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Abstract 13 

Precision farming (PF) allows the efficient use of resources such as water, and 14 

fertilizers, among others; as well, it helps to analyze the behavior of insect pests, in order to 15 

increase production and decrease the cost of crop management. This paper introduces an 16 

innovative approach to integrated cotton management, involving the implementation of an 17 

Autonomous Cycle of Data Analysis Tasks (ACODAT). The proposed autonomous cycle is 18 

composed of a classification task of the population of pests (boll weevil) (based on eXtreme 19 

Gradient Boosting-XGBoost), a diagnosis-prediction task of cotton yield (based on a fuzzy 20 

system), and a prescription task of strategies for the adequate management of the crop (based 21 

on genetic algorithms). The proposed system can evaluate several variables according to the 22 

conditions of the crop, and recommend the best strategy for increasing the cotton yield. In 23 

particular, the classification task has an accuracy of 88%, the diagnosis/prediction task 24 

obtained an accuracy of 98%, and the genetic algorithm recommends the best strategy for the 25 

context analyzed. Focused on integrated cotton management, our system offers flexibility 26 

and adaptability, which facilitates the incorporation of new tasks. 27 

 28 

Keywords: Precision Farming, Artificial Intelligence, Data Analysis. Autonomous Systems, 29 

Integrated Cotton Management.  30 

1. Introduction 31 

Precision Farming (PF) involves technologies for data collection, data analysis, and 32 

decision-making (Say et al., 2018). Data collection technologies, such as sensors, are used to 33 

understand the environment (Cui et al., 2022). Data processing technologies use data models 34 

for interpretation tasks (Kong et al., 2019). Decision-making technologies also use data 35 

models and actuators for planning tasks and changing the environment (Singh & Sharma, 36 

2022).  37 

On the other hand, there is a need to improve cotton production (Ghaffar et al., 2020) 38 

and PF technologies can help with this task (Coulibaly et al., 2022). According to Ghaffar et 39 
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al. (2020), there is a great challenge in the management of cotton cultivation in which factors 40 

such as proper management of nutrients, pests, diseases, irrigation, etc. play an important 41 

role. In this paper, a PF approach based on autonomous data analysis cycles for integrated 42 

cotton management has been used.  43 

1.1. Related works 44 

Several studies have investigated integrated management approaches based on PF. 45 

For example, Tribouillois et al. (2022) built an integrated model for crop and water 46 

management to optimize irrigation. They used a combination of techniques to reduce water 47 

usage while also diversifying the types of crops grown in irrigated watersheds. Hajimirzajan 48 

et al., (2021) proposed a large-scale crop planning, which involves a comprehensive strategic 49 

framework that employs a decision support system to determine the sustainable use of water, 50 

as well as optimal crop selection, timing, and cultivation practices. Aggarwal and colleagues 51 

(2022) developed a geospatial analysis system to preserve land fertility, optimize agricultural 52 

revenue, and minimize agricultural pollution and water consumption. The system allows land 53 

use planning with rotating crops. Wu et al. (2020) developed a model for integrated nutrient 54 

management that included four factors: chemical fertilizers, domestic livestock manure, 55 

large-scale livestock manure, and cultivated area. The authors found that there is a need to 56 

improve integrated nutrient management, expand livestock manure, and control cultivated 57 

areas of certain crops.  58 

Diagnostic tasks in agriculture have helped the early diagnosis of crop diseases. For 59 

example, Masood et al. (2020) used a Convolutional Neural Network CNN) model to 60 

diagnose rice crop regions affected by the disease. The results showed that their proposal 61 

outperforms the standard CNN model in terms of recall, precision, F1, and accuracy score. 62 

Suleiman (2019) developed an expert system that can identify and diagnose safflower 63 

diseases like Cercospora leaf spot, powdery mildew, head rot, and wilt, among others. The 64 

expert system provides information on the symptoms, propagation, and survival of each 65 

disease. Several studies have focused on the classification tasks of agricultural pests. For 66 

example, the identification of Helicoverpa armigera by Kandalkar et al. (2014) involved 67 

image segmentation using a saliency map, feature extraction via the discrete wavelet 68 

transform, and pest classification through the use of a back-propagation neural-network. 69 

In prediction tasks of crop yield, there are some studies such as the following. Maskey 70 

et al. (2019) investigated the correlation between weather parameters and strawberry yield. 71 

They used principal component regression, single-layer neural network, and random forest 72 

to forecast yield, analyzing various weather conditions. Ali et al. (2018) suggested a hybrid 73 

genetic programming model with an integrated Markov Chain Monte Carlo, utilizing climate 74 

data such as humidity, rainfall, and temperature. Similarly, Lobell and colleagues (2013) 75 

utilized non-linear regression to predict maize yield and demonstrated a notable negative 76 

response to temperatures exceeding 30 ºC, and a better response to seasonal rainy seasons. 77 

On the other hand, various technologies have been developed to aid cotton farmers in 78 

making decisions about irrigation, fertilization, pest control, and other practices. One of these 79 

tools is the use of expert systems, which are computer programs that perform at the level of 80 

human experts. For example, COMAX is an expert system that acts as an expert in cotton 81 
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crop management and determines the best strategy for irrigating, applying fertilizer, and 82 

applying defoliants and cotton boll openers (Lemmon, 1986).  83 

Another tool employed is crop simulation modeling, which is a system that simulates 84 

the growth and development of cotton plants under different environmental and management 85 

conditions. Cotton crop simulation models are mathematical models that can be used to 86 

predict the growth, development, and yield of cotton crops. Hearn (1994) developed a cotton 87 

crop simulation model, which was validated against six data sets from agronomic 88 

experiments. The model demonstrated sensitivity to climatic and agronomic variables, such 89 

as irrigation regime, nitrogen fertilizer rate, and sowing date. The Cropping System Model 90 

(CSM)-CROPGRO-Cotton model is another cotton crop simulation model that was 91 

developed by Pathak et al. (2012). The CSM-CROPGRO-Cotton model is more complex 92 

than Hearn's model, and it requires many parameters and inputs. However, the CSM-93 

CROPGRO-Cotton model can be used to predict a wider range of cotton crop traits, such as 94 

leaf area index, leaf weight, stem weight, and boll weight.  95 

A third technology is the use of decision support systems, which are computer 96 

programs that help users make choices among alternatives based on their values and 97 

preferences. Jones & Barnes (2000) proposed a decision support system that allows users to 98 

express individual or corporate values and preferences; considers the degree of imprecision 99 

associated with each input; reduces several levels of complex information into a single chart; 100 

and allows examination of trade-off between alternatives and interests. This decision support 101 

system also uses remote sensing data to describe spatial variability in terms that can be related 102 

to a crop model, making the decision-making approach feasible for PF applications. The crop 103 

model provides information that can be used by the decision support system, and the remote 104 

sensing data is used to fine tune the calibration of the crop model, maximizing the accuracy 105 

of its results.  106 

Some of the above articles propose expert systems, cotton crop simulation models 107 

and decision support systems. Others propose specific diagnostic and prediction tasks, for 108 

example, of crop behavior. That work shows that it is possible to develop systems that can 109 

help farmers make better decisions about crop management, which will lead to better yields 110 

and profits. Our ACODAT system integrates multiple tasks for analyzing the behavior of 111 

cotton cultivation in order to make recommendations; to our knowledge, it is the first work 112 

with these characteristics. 113 

1.2. Our contribution 114 

To the best of our knowledge, there are no studies that a) implement an autonomous 115 

system using ACODAT for integrated cotton management; b) prescribe strategies for the 116 

adequate management of the crop; c) integrate different models of knowledge (classification, 117 

diagnosis/prediction and prescription) for the management of crops (Toscano-Miranda et al., 118 

2022a; Toscano-Miranda, et al., 2022b); d) concurrently employ several types of variables 119 

(fertilizers, climate, the behavior of pests, etc.); and e) and utilize uncertainty models for the 120 

prediction/diagnosis of crop yields. These gaps constitute the focus of our study. 121 

Particularly, in this paper, we focus on PF based on the Autonomous Cycle of Data 122 

Analysis Tasks (ACODAT) for integrated cotton management. We use ACODAT, which has 123 

two advantages. First, ACODAT allows automating the entire process, the phases of 124 
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monitoring, analysis and decision making. Second, it does so from the process data. 125 

According to Sanchez et al. (2016),  ACODAT makes use of diverse succeeding data analysis 126 

tasks interacting with one another to obtain the necessary knowledge to introduce process 127 

improvements. ACODAT has been utilized in various fields, including telecommunications, 128 

smart cities, industry 4.0, education, and medicine, as evidenced by different works (Aguilar 129 

et al., 2008; Aguilar et al., 2020a; Morales et al., 2019; Sánchez et al., 2020).  Morales et al. 130 

(2019) focused on the telecommunications sector, where they developed an ACODAT to 131 

manage the quality of service in Internet of Things (IoT) platforms, utilizing classification 132 

and clustering tasks. It has been employed in smart cities for the purpose of regulating and 133 

monitoring heating, ventilation, and air conditioning systems (Aguilar et al., 2020a). The 134 

efficiency of production processes in Industry 4.0 has been enhanced through the use of 135 

ACODAT. For instance, Sánchez et al. (2020) introduced an architecture that resolves the 136 

issues of heterogeneity and actor integration in manufacturing processes. The outcomes 137 

demonstrated that ACODAT facilitated interaction among actors such as things, data, people, 138 

and services, resulting in the definition of a self-optimization and self-configuration plan. In 139 

the educational domain, ACODAT has been implemented to identify learning styles in smart 140 

classrooms, demonstrating its usefulness. Monsalve, et al. (2020) utilized ACODAT to study 141 

social network and web data, creating knowledge models about students to facilitate ongoing 142 

monitoring of their learning process. The findings underscored ACODAT's capacity to 143 

generate practical knowledge that can improve the learning experience, particularly in smart 144 

classrooms. Finally, the ACODAT approach has been used in the domain of medicine for 145 

clinical disease management (Hoyos et al., 2022).  146 

This work aims to define an ACODAT for integrated cotton management. The 147 

contributions of this work are the following:   148 

• The definition and implementation of an autonomous system based on ACODAT 149 

for integrated cotton management; 150 

• A task of classifying the pest population (boll weevil) according to the level of 151 

attack on the cotton crop, based on the work (Toscano-Miranda et al., 2022a); 152 

• An adaptive model for the management of uncertainty based on a fuzzy system 153 

(FS) for the prediction/ diagnosis of cotton yield; 154 

• The simultaneous use of information on fertilizers and crop status, climatic 155 

variables and level of pest attack, for pest monitoring and control, which improves 156 

the prediction/diagnosis yield; 157 

• A prescription task for the generation of strategies for the adequate management 158 

of the crop based on the previous tasks of the autonomous cycle.  159 

The paper is structured in the following manner: Section 2 presents the theoretical 160 

framework of this paper. Section 3 outlines our integrated cotton management approach 161 

based on PF using ACODAT. Section 4 presents a case study to evaluate our proposal, and 162 

Section 5 describes the results. Finally, Section 6 shows the conclusions and highlights some 163 

of the future directions of this work. 164 
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2. Theoretical framework 165 

This section presents concepts about PF for integrated production management, 166 

ACODAT, and the Methodology for Data Analytics based oN Organizational 167 

characterization through a user-centered design (MIDANO). 168 

2.1. PF for integrated production management 169 

PF aims to reduce costs, increase yield, using the right resources, being friendly to 170 

the environment. According to Gandonou (2005), PF is a set of technologies that help the 171 

farmer manage the agricultural process. In addition, it aids in production risk management 172 

(e.g., through the variable nutrient application), and reduces water consumption (e.g., through 173 

drip irrigation). 174 

Say et al. (2018) grouped the PF technologies into three: a) Data collection 175 

technologies (e.g., soil sampling and mapping, yield monitoring and remote sensing); b) Data 176 

analysis technologies (e.g., geographic information system, economic analysis and 177 

modelling); c) and decision-making technologies (e.g., variable rate application, agricultural 178 

robots). Next, some examples: 179 

a) Data collection technologies: These technologies detect insects and diseases 180 

in crops using field sensors, and remote sensors (Khattab et al., 2019; 181 

Lemmon, 1986; Toscano-Miranda, 2022b). In addition, using images for the 182 

same tasks (Alves et al., 2020; Caldeira et al., 2021).    183 

b) Data analysis technologies: for predicting the behavior of insects (Hudgins et 184 

al., 2017; Toscano-Miranda et al., 2022a), crop growth (Pathak et al., 2012), 185 

and crop yield (Maskey et al. (2019), expert systems for decision-making 186 

about diseases in crops (Mansour & Abu-Naser, 2019), etc. 187 

c) Decision-making technologies: Automated crop management and treatment 188 

using PF (Vulpi et al., 2022), such as irrigation control using robots (Agostini 189 

et al., 2017), and spray control for insects or diseases (Song et al., 2017). For 190 

this, it is useful the unmanned vehicles in rural farm areas (Mammarella et al., 191 

2021; Saha et al., 2022), geospatial analysis to decision support (Aggarwal et 192 

al., 2022), proper use of fertilizers (Stevens et al., 1996), crop management 193 

(Hearn, 1994; Jones & Barnes, 2000), etc. 194 

Our work integrates data collection, data analysis and decision-making technologies 195 

in an ACODAT.   196 

2.2. ACODAT 197 

Due to the significant increase in data generation, the development of new tools is 198 

essential to extract valuable knowledge. ACODAT is useful for this and is based on the 199 

autonomic computing paradigm. ACODAT involves a series of interconnected data analysis 200 

tasks that must be carried out in conjunction to achieve a desired objective within a given 201 

system or context. The tasks perform distinct roles within the cycle and interact with one 202 

another (Aguilar et al., 2018; Sanchez et al., 2016; Terán et al., 2017): they observe the 203 

process, analyze, and interpret events, and make appropriate decisions. The responsibility of 204 
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observation tasks is to gather information and data about the environment or system, while 205 

analysis tasks interpret and diagnose the system using this data. Knowledge models are 206 

constructed to understand the cycle's behavior. Decision-making tasks, on the other hand, are 207 

responsible for improving the process by carrying out activities. 208 

The autonomic computing paradigm is oriented to define autonomic characteristics 209 

in systems based on a smart control loop, known as MAPE+K (Monitor, Analyze, Plan, 210 

Execute, and Knowledge) (Aguilar et al., 2018; Sterritt et al., 2005). An ACODAT collects, 211 

filters, and processes data of the supervised problem (the letter M is for this monitoring task).  212 

Also, it analyzes/interprets complex situations and predicts forthcoming situations (the letter 213 

A is for this analyzing task). Additionally, it establishes the actions that must be carried 214 

out/scheduled to reach the system objectives (the letter P is for this planning task) and defines 215 

mechanisms to execute the plan (the letter E is for this last task). Because of this, the 216 

autonomous cycle requires managing a large amount of information. The letter K corresponds 217 

to the knowledge models (e.g., classification, diagnostic, prediction, and prescription models) 218 

within the autonomous cycle. The design of the autonomous cycle must include all these 219 

aspects to achieve the objectives that give a solution to the problem. 220 

2.3. MIDANO  221 

MIDANO is a methodology that allows gaining a deeper understanding of the data, 222 

which relies on organizational characterization as a key component to develop ACODATs 223 

(Aguilar et al., 2020b). Fig. 1 shows the three primary phases of MIDANO. The initial phase 224 

seeks to familiarize with the organization to define the goal of the data analysis system. The 225 

focus of this stage is to recognize and frame the solution to a problem, from the viewpoint of 226 

developing data analysis-based applications. Also, it defines the ACODAT for the solution 227 

of the problem. The responsibility of Phase 2 is to prepare and treat the data, following the 228 

ETL paradigm (Extraction, Transformation, Loading). Its primary goal is to produce high-229 

quality data that can be used to build knowledge models and specify the multidimensional 230 

data model of ACODAT. In Phase 3, data analysis tasks are implemented to generate various 231 

knowledge models such as descriptive, predictive, classification, and prescriptive (Aguilar et 232 

al., 2020b).  233 

Problem characterization and ACODAT definition were accomplished during the 234 

first phase of our work using MIDANO. The second phase, which involved data preparation 235 

and treatment, was incorporated into the ACODAT to enable real-time processing of data, 236 

and increase the autonomy of the process. Additionally, this phase identified the required 237 

data sources for ACODAT development. Our work provides a detailed explanation of how 238 

each MIDANO phase was applied to cotton crop management. 239 
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 240 
Fig. 1. MIDANO Methodology for Data Analysis from Organizational Characterization. Adapted 241 

from (Aguilar et al., 2020b). 242 

3. ACODAT for the integrated management of production processes 243 

This section outlines the process of creating an ACODAT for managing cotton crops. 244 

The tasks involved in ACODAT are described in detail. This section provides a general 245 

overview of the aspects necessary to implement our approach, which can be applied to other 246 

crops and pests. The specific variables are discussed in the Case study section, in which the 247 

application and validation of the proposed approach is demonstrated. 248 

3.1. Characterization of the management of cotton crop 249 

The main goal of cotton cultivation is to produce its valuable fiber (Trebilcok, 2020). 250 

There are several factors that influence production performance. For this reason, integrated 251 

crop management with the help of technologies seeks to improve yields with sustainable 252 

management and reduced environmental impacts (Abbas et al., 2020; Ghaffar et al., 2020). 253 

For example, if fertilizers are not applied in adequate quantities, then plant growth and 254 

development will be slowed, which will lead to lower yields (Ali et al., 2018; Ahmed, et al., 255 

2020a; Ahmed, et al., 2020b). Cotton cultivation requires adequate nutrition, and its demand 256 

depends on various factors such as the stage of cultivation, genotype, and environment 257 

(Trebilcok, 2020). The water supply and the sowing date also affect yields and the overall 258 

growth of the plant (Ali et al., 2018). Regarding insect pests, it is recommended to control 259 

all types of cotton insect pests through integrated pest management techniques (Anees & 260 

Shad, 2020). Cotton production is also more vulnerable to climate change, which can have a 261 

negative impact on yields (Ahmad et al., 2020). 262 

Thus, there is a great challenge in the management of cotton cultivation in which 263 

factors such as proper management of nutrients, pests, diseases, irrigation, etc. play an 264 

important role (Ghaffar et al.; 2020). In this paper, we focus on a PF using ACODAT for 265 

integrated cotton management. Integrated cotton management includes several factors that, 266 

when used in a mixed manner, help to make better planning and decision-making. These 267 
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factors are related to the right management of fertilizers, insect pests, diseases, irrigation, 268 

weeds, etc. (Ghaffar et al., 2020). In this study, we included information related to fertilizer 269 

management, insect pests, irrigation, climate data and crop stages. These factors are related 270 

and were considered for planning and decision-making to assist the farmer in integrated 271 

cotton crop management.  272 

3.2.  MIDANO Application  273 

We use the MIDANO methodology to design our ACODAT. Inside of our ACODAT 274 

are included data preparation and treatment data tasks. 275 

3.2.1 ACODAT specification. 276 

 Fig. 2 shows our ACODAT approach for this purpose. ACODAT consists of a trilogy 277 

of steps that are linked together through a network of tasks to assist decision-making in cotton 278 

crop management. The first step, monitoring, is made up of two tasks: verifying and 279 

correcting data. The second step, analytics, involves classifying the population of boll 280 

weevils according to climate data and diagnosis/prediction of the cotton yield. The final step, 281 

decision-making, involves prescribing the best management strategy for cotton crops. 282 

 283 

 284 
Fig. 2. ACODAT architecture for cotton crop management. 285 

 286 

The techniques employed in the data analysis tasks belong to diverse domains of 287 

artificial intelligence (AI), including XGBoost (Chen & Guestrin, 2016; Toscano-Miranda, 288 

et al., 2022a), fuzzy systems (Cerrada et al., 2005), and genetic algorithms (GA) (Eiben et al. 289 

1999). Therefore, the monitoring, analysis, and decision-making functionalities provided by 290 

ACODAT-based self-monitoring are as follows: 291 
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• Monitoring tasks: This process includes Task 1 to capture data, clean it and 292 

prepare it for the following tasks. In addition, relevant characteristics are extracted 293 

and preprocessed, and information about the behavior of insect pests is obtained. 294 

The selected features are used in the following steps. 295 

• Analysis tasks: A set of tasks (tasks 2 and 3) to understand, interpret, and 296 

predict/diagnose what is happening in the cotton growing process. 297 

• Decision-making tasks: This process includes Task 4 to prescribe the best strategy 298 

in the integrated management of cotton crops.  299 

 300 

The complete cycle includes four integrated tasks, which communicate with each 301 

other and pass information from the first to the last.  Each task used different techniques to 302 

achieve the objectives. Table 1 shows the interrelation between tasks, data sources and used 303 

techniques. The data used are historical data from the study region. The following subsections 304 

explain in detail each task in the autonomous cycle. 305 

 306 
Table 1  307 
Description of the ACODAT's tasks for integrated cotton management. 308 

Role Task name Characteristics of the task 

Description Data source Analysis type Technique Knowledge 

model 

Monitoring Data 

verification 

Verification of 

data (data 

processing) and 

correction of 

errors  

Datasets of monitoring 

of insects, and Climate 

data. Both sources are 

historical data from the 

study region. 

Description Verification 

Oversampling / 

Statistical 

analysis  

Descriptive 

Analysis Classification Classification of 

boll weevil 

population by 

climate data 

Previous task Classification/ 

Predictive 

XGBoost Predictive 

Diagnosis/pre

diction 

Diagnosis/ 

prediction of 

cotton yield 

Previous task, 

Dataset of cotton 

production  

Diagnosis/ 

Predictive 

Fuzzy logic Diagnosis/ 

predictive 

Decision-

making 

Prescription Determination of 

the best strategy 

for the 

management of 

cotton crop 

Previous task Optimization Genetic 

algorithm 

Prescriptive 

3.2.2. Monitoring tasks  309 

Task 1 - Verification and data processing 310 

Data Verification was designed as Task 1. This task includes a statistical analysis to 311 

evaluate the quality of the data. The modeling results are heavily influenced by the quality of 312 

the data. Thus, initially, our ACODAT identifies and fixes any potential data errors. Also, 313 

since missing data is common in this type of data, the dataset is purged of rows with missing 314 

data. Finally, an oversampling technique was used to balance the classes in the dataset. 315 

In summary, the procedure for this task involves the subsequent actions: 1) extract 316 

the structured database about the insect pests, 2) verify if there are errors in the data, 3) delete 317 

rows with missing data, 4) Balance the dataset, where the number of samples from the 318 

minority class (the class with fewer examples) is increased by creating synthetic examples 319 
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using the oversampling technique of (Gosain & Sardana, 2017). Fig. 3 shows the steps in this 320 

task, while Table 1 lists its main features. 321 

 322 

 323 
Fig. 3. Activities or sub-tasks related to task 1 (data verification and correction). 324 

3.2.3. Analysis tasks  325 

There are two analysis tasks, one of classification and another of diagnosis/prediction. 326 

The following is the description of each task:  327 

Task 2 - Classification of the insect pest population: 328 

The classification techniques are employed in this task to establish the population 329 

level of the insect pest. Thus, the classification technique determines the population level of 330 

the insect pest, for which it uses specific climatic variables for each city. The XGBoost 331 

technique, which has demonstrated the highest accuracy in prior studies (Toscano-Miranda 332 

et al., 2022a), was utilized. The main features of this task are detailed in Table 1. 333 

 334 

Task 3 - Diagnosis/prediction of crop yield: 335 

After the classification task, we develop the diagnosis/prediction task. This task uses 336 

a fuzzy model to diagnose/predict the cotton yield.  We used expert opinions to build/define 337 

the fuzzy variables, their membership functions, and the fuzzy rules. The process involved 338 

in this task is illustrated in Fig. 4. The FS uses input variables that are passed to the 339 

fuzzification process. The inference engine uses the rule base and then the defuzzification 340 

process is performed to give a crisp output, which is the diagnosis/prediction of cotton yield.  341 

 342 
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 343 
Fig. 4. Steps related to task 3 (Diagnosis/prediction). 344 

 345 
Table 2 provides a summary of the input variables, including their descriptions, 346 

ranges, fuzzy sets and units of measure. Among these input variables, the attack level of red 347 

and black boll weevils is processed and categorized in Task 2 based on the count of boll 348 

weevils: Low (0 to 4), Medium (5 to 20), and High (greater than 20). The variable "Crop 349 

stage" indicates the phase of the crop in the year, providing insights into the ongoing activities 350 

during that phase. In Task 1, boll weevil catches, and climatic data are consolidated into a 351 

unified dataset. The variable "Fertilizer" denotes the quantity of fertilizer utilized.  352 

   353 
Table 2 354 
Summary of the input variables. 355 

Input variable Description Fuzzy sets Range Units of 

measure 

Attack level of the 

red boll weevil 

Population of the red boll weevil 

in the cotton crop.  

Low, Medium, and 

High 

[0, 150] Integer 

Attack level of the 

black boll weevil 

Population of the black boll 

weevil in the cotton crop. 

Low, Medium, and 

High 

[0, 200] Integer 

Crop stage Crop stage in the year. Vegetative, Flowering, 

Fruiting, Harvesting, 

Destruction of soca, 

and Closing 

[0, 12] Integer 

Rainfall Amount of rain that falls during 

the day. 

Low, Medium, and 

High 

[0, 17] mm 

Fertilizer Amount of fertilizer used in the 

crop. 

Low, Medium, and 

High 

[0, 18] Integer 

(Packages) 

Pheromone traps  Number of traps used in the crop. Absent, Adequate [0, 1] Integer 

Boll-weevil 

killing tube 

Number of tubes used in the crop. Absent, Adequate [0, 1] Integer 

Note: In this study, fertilizer application has been analyzed in a general way without specifying the 356 
type of fertilizer (for example, nitrogen, phosphorus or potassium) because this data was not reported in the 357 
datasets, only the amount that had been used 358 

 359 

This task uses fuzzy sets with membership functions Gaussian, triangular, and 360 

trapezoidal. The triangular function is used for the categorical variables, and the 361 

trapezoidal/Gaussian functions are used for the rests. Finally, 13 membership functions were 362 

defined for the input and output variables. Fig. 5 shows an example with a trapezoidal 363 

membership function. 364 
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 365 
 366 

Fig. 5 Example of a trapezoidal membership function.  367 
 368 

The experts’ answers were also utilized to define the fuzzy rules. The rules are defined 369 

as IF-THEN. The antecedents are the input variables and the consequent is the crop yield. 370 

Table 3 presents two examples of the rules. For example, Rule number 1 is: IF the red attack 371 

level is High AND the black attack level is High AND the crop stage is Vegetative AND the 372 

rainfall is High AND the fertilizer is Low AND the pheromone trap is Absent AND the boll-373 

weevil killing tube is Absent THEN the crop yield is Low. Rule 2 defines a different 374 

combination in the antecedent, and as a result, the crop yield is Medium. Thirty-eight rules 375 

were defined for the system. 376 

 377 
Table 3 378 
Rule structure (Example of two of them). 379 

Rule If Then 

 

Red 

attack 

level 

Black 

attack 

level 

Crop stage Rainfall Fertilizer Pheromone 

trap 

Boll-

weevil 

killing 

tube 

Crop 

yield 

1 High High Vegetative High Low Absent Absent Low 

2 High High Flowering Low High   Medium 

 380 

3.2.4. Decision-making tasks 381 

Task 4 – Prescribing of strategies for crop management 382 

For decision-making, it was implemented a prescription task. The task was performed 383 

with a GA to determine the most efficient strategy for solving the problem. Experts' 384 

recommendations in crop management and marketing were identified as the starting point for 385 

this task. The crop management prescriptions in this task are based on expert opinion and 386 

compiled into a list. The GA optimizes the most efficient strategy for a specific scenario 387 

based on the previous task's findings. Table 1 outlines the task's characteristics. Thus, we use 388 

expert opinion to build a set of activities for each strategy. One strategy can be shaped by a 389 

combination of 13 activities. Specifically, our GA is based on the next procedure: 390 

 391 
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Algorithm 1: Training procedure of the Genetic Algorithm (GA)  

Input: Data from the previous task, synthetic dataset 

Output: Strategy recommended according to the best individual 

  

1.  Initialize the population 

2.  Evaluate the population 

3.  While (stopping condition not satisfied): 

         (a) Select the population 

         (b) Crossover the population 

         (c) Mutate the population 

         (d) Evaluate the population 

         (e) Update the population 

4.  Return the best individual in the population 

 392 

In this task, the result is the prescription of a strategy defined by a set of activities. 393 

Thus, an individual in a population is a strategy defined by a binary chain where each bit 394 

represents a gene (i.e., an activity). For example: 395 

 396 

0 0 1 1 1 1 0 1 1 1 1 0 0 

Fig. 6 An individual (prescription).  397 
 398 

Therefore, the whole chromosome (individual) is a possible prescription. An activity 399 

should be used when a 1 appears, and not when it is 0. Thus, the population is a collection of 400 

candidate prescriptions for the context analyzed in cotton cultivation.  401 

The following steps were taken to find the best strategy (see algorithm 1): 1) Initialize 402 

population: creating randomly a set of binary chromosomes that depict distinct solutions 403 

(possible prescriptions). 2) Evaluate: calculation of the fitness of each chromosome using the 404 

fitness function presented in the next paragraph, 3) Generating new individuals through 405 

genetic operators: In this stage, the chromosomes of the two fittest parents are selected, to 406 

which the crossover and mutation operators are applied (see Fig. 7). 4). Return the best 407 

individual in the population (i.e., the best strategy).   408 

 409 

 
Crossover 

 
Mutation 

Fig. 7. Example of crossover and mutation processes in a GA. 410 
 411 

The fitness function must evaluate possible solutions formulated on the analysis of 412 

the crop, in the before process (Task 2) and the context of the crop given as input in this task 413 

(Task 3). The fitness function returns values from 0 to 301. This output determines the best 414 

recommendation, being 0 as very adequate and the highest value as not adequate. The fitness 415 

function evaluates the context of the crop and the activities to be included in the 416 

recommendation. If the chromosome includes inappropriate activities, then those activities 417 
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are penalized. For example, if the recommendation/prescription includes the activities 418 

"Conduct soil analysis" and "Apply the necessary amounts of fertilizer according to the soil 419 

analysis and the agronomist's recommendations" at the fruiting stage of the crop, this should 420 

be penalized. Experts in the management of cotton cultivation do not recommend this 421 

because at this stage of cultivation costs increase and it is not necessary. All equations were 422 

constructed based on the opinion of cotton crop management experts. The equations are:  423 

  424 

C1 = A9 * 100 + A10 * 100 + A11 * 100 + A12 * 100  425 

 426 

Where C1 is the constraint 1, and 100 is a value that represents the penalization. The 427 

previous equation penalizes (i.e., it gives a higher value) in case the prescription includes the 428 

following activities in the flowering and fruiting stage: a) put pheromone traps (A9), b) move 429 

the pheromone traps (A10), c) put boll-weevils killing tube (A11), and c) move the boll-430 

weevils killing tube (A12). This penalization is due to these activities are not recommended 431 

at these two stages and increasing the costs. 432 

The next equation penalizes in case the prescription includes the following activities 433 

in the fruiting stage: soil analysis (A7) and applying fertilizers (A8). These activities are 434 

economically unfeasible at this stage and increase the costs. 435 

 436 

C2 = A7 * 100 + A8 * 100  437 

4. Case study 438 

This section presents the experimental context and the instantiation of ACODAT in 439 

a case study for integrated cotton crop management using datasets from a region of Colombia. 440 

We test ACODAT to create a regional monitoring system. In this case study, we demonstrate 441 

how the ACODAT tasks are executed on particular datasets. 442 

4.1. Context  443 

We identified the data sources according to the MIDANO methodology (Aguilar et 444 

al., 2020b).  To identify the appropriate sources of knowledge, we engaged with experts in 445 

cotton cultivation for this case. For our purpose, we used the next data sources: 1) Network 446 

of boll weevil (Anthonomus grandis) monitoring of the Colombian Agricultural Institute 447 

(ICA in Spanish), 2) Pheromone traps utilized in each cotton crop deployed by the owners, 448 

3) Climate data from the Institute of Hydrology, Meteorology and Environmental Studies 449 

(IDEAM in Spanish) for each site where cotton data were reported, 4)  Farm reports of 450 

management practices for each field in the study, 5) Crop yields in the area according to the 451 

Colombian Cotton Confederation (CONALGODON in Spanish). The reported data is the 452 

seed cotton yields, which comprise both cotton seed and fiber. The yield observations were 453 

between 2016 and 2021. The study areas consist of the cities in the province of Córdoba, 454 

Colombia, where cotton is cultivated. Cotton is one of the main agricultural products in this 455 

region, covering about 6,000 hectares of land in 2022. 456 

Our ACODAT was validated using cotton crops from different areas of Córdoba, 457 

Colombia, specifically, the cities comprising the Sinú Valley (High Sinú, Middle Sinú, and 458 
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Low Sinú) (Trebilcok, 2020), located at ~8°55'33.6"N, 75°48'16.5"W. The data used for this 459 

implementation correspond to the Network of boll weevil monitoring operationalized by the 460 

ICA and climate data from the IDEAM. These geospatial aspects describe the physical and 461 

climatic characteristics of four cities in the department of Córdoba, Colombia: Montería, 462 

Lorica, Cereté, and Ciénaga de Oro. These cities are in the lower basin of the Sinú River, 463 

which is one of the main water sources and economic activities in the region. The Sinú River 464 

flows through Montería, Lorica, and Cereté, providing them with water, fish, and 465 

transportation. The four cities have a low altitude above sea level, ranging from 7 m in Lorica 466 

to 18 m in Montería. This means that they are close to the Caribbean Sea and have a flat or 467 

slightly undulating topography. The low altitude also influences the climate of these cities, 468 

which is warm tropical, with high temperatures and humidity throughout the year. The 469 

average temperatures in these cities are between 27.3°C and 27.8°C, with little variation 470 

among them (Palencia et al., 2006).  According to Palencia et al. (2006), the rainfalls increase 471 

from north to south. The soils of these cities have heterogeneous chemical characteristics, 472 

with acidic and basic soils. The soils of these cities are suitable for agricultural activities, 473 

such as rice, corn, and cotton cultivation. Data from the cities of Córdoba: Montería, Cereté, 474 

Lorica, and Ciénaga de Oro (from 2016 to 2021) were used for the experiments. We chose 475 

these regions because they are cultivated with cotton and have the records of the pheromone 476 

traps. For example, Fig. 8 shows the distribution of pheromone traps in Cereté. It can be seen 477 

that the most distant measurement between traps is 5.6 km. The pheromone traps are at 478 

strategic places close to the cotton crops. 479 

 480 

 481 
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 482 
Fig. 8. Distribution of pheromone traps in Cereté. 483 

 484 

We collected data from 374 pheromone traps, which attract and capture insects. The 485 

dataset consisted of 13,585 samples, each containing the number of boll weevils captured in 486 

a trap on a specific date. ICA engineers routinely monitor red and black boll weevil 487 

populations using conventional pheromone traps, conducting inspections every 15 days. 488 

Engineers record the boll weevil counts manually and enter the data into information system 489 

databases. We excluded 11 of the 15 variables in the dataset, such as trap code and GPS 490 

name, as they did not provide valuable information. Finally, six variables corresponding to 491 

the climatic data and related to the number of boll weevils were selected. Table 4 shows each 492 

of the variables, a brief description, and the task where it was used. The climate dataset was 493 

merged with the boll weevil capture dataset. The datasets were combined using dates and 494 

cities as common identifiers. In addition, the variables related to the stage of cultivation and 495 

fertilization were extracted from expert sources, ICA and CONALGODON.  496 

On the other hand, to identify the outliers in the different datasets, the classic Tukey 497 

test was used, which refers to a value as an outlier if it is greater than 1.5 times the value of 498 

the interquartile range (difference between the first quartile (Q1) and the third quartile). 499 

(Q3)). On the other hand, since the outlier values can distort the results of the analysis, their 500 

causes were analyzed. They were excluded if they were the result of a data-taking error, but 501 

they were left if when analyzing the process they represented anomalous situations 502 

(determined by experts). 503 
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 504 
Table 4  505 
Variables and their descriptions, used in cotton crop management. 506 

Variable Description Units of 

measure 

Task Data source 

Red boll weevils The red boll weevils are the youngest. 

Quantity of captures of boll weevils.  

Integer 1, 2 ICA 

Black boll 

weevils 

The black boll weevils are the ones 

that can procreate. Quantity of 

captures of boll weevils. 

Integer 1, 2 ICA 

Rainfall Amount of rain that falls during the 

day.  

mm 1, 2, 3, 4 IDEAM 

Humidity Hourly relative humidity (average of 

the day). 

% 1, 2 IDEAM 

Temperature Maximum daily temperature, 

measured in degrees Celsius. 

˚C 1, 2 IDEAM 

City City with records of boll-weevil 

attacks.  

 1, 2 ICA 

Attack level of 

the red boll 

weevils 

Low, medium, or high level as a result 

of the previous task.  

Integer 2, 3, 4 Task 2 

Attack level of 

the black boll 

weevils 

Low, medium, or high level as a result 

of the previous task. 

Integer 2, 3, 4 Task 2 

Crop stage Growth stage of cotton cultivation. Integer 3, 4 ICA 

Fertilizer Amount of fertilizers used during 

growth stages. 

Integer 

(Packages) 

3, 4 CONALGODON, 

experts 

Pheromone traps The use of conventional pheromone 

traps in the cotton crop. 

Integer 4 ICA  

Boll-weevil 

killing tube 

The use of boll-weevil killing tube in 

the cotton crop. 

Integer 4 CONALGODON 

 507 

4.2 Instantiation of ACODAT 508 

4.2.1 Verification and data processing task  509 

In the verification and data processing task, data about the boll-weevil captures were 510 

extracted. The dataset contained outlier data in the captures of the boll weevil, temperature, 511 

humidity, and rainfall.  512 

To ensure the reliability of the analysis, data points identified as significant outliers 513 

in the boll weevil capture data were excluded from the dataset. For example, values of 1200 514 

catches (in 15 days) of boll weevil were considered outliers. Considering the regional climate 515 

conditions, specific thresholds were established for the variables of humidity, temperature, 516 

and rainfall. Humidity values within the range of 68% to 90% were considered appropriate 517 

for inclusion in the analysis, as they represented the relevant range of moisture levels in the 518 

region. Similarly, temperature values above 28 ºC and below 50 ºC were considered to 519 

encompass the typical temperature range of the area under investigation. In the case of 520 

rainfall, values ranging from 0 mm to less than 18 mm were selected as they represented the 521 

relevant spectrum of precipitation levels within the region. By defining these specific 522 
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thresholds, we aimed to focus the analysis on the climatic conditions most pertinent to the 523 

study, ensuring the inclusion of meaningful data points.  524 

In some periods of the year, the cities of Cereté, Lorica, and Montería experienced 525 

missing data in the climatic variables, including rainfall, temperature, and humidity. To 526 

ensure the integrity of the analysis and minimize potential biases caused by missing values, 527 

missing data processing was performed using a deletion method based on Mckinney (2010). 528 

Under this method, any individual in the dataset with missing data for any variable included 529 

in the analysis was excluded from further analysis. By removing individuals with missing 530 

data, we aimed to retain complete cases and maintain the reliability and validity of the 531 

analysis. This approach enabled a more robust examination of the available variables and 532 

their relationships, ensuring that only complete and reliable data were considered in our 533 

analysis. Additionally, we employed the Synthetic Minority Oversampling Technique 534 

(SMOTE) (Gosain & Sardana, 2017) to even out the classes, given the low occurrence of 535 

categories of the boll weevil. Thus, for this first task, data were verified, corrected and 536 

balanced. 537 

4.2.2 Classification task 538 

The classification task used XGBoost as the classification technique to determine the 539 

population level of the boll weevil. In a previous work (Toscano-Miranda et al., 2022a), this 540 

is the best technique for this task among Random Forrest, Support Vector Machine and 541 

Backpropagation Neural Networks. XGBoost gave an accuracy of 88%.  542 

This task classified the attack level according to the boll-weevil population on the 543 

three labels of the dataset. The labels were low, medium, and high. The input for this task 544 

was a dataset that had been cleaned and validated in the previous task. The dataset was 545 

divided into 80% for training and validation, and 20% for testing. XGBoost was configured 546 

in different ways and 10-fold cross-validation was performed to determine the most optimal 547 

combination of hyperparameters. The hyperparameter settings for XGBoost are shown in 548 

Table 5. 549 

 550 
Table 5  551 
Configuration of the hyperparameters of the XGBoost algorithm used to build the five models. 552 

Algorithm Best hyperparameters 

XGBoost Mtry = 1 

Minimum n = 39 

Tree depth = 13 

Learn rate = 0.0459 

Loss reduction = 0.0189 

Sample size = 0.973 

 553 

4.2.3 Crop yield diagnosis/prediction task 554 

The analysis of cotton production involved the use of a soft computing method that 555 

incorporated the knowledge of experts. To perform the analysis, the system considered seven 556 

input variables, which were listed in Table 2. These variables included the level of attack 557 

from black and red boll weevils, the crop stage, the amount of rainfall, the amount of fertilizer 558 
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applied, the use of pheromone traps, and the use of boll-weevil killing tubes. By considering 559 

these variables, the soft computing approach was able to generate insights into the factors 560 

that affect cotton production. This information could be used to improve the management 561 

practices of cotton farms and to increase the efficiency and profitability of cotton production. 562 

Four of these variables were reused of the previous task, including the classification of the 563 

boll-weevil population. As a result of this task, the diagnosis/prediction of cotton yield was 564 

obtained. To assess its robustness and adaptability, the system was subjected to tests using 565 

various agricultural scenarios. Each scenario defines a different combination of the variables 566 

that describe the current situation (characteristics) in the region described by the experts, 567 

which are inputs for the predictive and/or prescriptive tasks. Some of these variables are the 568 

attack level of the red/black boll weevil, crop stage, rainfall, pheromone traps and boll-weevil 569 

killing tube. The scenarios allow the evaluation of the quality of the FS predictions and the 570 

strategies generated by the prescription tasks. The knowledge provided by experts was 571 

utilized to create the fuzzy rules (see Table 3). The FS was designed with a standard fuzzy 572 

Mamdani system that integrates 38 if-then rules. To determine the yield of the crop based on 573 

the inferred inputs and rules, the defuzzification process utilized the centroid method, which 574 

is also known as the center of gravity (CoG) (Cerrada et al., 2005). This process results in a 575 

single crisp value that represents the output of the fuzzy system. As an example, Fig. 9 576 

illustrates the outcome of defuzzification for a given set of inputs using the rules presented 577 

in Table 3. The predicted result was medium, with a yield of 2.88 tons/ha.  578 

 579 

 580 
Fig. 9. Examples of defuzzification of the output variable (crop yield with 2.88 tons/ha). 581 

 582 

To evaluate the performance of the FS, two measures were utilized as outlined in 583 

Table 6. Firstly, the Coefficient of Determination (R2) was used to determine the proportion 584 

of the variance in the response variable that can be explained by independent variables. 585 

Secondly, the Mean Squared Error (MSE) in (tons/ha) was used to determine the difference 586 

between predicted and expert values. The R2 score ranges between 0 and 1, and its high score 587 

represents a good result for the FS. On the other hand, the MSE should have a value lower 588 

or close to 0 for it to be considered good. These metrics were obtained by comparing the 589 

outputs of the FS with the ratings made by domain experts. The FS utilizes fuzzy reasoning, 590 

which activates fuzzy rules based on crisp input values such as fertilizer, crop stage, rainfall, 591 

pheromone trap data, black attack level, red attack level, and boll-weevil killing tube 592 

readings. These crisp values are first converted into fuzzy values and then processed to 593 
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generate a fuzzy output, which is then converted into a crisp output. This crisp output is the 594 

prediction, which is used to calculate metrics such as R2 and MSE. For the evaluation, 9 595 

scenarios were defined testing more than 50,000 entries. More details can be found in the 596 

Results section.  597 

 598 
Table 6 599 
Comparison of estimated with observed yields. 600 

R2 MSE (ton per ha) 

0.9374 0.0661 

 601 

Findings indicate that the FS is capable of producing outputs that correspond with the 602 

evaluations of experts, thereby facilitating farmers in choosing the most effective cotton crop 603 

management practices to achieve optimal yield under specific circumstances. 604 

4.2.4 Prescriptive task 605 

The task of prescribing helps decision-making regarding the planning and 606 

management of cotton cultivation. The aim of this task was to establish the most effective 607 

strategy to manage cotton crops according to the context analyzed. It employs a series of 608 

prescriptions for the management of cotton crops according to experts in cotton cultivation, 609 

management, and marketing. Considering the results of the previous task (i.e., 610 

diagnosis/prediction of cotton yield), the GA optimizes the best strategy for a given scenario 611 

(it is an input).  We use expert opinion to build a set of activities for each strategy. One 612 

strategy can be shaped by a combination of 13 activities. The activities considered in our case 613 

study are: 614 

 615 

0. The cotton crop should be monitored more frequently. 616 

1. The area where the boll weevil was found should be marked, according to the last 617 

inspection.  618 

2. Cotton plant bolls that have fallen to the ground should be picked up daily.  619 

3. The bolls affected by the boll weevil should be collected to prevent further feeding 620 

and propagation of the boll weevils. 621 

4. The previously demarcated area should be fumigated. 622 

5. Excessive rain must be evacuated using adequate drainage channels.  623 

6. Implement an irrigation system. 624 

7. Conduct soil analysis. 625 

8. Apply the necessary amounts of fertilizer according to the soil analysis and the 626 

agronomist's recommendations. 627 

9. Pheromone traps must be placed. 628 

10. Move the pheromone traps frequently (use traps in the area recommended by the 629 

engineer and according to monitoring). 630 

11. Place boll-weevil killing tube. 631 

12. Frequently move the kill tubes (use tubes in the area recommended by the 632 

engineer and according to the monitoring). 633 

 634 
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Those recommended activities that are sought to be prescribed have been specifically 635 

defined for the study context. According to Trebilcok (2020), Colombia employs various 636 

agricultural strategies to manage cotton crops from an entomological perspective. When the 637 

boll weevil infects the crop, then specific activities are implemented. This involves 638 

distinguishing between two scenarios: when the boll weevil invades the crop in large 639 

numbers, or when it appears in isolated foci. In the case of a mass invasion, where the weevils 640 

spread and establish themselves extensively throughout the lot, the most effective solution is 641 

to closely monitor the crop from day one until day 40, when fruiting begins. During this 642 

period, a comprehensive application of insecticide is conducted to eliminate the boll weevils 643 

before they have a chance to oviposit. As reproductive structures are not yet present, they 644 

cannot serve as a host for the boll weevil's eggs. 645 

Alternatively, if the boll weevils appear in separate foci within the crop (one or 646 

multiple foci, depending on the crop area), the agronomist identifies and marks the locations 647 

during crop monitoring. By demarcating these foci, the agronomist signals to the farm 648 

administrator the presence of boll weevil infestation in those specific areas. Subsequently, 649 

the agronomist advises the farm manager to apply insecticide and collect the reproductive 650 

structures. Typically, one or two insecticide applications are carried out consecutively, with 651 

a time gap of one or two days between them. The objective is to suppress or minimize boll 652 

weevil colonization of the crop. During the colonization process, the boll weevils may have 653 

caused damage to the reproductive structures through feeding or oviposition. To address this, 654 

personnel (one, two, or three individuals, depending on the size of the infestation focus) are 655 

assigned to collect the structures. The structures open their bracts within 48 hours and start 656 

falling to the ground. The staff can either pick them up from the ground or remove them from 657 

the plant before they naturally fall. Damaged structures exhibiting symptomatic open bracts 658 

can be easily detached from the plant. This unique strategy ensures a nearly absolute 659 

reduction in boll weevil colonization. Staff pick them up from the ground or take them from 660 

the plant without waiting for them to fall to the ground. Damaged structures are known for 661 

their open square symptomatology and can therefore be torn from the plant. This is a very 662 

special strategy to make an almost absolute reduction in the colonization of the boll weevil.  663 

Particularly, this task uses eight variables. The level attack of red and black boll 664 

weevil is the result of the classification in Task 2, rainfall is defined from the classification 665 

in Task 2, crop yield is the result of the diagnosis/prediction in Task 3, and finally, this task 666 

considers also the next variables: the crop stage, the pheromone traps, the boll-weevil killing 667 

tube, and the fertilizer. In this task, the result is the prescription of a set of activities (they 668 

form a strategy). The GA uses the fitness function that minimizes the cost defined in the 669 

previous section. In particular, the fitness function minimizes costs in the proper use of the 670 

irrigation system, pheromone traps, boll-weevil killing tubes and fertilizer. When the farmer 671 

applies this best/optimal strategy then increases the yield of cotton. 672 

The crossover probabilities were set to 0.9 and mutation to 0.1. Previous research has 673 

indicated that the probability values used here have been successful in producing optimal 674 

results on comparable problems (Eiben et al., 1999; Hassanat et al., 2019). The crossover 675 

operator divides two chosen parents' chromosomes at a random point, resulting in two initial 676 

and two final gene subsets. These final subsets are then exchanged, generating two new 677 

chromosomes. The mutation operator randomly modifies each offspring's genes on a 678 

chromosome level. 679 
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5. Results  680 

5.1 Results of Task 1 - Verification and data processing 681 

 682 
The boll weevil population was categorized based on data ranges, with the low, 683 

medium, and high groups being defined as 0 to 4, 5 to 20, and greater than 20, respectively. 684 

These intervals were determined by the ICA. The distribution of the attack-level classes was 685 

uneven and required the utilization of SMOTE (Gosain & Sardana, 2017), as well as data 686 

standardization. Nonetheless, SMOTE was not used with Ciénaga de Oro and Montería due 687 

to their limited number of high-class red boll weevils. 688 

 689 
Table 7  690 

Distribution of classes for boll weevil in the Córdoba region. 691 
Class Red boll weevils Black boll weevils 

Low (0 to 4) 6,456 4,701 

Medium (5 to 20) 304 1,244 

High (> 20) 83 808 

 692 

5.2 Results of Task 2 - Classification of the boll-weevil population 693 

 694 
XGBoost was selected because (1) it is the technique that has shown good 695 

performance in this context (Toscano-Miranda, 2022a), and (2) according to the literature 696 

review (Toscano-Miranda, et al., 2022b), it is the most frequent technique among structured 697 

data classification techniques. The model for classification was evaluated independently for 698 

black and red boll weevils. Three weather features - temperature, humidity and rainfall - were 699 

tested in the experiments. 700 

XGBoost achieved an 82% accuracy rate in detecting red boll weevils, the highest 701 

among the models tested, but its ability to predict black boll weevils was constantly below 702 

60% (see Table 8). 703 

 704 

Table 8  705 
Outcomes of the classification model of black and red boll weevils using rainfall, humidity, and 706 

temperature.  707 
Boll weevils Accuracy F1-Score 

Training Test Training Test 

Reds 0.82 0.82 0.82 0.82 

Blacks 0.60 0.60 0.59 0.59 

 708 

Additionally, experiments were performed that solely used rainfall to encompass the 709 

entire Córdoba department as well as its cities. The results indicated that the accuracy of the 710 

model was lower when using just one attribute rather than all three (see Tables 9 and 10). 711 

 712 

 713 

 714 
 715 
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Table 9  716 
Results of the model of classification using the XGBoost algorithm and rainfall.  717 

City Red boll weevil Black boll weevil 

Accuracy F1-Score Accuracy F1-Score 

Training Test Training Test Training Test Training Test 

Córdoba 0.75 0.74 0.75 0.73 0.57 0.56 0.57 0.55 

Cereté 0.67 0.65 0.67 0.65 0.52 0.49 0.52 0.49 

Lorica 0.78 0.73 0.78 0.73 0.60 0.56 0.60 0.56 

Ciénaga FoO FoO FoO FoO 0.69 0.64 0.69 0.64 

Monteria FoO FoO FoO FoO 0.82 0.70 0.82 0.70 

Abbreviation: FoO= Fail on oversample.  718 

Feature selection using the ranking of features provided by Random Forest 719 

determined that temperature was the main feature. Then, new trials were executed solely 720 

using it (see Table 10). The performance of the red boll weevils' algorithm was improved in 721 

general for Córdoba using feature selection, resulting in an increase in Accuracy and F1 722 

scores on the training dataset, from 82% (three features) to 83% (temperature only). 723 

However, not all cities obtained good results. For this reason, new tests were carried out 724 

including the three features as described later in this section. 725 

 726 
Table 10  727 
Outcomes of the classification model of red and black boll weevils using temperature. 728 

Boll weevils Accuracy F1-Score 

Training Test Training Test 

Reds 0.83 0.79 0.83 0.79 

Blacks 0.62 0.59 0.62 0.59 

 729 

XGBoost was applied to the data, using three features for each city, as detailed in 730 

Table 11. The results showed that Lorica, Cereté and Ciénaga de Oro had better accuracy 731 

with black boll weevils, while Lorica and Cereté had better accuracy with red boll weevils. 732 

However, when a model was trained using data from all locations in Córdoba, including the 733 

samples from Ciénaga de Oro, Cereté, and Lorica, the accuracy for both black and red boll 734 

weevils was found to be lower. This decrease in accuracy could potentially be attributed to 735 

the unsuccessful oversampling technique applied in Ciénaga de Oro with data of red boll 736 

weevils, where the number of captures was predominantly in the low class. This skewed data 737 

distribution may have resulted in a biased model. That is, in Ciénaga de Oro, there were few 738 

captures of boll weevils; therefore, the categorization in the Medium and High classes was 739 

not sufficient to perform oversampling effectively. Specifically, the Low class had 946 740 

records, the Medium class had 36 records, and the High class had only 3 records. This limited 741 

representation of the Medium and High classes in Ciénaga de Oro significantly impacted the 742 

oversampling process, as the dataset lacked a robust distribution across all classes. Finally, it 743 

should be noted that Montería, another city included in the study, had limited available 744 

features, with only maximum temperature and rainfall being recorded. 745 

 746 

 747 

 748 
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Table 11  749 
Classification model with XGBoost using temperature, rainfall, and humidity. The experiment 750 

included four cities of Córdoba. 751 
City Red boll weevil Black boll weevil 

Accuracy F1-Score Accuracy F1-Score 

Train Test Train Test Train Test Train Test 

*Córdoba 0.82 0.82 0.82 0.82 0.60 0.60 0.59 0.59 

Cereté 0.78 0.77 0.78 0.77 0.57 0.52 0.57 0.52 

Lorica 0.88 0.88 0.88 0.88 0.66 0.58 0.66 0.58 

Ciénaga de Oro FoO  FoO FoO FoO 0.71 0.69 0.71 0.69 

Montería NH NH NH NH NH NH NH NH 

*Córdoba (included Cereté, Lorica, and Ciénaga de Oro). Abbreviation: NH = No humidity. FoO = 752 
Fail on oversample. 753 

 754 

The experiment was carried out after considering the results of previous experiments, 755 

and the models with the highest accuracy, Montería for black boll weevils and Lorica for red 756 

boll weevils were used in this test. The purpose of the experiment was to assess whether the 757 

best model for one city could result in better classification results for other cities. The models 758 

were tested across all other cities to estimate their accuracy levels, and unfortunately, the 759 

results showed a decrease in accuracy levels. Specifically, Cereté's accuracy levels dropped 760 

from 52% to 29% for black boll weevils and from 77% to 48% for red boll weevils. In other 761 

words, the models that worked best for Lorica and Montería did not perform as well in Cereté. 762 

 763 

5.3 Results of Task 3 - Diagnosis/prediction of crop yield 764 

 765 
This section describes the experiments and scenarios carried out to evaluate the FS. 766 

After the FS generated outputs, the results were compared to the crop yield information 767 

provided by experts.  768 

 769 

 770 

Determination of the optimal membership functions for each scenario 771 

Experts were asked to provide specific values for low, medium, and high scales of 772 

certain variables through a survey. Each value corresponds to a number on the scale, and the 773 

mean and standard deviation were calculated for each value (Table 12). 774 

 775 
Table 12 776 
Survey Results: Experts’ Assessments.  777 

Variable 

 

Low Medium High 

Mean Std Mean Std Mean Std 

Attack level of the red boll weevil 3 1.41 16.66 2.35 25 4.08 

Attack level of the black boll weevil 2.66 1.69 15 4.08 25 7.07 

Rainfall 2.66 0.47 6 0.81 12.33 1.69 

Fertilizer 1.66 0.94 5 2.16 10.33 2.35 

Crop yield 1.16 0.23 2.33 0.23 3.83 0.23 

Abbreviation: Std= standard deviation 778 
 779 

The study used different membership functions for variables such as rainfall, black 780 
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boll weevil attack level, red boll weevil attack level, fertilizer, and crop yield. These functions 781 

included triangular/trapezoidal or Gaussian combinations, while other variables like crop 782 

stage, pheromone trap, and boll-weevil elimination tube only had triangular/trapezoidal 783 

membership functions. Overall, 32 possibilities were generated for each scenario, leading to 784 

a total of 288 combinations (9 scenarios x 32 possibilities). The scenarios are defined by 785 

seven input variables that describe the cotton growing context, which determine the expected 786 

yield of the crop. Particularly, the input variables are: the different stages of the crop 787 

(Vegetable, Flowering or Fruiting), the attack levels of the red and black weevil (low, 788 

medium or high), rainfall levels (low, medium or high), fertilizer levels (low, medium or 789 

high), the presence of pheromone traps (absent or adequate), and the boll-weevil killing tube 790 

presence (absent or adequate). Finally, the expected yield level is defined as low, medium or 791 

high (the description of the different scenarios is in Appendix A). The mean and standard 792 

deviation were used to create the Gaussian shape in the membership function. The best 793 

combination of membership functions was chosen for each scenario, with Table 13 showing 794 

the best performance. In some cases, triangular/trapezoidal trends were observed (e.g., 795 

scenarios 1 and 6), while in others, Gaussian trends were observed (e.g., scenario 9). The FS 796 

results were generally consistent with expert opinion, as shown in the last two columns.  797 

 798 

 799 
Table 13 800 
Evaluation of the best combination of membership functions. 801 

Scenario Membership Function FS Mean 

Expert Input Output 

1 T T T G T T T T 1.24 1.36 

2 T T T G T T T T 1.24 1.63 

3 G G T T G T T T 2.82 2.66 

4 G G T T G T T G 3.83 4 

5 G G T T G T T G 3.83 4 

6 T T T T T T T T 2.88 2.76 

7 G G T T G T T G 1.66 1.50 

8 G G T T G T T G 3.83 4 

9 G G T G G T T G 1.92 1.83 

The input variables are fertilizer, crop stage, rainfall, pheromone trap, black attack level, red attack level, and 802 
boll-weevil killing tube. The output variable is crop yield. T = triangular / trapezoidal membership function; G 803 
= Gaussian membership function 804 
 805 

Evaluation of the estimation capabilities of our FS 806 

To further elaborate, the purpose of the test was to evaluate the accuracy and 807 

effectiveness of the fuzzy system in predicting crop yield values across various scenarios. 808 

The best models, which included formats of the membership functions, were chosen for each 809 

scenario, and were used in the test. The test involved considering different values of the input 810 

variables that described each scenario, which amounted to more than 50,000 entries that 811 

represent the different values of the different input variables of each scenario (representing 812 

different observations in different seasons of the year). The fuzzy system generated results 813 
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(FS outputs) for each input value, which were then compared to the crop yield established by 814 

experts. In order to compare the results with the crop yield established by the experts, the 815 

responses from each scenario were averaged to obtain a single crop yield value per scenario. 816 

This average value was then compared to the crop yield for each scenario defined by the 817 

experts. By comparing the crop yield values predicted by the FS with those established by 818 

the experts, the difference between the two was evaluated. Overall, the test was carried out 819 

to determine if the FS was consistent in predicting crop yield values that were comparable to 820 

those established by experts. This information could then be used to improve the accuracy of 821 

crop yield predictions and ultimately assist in decision-making related to crop production. 822 

To assess the effectiveness of our FS, we employed a duo of measures for evaluating 823 

its performance. First, we used R2 (0.9374), and second, the MSE (0.0661) (see Table 6). We 824 

can see that the results are very good.  825 

 826 

5.4 Results of Task 4 – Prescribing with strategies for crop management 827 

 828 
This section shows the results of ACODAT for integrated cotton crop management. 829 

For this, real data from cities in the region of Córdoba-Colombia were used.  We used 830 

different scenarios to validate the experiments. Some scenarios with specific characteristics 831 

and others mixed scenarios from the former. In this paper, we present both scenarios to show 832 

the application of the autonomous cycle until reaching prescription. Table 14 summarizes the 833 

scenarios described in this section. Scenario 1 had a medium level crop yield 834 

diagnosis/prediction and Scenario 2 had a low level. According to these levels, a prescription 835 

is needed to improve crop yield. 836 

 837 
Table 14 838 
Summary of the scenarios.  839 

Scenario A B 

Crop 

stage Rainfall Fertilizer C D 

Crop 

yield 

1 Low Low Vegetative High Medium Adequate Adequate Medium 

2 Medium Medium Fruiting Low NU NU NU Low 

Abbreviations: A = Attack level of red boll weevils, B = Attack level of black boll weevils, C = 840 
Pheromone trap, D = Boll-weevil killing tube, NU = The farmer did not use this item. 841 

 842 

Fig. 10 shows the results using the GA for the scenarios in Table 14. In some 843 

scenarios, convergence to optimal prescribing is faster than in others). For example, Fig. 10a. 844 

shows a convergence in seven generations, compared to Fig. 10b which shows a convergence 845 

in eight generations. The scenarios were tested several times, Fig. 10 shows the average of 846 

the generation in which the fitness function reaches the optimal strategy. In these 847 

experiments, the average time to complete a generation was 1.35 seconds on a MacBook Pro 848 

with a 2.4 GHz quad-core Intel Core i5 processor and 8 GB of 2133 MHz RAM. Fig. 10a 849 

begins with values up to 80 and finds the best prescription in generation number 7. Fig. 10b 850 

begins with values up to 250 and finds the best prescription in generation number 8. The 851 

value in the y-axis indicates the values average of the fitness function. The values higher 852 
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indicated that the individual was penalized. The values closer to zero are appropriate because 853 

is an optimization problem of minimizing the costs.  854 

 855 

 
A. Scenario 1 

 
B. Mixed Scenario  

Fig. 10. Results of the minimization of the fitness function (with 10 generations).  856 
 857 

5.5 General Discussion of Prescriptive Analysis 858 

 859 

In the diagnostic/prescribing task, only cases where the crop yield is low or medium 860 

are invoked. Therefore, Table 15 shows poor-performance scenarios. In the "Type" column, 861 

Isolated refers to a scenario where the yield is only of a type; and Mixing refers to a scenario 862 

where the yield can be of different types (e.g., low or medium). All prescription results were 863 

100% correct with all activities included in the strategy, and in this sense, the error rate was 864 

0. The generation number needed to reach the prescription was different from scenario to 865 

scenario.  866 

 867 
Table 15 868 
Example scenarios and their results.  869 

Scenario The best 

prescription 

No. 

generations 

Error Crop yield Type 

1 100% 7 0 Medium Mixing 

2 100% 7 0 Low Isolated 

3 100% 7 0 Medium Isolated 

4 100% 8 0 Medium Isolated 

5 100% 8 0 Low Isolated 

6 100% 8 0 Low Isolated 

7 100% 7 0 Low Isolated 

8 100% 8 0 Low Mixing 

9 100% 7 0 Low Mixing 

 870 

Now, we took two examples to show the results of the prescription in real conditions. 871 

The analysis of scenario 1 indicates a medium level of cotton crop yield and scenario 2 a low 872 

level.  873 

 874 
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Scenario 1:  875 

The characteristics of this scenario are: first, it begins with the classification task of 876 

the boll-weevil population: The classification task received input values of temperature, 877 

humidity and rainfall of the cultivated area and classified the attack level of the boll weevil 878 

as: low attack level of red boll weevils, low attack level of black boll weevils.  879 

Second, the diagnosis/prediction task of crop yield received as input values the results 880 

of the previous task: a low attack level of red boll weevils and a low attack level of black boll 881 

weevils. Additionally, the crop was in the vegetative stage, the rainfall was high (17 mm). 882 

Also, at this stage, the farmer used 5 packages of fertilizer (medium), used pheromone traps, 883 

and a boll-weevil killing tube. As a result of this task, the diagnosis/prediction of the crop 884 

yield was medium (2.88 ton/ha), see Fig. 9.  885 

Third, the prescription task for management crop received as input values the results 886 

of the previous task (see Fig. 11): a) a low attack level of red boll weevils, b) a low attack 887 

level of black boll weevils, c) a stage of the crop in vegetative, d) a high rainfall (17 mm). 888 

Also, at this stage, the farmer e) used five packages of fertilizer (medium), f) used pheromone 889 

traps, g) used a boll-weevil killing tube, and mainly, and h) the crop yield was diagnosed as 890 

medium. Therefore, according to the medium crop yield, ACODAT should generate a 891 

prescription with the best strategy. ACODAT then generates the best strategy as a 892 

recommendation to increase the cotton yield to achieve a high level. In this sense, the final 893 

prescription is the following chromosome:  894 

  895 

1 1 1 1 1 1 0 1 1 0 0 1 1 

Fig. 11 Best individual for the first scenario.  896 
 897 

Each gene corresponds to an activity. If there is a 0 the activity is not recommended 898 

and if there is a 1 the activity is recommended.  Table 16 shows the details of each gene on 899 

the previous chromosome.  900 

  901 
Table 16 902 
Activity configurations of the best recommendation. 903 

Position on 

chromosome 

Gene Activity 

1 1 The cotton crop should be monitored more frequently. 

2 1 The area where the boll weevils were found should be marked, according to the 

last inspection. 

3 1 The cotton buds (squares) of the cotton plants that have fallen to the ground must 

be collected daily. 

4 1 The bolls of the cotton plants that have been affected by the boll weevil must be 

collected to prevent the boll weevil from feeding and spreading. 

5 1 The previously demarcated area should be fumigated. 

6 1 Excessive rain must be evacuated using adequate drainage channels. 

7 0 The irrigation system should NOT be implemented. 

8 1 Soil analysis should be performed. 

9 1 The necessary amounts of fertilizer should be applied according to soil analysis 

and agronomist recommendations. 

10 0 Pheromone traps must NOT be placed. 

11 0 DO NOT move the pheromone traps frequently. 

12 1 Boll-weevil killing tubes should be installed. 



 

29 

13 1 Boll-weevil killing tubes should be moved frequently. 

 904 

This result is correct because the prescription found an optimal strategy, minimizing 905 

costs and using activities that improve crop yield.  This prescription outcome is an optimal 906 

strategy because it defines a set of activities that improve crop yield with minimal cost. The 907 

fitness function minimizes costs by proposing the correct use of the irrigation system, 908 

pheromone traps, boll weevil killing tubes and fertilizers. When the farmer follows this 909 

best/optimal strategy, it increases the yield of cotton. For example, if the farmer uses both 910 

pheromone traps and boll-weevil killing tubes at the same time, she/he will unnecessarily 911 

increase costs. Therefore, the system recommends using one of them (the boll-weevil killing 912 

tubes). The prescription points out that the farmer a) should monitor the cotton crop more, b) 913 

should mark the area where the boll weevils were found, according to the last inspection, c) 914 

should collect daily the cotton buds (squares) of the cotton plants that have fallen to the 915 

ground, d) should collect the bolls from cotton plants that have been affected by the boll 916 

weevil and thus prevent further feeding and spread of the boll weevils, e) should fumigate 917 

the previously demarcated area, f) should evacuate the excessive rain with draining channels, 918 

g) should perform a soil analysis, h) should apply the right amount of fertilizer according to 919 

soil analysis and agronomist recommendations, i) should install boll-weevil killing tubes, and 920 

j) should move frequently the boll-weevil killing tubes. Activities a), b), c), d), and e) should 921 

be performed because monitoring and control activities are needed to quickly eradicate the 922 

boll weevil. Activity j) included boll-weevil killing tubes and excluded pheromone traps (i.e., 923 

the farmer should not use these activities simultaneously because it increases the cost and it 924 

is not necessary). In brief, the prescriptive model gives an accurate suggestion regarding the 925 

expert opinion on cotton cultivation.  926 

 927 

Scenario 2:  928 

The characteristics of this scenario are: first, it begins with the classification task of 929 

the boll-weevil population: The classification task received input values of temperature, 930 

humidity and rainfall of the cultivated area and classified the attack level of the boll weevil 931 

as: medium attack level of red boll weevils, medium attack level of black boll weevils.  932 

Second, the diagnosis/prediction task of crop yield received as input values the results 933 

of the previous task: a medium attack level of red boll weevils and a medium attack level of 934 

black boll weevils. Additionally, the crop was in the fruiting stage, the rainfall was low (2 935 

mm). Also, at this stage, the farmer did not use fertilizer, pheromone traps, and a boll-weevil 936 

killing tube. As a result of this task, the diagnosis/prediction of the crop yield was low (1.23 937 

tons/ha), see Fig. 12.  938 

 939 
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 940 
Fig. 12. Defuzzification of the output variable (crop yield with 1.23 tons/ha).  941 

 942 

Third, the prescription task for management crop received as input values the results 943 

of previous task (see Fig. 13): a) a medium attack level of red boll weevils, b) a medium 944 

attack level of black boll weevils, c) a stage of the crop in fruiting, d) a low rainfall (2 mm), 945 

e) at this stage the farmer did not use fertilizer, f) nor pheromone traps, g) no tube kills 946 

weevils, and mainly, h) the crop yield was diagnosed as low. Therefore, and according to the 947 

low crop yield, ACODAT then generates the best strategy as a recommendation to increase 948 

the cotton yield to achieve a high level. In this sense, the final prescription is the following:  949 

 950 

  951 

0 0 1 1 1 0 1 0 0 0 0 0 0 
Fig. 13. Best individual for the second scenario.  952 

 953 

Table 17 shows the details of each gene on the previous chromosome.  954 

  955 
Table 17  956 
Activity configurations of the best recommendation. 957 

Position on 

chromosome 

Gene Activity 

1 0 The cotton crop should NOT be monitored more frequently. 

2 0 The area where the boll weevils were found should NOT be marked, according to 

the last inspection. 

3 1 The cotton buds (squares) of the cotton plants that have fallen to the ground must 

be collected daily. 

4 1 The bolls affected by the boll weevil should be collected to prevent further feeding 

and propagation of the boll weevils. 

5 1 The previously demarcated area should be fumigated. 

6 0 Excessive rain must NOT be evacuated using adequate drainage channels. 

7 1 An irrigation system should be implemented. 

8 0 Soil analysis should NOT be performed. 

9 0 Fertilizer should NOT be applied.  

10 0 Pheromone traps should NOT be placed. 

11 0 Pheromone traps should NOT be moved frequently. 

12 0 Boll-weevil killing tubes should NOT be placed. 

13 0 Boll-weevil killing tubes should NOT be moved frequently. 
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 958 

This result is correct because the prescription found an optimal strategy, minimizing 959 

costs and using activities that improve crop yield.  For example, in this scenario, the system 960 

recommends not doing the soil analysis or applying fertilizer in the fruiting stage because it 961 

is not cost-effective and should have been done in earlier stages. The prescription points out 962 

that the farmer should a) pick up daily the cotton buds (squares) of the cotton plants that have 963 

fallen to the ground, b) collect the bolls affected by the boll weevil to prevent further feeding 964 

and propagation of the boll weevils, c) fumigate the previously demarcated area, and d) 965 

increase water irrigation with an irrigation system. It should be noted that fumigation is 966 

recommended considering the previous demarcation, i.e., as the crop is in the fruiting stage, 967 

actions in previous stages should have included demarcation. The system prescribes in real 968 

time based on the crop's stage, and in this case, the crop is in the fruiting stage. Therefore, 969 

the system should have already recommended this activity (as seen in the previous scenario). 970 

In addition, since the crop is in the fruiting stage, the prescription did not include crop 971 

analysis activities, fertilizer application, use of pheromone traps, or use of boll-kill weevil 972 

tubes, because they are economically unviable at this stage of cultivation. In brief, the 973 

prescriptive model gives an accurate suggestion regarding the expert opinion on cotton 974 

cultivation. 975 

5.6 General discussion  976 

Our proposal monitored the data and processed it to generate statistical analyses on 977 

the behavior of insect pests on cotton crops. A set of variables and expert opinions were 978 

considered to diagnose/predict cotton yield. Finally, we use the data processed above to 979 

prescribe the best strategy for integrated cotton crop management.  980 

The classification task of the boll-weevil population was performed using XGBoost 981 

with 88% of accuracy using climate data. The results of the diagnosis/prediction of cotton 982 

yield showed that can a) manage the uncertainty from the variables of the context or the 983 

model, b) manage the knowledge of the experts to adapt the model, and c) use concurrently 984 

variables of the climate, of the pests, crops, and fertilizers. The results of the prescription task 985 

showed that using GA allows determining the optimal strategy according to the context. The 986 

system enables assessing the crop conditions in real-time at any stage of its development and 987 

provides timely recommendations to improve its performance. For this purpose, we 988 

conducted discrete evaluations on different dates or stages of the crop and compared them 989 

with expert opinions. Overall, these results show that the integrated use of data collection, 990 

data processing and decision-making technologies are useful in PF for cotton crop 991 

management.  992 

5.7 Comparison with previous works 993 

This study defines an ACODAT for integrated cotton management. The tasks have 994 

been validated by experts with good results in classification, diagnosis/prediction, and 995 

prescription tasks. We introduce a set of qualitative criteria in this section to compare our 996 

work with other related works. These criteria are: 997 
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Criterion 1 - Uncertainty model: whether they proposed uncertainty models for 998 

diagnosis/prediction.  999 

Criterion 2 - Integrate management: whether they consider the integrated management of 1000 

the crop. 1001 

Criterion 3 - Production: whether they considered improving the production of the crops. 1002 

Criterion 4 - Autonomous systems (AS) that include among other tasks, classification, 1003 

diagnosis/prediction, and prescription tasks to improve the production. 1004 

Criterion 5 - Simultaneous use of Climatic, pests, Fertilizers, and Crop variables 1005 

(CLFCT). 1006 

  1007 

According to the above criteria, Table 18 shows the comparison with the related 1008 

works. The existing papers did not meet all the requirements. All the criteria we consider in 1009 

our work are important because working together allows the operation of a robust system 1010 

with autonomous tasks for integrated cotton crop management. 1011 

 1012 
Table 18 1013 

Comparison with other works. 1014 
Work Uncertainty 

model 

Integrate 

management 

Production AS CLFCT 

Tribouillois et al. (2022)  ✓ ✓   

Aggarwal et al. (2022)  ✓ ✓   

Wu et al. (2020)  ✓ ✓   

Hajimirzajan et al., (2021)  ✓ ✓   

This work ✓ ✓ ✓ ✓ ✓ 

Abbreviation: CLFCT= Simultaneous use of Climatic, of pests, of Fertilizer, and of Crop variables. 1015 
Production = Whether the study considered improving crop production. AS= Autonomous systems that include 1016 
classification, diagnosis/prediction, and prescription tasks. 1017 

 1018 

Some studies related used integrated management. For example, Tribouillois et al. 1019 

(2022) built an integrated modeling of crop and water management to optimize irrigation. 1020 

Hajimirzajan et al., (2021) defined a large-scale crop planning, which involves a 1021 

comprehensive strategic framework that employs a decision support system to determine the 1022 

sustainable use of water, as well as optimal crop selection, timing, and cultivation practices. 1023 

Aggarwal et al. (2022) developed a system of geospatial analysis to preserve land fertility, 1024 

optimize agricultural revenue, and minimize agricultural pollution and water consumption. 1025 

Wu et al. (2020) developed a model for integrated nutrient management. It should be noted 1026 

that the previous authors used integrated crop management because they considered different 1027 

variables to have a broad management of the analyzed context. But no one of them uses 1028 

different data analysis tasks, with different variables, and an autonomous cycle to integrate 1029 

them, which our work does. They also do not consider knowledge obtained from expert 1030 

recommendations to fit the model. 1031 

As previously discussed, our approach is the initial one to combine these criteria and 1032 

propose an integrated cotton management approach using an ACODAT, which can be 1033 

developed further with multi-agent systems (Aguilar et al., 2015; Terán et al., 2017). The 1034 

purpose of integrating the multi-agent systems paradigm is to make the system more 1035 

adaptable, extendable, and autonomous, as described by Aguilar et al. (2018). 1036 
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6. Conclusions 1037 

This study aimed to develop a system of PF using an ACODAT for the integrated 1038 

management of cotton. The cycle used tasks of data processing, classification/prediction of 1039 

cotton yield, and prescribing strategies for integrated cotton management. In the autonomous 1040 

cycle, each task communicates with the next and passes processed information. Also, each 1041 

task has its own AI techniques and the integration of all of them produces strategies according 1042 

to the context of the crop. The combined use of data analysis tasks in one cycle provided 1043 

notable advantages compared to isolated techniques. To our knowledge, this is the first work 1044 

to use an autonomous architecture to support integrated cotton management. 1045 

We consider some limitations in this work. First, for the diagnosis/prediction of 1046 

cotton yield, the fertilizer variable only included the amount used. Secondly, for the 1047 

diagnosis/prediction of cotton yield, we used only the behavior of the boll weevil. Future 1048 

work should be aimed at improving the diagnosis/prediction model including more variables 1049 

(e.g., specific fertilizers), and including the behavior of other insect pests and diseases. Third, 1050 

this proposal did not include pheromone traps with real-time data updating in the case study. 1051 

This would be an improvement that can be incorporated into the system to have real-time 1052 

feedback. Fourth, we believe that other validation processes for ACODAT should be studied 1053 

to evaluate its recommendations at critical stages of cotton growth. Therefore, in future work, 1054 

we will use cross-validation to evaluate the performance of the ACODAT system at specific 1055 

stages of the cotton growth cycle over the years. In addition, we have planned to integrate 1056 

this work with an autonomous cognitive architecture for agriculture. Our approach involves 1057 

defining a meta-learning task, which will enable us to create models of weevil behavior 1058 

specific to different regions. To achieve this, we will utilize the transfer learning paradigm, 1059 

which involves transferring knowledge gained from one task to another related task. By doing 1060 

so, we hope to improve the accuracy and efficiency of the system's predictions and provide 1061 

valuable insights to farmers and other stakeholders in the agricultural sector.  1062 

Finally, future work should also explore which variables could be calculated in a 1063 

determinist manner through known mathematical definitions, such as those existing in the 1064 

literature to determine the yield of cotton based on rainfall. In addition, our ACODAT should 1065 

be tested in cotton crop simulators such as CropGRO-Cotton, with the respective adaptations 1066 

to exploit all their variables, such as the estimates of the impact of temperature and nitrogen 1067 

levels that this simulator provides. As a final point, the models we develop for weevil 1068 

behavior will be integrated with our cognitive architecture, which is based on the multi-agent 1069 

systems paradigm. Our decision to use this approach is rooted in the fact that agent theory 1070 

has already established many effective modeling capabilities and implementations, which 1071 

can be leveraged to improve the accuracy and efficiency of our models. 1072 
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Appendix A 1282 

  Input Output 

Scenario 

Red 

attack 

level 

Black 

attack 

level 

Crop stage Rainfall Fertilizer 
Pheromone 

trap 

Boll-weevil 

killing tube 

Expected 

Crop yield  

1 150 200 vegetative 0.5 17 1 0 0 low 

2 15 15 vegetative 0.5 17 1 0 0 low 

3 15 15 vegetative 0.5 2 5 1 1 medium 

4 0 0 vegetative 0.5 6 13 1 1 high 

5 0 0 flowering 1.5 6 13 NU NU high 

6 15 15 flowering 1.5 2 5 NU NU medium 

7 15 15 flowering 1.5 2 1 NU NU low 

8 0 0 fruiting 3 6 NU NU NU high 

9 15 15 fruiting 3 2 NU NU NU low 

Abbreviation: NU = Not used 1283 


