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Abstract—The evolution of communication networks towards
self-configuring systems requires the development of anticipatory
approaches for network management to realize the envisioned
concept of a zero-touch network orchestration. Current antici-
patory network intelligence solutions rely on a well-defined loss
function, which means that they require perfect knowledge of
the relationship between the proactive management decisions and
the consequent system performance. However, in anticipatory
networking, there exist many tasks where characterizing such a
relationship in advance is not possible. In such tasks, it is possible
to measure the resulting performance of a management decision a
posteriori, but we cannot know a priori the resulting performance
of a certain management decision. A simple example of such tasks
could be the maximization of the monetary profit when allocating
resources to end users: when taking a certain resource allocation
decision, it is possible to measure the profit afterwards, but it
would be extremely difficult to determine a priori the resulting
monetary profit. To close this gap, we present a novel two-fold
learning approach, which is able to jointly learn the relationship
between the prediction and the target management objective at the
same time as it apprehends to anticipate the corresponding task.
This method lays the foundations to the automated adaptation of
network intelligence to specific complex objectives in zero-touch
network management. We apply this method to different use
cases of interest including monetary profit maximization.

Index Terms—Zero-touch networking, loss learning, anticipa-
tory network management
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I. INTRODUCTION

COMMUNICATION networks are experiencing a consider-
able increment in operation complexity to accommodate

the growing heterogeneity of service requirements, which
strains slow, reactive, human-in-the-loop techniques currently
adopted in network management. This calls for network automa-
tion based on Machine Learning (ML) solutions [1] that support
Intent-Based Networking (IBN) and Zero-touch Network and
Service Management (ZSM) [2]. Dedicated architectural models
are being proposed to enable the co-existence of ML Operations
(MLOps) frameworks with traditional network operations [3],
paving the road to an effective ML-based Network Intelligence
(NI) that achieves the goals above.

A. Network Intelligence for Anticipatory Resource Management

Among the functionalities that NI can automate, anticipatory
network resource management plays a key role, as it promises
to cut down operator’s capital and operating expenses (OPEX)
without affecting the Quality of Experience (QoE) of users.
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While anticipatory network management inherently builds
on predictions, standard forecasting techniques are not directly
applicable to network management tasks, which are charac-
terized by unique relationships between the decisions and the
network performance. Relying on legacy predictors creates a
mismatch between the loss, i.e., the objective of the forecast,
and the metric, i.e., the network management performance
target, which is a well-known problem in machine learning [4].
The issue is addressed in two ways by current works in NI
for network management. A first approach (cf. [5]) is that of
running a standard forecasting model of the traffic demand,
and leveraging the prediction to manually decide on suitable
network configuration updates. The second (cf. [6]) relies
on expert-designed loss functions that map the relationship
between future variables and network performance.

B. Limitations of Current Approaches in Practical Use Cases

While the two strategies above may provide excellent results
in specific problems, they suffer from an inherent limitation: the
need for manual tailoring to each single task. The drawback
is twofold: (i) it requires a non-scalable amount of human
expertise and time, and (ii) it assumes that the objective
function can be fully characterized at the moment of design.
Point (i) above breaks the full automation of the system,
while assumption (ii) does not hold in many networking tasks,
including those listed next — where the objective function
is not known at design time yet it can be measured (hence
learned) at run time.

Carbon footprint minimization. Optimizing energy con-
sumption is a crucial objective for operators. However, obtain-
ing a perfect a priori knowledge of how resource-allocation
decisions affect the actual energy consumption of the in-
frastructure is a daunting task. For instance, let us consider
a virtualized Radio Access Network scenario, where the
functional splits between large sets of Distributed Units (DUs)
and Central Units (CUs) must be decided. The responsible
network function would be oblivious to aspects like the policy
for job parallelization and core management in the datacenter
hosting the CU, or its exact power consumption behavior. Since
the decisions for the DUs served by the same CU impact each
other, selecting the functional splits that minimize the energy
footprint is an example of intertwined network predictions
under an objective that is unknown a priori but can be measured
a posteriori.

QoE and revenue optimization. In a network slicing
scenario where the operator must ensure the QoE of end users
by configuring slice resource reservation, a full characterization
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of how the network management decisions impact the revenues
is not possible, since (i) the operator may observe coarse
QoE degradation via QoE monitoring tools, yet has no direct
visibility to the end-user QoE measurements that are only
available to the service provider (SP), and (ii) the decisions
at each section of the network and for each user create an
entangled system that is difficult to model.

Anomaly detection and network healing requires NI algo-
rithms, e.g., to trigger the correct remote unit configurations to
mitigate the effect of an upcoming abnormal demand. However,
knowing in advance how specific antenna configurations affect
the end-user performance, and how false positives/negatives in
the anomaly detection influence the cost for the operator (e.g.,
in terms of churn of subscribers) is not feasible in general.

C. Making Anticipatory Network Management Zero-Touch

We argue that the inherent problem underlying current state-
of-the-art approaches to automated anticipatory networking is
that they build on an inflexible NI design that only targets a
single objective and is not applicable to other (even similar)
problems. To overcome this limitation, we present an original
forecasting paradigm for fully automated NI, i.e., loss meta-
learning. Our proposed approach self-learns unknown and
complex relationships between the management decision and
the network performance, hence it learns to predict to optimize
complex objectives and not just to reduce the prediction error.

From a practical viewpoint, the loss meta-learning NI is
implemented as jointly trained dual neural networks (NNs),
with (i) a task regressor block in charge of producing the
actual (anticipatory) network management decision, and (ii)
a loss-learning block, which learns the decision–performance
relationship while training the regressor. This design is able to
learn differentiable approximations of loss functions (i.e., per-
formance metrics) that are correlated in time, non-differentiable,
and/or may depend on several independent variables, and it
outperforms current solutions in terms of performance while
also providing the extra degree of automation. We recently
proposed some specific implementations [7], [8], yet the
idea of self-learning unknown loss functions applies to many
practical problems as the ones described before, where the
performance measure deriving from the operator decisions
cannot be obtained neither analytically nor manually because
of its complexity or because it is not known a priori. We thus
present in this paper the general framework, as well as new
practical application use cases.

II. STATE OF THE ART AND MAIN CHALLENGES IN
ANTICIPATORY NETWORKING WITH COMPLEX OBJECTIVES

In network management, forecasting is usually not the main
goal but an intermediate step to solve some optimization
or control problem that requires future knowledge to be
efficiently solved. The challenge of predicting the relevant
future Key Performance Indicator (KPI) — e.g., traffic demand
or network delay — has been thoughtfully analyzed in the
literature, and current models are able to provide very accurate
predictions [9]. Yet, there exists another challenge that has
been generally overlooked: how to exploit those predictions

to optimize the objective network performance metric; that is,
the loss–metric mismatch. Recent works have shown the huge
potential improvement that solving the loss–metric mismatch
can bring [6]; however, this improvement has been limited so
far to very specific management tasks.

Next, we describe the state of the art in anticipatory network-
ing, which generally follows two strategies: (i) disentangling
forecasting from the decision-making task, hence ignoring the
possibly convoluted relationship between predictions and final
objective metrics; or, (ii) considering that a perfect knowledge
of that relationship is available and building the model design
on it. Then, we explain the limitations of current solutions
and the requirements needed to overcome such limitations in
anticipatory networking. The different approaches, together
with the proposed solution that will be later presented in the
following section, are summarized in Figure 1, which portrays
the key components of each NI strategy and how they fit the
overall network ecosystem. There, we differentiate the ML-
based elements from the hand-made expert-designed elements,
and we also distinguish the workflow depending on whether
the network is training the ML algorithms or it is operating
the trained algorithms, such that we adjust to current MLOps
and NI frameworks [3].

A. State of the Art in Forecasting for Decision Making

The most direct approach to design NI for anticipatory
networking is to apply standard forecasting methods to predict
the future values of the network KPI relevant to the management
decision; the result is then fed to some decision-making block
that is manually developed based on expert knowledge.

These predictors were traditionally based on statistical
models, Markovian theory or information theory [10], [11], but
lately data-driven ML algorithms have become the state-of-the-
art approaches for forecasting [12]. The generic forecasting
models are trained to minimize generic error metrics of KPI
values, such as the Mean Absolute Error (MAE) or Mean
Squared Error (MSE), and they are oblivious to the operator’s
objective and therefore to the relationship between the output
and the performance objective.

This strategy is illustrated in Figure 1.a. The forecast is blind
to the management objective, and hence it cannot provide a
solution for automated management decisions. Instead, after the
forecast has been computed, the management decision-making
is run by a different network element, which is different for
each possible networking task as the performance depends on
the said prediction in distinct manners.

B. State of the Art in Loss Function Tailoring

While the previous approach treats prediction and decision-
making as fully independent tasks, there are clear benefits
in designing algorithms that jointly handle both aspects of
the problem. First, knowing the possible heterogeneity of
the forecast accuracy for different input ranges can improve
the decision-making process by incorporating such variable
uncertainty in the problem. Moreover, the average-minimum-
error forecast method may not be optimal, as the decision
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making can be very sensible to errors in a specific small input
range, while being more robust at other ranges.

Some works have proposed ML-based models with tailored
loss functions that drive the model parametrization during
training [6], [13]. The customization of the loss seeks to emulate
the relationship between predictions and the management
objective. This approach also allows us to directly output
the preemptive management decision from the past values
input into the system. We illustrate this approach in case b) of
Figure 1. This approach overcomes the main limitation seen
in Section II-A: it tackles the loss–metric mismatch by having
human experts design losses that are tailored to the actual
system metric [4], and it has been shown to yield significant
advantages in practical settings [6].

C. Missing Component to Realize Automated Anticipatory NI
We next describe the main limitations of the state-of-the-art

solutions, which are intrinsic to all existing anticipatory MANO
models, regardless of whether they compartmentalize prediction
and decision stages or integrate them via customized loss
functions, and do not depend on the specific implementation.

The aforementioned solutions implicitly assume that we
are able to manually characterize the underlying relationship
between the available data, the taken decisions, and the
performance objective. Yet, this may not be the case for many
practical tasks, as exemplified in Section I-B.

Even when the objective function is known, the required ad
hoc design for each of the countless management problems that
might exist in practice entails an inherent limitation, and it is
a critical barrier to one of the main requirements to ZSM and
IBN: the capability to adapt to any problem by conforming the
output to the management objective, and doing so automatically
with minimum (if any) human intervention.

A very suitable paradigm to address the limitation above
for anticipatory network management is loss function meta-
learning. Meta-learning refers to the ability of learning to
learn: not only training an agent into learning a given task,
but also learning how to train the said agent; or, in other
words, being capable of learning the complex relationship
governing the objective performance even when that mapping
may not be available at design time. For example, loss meta-
learning is paramount when the decision depends on third-party
information (e.g., by SPs) unavailable to the operator, or when
the objective depends on the software and hardware equipment
employed over the whole infrastructure.

The literature on meta-learning in the ML domain has
focused on automatizing previously manual tasks for the
development and tuning of ML models, such as cross-validation,
hyper-parameter selection, or data cleansing. The application
of meta-learning to loss function customization, which we
propose in this paper, is instead still in its infancy, especially
for regression: prior works only considered customizable
loss functions for classification (whereas anticipatory network
management relies on regression) based on a limited set of
predefined expressions and parameters (which require manual
design and limit the flexibility of the result) [14].

Ultimately, no existing approach fully aligns with the
learning requirements set forth by a fully automated anticipatory

network management, which calls for apprehending a clean-
slate loss, without any prerequisite and assumption on how the
loss function is except from the input and output dimensions.
Next, we present our proposed strategy, which is to the best of
our knowledge the first clean-slate loss meta-learning method
for networking tasks, and which overcomes the aforementioned
limitations of current approaches.

III. ARCHITECTURE, ADVANTAGES, AND NOVELTY OF
LOSS META-LEARNING FOR ANTICIPATORY NETWORKING

We propose a novel loss-learning architecture that automati-
cally learns the complex relationship between network states
and the actions to be taken by the network operator. It consists
of a regressor that is a priori agnostic to the loss function and
can adapt to different problems. It performs a bifold learning,
since it simultaneously learns (i) the loss function that governs
the particular use case, i.e., the relationship, and (ii) how to
operate the target network functions or components, i.e., the
actions, so as to minimize such a loss.

We remark that the proposed methodology is intentionally
generic, as it applies to any network management task that
comprises a prediction and a decision based on such a
prediction. The design abstracts the internal architecture of the
regressor and loss-learning blocks, leaving their implementation
adaptable to the specifics of the target problem.

The distinctive characteristic of this architecture is that it
is composed of two main blocks, as we can see in case c) of
Figure 1. First, the regressor block is in charge of learning and
executing the standard anticipatory management decisions, akin
to the analogous “joint prediction and decision making” block
in Figure 1.b. Second, there is a performance loss-learning
block; this loss-learning block receives as inputs the decision of
the regressor block (the decision taken) and the true network
state, and it aims at learning the relationship between the
performance objective and the management decisions taken
by the first block; that is, the a priori unknown loss function.
For that, it leverages historic data from a posteriori system
measurements and network monitoring functions, e.g., taking
advantage of the Management Data Analytics Function (MDAF)
standardized by 3GPP Release 16.

The loss-learning block acts as the loss function to train
the regressor block. This loss function evolves and gets
refined during training to steer the system parameters toward
optimizing the actual objective system performance. Once
trained, the loss-learning block acts as a tailored loss function
as in the approach presented in Section II-B and Figure 1.b,
with the advantage that its design is now fully automated and
cuts significant (time and monetary) human costs.

It is also worth noting that we do not train the system to
minimize directly a certain legacy error metric between the
regressor’s actions and the ideal best action. Instead, as depicted
in Figure 1.c, the training of the loss-learning block aims at
minimizing a legacy error metric (e.g., MSE or MAE) between
the output of the loss-learning block and the performance
objective (for example, a specific KPI of interest). Hence, we
train based on a legacy error metric — oval in Figure 1.c — on
the estimated versus monitored performance. This implies that
we do not require any mathematical modeling of the objective.
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Fig. 1. State of the Art a) and b) and proposed solution c) for anticipatory Management and Network Orchestration (MANO) with complex objective functions.
The proposed solution scheme in c) also shows a simple use case of capacity reservation for slices based on previous traffic volume to minimize congestion.

We provide a toy use case in Figure 1.c for clarifying the
role of each part of the approach. This example consists of
reserving the optimal capacity for each network slice for the
next time interval at different sections of the network. The
decision is based on previous traffic samples. The objective
is to reduce congestion across the network. The relationship
between reserved capacity and congestion cannot be analytically
modelled. Thus, we use loss meta-learning to train the model
without knowing a priori the loss function.

The specific architecture of each block (e.g., the depth
of the NNs, or the type of layers) can be adapted to the
problem’s complexity or the available computing resources.
A key property of our proposed design is that, when both
blocks are implemented by means of deep NNs, they are
simultaneously trained through the same gradient descent
process, which speeds up convergence and ensures consistency
between predictive action and performance objective. This

approach can naturally incorporate state-of-the-art methods
from AutoML to increase the model’s adaptability and reduce
human intervention, e.g., by embedding adaptive learning rate
algorithms, or calibrating an exploration-exploitation trade-off
similar to what is done in Reinforcement Learning.

Our proposed design deals with the inherent limitations of
the existing approaches:

• We are able to learn, without human intervention and
from measurement directly, differentiable representations
of relationships between the management decisions and the
performance objective that are unknown a priori, tangled,
non-linear, non-differentiable and/or multivariate.

• We provide a generic framework that can solve many
management tasks with minimal modifications, thus also
removing the hindrance of re-designing each anticipatory
NI solution on a refined case-by-case basis.

• The proposed design yields desirable features in terms
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of transfer learning (as the trained loss-learning block
can be reused across different scenarios, as shown in [8]),
explainability (as, even if it does not constitute the solution
explainable, the learned loss function can be inspected
so as to interpret the network management choices),
and generalizability (as it handles both competitive and
cooperative behaviors), which are not available to, e.g.,
approaches based on Reinforcement Learning.

In conclusion, loss meta-learning paves the way towards
actual network management automation, by streamlining the
design of loss functions — an emerging paradigm that is still
largely unexplored even in the machine learning community.

IV. PERFORMANCE IN SAMPLE PRACTICAL USE CASES

We evaluate the proposed loss meta-learning concept in two
network management problems where the relationship between
the predicted action values and the target performance are
convoluted and partially or fully unknown a priori.

The input data corresponds to traffic volume measurements
(mean throughput every five minutes) recorded in a commercial
nation-wide mobile network for popular streaming services over
two consecutive months. Both main blocks are implemented
as small size NNs. Simulations run on a Python framework1

based on TensorFlow and powered by one Nvidia A100 GPU.
In the worst case among all the experiments performed, the
training time of the proposed method is 2250 ± 10s, which
is just slightly above the time required when both NNs are
separately trained (1430s+620s = 2050s). While the absolute
time naturally depends on the complexity and the size of the
NNs, we observe that this training time is comparable with
standard methods.

A. Resource Allocation to Individual Services

1) Problem statement: The network operator aims at proac-
tively allocating the network resources (e.g., a guaranteed
transport capacity in Mbps — the output decision) required to
serve the demand of a certain service (e.g., YouTube) during the
next 5 minutes, based on the observed demand for that service
in the previous hour (e.g., 12 values representing the mean
traffic generated by YouTube at every 5 minutes — the input
data). The operator has a Service Level Agreement (SLA) with
the SP, by which it receives a revenue if the service demand
is fully served but to whom it has to pay a fee otherwise
(resulting in an economic gain or loss — the performance
metric to optimize). In this scenario, standard problem-agnostic
predictions perform poorly [7] due to the intrinsic asymmetry
of the problem: while overdimensioned resources incur a small
linearly proportional cost, underprovisioning resources would
lead to a SLA violation, in turn triggering a loss of operator’s
revenue. Hence, the economic cost is intrinsically different
when the prediction error is positive or negative. This cost
metric is represented by the gray continuous line in Figure 3.

We compare the proposed strategy against DeepCog, a state-
of-the-art NN model using an expert-designed α-OMC loss

1The code is available at: https://github.com/nds-group/AutoManager.

Fig. 2. Normalized performance cost of the anticipatory resource allocation.
Left bars refer to our loss meta-learning solution, right bars refer to
DeepCog [6]. Cost is broken down in SLA violations and overhead (OVR).

Fig. 3. Normalized performance cost (loss function) for our first use
case: (i) ground-truth metric defining the relationship between decisions and
performance (gray), (ii) expert-designed loss function that models the metric in
DeepCog (α-OMC, dashed black), and (iii) fully automated loss meta-learning
solution (LLP). For LLP, we show the learnt function for the top (red) and
bottom (green) deciles of the predicted values, i.e., in presence of high and
low traffic demands, respectively.

function tailored to this specific scenario [6]. The expert-
knowledge-based loss function acts as a differentiable approxi-
mation to the asymmetric behavior described above.

2) Results: The detailed implementation is described in
Table ??. Long Short-Term Memory (LSTM) layers effectively
capture and retain dependencies in sequential data.

Figure 2 summarizes the performance of loss meta-learning,
which outperforms DeepCog in four settings characterized by
different services. It does so by trading off the unnecessarily
high overprovisioning induced by DeepCog with minimum
SLA violations, reducing operator’s overall costs.

The key to the improved performance of the loss meta-
learning solutions is unveiled in Figure 3. There, the manual
α-OMC loss is designed as a bi-dimensional function of
the error between the predicted capacity and the actual
capacity required by the service (i.e., the abscissa values),
which indeed mimics the ground-truth metric. Instead, our
proposed approach (automatically) learns a more complex
three-dimensional function over the complete space of all
combinations of predicted and needed capacity. This property

https://github.com/nds-group/AutoManager
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allows adapting the learned loss to the sensitivity of the
predictor to specific system conditions, as illustrated in Figure 3,
where, for the sake of clarity, we present a simplified view of
the meta-learned loss for high and low demand volumes only.
Our model finds different adapted curves to the two cases: in
presence of high traffic loads it shifts the minimum loss point
to the right to offer a safer margin against the higher errors
incurred by the predictor in such traffic conditions.

B. QoE-driven Admission Control and Resource Reservation

1) Problem statement: We consider the management task of
anticipatory admission control (AC) and resource reservation
(RR) for network slices. The operator uses information about
the past demands associated to every slice (input) to take
decisions on which slices shall be accepted and how many
resources reserved for each accepted slice at every 5 minutes
(output). The goal is maximizing revenues originating from
admitted slices, while ensuring the QoE levels defined in the
associated SLAs (performance metric). More precisely, if a
slice is accepted, the SP pays to the operator a fee proportional
to some KPIs as indicated in the SLA (e.g., volume of serviced
traffic); yet, this is subject to the achievement of a certain QoE
level, otherwise the SLA is violated and the operator incurs
into a penalty fee.

The operator can protect from the risk above by over-
allocating resources to admitted slices; however, this may
lead to the exclusion of additional slices and their associated
revenues, and the unnecessary resources generate extra costs
because OPEX are proportional to the reserved resources.

There are several aspects that make it difficult for the operator
to know the relationship between AC-RR decisions and revenue
before the decisions are actually enacted in the production
system. First, such a relationship is a complex function that
depends on many operational parameters and application-level
data (e.g., user feedback on QoE) that the operator does not
have access to. Second, the decision for each SP is entangled,
and accepting or not one SP impacts on the QoE of all SPs.
This makes it impossible to manually conceive a loss function
that captures the complex and partially unknown relationship.
While QoE is a subjective metric, there exist methods that
model and quantize it. The comprehensive model that relates
network management decisions and QoE is detailed in [8, V.A].

2) Results: The detailed implementation is described in
Table ??. We apply the automated loss meta-learning to the
AC-RR task, and compare the results against a state-of-the-
art solution for joint AC-RR in sliced networks [15]. The
benchmark uses a Holt-winters algorithm to predict the future
slice traffic, and then solves a disjoint optimization problem
aiming at maximizing the revenue of the operator. We note
that the expert-designed benchmark assumes knowledge of the
relationship of revenue and decisions that may not be available
in operational settings — whereas our approach does not.

We evaluate a scenario with four different SPs, each
requesting a network slice with heterogeneous demanded
capacities. The proposed loss meta-learning solution obtains
a normalized profit of 0.1816, while the benchmark achieves
0.1678. Such non-negligible improvement of 8.22 percent is
obtained in a setting where our solution does not know the
relationship between profit and resource allocation decisions,
while the benchmark does. Thus, we are able to improve over
a carefully designed solution without any need for prior system
knowledge and in a fully automated manner.

We also analyze the temporal dynamics of the AC-RR
decisions. For that, we define the average uninterrupted service
time (AVST) as the continued time interval during which a
slice is served upon acceptance; the interval is thus concluded
once the slice is torn down by the operator. The metric is
averaged on a daily basis and expressed in hours, with a range
from 0 (the slice is never allocated) to 24 (the slice is served
all the time); it provides insights on the slice reliability, as SPs
are interested in maximizing the uninterrupted time. Table ??
presents the AVST for each slice. Our model demonstrates
substantial enhancements in AVST, positively impacting overall
QoE, despite not being the direct focus of our model. Our
solution is able to serve two of the slices continuously, as it
solves a regression problem and has implicit temporal memory;
instead, the benchmark incurs many interruptions as it solves
an independent optimization problem at each time step.

The better performance of the loss meta-learning approach is
the result of an extremely complex loss function that is learned
from system observations. Figure 4 portrays three specific views
of the complete eight-dimensional loss (with two dimensions
per slice: the anticipatory decisions and the actual demand),
and clearly illustrates how manually designing the loss would
be impossible in this case.

V. CONCLUSIONS

We propose one of the first solutions allowing for au-
tonomous loss learning for generic regression problems. Our
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(a) Low background traffic (b) Medium background traffic (c) High background traffic
Fig. 4. Learned loss for the AC-RR task in sliced networks. We show the learned cost (z axis) for varying anticipatory decisions (x axis) and traffic demands
(y axis) of one slice while all other slices have fixed values. We show the cases where the other slices generate (a) low, (b) medium, and (c) high traffic loads.

design hinges upon a novel loss meta-learning concept, and
representative use cases demonstrate how it can overcome
inherent limitations of current approaches for anticipatory
networking that are based on expert knowledge. Particularly
striking is the observation that co-training prediction and
loss learning can provide synergistic gains, as the loss can
be automatically tailored to the intrinsic (in)accuracy of the
predictor. Overall, our approach lays an important cornerstone
in the path towards zero-touch network management.
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