1.3, theme 14 “Telecommunications of the
future” (PE00000001 - program “RESTART”, projects R4R and ITA NTN).

References

[1] V. Mancuso, L. Badia, P. Castagno, M. Sereno, M. Ajmone Marsan, Efficiency
of distributed selection of edge or cloud servers under latency constraints, in:
Proc. IEEE Mediterranean Communication and Computer Networking Confer-
ence (MedComNet), 2023, pp. 158–166.

[2] J. Pan, J. McElhannon, Future edge cloud and edge computing for Internet of
things applications, IEEE Internet Things J. 5 (1) (2017) 439–449.

[3] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, P. Mohapatra, Edge cloud of-
floading algorithms: Issues, methods, and perspectives, ACM Comp. Surv. 52 (1)
(2019) 1–23.

[4] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, B. Hu,
Energy-latency tradeoff for energy-aware offloading in mobile edge computing
networks, IEEE Internet Things J. 5 (4) (2017) 2633–2645.

[5] L. Liu, Z. Chang, X. Guo, S. Mao, T. Ristaniemi, Multiobjective optimization for
computation offloading in fog computing, IEEE Internet Things J. 5 (1) (2017)
283–294.

[6] R. Gouareb, V. Friderikos, A.-H. Aghvami, Virtual network functions routing and
placement for edge cloud latency minimization, IEEE J. Sel. Areas Commun.
36 (10) (2018) 2346–2357.

[7] V. Mancuso, P. Castagno, M. Sereno, M. Ajmone Marsan, Stateful versus state-
less selection of edge or cloud servers under latency constraints, in: Proc. IEEE
WoWMoM, 2022, pp. 110–119.

[8] G. Panek, I. Fajjari, H. Tarasiuk, A. Bousselmi, T. Toukabri, Application reloca-
tion in an edge-enabled 5G system: Use cases, architecture, and challenges, IEEE
Commun. Mag. 60 (8) (2022) 28–34.

[9] G. Quer, F. Librino, L. Canzian, L. Badia, M. Zorzi, Inter-network cooperation
exploiting game theory and Bayesian networks, IEEE Trans. Commun. 61 (10)
(2013) 4310–4321.

[10] J. Moura, D. Hutchison, Game theory for multi-access edge computing: Survey,
use cases, and future trends, IEEE Commun. Surveys Tuts. 21 (1) (2018) 260–
288.

26



[11] L. Prospero, R. Costa, L. Badia, Resource sharing in the Internet of Things and
selfish behaviors of the agents, IEEE Trans. Circuits Syst. II 68 (12) (2021) 3488–
3492.

[12] L. Qiu, Y. R. Yang, Y. Zhang, S. Shenker, On selfish routing in Internet-like
environments, in: Proc. ACM SIGCOMM, 2003, p. 151–162.

[13] W. Xu, J. Rexford, MIRO: Multi-path interdomain routing, in: Proc. ACM SIG-
COMM, 2006, p. 171–182.

[14] L. Badia, M. Miozzo, M. Rossi, M. Zorzi, Routing schemes in heterogeneous
wireless networks based on access advertisement and backward utilities for QoS
support, IEEE Commun. Mag. 45 (2) (2007) 67–73.

[15] F. Benita, V. Bilò, B. Monnot, G. Piliouras, C. Vinci, Data-driven models of self-
ish routing: why price of anarchy does depend on network topology, in: Proc.
WINE, Springer, 2020, pp. 252–265.

[16] R. Colini-Baldeschi, R. Cominetti, P. Mertikopoulos, M. Scarsini, When is selfish
routing bad? The price of anarchy in light and heavy traffic, Op. Res. 68 (2)
(2020) 411–434.

[17] C. H. Bell, S. Stidham, Individual versus social optimization in the allocation of
customers to alternative servers, Manag. Sc. 29 (1983) 831–839.

[18] H. Kameda, J. Li, C. Kim, Y. Zhang, Overall Optimal Load Balancing vs. Indi-
vidually Optimal Load Balancing, Springer London, London, 1997, pp. 35–97.

[19] M. Haviv, T. Roughgarden, The price of anarchy in an exponential multi-server,
Oper. Res. Lett. 35 (4) (2007) 421–426.

[20] E. Altman, U. Ayesta, B. Prabhu, Load balancing in processor sharing systems,
Telecommun. Syst. 47 (2011) 35–48.

[21] A. Orda, R. Rom, N. Shimkin, Competitive routing in multiuser communication
networks, IEEE/ACM Trans. Netw. 1 (5) (1993) 510–521.

[22] A. V. Guglielmi, M. Levorato, L. Badia, A Bayesian game theoretic approach to
task offloading in edge and cloud computing, in: Proc. IEEE ICC Wkshps, 2018.

[23] T. Roughgarden, E. Tardos, How bad is selfish routing?, J. ACM 49 (2) (2002)
236–259.

[24] F. Sufyan, A. Banerjee, Computation offloading for distributed mobile edge com-
puting network: A multiobjective approach, IEEE Access 8 (2020) 149915–
149930.

[25] S. Scherrer, A. Perrig, S. Schmid, The value of information in selfish routing, in:
Proc. SIROCCO, 2020, p. 366–384.

27



[26] Y. Zeng, Q.-C. He, X. Cai, Targeted Bayesian persuasion in a basic selfish routing
game, in: Proc. INFORMS-CSS, Springer, 2022, pp. 47–56.

[27] P. N. Brown, Providing slowdown information to improve selfish routing, in:
Proc. GameNets, Springer, 2023, pp. 328–338.

[28] C. H. Papadimitriou, Algorithms, games, and the Internet, in: Proc. ACM STOC,
2001, pp. 749–753.

[29] J. Liu, Y. Mao, J. Zhang, K. B. Letaief, Delay-optimal computation task schedul-
ing for mobile-edge computing systems, in: Proc. IEEE ISIT, 2016, pp. 1451–
1455.

[30] F. Shan, J. Luo, J. Jin, W. Wu, Offloading delay constrained transparent com-
puting tasks with energy-efficient transmission power scheduling in wireless IoT
environment, IEEE Internet Things J. 6 (3) (2018) 4411–4422.

[31] I. Cohen, P. Giaccone, C. F. Chiasserini, et al., Distributed asynchronous proto-
col for service provisioning in the edge-cloud continuum, in: International Con-
ference on Software, Telecommunications and Computer Networks (SoftCOM
2023), IEEE, 2023.

[32] D. Haja, M. Szabo, M. Szalay, A. Nagy, A. Kern, L. Toka, B. Sonkoly, How to
orchestrate a distributed openstack, in: IEEE INFOCOM 2018-IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, 2018,
pp. 293–298.

[33] P. Castagno, V. Mancuso, M. Sereno, M. Ajmone Marsan, A simple model of
MTC flows applied to smart factories, IEEE Trans. Mobile Comput. 20 (10)
(2020) 2906–2923.

[34] G. Gao, M. Xiao, J. Wu, H. Huang, S. Wang, G. Chen, Auction-based VM al-
location for deadline-sensitive tasks in distributed edge cloud, IEEE Trans. Serv.
Comput. 14 (6) (2019) 1702–1716.

[35] D. Callegaro, M. Levorato, Optimal edge computing for infrastructure-assisted
UAV systems, IEEE Trans. Veh. Technol. 70 (2) (2021) 1782–1792.

[36] G. Premsankar, M. Di Francesco, T. Taleb, Edge computing for the Internet of
Things: A case study, IEEE Internet Things J. 5 (2) (2018) 1275–1284.

[37] B. Swenson, S. Kar, On the exponential rate of convergence of fictitious play in
potential games, in: Proc. IEEE Allerton Conf., 2017, pp. 275–279.

[38] G. Ostrovski, S. van Strien, Payoff performance of fictitious play, J. Dyn. Games
1 (4) (2014) 621–638.

[39] E. Altman, Bio-inspired paradigms in network engineering games, J. Dyn. Games
1 (1) (2014) 1–15.

[40] F. Chiariotti, L. Badia, Strategic age of information aware interaction over a relay
channel, IEEE Trans. Commun. (2024).

28


