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Abstract—Metadata geolocation, i.e., mapping information col-
lected at a cellular Base Station (BS) to the geographical area it
covers, is a central operation in the production of statistics from
mobile network measurements. This task requires modeling the
probability that a device attached to a BS is at a specific location,
and is presently addressed with simplistic approximations based
on Voronoi tessellations. As we show, Voronoi cells exhibit poor
accuracy compared to real-world geolocation data, which can,
in turn, reduce the reliability of research results. We propose a
new approach for data-driven metadata geolocation based on a
teacher-student paradigm that combines probabilistic inference
and deep learning. Our DEEPMEND model: (i) only needs BS
positions as input, exactly like Voronoi tessellations; (ii) pro-
duces geolocation maps that are 56% and 33% more accurate
than legacy Voronoi and their state-of-the-art VoronoiBoost
calibration, respectively; and, (iii) generates geolocation data
for thousands of BSs in minutes. We assess its accuracy against
real-world multi-city geolocation data of 5,947 BSs provided by
a network operator, and demonstrate the impact of its enhanced
metadata geolocation on two applications use cases.

I. INTRODUCTION

The metadata generated by mobile networks comprises a
variety of Key Performance Indicators (KPIs, e.g., call detail
records, data traffic volumes, mobile service demands, radio
channel statistics, or user presence, among many others) that
provide rich information about the movement, communication,
activities, and interests of large populations of subscribers,
with high spatiotemporal resolution and at broad geographical
scales. The data has applications in many domains, including
networking, demography, geography, sociology, or epidemi-
ology, where it enables dependable quantitative analyses of
large-scale phenomena. Examples include: the study of time-
varying population densities [1], [2], land use [3], or trans-
portation system planning [4]; the mapping of urban transfor-
mations [5], pollution [6], digital divides [7], poverty [8] and
social inequality [9]; the dynamics of natural disasters [10] or
infectious diseases [11], and the effectiveness of their contain-
ment policies [12]; the characterization of mobile traffic [13],
[14] and application usage [15], and the prediction of their
spatiotemporal fluctuations [16], just to cite a few. The value of
network metadata is driving the creation of dedicated statistics
production processes [17] and open-source toolkits [18].

Mobile network metadata is today geo-referenced at the
highest resolution available in production systems, i.e., at
the level of Base Stations (BSs). Hence, a metadata record
generated by one device is associated to the geographical site
of the BS serving the device when the record is produced.
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Fig. 1: Metadata geolocation of a real-world BS, obtained from
(a) processing of accurate propagation simulations and field
measurements by a network operator, (b) a legacy Voronoi
tessellation of space, (c) our proposed DEEPMEND.

Yet, any network metadata-driven analysis must be carried
out over the continuous geographical space, and not on the
discrete BS locations. The mapping of BS-referenced data to
the continuous space is then an essential step in any mobile
network metadata processing pipeline [17]. The task is called
metadata geolocation, and consists of modeling the probability
that the metadata attributed to one BS has been generated by
a device at a specific geographical location served by that BS.

Accurate metadata geolocation can be derived in current
4G/5G deployments by mobile network operators via a com-
bination of extensive client-side measurements and radio prop-
agation models informed by complete Radio Access Network
(RAN) configurations, as we expound in Section III-A. An
example of geolocation derived in this way for one real-
world BS of Orange, is shown in Figure 1a. The target BS is
positioned at the center of the plot, and colors denote different
probabilities that the metadata recorded at the BS is gen-
erated at each geographical location. While highly accurate,
such an approach to metadata geolocation requires access to
confidential information about the network infrastructure as
well as costly and time-consuming measurement campaigns.
Ultimately, the approach can only be run by mobile operators,
and the resulting maps are typically kept confidential.

The unavailability of precise geolocation forces the research
community to resort to simple approximations to geolocate the
network metadata. Approaches based on Voronoi tessellations
are the common practice, e.g., they are adopted by all works
and tools referenced earlier [1]–[18]. The strategy uniformly
spreads the metadata associated to one BS over the surface
of its Voronoi cell, i.e., the locus of spatial points that are
closer to the target BS than to any other BSs: an example
of geolocation based on a legacy Voronoi tessellation is
illustrated in Figure 1b for the same BS of Figure 1a. Voronoi



tessellations are simple to compute and, importantly, only
require the geographical coordinates of the BSs as input. Yet,
the limitations of a Voronoi-based model are apparent even in
the example of Figure 1b, and has been criticized [19], [20].

The aim of this paper is democratizing dependable meta-
data geolocation, by proposing DEEPMEND, a model that
combines the minimal input requirement of a Voronoi tessel-
lation (i.e., BS locations only) with the high accuracy of a
complex model based on proprietary RAN information Our
solution performs deep metadata geolocation with knowledge
distillation: a sample of the geolocation produced by our tool
is illustrated in Figure 1c, for the same BS of Figure 1a.

We publicly release1 our ready-to-use implementation of
DEEPMEND, so that it can benefit the community and pos-
sibly be integrated into emerging tools for producing official
statistics from network metadata [17], [18].

II. RELATED WORK

Next, we review existing approaches to metadata geoloca-
tion, which we group according to their methodology.

Client-side measurements. Precise mappings of the real-
world metadata geolocation of BSs inherently need informa-
tion collected at the User Equipment (UE). While complete
UE-side measurements may be feasible in circumstantial sce-
narios (e.g., for a few BS), they do not scale to large radio
access infrastructures covering cities or countries, which are
typical settings for network metadata-driven analyses [21]. A
way to alleviate the problem is collecting UE-side geolocation
samples at a limited subset of locations, e.g., via wardriving,
and then employing signal reconstruction techniques to re-
trieve the complete maps [22], [23]. Yet, the approach still
requires massive campaigns to gather enough samples over
vast multi-city regions like those we target. As a result,
no scientific study based on mobile network metadata has
employed client-side measurement campaigns for geolocation.

Propagation-based modeling. A more scalable way to
obtain accurate metadata geolocation maps is to rely on radio-
frequency (RF) signal propagation models to compute the
strength of the received signal from a BS at each point in
space and then post-process such information to derive the
actual geolocation maps. However, the approach necessitates
(i) complete data about the wireless propagation environment,
(ii) access to reliable RF propagation solvers to estimate
the wireless channel characteristics, and (iii) full informa-
tion about the RAN configuration that includes confidential
parameters, such as the modulation schemes and code rates
used by each BS. Even recent advances in deep learning that
have lowered the computational barrier to RF propagation
modeling [24], [25] still need data about the terrain, building
layout, operating frequency, transmitted power, modulation
and coding schemes, antenna height, azimuth, tilt or radiation
pattern. These barriers, jointly to the strong domain knowledge
needed to use complex RF propagation solvers, determine
that propagation-based methods are never used in academic
research on knowledge inference from network metadata.

1https://github.com/nds-group/DeepMEND

Voronoi tessellations. The complexity of the approaches
above have paved the way for the wide adoption of a much
simpler strategy for metadata geolocation based on a Voronoi
tessellation of space. Straightforward computation and mini-
mum input data limited to the BS locations make Voronoi cells
the de-facto standard for geolocation in the literature.

Variations to the baseline Voronoi model have also been
proposed, by: (i) shifting the Voronoi anchors along the BS az-
imuth or using knowledge of the BS coverage area boundaries
to improve the anchor positioning [26]–[28]; (ii) extending
Voronoi calculations with auxiliary data sources, such as land
use, to improve the geographic location of devices [29]; or,
(iii) embedding technology parameters for each BS, such
as sectoring, transmission power, or path loss information to
weigh the legacy Euclidean distance measures in a multiplica-
tively weighted Voronoi tessellation [30]. Yet, all these models
had limited success, as they add significant computational
complexity but do not overcome the main limitations of the
original Voronoi tessellation: e.g., they still assume a uniform
probability of geolocation in space (see Figure 1b), which does
not hold in practice (see Figure 1a).

The state-of-the-art Voronoi variant is VoronoiBoost, which
scales the baseline Voronoi cell of a BS so that it better
matches the area containing a target fraction of the geolocation
probability [20]. While it is still relatively inaccurate, as
discussed in Section III, VoronoiBoost is the closest work
to ours, and we provide a complete comparative evaluation
against DEEPMEND in Section V.

Probabilistic density models. An alternative strategy to
Voronoi tessellation that has been proposed in the literature
relies on a probability density inference (PDI) model [31]. The
approach generates a statistical representation of the location
of a UE given its distance from the BS of attachment, com-
puting an approximate probabilistic metadata geolocation of
the BS. The original PDI needs fine-tuning with measurement
data collected in the target network, about the BSs transmit-
ting power, the signal-to-noise and interference ratio (SINR)
thresholds, interference from non-neighboring base stations,
or round trip time (RTT): as these are typically not available
to academic researchers, the method suffers from a similar
accessibility barrier as proposals based on RF propagation
solvers, and has thus met negligible adoption in the literature.

A simplified version of PDI that only requires BS locations
has also been proposed [32]. This more essential model results
in a Voronoi cell smoothing controlled by a power attenuation
parameter, which requires again extensive field measurements
to be properly configured. We prove in Section III that using
the roughly calibrated values of the attenuation recommended
for the model [31] for different urbanization levels result in
poor geolocation approximations, and then also include this
solution in the comparative evaluation of Section V.

Contribution. With respect to the literature above, we seek
an original modeling approach that: (i) avoids the obstacles of
the more accurate approaches, and does not rely on costly soft-
ware packages, long and computationally expensive simula-
tions or confidential information about the RAN infrastructure,

https://github.com/nds-group/DeepMEND


which currently curb usability by the research community; and,
(ii) guarantees a representation of metadata geolocation that
is as realistic as possible.

III. DATASET AND MOTIVATION

We first present the metadata geolocation data computed
and made available by a network operator for our study,
in Section III-A. We then introduce a similarity metric to
compare metadata geolocation maps, in Section III-B. Finally,
we quantitatively assess the reliability of current models for
metadata geolocation based on BS locations, in Section III-C.

A. Ground-truth metadata geolocation data
Our work builds upon metadata geolocation maps for 5, 947

outdoor BSs located in tens of urban, suburban, and rural areas
of France, provided by Orange, a leading mobile network
operator. The metadata geolocation dataset is derived from
realistic spatial distributions of the association probability
P (i|ℓ): these describe the probability that a UE located at
position ℓ is attached to the i-th BS2, hence

∑
i P (i|ℓ) = 1.

For each BS, the probability of association are provided over
a spatial grid centered at the BS and composed of 600×600
location elements ℓ, each covering 0.01 km2.

The operator determines association probabilities through
a three-step process. First, a proprietary propagation solver is
utilized to estimate the received signal strength from each base
station (BS) i at every location ℓ with high accuracy. Second,
internally engineered priority tables are used to infer P (i|ℓ)
based on the signal strength from all BSs covering location
ℓ. Finally, extensive wardriving campaigns are conducted to
collect client-side measurements, which are used to experi-
mentally validate the association probabilities P (i|ℓ) and to
potentially fine-tune the priority table weights.

The metadata geolocation P (ℓ|i), i.e., the probability that
an UE associated to BS i is located at ℓ, is then derived from
the association probability P (i|ℓ) via Bayesian inference, as

P (ℓ|i) = P (i|ℓ)P (ℓ)

P (i)
=

P (i|ℓ)P (ℓ)∑
ℓ′ P (i|ℓ′)P (ℓ′)

, (1)

where P (ℓ) is the prior probability that a UE is found at a
specific grid position ℓ. As P (ℓ) is a time-varying distribution
that depends on the user population mobility dynamics and is
hard to determine a priori, we adopt the common assumption
that the user density is uniform over the relatively limited area
covered by overlapping BSs [33]. In this case, (1) reduces to
P (ℓ|i) = P (i|ℓ)/

∑
ℓ′ P (i|ℓ′), and

∑
ℓ P (ℓ|i) = 1.

B. Measuring metadata geolocation errors
A suitable error metric is required to compare the realistic

metadata geolocation data described in Section III-A against
approximations obtained by different modeling approaches.
Given that geolocation is inherently stochastic, and the ground-
truth P (ℓ|i) is a probability distribution, we adopt a metric

2We denote by i a whole BS, hence P (i|ℓ) is the total probability that UEs
at ℓ associate to any of the carriers at the i-th BS site. We model geolocation
at BS level rather than carrier level, as the former is much more popular in
the literature. Yet, our model is easily generalized to carrier-level geolocation.
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Fig. 2: Distributions of KS2 between the ground-truth metadata
geolocation of each BS and Voronoi (blue), sPDI (orange), and
VoronoiBoost (olive) models across urbanization levels.

from the field of probability. The following considerations
drive our choice: (i) locations ℓ are placed in a discrete bi-
dimensional space, making geolocation a multi-variate proba-
bility distribution; (ii) the metric must be defined for values
where the reference probability is zero; and, (iii) the large
support of 360, 000 spatial elements in the geolocation map
of each BS call for high computational efficiency.

The Kullback–Leibler and Jensen–Shannon divergences are
not defined over zero values, while other common choices like
the Wasserstein distance are computationally not viable. We
select instead a generalization of the Kolmogorov–Smirnov
test that is natively designed for bi-dimensional Cumulative
Distribution Functions (CDFs) [34], and adopt an efficient
version that meets our scaling needs [35]. As we do not seek to
accept or reject a null hypothesis, we only employ the statistic
returned by the bi-dimensional Kolmogorov–Smirnov test, i.e.,
the maximum distance between the two-dimensional CDFs
over all possible ordering, and not its p-value. The statistic,
which we refer to as KS2 in the remainder of the document, is
readily interpreted as an error metric: it ranges in [0, 1], where
0 indicates that the metadata geolocation maps are identical,
whereas 1 implies completely different representations.

C. Reliability of current models
We use the KS2 metric presented in Section III-B to perform

a quantitative evaluation of the reliability of existing models
for metadata geolocation. Adhering to the target of our study,
we focus on models that are usable by the academic research
community as they only need the locations of BSs as input. We
thus evaluate (i) the legacy Voronoi tessellation, (ii) the trained
implementation of the VoronoiBoost model [20], and (iii) the
version of PDI that only uses BS location [32]. The latter
model is denoted as sPDI in the following, and is configured by
setting its single attenuation parameter to 5, 4, and 3 for BSs in
urban, suburban, and rural locations, respectively, as indicated
in the paper originally introducing the PDI model [31]; to this
end, we determine the urbanization level of the area where
each BS is positioned based on official demographic data [36].

Figure 2 summarizes the KS2 similarity measured between
the ground-truth geolocation presented in Section III-A and
the approximations returned by the three models above, for
each BS in our dataset. The distribution of KS2 values is
separated by urbanization levels, which yield a different para-
metrization of sPDI as well as heterogeneous accuracy results.



VoronoiBoost offers slightly lower KS2 errors, hence better
accuracy than sPDI, which outperforms the baseline Voronoi
tessellation. However, all these approximations still leave large
margins for improvement: performance is especially poor with
suburban and rural BSs, where the average error has high KS2
values above 0.5; for urban BSs, KS2 values are spread across
the whole abscissa, implying that the geolocation output can
be anywhere from reliable to entirely wrong.

IV. DEEPMEND
The previous analysis shows that available models generate

unreliable mappings of metadata to the geographical space,
which can undermine the credibility of downstream analyses.
We propose DEEPMEND, a novel solution that follows a
knowledge distillation (KD) approach [37], i.e., employs a
complex and computationally expensive model –the teacher–
to derive soft labels that are then used to train a simpler model
–the student. Both teacher and student in DEEPMEND are
original models that are carefully tailored to solve the specific
problem of generating realistic geolocation maps from BS
locations, making our KD implementation unique.

The design of DEEPMEND is illustrated in Figure 3. At a
high level, the teacher processes (i) BS locations and (ii) the
ground-truth geolocation data presented in Section III-A, and
distills so-called soft labels: these are approximate geolocation
maps similar to the ground truth but less information-dense
and easier to model. Then, the student uses these soft labels to
learn to transform the BS locations into metadata geolocation
maps that mimic the soft labels. It is worth noting that:

• the teacher cannot operate as a generator of geolocation
data from BS positions only since it requires ground-truth
information as input, hence its sole purpose is to support
the learning process of the student during training;

• during inference, the trained student can independently
generate geolocation maps from BS coordinates only, thus
achieving our objective of a model that relies on the same
input of legacy Voronoi-based approaches.

The rationale for adopting KD in the design of DEEPMEND
is that the weak correlations between the tangled ground-
truth metadata geolocation and the modest input represented
by BS locations are too complex to learn in a direct way.
By introducing a teacher model, we generate soft labels
that are close to the target ground truth, yet more explicitly
correlated to the BS positioning data, thus simplifying the
learning process. To demonstrate the advantage of knowledge
distillation and corroborate our design choice, in Section V-A,
we will also compare DEEPMEND against a student-only
solution that tries to learn to synthesize geolocation directly
from the ground truth without the support of a teacher model.

A. Teacher model
Our teacher is a probabilistic inference model that departs

from the standard practice in KD of using complex neural
networks as teachers. The underlying idea is that an optimally
parametrized sPDI model gives us access to a domain-specific
probabilistic representation which (i) naturally produces ge-
olocation highly dependent on BS locations, and (ii) can
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Fig. 3: Diagram of the DEEPMEND operation during training
and inference. Once trained, the student can produce geoloca-
tion data from BS locations only (orange background).
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Fig. 4: Metadata geolocation output by sPDI with different
attenuation β ∈ [0.5,4] for the BS in Figure 1.

mimic the ground truth closely. The intuition is exemplified
in Figure 4, for the same BS considered in Figure 1: the plots
show the metadata geolocation probability P (ℓ|i) modeled by
sPDI when its attenuation parameter β is varied from 0.5 to 4.
We observe that the geolocation is too homogeneous over the
whole geographical region for low β, and tends to the Voronoi
cell for high β; yet, some intermediate values, e.g., β = 2 in
the specific case of the considered BS, yield a geolocation that
mimics well the ground truth in Figure 1a. We remark that the
legacy recommended β value in this case for sPDI is 5 [31].

Optimal sPDI geolocation. Yet, the optimal β value of
sPDI is BS-specific and depends on the usual combination
of complex RF signal propagation and RAN configuration
settings. Therefore, our teacher model has the objective of
identifying, for each BS, the attenuation parameter producing
an sPDI-generated geolocation that is the closest possible to
the ground truth. By doing so, it outputs a geolocation that
closely resembles the ground truth map for the target BS yet
is generated solely from BS locations, i.e., an ideal soft label.

As portrayed in Figure 3, our teacher achieves the goal
above via an exhaustive search over the β space for each BS.
More precisely, we run sPDI for all attenuation parameters
between β = 0.1, which uniformly spreads the probability
over a large region of thousands of km2 around the BS, and
β = 6, which converges to a traditional uniform geolocation
over the Voronoi cell of the BS. For each BS i, we compare the
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output of sPDI models parametrized with β ∈ [0.1, 6] against
the ground-truth geolocation using KS2 metric, and identify
the β∗

i that minimizes the error for BS i. The teacher produces
a soft label in the form of the geolocation generated by the
sPDI model with the optimal attenuation β∗

i .
New scalable sPDI model. The exhaustive search for β∗

i for
each BS i is very demanding from a computational viewpoint.
While it is typical for teacher models to be complex, executing
our proposed teacher with the original implementation of the
sPDI model [32] for the thousands of BSs in our dataset
would require months in a high-end computing cluster. We
thus propose a new fast variant of sPDI as follows.

Given a tessellation of the target region into locations ℓ, and
the set B of BSs covering such region, the sPDI model defines
the association probability of a UE in ℓ to the i-th BS as

P (i | ℓ) =
∫ ∞

0

e−r
∏

j∈B\i

(
1− exp(−r

∥ℓ− j∥β

∥ℓ− i∥β
)

)
dr, (2)

where j are BSs other than i, and the attenuation parameter
β indicates how quickly the signal weakens over space. Once
(2) is solved, P (ℓ | i) can be derived using the Bayes theorem
as per (1). A major disadvantage of the sPDI implementation
in (1) is that the model entails a multiplication over all j ∈ B\i
for every location ℓ. In realistic scenarios where the number
of BSs in B is large (e.g., hundreds or more), the cost of
computing the integral numerically makes our exhaustive-
search teacher not viable even with high-end platforms.

In order to make sPDI scalable, we derive the analytical
solution3 for P (i | ℓ) that avoids solving (2) numerically. Our
novel closed-form solution of sPDI is expressed as

P (i | ℓ) = 1 +
∑

v∈C(Bk
ℓ )

−1|v|

∑
j∈v

∥ℓ− j∥β

∥ℓ− i∥β
+ 1

−1

, (3)

where C(·) denotes the collection of all possible combinations
of elements in the argument set and −1|v| is a sign factor
that depends on whether the cardinality of v is odd or even.
The equation is solved considering only the set Bk

ℓ of k
nearest neighboring BSs to each location ℓ which is efficiently
computed in O(log|B|) via a KDTree data structure [38].

Cost-accuracy trade-off. Our proposed implementation of
sPDI introduces a trade-off between efficiency and accuracy

3The derivation is omitted due to space limitations, but it relies on replacing
the product inside the integral by the sum of all combinations over the set
B\i, extracting the sum from the integral, and computing the sum of integrals.
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Fig. 6: Example of the encoder-decoder input tensor channels
(a)–(c) and their target soft label (d), for the BS in Figure 1.

when truncating (3) to a limited subset Bk
ℓ of k neighboring

BSs for each location. We explore this trade-off in Figure 5,
which reports the results of (3) for different values of k.

Figure 5a presents the time required to compute P (i | ℓ)
via (3) versus k: the fitted curve highlights an exponential
growth of the computational complexity when the cardinality
of Bk

ℓ increases. Figure 5b depicts instead the relative Mean
Square Error (MSE) of the geolocation P (i | ℓ) produced
by (3), across values of k: as expected, larger k’s inherently
produce better representations of the metadata geolocation. By
juxtaposing the two plots in Figure 5, k = 5 emerges as a good
operational point that grants both similar accuracy as models
with higher k and bounded computational costs with respect to
lower-k variants. As k reflects the number of BSs in proximity
of a location that may have an impact on the association of
the local mobile devices, it is interesting to observe that a
value of 5 BSs is coherent with the typical number of BSs
of a same operator covering a given location. Therefore, we
employ k = 5 in our experiments in the rest of the document.

B. Student model
Our student is a deep neural network that performs a

pixel-to-pixel (P2P) prediction of the geolocation probability
P (ℓ | i) at each element ℓ of the regular grid used to represent
the geographical area of the i-th BS. Importantly, we aim
at a P2P prediction based only on input derived from BS
locations; this starkly contrasts with works applying P2P to
radio coverage, which need detailed terrain maps, building in-
formation, channel characteristics, and antenna configurations,
modulation or code rates [24], [25], [39].

U-Net neural network. The core of the student model is
a U-Net architecture [40]. We configure it with six encoding
layers: the first layer has 32 convolutional filters, and each
following one decreases the filters by a factor of two. The
decoding part has a structure symmetric to that of the encoder.
Each encoding or decoding layer uses a standard convolution
with an kernel size m = 5 × 5, followed by 2 × 2 max
pooling or upsampling operation, respectively. All layers use
ReLu activation functions, except for the final layer that uses
a 1× 1 convolution and linear activation to extract the output
tensor. The choice of the student neural network is the result
of extensive experiments with different architectures, e.g.,
U-Net, SDU-Net [41], and diverse hyper-parametrizations.

Input transformation. The U-Net is not fed with the
raw BS locations, but with an original transformation of
the BS positioning, which is more informative for the P2P



prediction. In particular, we use as input a 600 × 600 tensor
of locations ℓ centered at the target BS and composed of
three channels, which capture the distance between each pixel
(i.e., location) and its first, second, and third closest BS. The
rationale for this choice is that these are the key information
leveraged by the sPDI model in (2); hence, they carry strong
P2P relationships with the target geolocation map that the
models can learn. To further facilitate the encoder-decoder
architectures to develop a connection between the input and the
output tensor, a transformation is applied to the input channels
X ′

ℓ,c = 1−exp (−Xℓ,c/di(ℓ)). Here, Xℓ,c is the initial value of
pixel ℓ in the c-th channel, while di(ℓ) is the distance between
pixel ℓ and the target BS i placed at the center of the map. This
transformation renders the input of the encoder-decoder alike
to the information used to calculate the metadata geolocation
via (2), thus facilitating the training procedure. An example of
the input tensor X is shown in Figure 6, along with the target
soft label, for the BS considered in Figure 1.

Training. Abiding by KD principles, the loss is the L1

distance between the output of the neural network and the soft
label y provided by the teacher, represented as a 600 × 600
single-channel tensor with the values of the objective metadata
geolocation. Since the target label often takes small values,
we apply a logarithmic transformation y′ = −1/log10(y) to
the output, and then re-normalize to a Probability Density
Function (PDF); this lets the student model identify better
locations with low geolocation probability and prevents the
training process from getting stuck in local minima.

V. PERFORMANCE EVALUATION

We implement DEEPMEND using Tensorflow [42]. In all
experiments, we train the model for 100 epochs, using the
Adam optimizer with learning rate 1e−4 and batch size 8,
on three NVIDIA A100 GPUs. In Section V-A, we evaluate
the performance of DEEPMEND by conducting an n-fold
cross-validation, with n = 5. In each instance, the full data
set of BSs is split into training and test data with the 80:20
ratio commonly used in ML tasks [43]. That lets us study the
overall performance of our approach in comparison with other
solutions proposed in the literature. Then, in Section V-B,
we explore how DEEPMEND generalizes to cases that are
drastically different than those seen during the training phase,
by training our model with a leave-one-out (LOO) strat-
egy [43]. Specifically, we remove from the data set all the
BSs in a specific (i) city or (ii) urbanization level, we train
DEEPMEND with the remaining samples, and then probe the
quality of its predictions for the city or urbanization level left
out. This process shows how DEEPMEND can serve for new
scenarios and unknown environments not seen during training.

A. Comparative analysis
Across our evaluations, we compare DEEPMEND against

benchmarks that include the state-of-the-art solutions for mo-
bile network metadata geolocation, as follows.

• Voronoi uniform geolocation over the plain Voronoi cell
of a BS, which is the common approach widely adopted
in the literature, e.g., [1]–[14], [16], [44], [45].

Model Geolocation quality (KS2) Inference (ms)
Voronoi 0.704± 0.3047 < 1
VoronoiBoost 0.454± 0.2316 3
sPDI 0.501± 0.2956 ∼ 80, 000
Direct 0.422± 0.2737 21
DEEPMEND 0.304± 0.1944 21

TABLE I: Summary of comparative performance evaluation.
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Fig. 7: Violin plot of the KS2 error between the ground-truth
geolocation and the approximations of the models.

• VoronoiBoost is a data-driven model that scales and com-
poses the original Voronoi cells to create a probabilistic
geolocation for each individual BS [20].

• sPDI is the sPDI model [32] configured with the default
attenuations in the work that introduced PDI [31].

• Direct is a deep learning approach that aims at directly
learning to predict the ground-truth geolocation from
ground truth data. Essentially, this model is the student
portion of DEEPMEND, trained without the help of
the teacher, i.e., on the ground truth instead of the soft
labels. This benchmark allows assessing the importance
of adopting KD for metadata geolocation estimation.

The results of the cross-validation are summarized in Ta-
ble I. For each model, the quality of the geolocation it gener-
ates is expressed as the median KS2 error (with deviation) with
respect to the ground truth. Inspecting the KS2, DEEPMEND
substantially outperforms all solutions adopted or proposed in
the literature. Namely, the median error is cut by 56.80%,
33.03%, and 39.27% over Voronoi, VoronoiBoost, and sPDI.

A deeper look is provided in Figure 7, which reports the
statistics of the KS2 error metric obtained with each model
across all cross-validation iterations. Again, DEEPMEND
emerges as a clear winner, and it is, in particular, the only
model to dramatically cut low-quality geolocation: while all
other approaches have 30%–60% of BSs with poor KS2 >0.6,
our model reduces those BSs to 9%. Ultimately, these results
demonstrate that DEEPMEND can drastically enhance the
quality of metadata geolocation with respect to approaches
available in the literature.

The KS2 attained by DEEPMEND in Table I is also 27.87%
lower than that achieved by the Direct benchmark. This
significant difference clearly proves that learning to predict
geolocation directly from ground-truth data, while solely using
BS locations as input, is a hard task. It also demonstrates
how the KD strategy we propose is key to achieving more
reliable metadata geolocation representations. To complement
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Fig. 9: Visual comparison of metadata geolocation maps.

the results, we also provide: (i) PDFs of KS2 for DEEPMEND
and Direct for each urbanization level, in Figure 8, which allow
a comparison against those of the other approaches in Figure 2;
and, (ii) visual samples of the geolocation maps generated
by all models, juxtaposed to the ground truth, in Figure 9.
These visualizations substantiate how DEEPMEND provides
geolocation maps close to the ground truth, while competitors
fail to do so.

B. Generalization
We now validate the capability of DEEPMEND to gener-

alize to new scenarios in environments different than those
used during training. To this end, we leverage the fact that
the ground-truth data described in Section III-A covers large
regions across France and thus encompasses tens of cities as
well as urban, suburban, and rural areas. This lets us adopt
a LOO strategy at the level of (i) cities and (ii) urbanization
levels. Specifically, for LOO on cities, we train DEEPMEND
on BSs located in all cities in our reference dataset except one

City DEEPMEND Voronoi-Boost Direct sPDI Voronoi
Bordeaux 0.39± 0.171 0.54± 0.186 0.56± 0.253 0.64± 0.265 0.86± 0.230
Dijon 0.38± 0.114 0.61± 0.149 0.56± 0.171 0.68± 0.194 0.89± 0.143
Lille 0.30± 0.162 0.41± 0.192 0.41± 0.240 0.50± 0.267 0.64± 0.272
Lyon 0.47± 0.182 0.67± 0.221 0.74± 0.267 0.81± 0.278 0.92± 0.257
Mans 0.34± 0.144 0.63± 0.153 0.53± 0.179 0.66± 0.195 0.88± 0.181
Marseille 0.32± 0.123 0.51± 0.166 0.51± 0.218 0.51± 0.221 0.72± 0.215
Nantes 0.36± 0.162 0.54± 0.189 0.60± 0.245 0.73± 0.248 0.89± 0.219
Nice 0.45± 0.157 0.52± 0.194 0.55± 0.277 0.54± 0.274 0.77± 0.240
Orleans 0.38± 0.187 0.63± 0.210 0.54± 0.232 0.61± 0.220 0.85± 0.245
Paris 0.15± 0.173 0.23± 0.199 0.19± 0.245 0.21± 0.241 0.33± 0.275
Rennes 0.45± 0.212 0.61± 0.206 0.53± 0.237 0.70± 0.283 0.87± 0.275
Saintetienne 0.40± 0.150 0.60± 0.203 0.64± 0.239 0.51± 0.195 0.86± 0.230
Toulouse 0.47± 0.203 0.57± 0.220 0.60± 0.284 0.72± 0.294 0.89± 0.265
Tours 0.39± 0.167 0.62± 0.169 0.62± 0.218 0.68± 0.235 0.88± 0.210
Urban 0.31± 0.231 0.37± 0.260 0.33± 0.306 0.39± 0.323 0.53± 0.322
Suburban 0.34± 0.139 0.52± 0.163 0.48± 0.219 0.60± 0.244 0.83± 0.224
Rural 0.32± 0.113 0.52± 0.131 0.48± 0.163 0.61± 0.182 0.85± 0.153

TABLE II: Summary of LOO generalization experiments.

and then test the resulting model on the left-out city. Similarly,
for LOO on urbanization levels, we train DEEPMEND on BSs
in urban and suburban areas and then test the trained model
on BSs in rural areas; we then repeat the experiment, leaving
out also urban or suburban BSs. Overall, these settings ensure
that DEEPMEND is tested in diverse environments from those
seen during training, characterized by a different density and
typology of buildings, infrastructures, and green areas.

The performance of DEEPMEND in these experiments is
reported in Table II. In all tests, DEEPMEND produces much
higher fidelity geolocation maps compared to the benchmarks,
corroborating the resilience of our framework. Indeed, Voronoi
and sPDI (which do not need training, hence are simply run for
the BSs in the target LOO areas), VoronoiBoost or Direct all
result in clear performance drops with respect to our model:
DEEPMEND cuts KS2 errors by 10%–50% with respect to
the second-best model in each case.

When looking at the performance of DEEPMEND, we
observe that for urbanization level LOO tests, errors stay
comparable to those seen in Section V-A, with a KS2 within
0.31–0.34. Instead, the geolocation quality becomes more
heterogeneous in LOO tests across cities, with high variance
depending on the left-out city and KS2 ranging from 0.15 to
0.47. We remark that DEEPMEND tests show discrepancies of
training and test errors of 1%–4% that exclude the possibility
of overfitting; we thus ascribe the result to the fact that cities
are very diverse, and we may need a larger training dataset
to capture correlations that are specific to one precise conur-
bation. Yet, even in LOO cities with the worst performance
DEEPMEND yields superior performance to all other models.

VI. APPLICATION USE CASES

We demonstrate how DEEPMEND can benefit studies based
on network metadata by showing that it improves the credibil-
ity of the evaluations of two applications: vRAN planning, and
dynamic demographic density mapping.We highlight that, in
both use cases, we use geolocation generated in a city unseen
during LOO model training, as per Section V-B.
A. vRAN planning

We consider a vRAN environment that comprises multiple
Radio Units (RUs) that execute basic operations, such as FFT,
Cyclic Prefix, or P/S, and are densely deployed over a target re-
gion. The vRAN infrastructure then includes Distributed Units
(DUs) that perform more demanding PHY/MAC functions,
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Fig. 10: (a) Jain’s fairness index of the traffic load served by
deployed ESs. (b) MAPE of the dynamic population estimate.

such as coding, modulation, or FEC. The DUs are found at
far Edge sites (ES), where they dispose of substantial compu-
tational resources [46]. For a successful vRAN operation, the
traffic demands at the RUs must be taken into account during
the deployment of ESs, in order to optimally exploit the ES
capacity, and reduce their energy footprint [47].

We use our metadata geolocation model to generate detailed
geographical distributions of the average mobile demand and
then exploit such maps for ES planning. Specifically, we first
use DEEPMEND to predict geolocation maps for all BSs in
a large metropolitan area not seen during training. We then
perform a spatial mapping of the average traffic load recorded
by the network operator at each BS in the target area, by:
(i) distributing the traffic volume of each BS to locations ℓ
according to the DEEPMEND geolocation probability; and,
(ii) summing up at each ℓ the load contributed by all BSs. The
outcome is a fine-grained map of the typical traffic demand
generated within each location ℓ in the region, denoted by dℓ.

Now, let us formally define the ES planning problem. We
assume a dense and regular deployment of RUs r ∈ R, each
serving one location ℓ with demand dr = dℓ. We aim at
deploying a set S of k total ESs, so as to balance the volume
of traffic handled by each site s ∈ S , while also minimizing
the fronthaul latency (i.e., geographical distance) to the RUs
it serves. We represent the vRAN as a graph G(R, E), where
an edge (r, r′) ∈ E only exists if RUs r and r′ serve adjacent
locations. Then, the problem is formulated as

min
∑

(r,r′)∈E
x(r, r′), s.t. (4)

1− ϵ ≤
∑

r∈R y(r, s) · dr∑
r∈R dr/|S|

≤ 1 + ϵ, ∀s ∈ S, (5)∑
s∈S

y(r, s) = 1, ∀r ∈ R, (6)

x(r, r′) ≥ y(r′, s)− y(r, s), ∀(r, r′) ∈ E , ∀s ∈ S, (7)
x(r, r′) ≥ y(r, s)− y(r′, s), ∀(r, r′) ∈ E , ∀s ∈ S, (8)

where x(r, r′) and y(r, s) are decision variables equal to one if
edge (r, r′) is cut by a partition, and if RU r is associated with
ES s, respectively. The problem in (4) is solved via the KaFFPa
heuristic [48], which partitions of the RUs across ESs, so that
ES traffic loads are balanced within a margin ϵ, as per (5). ESs
are placed at partition barycenters to reduce fronthaul latency.

Having deployed the k ESs based on DEEPMEND-
predicted data, we assess the planning quality by computing

how balanced are the actual demands served by each ES. Thus,
we compute the same traffic map as described before, but
using the ground truth metadata geolocation of the network
operator from Section III-A, and obtain the ground-truth
traffic d∗r = d∗ℓ at RU r. Then, the actual load at ES s is
d∗s =

∑
r∈R d∗r ·y(r, s), where we recall that y(r, s) is derived

using information supplied by DEEPMEND. We finally use
Jain’s fairness index over all samples d∗s, s ∈ S to evaluate the
load symmetry across ESs, hence the planning quality. This
experiment allows assessing how an ES deployment would
perform in the field (which, in our case, coincides with the
ground-truth traffic map), even if the deployment were driven
by geolocation estimated via DEEPMEND.

Figure 10a shows the evolution of fairness versus the density
of the ES deployment. A DEEPMEND-informed planning
yields excellent fairness close to 1 for a small number ESs; the
quality of the selected locations decreases for a larger k where
the planning choices also grow, yet stays close to 0.95 even
for dense deployments of hundreds of ESs. We then solve
the same planning problem when the traffic dℓ is generated
from the geolocation maps estimated Voronoi, VoronoiBoost,
the legacy-parametrized sPDI model, and the Direct approach.
Figure 10a reports how the quality of the ES deployment
fairness deteriorates much quicker, implying that relying on
existing geolocation strategies to evaluate ES planning can bias
conclusions on the expected performance of the vRAN.

B. Dynamic demographic density
Estimating the population presence at fine spatial granularity

over time is an open problem in demography, whose solu-
tion can improve, e.g., transportation system design or urban
policing. This is a challenging problem utterly different from
surveying dwelling units as done in the population census:
dynamic demographic density estimation aims to follow order-
of-minute variations in the presence of people in urban areas,
whereas census data only captures their static home locations.
Mobile network metadata is emerging as a valuable source
of information for models of real-time population density [1].
In this use case, we consider a multivariate regression model
for the estimation of demographic density pℓ(t) at location ℓ
and time t, which leverages the mobile traffic demand dℓ(t)
measured at t in ℓ [49]. Formally,

pℓ(t) = ek1λ(t)+k2dℓ(t)
k3λ(t)+k4 , (9)

where λ(t) is the mean number of network events (e.g., data
sessions) per subscriber, while k1, k2, k3, and k4 are constants.
We set all parameters in (9) to empirical values provided in
the original paper [49], and compute hourly traffic demand
dℓ(t) with geolocation maps produced by DEEPMEND or the
benchmarks, exactly as in Section VI-A.

We then use the model in (9) to generate hourly cartogra-
phies of the demographic presence in the target metropolitan
area. We compare such presence to the ground-truth hourly
population density, which we estimate again with (9), but
using the realistic demands d∗ℓ (t) generated from operator-
provided geolocation data. A quantitative view of the model



quality is provided in Figure 10b, which shows the Mean
Absolute Percentage Error (MAPE) obtained by comparing
population density informed by the ground-truth versus model-
based geolocation across one day. DEEPMEND yields an
erro9r around 15%. When repeating the same experiments with
currently available geolocation methods, our approach yields
errors 25% to 50% lower than the benchmarks. We conclude
that our model can improve, e.g., urban policing based on
metadata-driven dynamic population estimates.

VII. CONCLUSIONS

We propose DEEPMEND, a data-driven model that can
predict high-resolution metadata geolocation maps from BS
locations only. DEEPMEND hinges upon an original knowl-
edge distillation design with suitable probabilistic inference
and deep learning pixel-to-pixel models. It is accurate, com-
putationally efficient, generalizes well to previously unseen
environments, and largely improves existing geolocation meth-
ods. DEEPMEND has the potential to democratize access to
reliable geolocation maps, improve the quality of research
based on mobile network metadata, and contribute to open
tools for producing official statistics from network metadata.
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