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Abstract

The Network Scale-up Methods (NSUM) are methods to estimate unknown popu-
lations based on indirect surveys in which the participants provide information about
aggregated data of their acquaintances. This preserves the privacy and may lead
to higher participation. During the last thirty years, new NSUM estimators have
emerged. However, conditions related to the design of the experiments and the ro-
bustness of the estimators have not been studied in depth, especially in a realistic
simulation environment. This study aims to compare nine NSUM estimators under
relevant conditions in the literature through simulation experiments. We have an-
alyzed how the NSUM is affected by the network topology, transmission and recall
errors, the distribution of the unknown subpopulation, the number and sizes of sub-
populations, and sample size. This article shows that some NSUM estimators barely
used are better and more robust to some conditions, especially when the network
is scale-free or under barrier effects. In addition, some methods are very sensitive
to recall errors. In terms of the subpopulations configuration, we observe that the
number of known subpopulations usually employed is quite large and that the most
common NSUM is robust to the number and sizes of the subpopulations.
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1 Introduction

The Network Scale-up Methods (NSUM) are survey-based methods that use information

about the acquaintances of the participants instead of their own. The methods arise from

the fact that surveys with sensitive populations face reliability issues since the respondents

might not be willing to participate or to be honest, resulting in sampling bias and un-

derestimation. Over the last few decades, indirect reporting has emerged as a strategy to

address these issues, which can increase participation and data collection while reducing

study costs. The NSUM studies only require aggregate data of the contact network, which

is obtained through the reporting of different groups known by the respondent (what is

called aggregated relational data (ARD) (Feehan, Salganik, 2016)), using considerably less

data and respecting the privacy of the surveyed. For these reasons, the NSUM have been

employed to estimate the size of subpopulations in which no sampling frame exists and

public acknowledgment of membership in the population is potentially threatening, where

the term subpopulation denotes a subset of the general population, and size refers to the

number of people in the subpopulation. Based on the work of (Bernard et al., 1989), it has

been employed in several contexts such as abortions (Sully et al., 2020), female sex workers

(Jing et al., 2018), men who have sex with men (Ezoe et al., 2012), drug users (Salganik

et al., 2010), and HIV issues, currently used by the UNAIDS1 (UNAIDS, 2010).

Throughout these years much research about NSUM has emerged (see for example, the

reviews (Laga et al., 2021) and (McCormick, 2020)) focusing mainly on the introduction of

new estimators, especially in the presence of bias (see (Laga et al., 2021)). However, the

performance and comparison of the methods under various conditions have not been studied

in depth. These conditions include the performance under biases, sample size, the unknown

subopulation, and the selection of the known subpopulation. We will refer to unknown

population as a subpopulation whose size is not known, and to known subpopulations

as subpopulations whose size is known and are used to estimate the network size of the

participants. In particular, there is no guideline on the sizes of the known subpopulations

chosen, the number of known subpopulations to employ, or the influence of the intersection

of the known subpopulations, which we will denote as overlapping of subpopulations. Most

1The Joint United Nations Programme on HIV/AIDS
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of the studies only compare two estimators (Killworth et al., 1998b), (Salganik et al.,

2011), (Snidero et al., 2004) (the last two only in one dataset), or three (Kunke et al.,

2024). A comparison of many of them was done in the supplementary material of (Laga

et al., 2021) but for a single dataset. (Snidero et al., 2004) analyzed two NSUM estimators

in Monte Carlo experiments to analyze the robustness under the size, coverage, optimal

number, and overlapping of the populations. (Kunke et al., 2024) compared the estimators

given in (Killworth et al., 1998a) and (Killworth et al., 1998b) under the prevalence of the

unknown subpopulation, dissortative and assortative mixing, and degree ratio. The number

of subpopulations required for the first NSUM estimator was studied by (Killworth et al.,

1998a) in an elementary Monte Carlo simulation. (Srivastava et al., 2024) proposed a

latent network model obtaining analytical conditions in terms of variance and dependency

with respect to the network size, in which the NSUM error is lower than classical methods

relying solely on participant information. Finally, analytical error bounds for two classical

NSUM estimators were provided in (Dı́az-Aranda et al., 2024), with refinements for random

networks.

The main contribution is the comparison of a large set of NSUM estimators, nine in

total, through an extensive simulation study under the presence of the relevant conditions

of the NSUM literature. Specifically, we explore the impact of the distribution of the sub-

populations (number of subpopulations, sizes, presence of overlapping), the distribution of

the unknown subpopulation, sample size, and the presence of the next biases: transmis-

sion error and recall error. Actually, to our knowledge, it is the first work that compares

the performance of the NSUM under the transmission and recall errors. Additionally, we

present a way to model the biases transmission error and recall error. Finally, we measure

the NSUM performance in a realistic simulation environment, where we included social

network topologies that can be found in real data, such as small world and preferential

attachment networks.

This article is organized as follows. Section 2 presents a historical overview of the

NSUM and the biases faced by the estimators. Section 3 displays the NSUM estimators

that will be used in the subsequent simulations. In Section 4, we present the parameters

and domains that will be compared. The results of the simulations are exhibited in Section
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5, along with a discussion of estimator performance. Section 6 assesses the results on a real

network using both real and simulated subpopulations. Final remarks are in Section 7.

2 Overview of the Network Scale-Up Methods

The NSUM are the methods that employed ARD to estimate unknown subpopulations

or personal network sizes (Laga et al., 2021). The ARD is the data collected from the

ego-networks (networks surrounding the subjects that contain the participants and their

contacts (Newman, 2018)) using questions of the type: “How many people do you know who

have characteristic X?”. The individual from which the networks are generated is called

ego and the contacts are denoted as alters. The general framework of all the methods

is that the ego-network contains information that is approximately representative of the

entire population, at least for the ARD questions. More concretely, suppose that we have a

population of size N and several ARD questions, the main assumption is that the following

equations hold:

E
[
yij
di

]
=

Nj

N
(1)

where yij represents the number of people that participant i knows in the subpopulations

j, di is the degree, the size of the ego-network, and Nj is the total number of people

belonging to the subpopulation j. We will consider L known subpopulation, with known

sizes denoted as Nk, and an unknown subpopulation. We will refer to yiu and Nu as the

number of people that participant i knows in the unknown subpopulation, and the size of

the unknown subpopulation, which is often called as “hidden population” or “hard-to-reach

population”. The NSUM uses the ARD provided by the respondents to obtain values for

the participants’ degrees. This is mainly done using known subpopulations, although other

approaches ask directly for the degrees (Garcia-Agundez et al., 2021). Additional samples

of the unknown population are employed in some estimators (Feehan, Salganik, 2016) and

(Verdery et al., 2019).

Over the years, several biases have been discovered that affect the constant propor-

tionality assumption, and as a consequence, the performance of the NSUM. These biases

are the barrier effect, transmission error, and recall error. These errors come from survey
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behavior and the way the different subpopulations are distributed. The transmission error

is the bias produced by the fact that the participant does not know if the acquaintances

are in the subpopulations. The recall error occurs when the participants recall inaccurately

the number of alters of some subpopulations. The participant may overestimate or under-

estimate this number. The barrier effect is the bias produced because the probability of

knowing someone in a population depends on the characteristics of the ego. This means

that a participant is more likely to know someone in certain subpopulations.

3 NSUM estimators

(Laga et al., 2021) reviews the previous NSUM in the literature from which we will take

most of them. For simplicity, we will exclude estimators that use demographic variables

(McCormick, Zheng, 2012), and venue-based sampling (Verdery et al., 2019). We include

the estimator of (Garcia-Agundez et al., 2021), and two unemployed estimators, one of

them pointed out by (Kunke et al., 2024). During the development of the paper, a new

NSUM has emerged (Laga et al., 2023), that takes into account the correlations between

the variables. We do not analyze the correlation of the variables in our work, but the

overlapping of the known subpopulation may lead to correlated ARD responses because

the participants are more likely to know a person in several subpopulations. Our results

do not show a significant variation in the performance of the estimators in this case, as we

show in the supplementary material.

3.1 Frequentist estimators

The frequentist estimations usually use a two-step procedure: an estimation of the degrees

of the subjects, and a posterior estimation of the unknown subpopulation using that infor-

mation. In terms of the degrees, in some cases, they use the fundamental Eq. (1) for the

unknown subpopulations to obtain L estimates of the di, and then take the average:

d̂Ai =
1

L

L∑
k=1

dki , (2)
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where the dki is the estimate corresponding to yikN/Nk. Another option is to assume that

the yik are L independent random variables that follow a binomial distribution, yik ∼

Bin(di, Nk/N), and then estimate the degrees via a maximum likelihood estimation:

d̂ML
i = N ·

∑L
k=1 yik∑L
k=1 Nk

. (3)

For the estimation of the size of the unknown population, there are two options. One

proposal is to use Eq. (1) to obtain n estimates of the number of the unknown population,

N i
u = Ndi/yiu, and to take averages,

N̂A
u =

1

n

n∑
i=1

N i
u. (4)

Another proposal for the size estimation is to assume that yiu ∼ Bin(di, Nu/N) for i =

1, · · · , n are independent random variables, and to use a maximum likelihood estimation

N̂ML
u = N

∑n
i=1 yiu∑n
i=1 di

. (5)

The NSUM proposal is to substitute the degrees for the estimates degrees in the equations

for the size estimation, Eq. (4) and Eq. (5). An alternative is to employ the approach of

(Garcia-Agundez et al., 2021), when participants provide the degree, which we denote as

δi. These six combinations are summarized in the next Table. The MLE estimator is by

far the most employed NSUM, see (Ocagli et al., 2021) for a list of NSUM studies.

Degree

Size
Average Max. Likelihood

Average MoS (Means of Sums) (Killworth et al., 1998a) KLN (Kunke et al., 2024)

Max. Likelihood Plug-in MLE (PiMLE) (Killworth et al., 1998a) MLE (Killworth et al., 1998b)

Direct Average of Ratios (AoR) Ratio of Averages (RoA) (Garcia-Agundez et al., 2021)

Table 1: Basic NSUM estimators. The rows represent the way to obtain the degree and

the columns the size

3.2 Bayesian estimators

The first estimator is the Overdispersed estimator (Zheng et al., 2006). It was created

to handle the overdispersion of the data produced by the different propensities of the

6



subpopulation to form ties. This is represented by the parameter ωk. The model is:

yik ∼ Negative Binomial
(
mean = eαi+βk , overdispersion = ωk

)
. (6)

where k = 1, · · · , L or u, eαi is the expected degree of i, and eβk is the proportion of links

of group k. For further details about the prior distribution and the algorithm, see (Zheng

et al., 2006).

On the other hand, (Teo et al., 2019) proposed a new estimator that we denote by TPC

estimator. They presented the following model:

yik ∼ Poisson (λαiNk) , (7)

with λ be a scale-up parameter such that yik = λNk, for every k = 1, · · · , L or u; and

αi a parameter that characterizes the variability in the network size. Details about the

algorithm can be found in (Teo et al., 2019). This work includes other improvements to

the model through questions about perceptions and demographic variables. These last

adjustments are not included because they exceed the scope of the study.

(Maltiel et al., 2015) proposed a Bayesian model and 4 modifications to handle the

biases. The Maltiel’s estimators include priors whose support is bounded. This feature

generates acceptance rate problems in our data. For that reason, we have not included

this model in the rest of the article. For more details about our simulations with these

estimators, see the supplementary material.

3.3 Generalized Network Scale-Up Method

The Generalized Network Scale-up Method (GNSUM) was suggested by (Feehan, Salganik,

2016) to reduce the transmission error. In addition, the GNSUM allows other types of

samplings. However, this estimator needs an additional sample from the unknown subpop-

ulation. This sample from the unknown subpopulation allows to collect data about the

number of alters in some groups who are aware of the participants belonging to the un-

known subpopulation. This data is known as enriched aggregate relational data (EARD).

The purpose of EARD is to estimate the relative visibility of the unknown subpopulations.

The relative visibility refers to the average of the visibility of each individual in the un-

known subpopulation, which is the number of contacts that know the belonging of the
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individual to the unknown subpopulation. The EARD questions measure the visibility of

the participants of the unknown subpopulations in some groups, denoted as alter groups.

Similarly to other NSUM estimators, the EARD is used to estimate the relative visibility

and then estimate the unknown subpopulation. The GNSUM estimator is:

N̂GNSUM
u =

∑
i∈sF yiu/πi

ˆ̄vu,F
, (8)

where πi are the inclusion probabilities from a sampling design and ˆ̄vu,F is the estimated

relative visibility. In our specific case, we consider as alter groups the known subpopula-

tions, and the sample is taken uniformly. More details about the GNSUM are in Section

1.2 in the supplementary material.

Adjusted estimators. (Feehan, Salganik, 2016) proved that the GNSUM estimator is

equal to the unknown subpopulation estimate Eq. (5) corrected by some adjustment factors,

one of them the inverse of the transmission rate. The transmission rate is the fraction of a

respondent’s network that is aware the respondent belongs to the unknown subpopulation.

However, the transmission rate estimation also needs the information of a sample of the

unknown subpopulation. (Feehan, Salganik, 2016) proposed using the MLE estimator

corrected by these factors. It is also known as GNSUM. Apart from this adjustment, we

consider the adjustment of the other NSUM estimators by the inverse of an estimate of

the transmission rate, which we will denote in the rest of the paper as adjusted NSUM

estimators.

4 Simulation Environment and Parameters

We define four main scenarios characterized by the type of network and distribution of the

unknown population, as shown in Table 2. For each main scenario, we define the belonging

to the subpopulations, the ARD, and the EARD. Then, we compare, for several samples,

the performance of the different methods as the other relevant parameters vary. These

parameters of the other relevant scenarios are transmission error, recall error, number of

known subpopulations, sizes of known subpopulations, presence of disjoint subpopulations

(subpopulations with no overlapping), and sample size. The NSUM estimators are com-
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pared using the next metrics: mean, standard deviation, mean absolute error (MAE), and

mean squared error (MSE).

4.1 Main scenarios

Network unknown subpopulation

W-U Watts-Strogatz Uniform

W-S Watts-Strogatz SIR

P-U Pref. attachment Uniform

P-S Pref. attachment SIR

Table 2: Main scenarios to be compared.

4.1.1 Networks

We use two types of networks with properties found in real networks. On the one hand,

we use a small-world network. Therefore, it has a high clustering coefficient and a short

average path length (Newman, 2018). Concretely, we use a Watts-Strogatz network. The

network is built as follows: the nodes are placed and are connected to the nearest neighbors,

and with a fixed probability an edge is removed, and two nodes are connected. On the

other hand, we use a scale-free network, a network generated by a preferential attachment

process. The construction of the graph is done by adding m vertices successively so that the

vertices join proportionally to the node with the most connections. The degree distribution

follows a power distribution, unlike the Watt-Strogatz networks, whose nodes have similar

degrees. More details about the network topologies are in the supplementary material.

4.1.2 Unknown subpopulation distribution

The first case is when the individuals of the unknown subpopulation are randomly chosen.

In this setting, the probability is the same for every node and independent of the network.

On the other hand, we model the dependencies via a SIR process through the network. It is

a foundational model for infections, which models some use cases from NSUM such as drug

usages (Salganik et al., 2010) and COVID-19 (Garcia-Agundez et al., 2021). In this model,

there are three groups: susceptible, infected (unknown subpopulation), and recovered from
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the infection. A node infects a neighbor with probability β, and the nodes are recovered

with probability γ, which cannot be infected anymore.

4.2 Bias modeling

4.2.1 Transmission error

We model the transmission error through a parameter ν ∈ [0, 1] that we call the visibility

factor. This number represents the probability that a person who knows an acquaintance

of the unknown subpopulation is informed of the belonging of this acquaintance in the

unknown subpopulation. We assume that the transmission error affects uniformly the

nodes in the unknown subpopulation and then the expected value of yiu is:

E[yiu] = νdi
Nu

N
= di

Nu

N/ν
. (9)

In our setting, we can correct the estimator by multiplying them by 1/ν.

A measure related to the transmission error is the transmission rate (Laga et al., 2021)

(Feehan, Salganik, 2016). This is one of the factors proposed by (Feehan, Salganik, 2016)

to correct the MLE. The expected value of the transmission rate is ν. We estimate this

factor using the Comming-out-rate (Ezoe et al., 2012). This method requires a sample of

the unknown subpopulation. It divides the average number of acquaintances who are aware

of belonging to the unknown subpopulation by their average personal network size.

4.2.2 Recall error

The recall error is the bias due to memory inaccuracies. We model the recall error through

a non-negative number ρ that we call the memory factor. There is no barrier error when

ρ is zero, and the bias is more pronounced as ρ increases. We create the report of the

different variables by rounding (to two decimals) a truncated normal distribution whose

mean is the real value, and the standard deviation is the product of the real value times

ρ. The truncation of the normal distributions is because they may produce unrealistic

data. Additionally, we assume symmetry for simplicity. We only include the details for the

modeling of the unknown population responses. The rest is in the supplementary material.
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Recall that yiu is the response of the participant i about the ARD question of the un-

known subpopulation. There are two natural bounds for the responses of the unknown

population: yiu ≥ 0 and yiu ≤ δi, where δi is the response of the size of the ego-network

of i. But, we add some constraints to get a distribution as symmetrical as possible,

a = max(−0.5, 2xiu − δi + 0.5) and b = min(2xiu + 0.5, δi + 0.5). The truncated nor-

mal distribution has mean µ = xiu, standard deviation σ = xiuρ, lower bound a, and upper

bound b. The differences of the intervals from the mean are both equal to min(xiu, δi−xiu).

We add and subtract 0.5 so that the boundaries of the normal can be reached. In addition,

the mean and bounds are also selected to have the expected value of the real personal size.

Finally, Later, yiu is obtained by taking a value of the distribution and rounding it.

4.2.3 Barrier effect

This bias is not compared systematically in this paper. However, the SIR produces barrier

effects. Additionally, the degree variation is not considered in the design phase and may

produce this bias.

4.3 Motivation for the other parameters

4.3.1 Subpopulations

More than 20 subpopulations are usually employed because the PiMLE needed more than

20 subpopulations to be essentially unbiased in a simple Monte Carlo simulation. However,

it is barely employed, and the simulations of (Snidero et al., 2004) showed in their simulation

study that the number did not affect the performance of the MLE and PiMLE. Concerning

the sizes of the subpopulations, some estimators are more affected if the subpopulations

have unequal sizes, (Habecker et al., 2015). They also suggested using homogeneous sub-

populations for the MoS to outperform the estimates, and because the variance is higher

when the subpopulations are small. (Snidero et al., 2004) also shows that homogeneous

subpopulations improve the estimates, and the bias of the PIMLE depends on the size

of the subpopulations. The overlapping of the subpopulations is another source of error.

(Snidero et al., 2004) showed that the bias of the PiMLE increased impressively when a

significant overlapping arose whereas the effect in the MLE is limited.
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4.3.2 Sample size

Most of the NSUM estimators are unbiased if the degree estimation is perfect. However, this

is not possible in most cases. Moreover, the NSUM estimators assume that the information

of the ARD is independent, thus the participants are not connected. In practice, this

condition may also not hold, affecting the estimates. Another issue is that there is a lack

of guidelines about the sample size that the researchers should choose for their studies.

5 Simulation Study

We construct the four basic scenarios considering networks of N = 10000 nodes to make

the population as big as possible but computationally feasible. We chose a Watts-Strogatz

network with 25 initial nodes connected to each side and the probability of changing the

connection equal to 0.1. For the case of the preferential attachment network, we pick a

network with a linear preferential attachment (power equal to one) and number of edges

adding each time equal to 25 to get a similar average degree (49.935 compared to 50 of the

Watts-Strogatz). For the distribution of the unknown subpopulation, we set 100 nodes at

random in every case, and we implement a SIR process in each network. The first one is

a SIR with β = 0.046 and γ = 0.01 where we choose the process at iteration 5. The other

process, the SIR of the preferential attachment, has β = 0.039 and γ = 0.010, and the SIR

is chosen at iteration 2. We select parameters of the SIR model such that the size of the

unknown subpopulations is 100 in order to compare with the uniform case.

Simulation Visibility Memory Number Sizes Presence of Sample Section

goal factor (ν) factor (ρ) known subp. known subp. disjoint subp. size in the paper

Trans. error [0,1] 0 20 Baseline No 50 5.1.1

Barrier error 1 [0,1] 20 Baseline No 50 5.1.2

Subpop. number 1 0 2-20 Even (big & small) Yes/No 500 5.1.3

Subpop.sizes 1 0 20 All (see Table 5) Yes/No 500 5.1.4

Sample size 1 0 20 Baseline No [25,3000] 5.1.5

Table 3: Characteristics for each basic scenario.

The types of simulations that we conduct are summarized in Table 3. We vary one

parameter as the other parameters remain fixed. The rows represent the family of simula-
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tions. The parameter that is measured is shown in the first column. For the fifth column,

the Baseline subpopulations refer to the configuration S0 of Table 5. These are the sizes

of the subpopulations that we use except in those simulations where we observe the effect

of the subpopulations. In the case of even subpopulations in the third row, it refers to

subpopulations of sizes 0.1 and subpopulations of sizes 0.01. The rest of the subpopulation

sizes employed can be found in Table 5. The sixth column represents the presence of cases

with disjoint known subpopulations.

Comparison between estimators Some NSUM estimators require more information

than others. In particular, the GNSUM estimator requires a sample from the unknown

subpopulation, which is a lot of information compared to other estimators. The same is

true for the adjusted estimators. Similarly, the RoA and AoR use the information on the

personal network size of the participants. In the cases where the recall error is not present,

the RoA and AoR have perfect knowledge of the size of the ego-network, and hence, the

comparison with the rest of the estimators is not fair. However, the results of the RoA

and AoR help to understand the behavior of other estimators closely related to them (see

Table 1).

5.1 Simulations results

We show the performance of the NSUM estimators under the scenarios of Table 5.1.5. We

present figures with boxplots and radar charts for the mean and MAE for some simula-

tion parameters. In addition, we show tables in the supplementary material whose rows

represent the value of the estimators for the mean, standard deviation, MAE, and MSE,

and the column represents the parameters that it is being analyzed. The tables with all

the parameters are included for a detailed comparison between the estimators. The Table

4 shows the location of the figures and tables. The Tables in the supplementary material

appear under the reference S.number.
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Simulation W-U scenario W-S scenario P-U scenario P-S scenario

Trans. error Figures 1 and 2, and Tables S.2 and S.3 Tables S.4 and S.5 Tables S.6 and S.7 Tables S.8 and S.9.

Barrier error Figure 3 and Table S.10 Figure 4 and Table S.11 Table S.12 Table S.13

Subpop. number Figure 5 and Tables S.14 and S.15 Tables S.18 and S.19 Tables S.22 and S.23 Tables S.26 and S.27

Subpop. number small Tables S.16 and S.17 Tables S.20, S.21 Tables S.24 and S.25 Tables S.28 and S.29

Subpop. sizes Figure 6 and Tables S.30 and S.31 Tables S.32 and S.33 Tables S.34 and S.35 Figure 7 and Tables S.36 and S.37

Sample size Figure 8 and Table S.38 Table S.39 Figure 9 and Table S.40 Table S.41

Table 4: Location of the tables in the article and supplementary material.

5.1.1 Transmission error simulations

We compare the NSUM estimators while the transmission error varies, which is modeled

with the visibility factor ν. We provide two figures showing the performance of the nine

NSUM estimators (Figure 1) and the adjusted estimators (Figure 2) in the W-U scenario.

These figures do not include the Overdispersed estimator because of the bad performance.

Figure 1: Results obtained by the standard methods varying the visibility factor in the W-U

scenario. (a)-(e) Boxplots of the unknown subpopulation estimates across methods. (f)-(j)

Mean of unknown subpopulation estimates. (k)-(o) MAE of the unknown subpopulation

estimates.

We observe that the GNSUM is an estimator that works well for every scenario and
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Figure 2: Results obtained by the GNSUM and the adjusted methods varying the visibility

factor in the W-U scenario. The adjusted methods have been corrected by the inverse of the

estimation of the transmission rate using the same sample of the unknown subpopulation as

the GNSUM. (a)-(e) Boxplots of the unknown subpopulation estimates across methods. (f)-

(j) Mean of unknown subpopulation estimates. (k)-(o) MAE of the unknown subpopulation

estimates.

value of the visibility factor, especially when the visibility factor is greater than 0.2. This is

observed in Figure 1 in the W-U scenario. In addition, we observe that the estimates of the

GNUSM are good although the standard deviation is high. The standard deviation, MAE,

and MSE decrease when the visibility factor increases, and therefore, when the transmission

error decreases. The Overdispersed estimator performs badly for every value of ν in each

scenario. For the rest of the estimators, they have bad performance when the visibility

is lower than 1. A special case is the P-S scenario, where the estimates are not good for

the mean, MAE, and MSE, even when the visibility factor is 1, and therefore, there is no

transmission error.
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The adjusted estimators give similar values to the GNSUM, as depicted in Figure 2.

As we see in Table 6, some adjusted estimators are better than the GNSUM in some

scenarios. Additionally, we notice that the MAE and MSE decrease as the transmission

error decreases. However, in the P-S scenario, the adjusted estimators do not produce

reliable estimates.

5.1.2 Recall error simulations

Figure 3: Results obtained varying the memory factor in the W-U scenario. (a)-(e) Box-

plots of the unknown subpopulation estimates across methods. (f)-(j) Mean of unknown

subpopulation estimates. (k)-(o) MAE of the unknown subpopulation estimates.

We show the results of the NSUM estimators in the W-U scenario while the recall error

increases in Figure 3. This figure contains the boxplot and radar charts for the 9 NSUM

estimators. We observe that the AoR is the most affected estimator by this bias. This

estimator gives considerably higher estimates than the rest of the estimates with a low

increment of the bias, around 0.3 for the mean (see Table S.10), and significantly higher
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Figure 4: Results obtained varying the memory factor in the W-S scenario. (a)-(e) Box-

plots of the unknown subpopulation estimates across methods. (f)-(j) Mean of unknown

subpopulation estimates. (k)-(o) MAE of the unknown subpopulation estimates.

MAE and MSE for values of the memory factor above 0.4. For all the estimators, the MAE

increases as the memory factor increases, as Figure 3 displays, but the errors are not as

significant as the AoR and Overdisperded. Additionally, PiMLE and MoS have a moderate

increase of the mean, MAE, and MSE as the memory factor increases, as we observe in

Table S.10 for the values 0.6 and 0.8 of the memory factor. Additionally, as in the previous

Section, the Overdispersed estimator gives bad estimates.

The case of the W-S scenario is in Figure 4 and Table S.11. We observe that the

AoR has a high mean and MAE when the memory factor is greater than 0.5. Unlike the

previous case, the other estimators except the Overdispersed are similar as the memory

factor increases, being the MoS by far the best in terms of MAE and MSE as we see in

Table 6.

In the P-U scenario, the results are similar, although the estimators tend to underesti-

mate. The supplementary material shows the results in Table S.12. The AoR is the worst
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as in the other scenarios; the Overdispersed provides worse metrics for the mean, MAE,

and MSE. PiMLE and MoS are comparable to the other estimators but are more unstable

when the recall error increases. Table S.12 displays that PiMLE and MoS have a high mean

for a memory factor equal to 0.8, and high MAE and MSE for a memory factor of 0.9. The

GNSUM is slightly worse but this behavior is constant across all the memory factor values.

In the P-S scenario all the estimators, except the GNSUM, have a bad performance,

as we see in Table S.13. The AoR is again considerably worse when the memory factor

increases, while the other estimators do not present significant differences.

5.1.3 Number of subpopulations simulations

We have calculated the NSUM estimates varying the number of known subpopulations

used to estimate the degree. To illustrate this, we provide Figure 5 and Tables in the

supplementary material (see Table 4). The figure includes a boxplot and radar charts for

the mean and MAE in the W-U scenario with known subpopulations with overlapping. This

figure does not include the Overdispersed estimator due to its significantly bad performance.

We do not observe significant differences when the number of subpopulations varies,

as we can see in Figure 5 and the supplementary material (Tables S.14, S.18, S.22 and

S.26). Most of the estimators are very close, except the Overdispersed. The PiMLE,

MoS, and TPC slightly differ from the rest of the estimators when the number of known

subpopulations is small, as we see for example in the case of two subpopulations in the

W-U scenario in Table S.14. Additionally, the values are closer to the RoA and AoR, which

do not use subpopulations to estimate the degree, and instead, in these simulations, they

use the real personal network size. The variation of the RoA and AoR is then produced by

randomness. We notice that the estimators are very similar in terms of all metrics with six

or more subpopulations. The MAE and MSE decrease with the number of subpopulations,

but the gains are not very significant. In addition, the MLE and KLN are closer to the

RoA and AoR with four or more. Regarding the effect of the number of subpopulations

when the subpopulations are small, we observe that the results are worse for the standard

deviation, MAE, and MSE. The disjoint subpopulations improve the MAE and MSE in the

case of medium sizes, but when the subpopulations are small there is no significant effect.
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Figure 5: Results obtained varying the number of known subpopulations in the W-U sce-

nario. Overlapping of subpopulations is included. (a)-(e) Boxplots of the unknown sub-

population estimates across methods. (f)-(j) Mean of unknown subpopulation estimates.

(k)-(o) MAE of the unknown subpopulation estimates.

For the PiMLE and MoS, we observe that the estimators do not give values when the

subpopulation sizes are small (see Tables S.16, S.20, S.24, S.28, S.17, S.21, S.25 and S.29).

Indeed, the estimators need at least 12 subpopulations to obtain results (see Table S.16).

The values of the metric in the few cases where they work are not good, with high mean

MAE and MSE. When the subpopulations have bigger sizes, some cases do not give results

with two subpopulations (see Tables S.22, S.23, S.26 S.27). This behavior is produced

because some estimates for the degree are zero. Additionally, in the case of Watts-Strogatz

network and SIR (see Tables S.18, S.19), with less than eight and four subpopulations (for

the not disjoint and disjoint case, respectively) the PiMLE and MoS have high MAE and

MSE, and mean above the real value. For the rest of the main scenarios and parameters,

the values are similar to the other estimators.
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Figure 6: Results obtained for different subpopulations in the W-U scenario. (a)-(e) Box-

plots of the unknown subpopulation estimates across methods. (f)-(j) Mean of unknown

subpopulation estimates. (k)-(o) MAE of the unknown subpopulation estimates.

The Overdispersed estimator does not provide good results as in other simulations. In

this case, increasing the number of subpopulations increases the bias, MAE, and MSE when

the subpopulations are big. This effect does not occur in small subpopulations. Also, the

values in this case are better than in other scenarios, although they are worse than the

other NSUM estimators. Only the number of subpopulations equal to 6, 8, 12, and 16

gives similar values to the rest of the estimators in the P-U scenario.

5.1.4 Sizes of subpopulations simulations

For the simulations of the sizes of the subpopulation, we use the subpopulations of Table

5. This group includes our baseline subpopulations, two even subpopulations, one uneven

subpopulations, and other combinations where the size of groups is small, except one

population of big size.
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Subp. Scenario Sizes

S0 Baseline
0.016, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02

0.02, 0.04, 0.04, 0.04, 0.04, 0.04, 0.08, 0.08, 0.08, 0.16

S1 Even 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1

S2 Even and small 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01

S3 One large, the rest small 0.3, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01

S4 An even bigger one, the rest small 0.5, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01

S5 Uneven 0.2, 0.2, 0.1, 0.1, 0.05, 0.05, 0.02,0.02

Table 5: Relative subpopulation sizes employed in the simulations.

We show the results of the W-U and P-S scenarios in Figures 6 and 7, respectively. We

excluded the subpopulations S2 in Table 5 since the PiMLE and MoS do not give values

and the Overdispersed estimator due to its bad performance.

The MoS is the most affected by the different sizes, especially when the subpopulations

have unequal sizes and there is a big difference between them, subpopulations S3, S4. We

observe this behavior in Figures 6 and 7, where the estimates differ considerably in those

cases. However, the MoS is less affected if there are intermediate sizes between the bigger

and the smaller as in S5. As we can observe in Figures 6 and 7.

For the rest of the estimators, the values are close to each other, except in the case of a

preferential attachment network and SIR, where only the GNUSM gets reliable estimates

for all of the subpopulation configurations as Figure 7 shows. In addition, the values

are similar to the estimators RoA and AoR, which use the real degree in this context.

However, the PiMLE, TPC, and GNSUM are slightly affected by the known subpopulation

configurations. PiMLE is affected by the unequal sizes, represented by subpopulations S3,

S5, but it is not affected by uneven population with one big subpopulation (S4), unlike

the MoS. Additionally, PIMLE presents issues when the known subpopulations are small,

represented in case S2 because of the zero-degree estimates. The TPC is not affected in

the P-U scenario, where it is the best method (see Table 6) and is less affected than the

PiMLE and GNSUM in the W-S scenario. The MLE and KLN shows to be very robust

varying the sizes of the known subpopulations.
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Figure 7: Results obtained for different subpopulations in the P-S scenario. (a)-(e) Box-

plots of the unknown subpopulation estimates across methods. (f)-(j) Mean of unknown

subpopulation estimates. (k)-(o) MAE of the unknown subpopulation estimates.

5.1.5 Sample size simulations

We evaluate the performance of the NSUM estimators as the sample size varies. We provide

two figures with the boxplots and radar charts in the scenarios W-U and P-U. We include

detailed tables with results in all the scenarios in the supplementary material.

We note in Figures 8 and 9 that the estimators reduce the error when the sample size

increases. In the W-U scenario, all the estimators converge to the real value, as Figure

8 shows. The same behavior is observed when the unknown subpopulation is replaced in

the W-S scenario in Table S.38. In the P-U scenario, Figure 9 shows that increasing the

sample size improves the estimates, although PiMLE and MoS are the only estimators that

converge to the real value, as noted in Table S.40. The GNSUM slightly overestimates

while MLE, KLN, TPC, RoA, and AoR slightly underestimate. Additionally, Figure 9 and

Table S.40 indicate that the GNUSM has high variance and MAE and MSE higher than the
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Figure 8: Results obtained varying the sample size in the W-U scenario. (a)-(e) Boxplots

of the unknown subpopulation estimates across methods. (f)-(j) Mean of unknown sub-

population estimates. (k)-(o) MAE of the unknown subpopulation estimates.

other methods. In the last case, the P-S scenario, the sample size does not lead to better

results, with GNSUM being the only estimator providing a reliable estimate, although with

a slightly high mean.

The MAE and MSE are better as the sample increases. The MAE is below ten percent

for a sample of 200− 300 for the W-U scenario; 1000 for the W-S scenario; and 200 for the

P-U scenario. In the P-S scenario, the errors are always bigger than ten percent.

In addition, we observe that the Overdispersed estimator needs more samples than the

other NSUM estimators to obtain reliable estimates for the mean, and error similar to the

other estimators, as is seen in Figures 8 and 9. It needs a sample between 100 in the W-U

scenario, 200 in the P-U scenario, and 500 in the W-S scenario. This does not apply to the

special case of the P-S scenario, where the estimates are far from the real value for every

value of the sample size like the other estimators (except the GNSUM). In this case, the

Overdispersed estimator is similar to the other estimators for a sample of 50.
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Figure 9: Results obtained varying the sample size in the P-U scenario. (a)-(e) Boxplots of

the unknown subpopulation estimates across methods. (f)-(j) Mean of unknown subpopu-

lation estimates. (k)-(o) MAE of the unknown subpopulation estimates.

5.2 Discussion

The simulation shows that the network topology, the unknown subpopulation distribution,

and the different parameters of the simulation affect the results. Table 6 displays the best

method in each simulation and scenario. This table does not include the estimators RoA

and AoR in the simulations varying the number and sizes of the known subpopulations

because they do not use the known subpopulations. We also include Tables S.45 and

S.46 in the supplementary material, which provide the values of the best method for the

subpopulation number and subpopulation sizes, both with and without including RoA

and AoR. Moreover, the rows of the table corresponding to the number of subpopulations

only include the case of subpopulations of medium sizes with overlapping. Additionally,

we include in Figure 10 how the expectation of the ratos of the ARD of the unknown

subpopulation by the real degree differs from Eq. (1).
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Simulation goal Main scenarios Mean MAE MSE

Trans. error W-U GNSUM/100.64 GNSUM/24.78 GNSUM/1183.1

W-S MLE(adj)/98.27 MoS(adj)/44.08 MoS(adj)/3198.95

P-U PiMLE(adj)/100.74 KLN(adj)/24.98 KLN(adj)/1072.24

P-S GNSUM/112.20 GNSUM/39.89 GNSUM/3214.67

Recall error W-U MLE/100.35 MLE/18.38 MLE/546.82

W-S TPC/96.14 MoS/38.8 MoS/2337.73

P-U PiMLE/99.65 TPC/18.95 TPC/564.44

P-S GNSUM/118.82 GNSUM/38.55 GNSUM/2884.27

Subpop. number W-U MLE-KLN/100.00 MLE-KLN/18.36 MLE-KLN/530.82

W-S MLE-KLN/105.38 TPC/42.39 MLE-KLN/3036.94

P-U TPC/99.93 TPC/15.71 TPC/382.1

P-S GNSUM/115.58 GNSUM/ 37.52 GNSUM/ 2976.36

Subpop. sizes W-U MLE-GNSUM/99.80 MLE/18.34 KLN/501.14

W-S KLN/105.02 KLN/42.87 KLN/2768.76

P-U TPC/99.53 TPC/17.31 TPC/439.21

P-S GNSUM/111.43 GNSUM/ 36.52 GNSUM/ 2531.72

Sample size W-U GNSUM/99.06 RoA/8.29 GNSUM/181.61

W-S TPC/98.12 MoS/20.04 MoS/797.07

P-U MoS/100.32 TPC/9.36 TPC/183.81

P-S GNSUM/110.28 GNSUM/ 32.07 GNSUM/ 1959.8

Table 6: Best method for each scenario. For each metric, it shows the average of the

values corresponding to each parameter. AoR and RoA are not included in the simulations

about the number and sizes of known subpopulations because they do not use the known

subpopulations.

Effect of the network topology and unknown subpopulation distribution. In

the Watts-Strogatz case with uniform distribution of the unknown subpopulation, the W-U

scenario, the MLE is usually the most robust, as we observe in Table 6. The Watts-Strogatz

model is related to the Erdős–Rényi model, as it becomes the Erdős–Rényi model in the

limit case when the probability of rewiring each edge is 1. The binomial model, in which

MLE, KLN, and RoA are based, approximates to Erdős–Rényi model (Kunke et al., 2024).

These models are especially good in this scenario.

In the W-S scenario, the estimates are worse due to the barrier effect since the proba-

bility of knowing someone in the unknown subpopulation depends on the position in the

network. In this case, the unknown distribution is not distributed uniformly, and hence,

it does not hold the conditions of the methods involving the binomial model for the size

estimation. Despite this fact, these estimators, MLE, KLN, and RoA, have a good perfor-

mance, compared to other methods. However, the main assumption of Eq 1 holds in this

scenario, as seen in Figure 10, and the methods relying only on this equation, MoS, and

PiMLE, have better performance.
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In the P-U scenario the estimates are also worse than in the W-U scenario. Some

higher-degree nodes are counted multiple times, slightly affecting the estimates in terms

of MAE and leading to some underestimation. However, PiMLE and MoS use the ratios

between the ARD responses for the unknown subpopulation and the degree estimated with

the ARD of the subpopulation, which reduces the influence of higher-connected nodes. The

TPC model assumes that yij = λNk, and introduces an additional parameter αi to account

for the variability of the network. This seems to be particularly effective in this scenario.

It performs best, especially in terms of MAE and MSE, as shown in Table 6.

In the P-S scenario, only the GNSUM produces reliable estimates. The SIR process

produces that the high-degree nodes are more likely to belong to the unknown subpop-

ulation. This means the higher degree nodes belonging to the unknown subpopulation

nodes are counted multiple times. It produces higher ARD responses for the unknown

subpopulations leading to overestimation. The GNSUM corrects this issue with additional

information on the links of the unknown subpopulation through the sample of the unknown

subpopulation.

The GNSUM estimator does not seem to depend on the network structure and performs

well in every scenario. However, it requires significantly more information, including a sam-

ple of the unknown subpopulation. The Overdispersed estimator gives a bad performance

in the simulations for every scenario. The overdispersion parameters for the propensity of

subpopulation link may cause some overfitting as in our case the propensity of the known

someone in the subpopulations is similar for each group.

Effect of the transmission error. The GNSUM estimator is the best when the trans-

mission error is present, which is expected since it utilizes significantly more information.

The GNSUM corrects bias using how visible the members of the unknown subpopulation

are. For this, the GNSUM needs a sample of the unknown subpopulations and a battery of

questions about the contacts of the sample, which diverges from the philosophy of preserv-

ing the privacy of the participants of the NSUM. The rest of the estimators underestimate

when the transmission error is present. The values are proportional to the transmission er-

ror because the expected value of yiu is νdiNu/N (Eq 9) when the transmission error is the

same across all individuals in the network, as we observed in Section 4.2.1. Consequently,
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Figure 10: Histogram of the ratio of responses yiu/di for the four scenarios.

the estimators adjusted by the inverse of the estimated ν are close to the ground truth in

most scenarios. The correction proves ineffective in the P-S scenario, unlike the GNSUM,

which makes sense since the estimators without transmission error are inadequate. (Fee-

han, Salganik, 2016) prove that the GNSUM is equivalent to the correction by some factors

of the MLE and RoA, provided that the estimated average degree in the denominators is

accurate. However, this adjustment includes another factor, the degree ratio, the fraction of

links of the unknown subpopulation relative to the number of links in the total population.

Effect of the recall error. The AoR is the most affected. Since the recall error applies

both ARD of yiu and the reported degree δi, the ratios yiu/δi may be altered substantially

if the recall error is high. PiMLE and MoS, which also use the average of the ratios to

estimate the size (Eq. (4)), are affected to a lesser extent, being closer to the real value.

Unlike the AoR, PiMLE and MoS use estimated degrees, which are obtained through linear

combinations of the ARD responses of the known populations yik. As a result, the errors

tend to cancel out, making the estimated degrees more accurate and improving the size

estimation. MLE, KLN, and RoA use ratios of averages (see Table 1), and the errors of the

two averages tend to cancel out. The GNUSM has a similar performance to MLE, KLN,
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and RoA, since it is also expressed as the ratio of a linear combination of the ARD in the

numerator, and a linear combination of the EARD in the denominator (see Eq. (??) and

the supplementary material).

Effect of the number of known subpopulations The main conclusion of the variation

of the number of known subpopulations is that the common number of subpopulations, 20,

can be reduced. The estimators MLE and KLN are particularly stables. The randomness

of choosing a person with contacts in a known subpopulation is compensated in the sample

because these estimators only need to estimate the average degree (see Eq. (5) and Table

1). The GNSUM is the same replacing the estimated degree with the estimated relative

visibility (see Section 3.3 and supplementary material), which is obtained by a linear combi-

nation of the EARD questions of the known subpopulations. MLE and KLN are very close

with more than 4 subpopulations in every scenario. GNSUM and TPC are also stable, they

need around 6 subpopulations to stabilize the MAE and have a very tight estimation, as

we see in the supplementary material. When the subpopulations have small sizes, PiMLE

and MoS present issues since they use the average of the ratios of the ARD response by the

estimated degree. When the subpopulations have small sizes, the sample nodes may not be

connected with any member of the subpopulations, and then, the estimated personal size is

0. Additionally, PiMLE and Mos only have good performance with small sizes in the W-U

scenario with 20 subpopulations. Finally, the presence of disjoint known subpopulations

improves the estimates, although it is not very significant.

Effect of the sizes of the known subpopulations The MoS is affected if the sizes of

the known subpopulations are small since some degree estimates are zero (see Eq. (2) and

4). In the case of a combination of small subpopulations with a bigger one, MoS gives bad

estimates. MoS estimates the participant’s degree by a linear combination of yik for the

L subpopulations, where the small subpopulations are weighted more (Eq.(2)). Since it is

less likely that a participant is linked with someone in the subpopulations, some personal

sizes are underestimates, which causes the final overestimations in the subpopulations S3,

S4 of Table 5. Subpopulations of intermediate sizes may compensate for this issue, as is the

case of subpopulation S5. PiMLE is also critically affected when the subpopulations are
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all small for the same reason as the MoS. The cases of small subpopulations with one big

subpopulations are considerably better, although they affect the estimates. This is because

the degree of each participant is estimated by Eq. (3), which is the ratio of N
∑L

k=1 yik by∑L
k=1 Nk, and therefore, the effect of the small subpopulation is more limited. The MLE

and KLN use the estimated average degree in which the errors cancel out. The same occurs

for the GNSUM because it uses the relative visibility of the unknown subpopulation. The

TPC is affected although the estimates are closer to the real value. The TPC estimator

assumes that the scaling is the same, with yij = λNj. Therefore, it is affected by unequal

populations.

Effect of the sample size. We observe that increasing the sample size improves the

estimation with the estimators yielding good results, especially in terms of MAE and MSE

errors. This is particularly noticeable in the Overdispersed case, which did not yield good

results with small samples. The overdispersion parameters for the propensity to form

links with the subpopulations may cause some overfitting, as the propensity of the known

someone in the subpopulations is similar for each group. Increasing the sample can reduce

this overfitting.

Additionally, we observe that the estimators require more samples in the scenarios with

more barrier error, W-S and P-U scenarios, than in the W-U scenario. The values of the

mean become closer when the sample increases. However, while all the estimators converge

in the W-U scenario, in the W-S and P-U scenarios most methods slightly underestimate.

We conjecture that is because some nodes are counted multiple times and most of them

do not belong to the unknown subpopulation. In the P-U scenario, the nodes with more

links are considered multiple times, and most of them do not belong to the unknown

subpopulation. There are three special estimators in this case: PiMLE, MoS, and GNSUM.

PiMLE and MoS use the ratios between the ARD of the unknown subpopulation and the

estimated degree. The estimated degrees use the ARD of the known subpopulation, so the

higher connected nodes are less taken into account, see Eq. (2) and (3). We hypothesize

that GNSUM is overestimated because the relative visibility is underestimated, as the

unknown subpopulation nodes are mainly in the tail of the degree distribution.
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6 Case Study

This section evaluates the performance of the NSUM estimators in a real network. Specif-

ically, we use a friendship network extracted from Deezer, a popular music streaming

platform, focusing on Croatia users. This dataset contains mutual friendship connec-

tions and users’ preferred music genres. This dataset was collected in November 2017

by (Rozemberczki et al., 2019) as a part of their study on graph embedding techniques and

it is publicly available through the Stanford Large Network Dataset Collection: https:

//snap.stanford.edu/data/gemsec-Deezer.html. This dataset consists of 85 musical

preferences for each user, with 54573 nodes and average degree of 18.26. We take the 21

musical preferences with more presence in the network. The genres and their relative size

are in Table 7. We also use synthetic subpopulations with the same sizes generated with

the procedures of Section 4.

Musical Genres

Asian Music (0.91) Country (4.89) Folk (18.57)

Blues (5.37) Dancefloor (9.27) Hard Rock (9.12)

Chill Out (1.57) Dancehall Ragga (1.29) Indie Rock (5.95)

Classical (3.19) Disco (5.55) Jazz (4.91)

Comedy (2.22) East Coast (2.92) Kids (3.85)

Contemporary R B (13.21) Film Scores (16.44) Latin Music (12.69)

Contemporary Soul (2.50) Films Games (17.36) Metal (9.67)

Table 7: Popular musical genres and the percentage of users for the Deezer dataset.

This section is organized as follows. First, we evaluate the NSUM estimators simulating

subpopulations uniformly across the real network. Next, we present a scenario where an

unknown subpopulation is distributed through a SIR process over the network. Subse-

quently, we estimate some musical preferences of the Deezer dataset using other musical

preferences as known subpopulations. Finally, we discuss the results for all the cases.
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Figure 11: Results obtained from a real network with a real unknown subpopulation (Real),

a synthetic unknown subpopulation uniformly distributed (Synthetic Uniform), and a syn-

thetic unknown subpopulation using a SIR model (Synthetic SIR). (a)-(c) Boxplots of the

estimates. (d)-(f) Mean of estimates. (g)-(i) RMAE estimates.

6.1 Real network with subpopulations distributed uniformly

We use the Deezer dataset as the underlying network and simulate the subpopulations uni-

formly using the sizes of Table 7. We use synthetic subpopulations with sizes corresponding

to Asian Music, Blues, and Chillout as the unknown subpopulations. We evaluate the re-

sults of 50 estimates, taking samples of 100 nodes and other samples of 30 nodes for the

unknown subpopulation. We provide a boxplot, mean, and relative mean absolute error

(RMAE) of the estimates using Asian Music as the unknown subpopulation in Figure 11.

In Table S.42 of the supplementary material, we include the values for the next metrics:

mean, standard deviation, RMAE, and mean squared relative error (MSRE).

We observe in Figure 11 that MLE, KLN, GNSUM, TPC, AoR, and RoA are close

to the real values. However, we observe an underestimation in these estimators except
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GNSUM and AoR. Additionally, we observe more variance for the GNSUM and AoR.

PiMLE and MoS do not give values because some individuals do not have contacts in any

subpopulation, producing degree estimates with zero values. The Overdispersed has poor

performance in the cases of Asian Music and Chillout, but its estimates are good in the

case of Blues, as seen in Table S.42.

6.2 Real network with SIR for the unknown subpopulation

We generate the known subpopulations as in the previous case, but we also simulate an

unknown subpopulation using a SIR process. The synthetic subpopulations have sizes

relatively similar to the real data. We evaluate the performance of the estimators for 50

iterations. In each iteration, we use samples of 100 from the entire network and 30 from

the subset of nodes in the unknown subpopulation. We include a boxplot and two radar

charts for the mean and RMAE in Figure 11 for the case of synthetic Asian Music. Values

of the mean, standard deviation, RMAE, and MSRE are included in Tables S.43.

In this case, the GNSUM is the only estimator that provides reliable estimates, as

observed in Figure 11. The other estimators present a very significant overestimation. AoR

is less affected but has a high error and is far from the real value. Since the subpopulations

have small sizes, PiMLE and MoS do not produce results, since they estimate some degrees

as zero. The other two cases are similar, as Table S.43 shows.

6.3 Real network with real subpopulations

We use the 21 most popular Deezer music genres, displayed in Table 7. We select one of the

musical genres as the unknown subpopulation and the rest as the known subpopulations.

We apply this three times, using as known subpopulation the musical genres Asian Music,

Blues, and Chill Out. We provide the results for 50 estimates of the subpopulations using

samples of 30 from the unknown subpopulation and 100 from the entire network. We

include in Figure 12 the boxplot for the tree cases and radar charts for the mean and

RMAE. In the supplementary material, we provide the mean, standard deviation, RMAE,

and MSE values in Table S.44.

We observe in Figure 12 that the distribution of the subpopulations affects the estima-
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Figure 12: Results obtained from a real network with real subpopulations. (a)-(c) Box-

plots of the unknown subpopulation estimates. (d)-(f) Mean of unknown subpopulation

estimates. (g)-(i) RMAE of the unknown subpopulation estimates.

tors. While the estimates are close in the case of Asian Music, MLE, KLN, RoA, and TPC

are affected in terms of mean estimating Blues. Additionally, GNSUM underestimates the

Chillout subpopulations. We note that AoR is more stable in terms of the mean, but the

RMAE is high. The other estimates are stable for this metric, although the GNUSM also

has a high error. PiMLE and MoS present issues since some degrees estimates are zero. The

Overdispersed estimator provides reliable estimates in the case of Blues, but significantly

overestimates in the other two cases, as seen in Table S.44.

6.4 Discussion

We observe that the results of the real network and synthetic subpopulations validate our

conclusions of Section 5.2. The real network is similar to the preferential attachment net-

work since its degree distribution is exponential. The case of subpopulations simulated

33



with subpopulations distributed uniformly, and the case of SIR for the unknown subpop-

ulation are similar to the P-U and P-S scenarios, and the performance of the estimators

is comparable with these scenarios. One difference with our simulations is the bad perfor-

mance of the PiMLE and MoS due to the small relative size of the subpopulations, which is

consistent with our analysis of the sizes of the known subpopulations. The other difference

is that the AoR is slightly better. We guess that one factor is the lower average degree,

decreasing the frequency with which multiple nodes are reported.

The real network with real subpopulations of the Deezer dataset shows that the dis-

tribution of the subpopulations affects the performance. Nodes with similar preferences

tend to be connected with each other, increasing the barrier effect. The difference with

the P-S scenario is that concentration is not produced in the higher-degree nodes for the

selected real subpopulations. This is similar to the P-U scenario, underestimating whether

the subpopulations are connected to the higher-degree nodes. For the preference Blues,

the degree of the individuals in the subpopulation is lower than the average degree. This

condition affects the NSUM as (Feehan, Salganik, 2016) shows. However, this does not

occur for the preference Chillout, in which there are deviations of the mean. In the P-U

scenario, PiMLE and MoS are the best because they use the average of the ratios, Eq.

(4), using the estimated degrees through subpopulations concentrated mainly in the tail

of the distribution. In the real data, PiMLE and MoS do not give results because the

subpopulations are small. The AoR, which uses Eq. (4) with the real degrees, is better

than the other methods compared to the P-U scenario. We conjecture that it is produced

because the network is bigger and the average degree lower, reducing the impact of the

higher degree nodes in the ratios. In addition, AoR and GNSUM are the most reliable in

the real case although the variance, RMAE, and MSRE are high in some cases (see Figure

12 and Table S.44). For the AoR, the behavior is caused by the variation in the proportion

of contacts in some groups, and the effect on the GNSUM is likely to be caused by the

small sample.
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7 Conclusion

This work compares via simulation most of the NSUM estimators in networks with 10000

nodes and some properties found in real networks: a small world network (a Watts-Strogatz

estimator) and a scale-free network obtained by a linear preferential attachment process.

In each of them, we conduct two examples of the unknown subpopulation. In the first

case, the unknown subpopulation is obtained uniformly and independent of the network.

The second case is an unknown subpopulation distributed by a SIR process through the

network, which is an example of the presence of the barrier effect. In these cases, the

paper studies how the NSUM estimators vary as two biases (transmission and recall error)

increase, how the number and sizes of the subpopulation affect the estimates, and the

effect of the sample size. Additionally, we evaluate the difference in the performance of the

estimators with real data. Concretely, we use a real network with real subpopulations and

synthetic subpopulations simulated with the same procedures as the simulations.

The main findings comparing the NSUM estimators across the scenarios are as follows:

(1) the number of subpopulations does not affect the estimators, except for the Overdis-

persed, PiMLE, and MoS; and for the last two, only six can be employed if the subpopu-

lations are large, (2) the network topology has an impact on the results, the best method

depends on the network, and in the preferential attachment networks, some estimators are

slightly biased or give unreliable results, (3) dependent responses obtained by reporting the

same node multiple times do not have an impact on the estimates, (4) in the presence of

the recall error, the AoR is very unstable, and the PiMLE and MoS are slightly unstable

in some cases when the recall error is high, (5) the Overdispersed estimator needs more

sample to obtain more reliable estimates than the other estimators, and the errors increase

with more subpopulations, (6) the adjustment by an estimation of the transmission error

is similar than using the GNSUM in some cases, and some corrected estimators are better;

but in the the case of a SIR process and preferential attachment the network, the results,

with a certain transmission rate estimator, are considerably worse respect to the GNSUM,

indicating the necessity for additional adjustment.

This work has some limitations. The first limitation is that the analysis is based on a

simulated environment, and therefore, there may be some differences in real cases. More
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concretely, the known subpopulations are assumed to be independent and uniformly dis-

tributed along the network, when in most real cases this does not happen. Also, we assume

that the underlying network is an undirected graph, which means that the links between

the individuals are reciprocal. Another limitation is that we use large dimensional matrices

to calculate the reported values after the transmission and barrier error. This leads to high

computational cost. For that reason, we use a few examples of networks and unknown

subpopulation distribution, and one instance for each parameter in every simulation.

The NSUM methods have not been tested in many datasets. This is the first study that

compares many of the estimators for the first time. Additionally, due to the computational

cost, few examples were added. The first further work is to compare the estimators in more

examples of network topologies and distribution of the subpopulations and the unknown

subpopulation. Since the epidemiological SIR processes usually do not occur in the contact

network, further work is to analyze the case when the unknown subpopulation is propagated

through another network. Another future work is the study of the effect of the demographic

characteristic to be able to compare new estimators such as (McCormick, Zheng, 2012), that

take these variables into account. Because the sample size depends on the network topology

and the distribution of the unknown subpopulation, the study of the effective sample size

needs further development. Another future work is the correction of the NSUM estimators

under other biases since we observe that the transmission error correction is insufficient

when the barrier effect is present. It is also worth analyzing another bias arising from

malicious responses, which is known as response bias, analyzing the performance of the

estimators under different types of contamination. Another subsequent line of research

is the analysis of the effect of the connection between the subpopulations produced in

real cases. Finally, some estimators that are not frequently employed are better in some

scenarios, further research may help to select the best method.

Code and Data Availability Statement

The data and code are publicly available at https://github.com/SDiazAranda/NSUM-Simulations
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