
Designing the Network Intelligence Stratum for 6G Networks

Paola Sotoa,b, Miguel Cameloa, Gines Garcia-Avilesc, Esteban Municioc, Marco Gramagliad, Evangelos Kosmatose, Nina
Slamnik-Kriještoraca, Danny De Vleeschauwerf, Antonio Bazco-Noguerasg, Lidia Fuentesh, Joaquin Ballesterosh, Andra Lutui,

Luca Cominardij, Ivan Paezj, Sergi Alcalá-Marı́ng,d, Livia Elena Chatzieleftherioug, Andres Garcia-Saavedrak, Marco Fioreg

aUniversity of Antwerp - imec, IDLab, Antwerp, Belgium
bUniversidad de Antioquia, Medellı́n, Colombia

ci2CAT, Barcelona, Spain
dUniversity Carlos III, Madrid, Spain

eWINGS ICT Solutions, Athens, Greece
fNokia Bell Labs, Antwerp, Belgium

gIMDEA Networks Institute, Madrid, Spain
hUniversidad de Málaga, Malaga, Spain

iTelefonica Investigacion y Desarrollo SA, Madrid, Spain
jZettaScale Technology, Saint Aubin, France

kNEC Laboratories Europe GmbH, Madrid, Spain

Abstract

As network complexity escalates, there is an increasing need for more sophisticated methods to manage and operate these networks,
focusing on enhancing efficiency, reliability, and security. A wide range of Artificial Intelligence (AI)/Machine Learning (ML)
models are being developed in response. These models are pivotal in automating decision-making, conducting predictive analyses,
managing networks proactively, enhancing security, and optimizing network performance. They are foundational in shaping the
future of networks, collectively forming what is known as Network Intelligence (NI). Prominent Standard-Defining Organizations
(SDOs) are integrating NI into future network architectures, particularly emphasizing the closed-loop approach. However, existing
methods for seamlessly integrating NI into network architectures are not yet fully effective. This paper introduces an in-depth
architectural design for a Network Intelligence Stratum (NI Stratum). This stratum is supported by a novel end-to-end NI orches-
trator that supports closed-loop NI operations across various network domains. The primary goal of this design is to streamline
the deployment and coordination of NI throughout the entire network infrastructure, tackling issues related to scalability, conflict
resolution, and effective data management. We detail exhaustive workflows for managing the NI lifecycle and demonstrate a refer-
ence implementation of the NI Stratum, focusing on its compatibility and integration with current network systems and open-source
platforms such as Kubernetes and Kubeflow, as well as on its validation on real-world environments. The paper also outlines major
challenges and open issues in deploying and managing NI.

Keywords:
Network Intelligence, 6G Stratum, AI-native network architecture, Network Intelligence Orchestration

© 2024. This is the author’s version of an article submitted to the SI: Evolution of Networked AI Systems: Trends, Challenges, and Opportunities
at Computer Networks, Elsevier. This work is licensed under CC BY-NC-ND 4.0.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

To meet the stringent demands imposed by upcoming ser-
vices such as multisensory eXtended Reality (XR) applications
and connected robotics [1], which will rely on performance
metrics such as virtually unlimited capacity and perceived zero
latency, 6G networks will necessitate advanced algorithms. These
algorithms will be executed by diverse controllers and orches-
trators, leveraging AI and ML techniques, managing different
micro-domains within the network. They will autonomously
oversee the intricate assembly of Network Functions (NFs) and
associated resources, forming a mosaic to support various Net-

Email address: paola.soto-arenas@uantwerpen.be (Paola Soto)

work Services (NSs), such as network slices, utilized by dif-
ferent tenants. This orchestration contributes to the develop-
ment of intelligent networking, referred to as NI. More specif-
ically, an instance of NI is described as a sequence of efficient
AI/ML algorithms that rapidly identify or predict new requests
or fluctuations in network activities [2]. Subsequently, these al-
gorithms respond by automatically instantiating, relocating, or
re-configuring Virtual Network Functions (VNFs).

Hence, the effectiveness and sustainability of 6G systems
will heavily rely on the seamless integration of NI solutions
into the network infrastructure. Within the network framework,
each controller and orchestrator is expected to execute multi-
ple instances of NI, aligning with various Key Performance In-
dicator (KPI) objectives. These objectives encompass guaran-
tees related to Quality of Service (QoS) and Quality of Expe-
rience (QoE), infrastructure and resource utilization optimiza-
tion across diverse tenants or network services, and the real-

Preprint submitted to Computer Networks October 7, 2024

ization of end-to-end network automation for achieving zero-
touch network and service management. Consequently, the ar-
chitectural blueprint of mobile networks requires a comprehen-
sive reconsideration, ensuring that the operations of multiple NI
instances can be seamlessly accommodated across all micro-
domains through fully automated processes [3].

Ongoing initiatives led by major SDOs to incorporate NI
into next-generation network architectures invariably revolve
around the concept of “closed-loop AI” [4]. Under this paradigm,
NI instances deployed at orchestrators and controllers function
within closed control loops: they capture the context of man-
agement decisions, gather feedback on decision quality through
continuous monitoring, and use it to enhance future decision-
making. The closed-loop model enables NI to comprehend the
significance of specific factors in a given situation and progres-
sively automate decision-making in alignment with targeted KPIs.

However, existing frameworks for network management es-
tablished by prominent SDOs such as 3rd Generation Partner-
ship Project (3GPP) and European Telecommunications Stan-
dards Institute (ETSI), along with global industrial initiatives
such as Open-Radio Access Network (O-RAN), currently fall
short in facilitating the seamless integration of closed-loop NI.
This hinders the practical adoption of NI within 6G networks
and calls for original enhancements to the network architec-
tural paradigm. In particular, it is fundamental that a native
integration of NI algorithms into the overall mobile network ar-
chitecture is considered to fully support automation capabilities
in future generations of communication systems.

This paper presents the complete architectural design and
supporting procedures to realize a NI Stratum for 6G networks.
Specifically, the contributions of this paper are fourfold:

• A complete architectural design of a NI Stratum, includ-
ing the Network Intelligence Orchestration (NIO) and the
tools to define and design NI in a unified manner. This
paper integrates the findings and results of our prelimi-
nary work [2, 5, 6, 7], presenting them in a condensed
and cohesive format. In addition, compared to state-of-
the-art works (see Table 1), our NI Stratum tackles si-
multaneously multiple challenges of NI such as how to
properly define NI, how to manage their life-cycle, and
how to coordinate them via well-defined procedures.

• We define a set of internal interfaces to facilitate the in-
teraction among functionalities in the NI Stratum. More-
over, we analyze how the external interfaces may be re-
alized when interacting with the Radio Access Network
(RAN) and Core network segments. To the best knowl-
edge of the authors, this is the first work that provides
such interfaces.

• We provide a detailed description of several inter- and
intra-NIO procedures that are required to realize the NI
Stratum. Compared to our previous work [7], we not
only define them as functionalities but also provide the
required workflows and sequence diagrams that allow us
to perform these procedures.

• We implement and demonstrate [8] some of the capabil-
ities of the NI Stratum via two use cases. While the or-
chestration of Network Intelligence Service (NIS) with
support of ML pipelines was part of our previous work [7],
we include a new implementation where we show the ca-
pabilities of the NI Stratum to orchestrate two Network
Intelligence Function (NIF) and realize a NIS in the con-
text of service orchestration at the edge.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews and summarizes the research and standardiza-
tion efforts in defining an AI-native architecture. Section 3
shows the complete design of the NI Stratum, including our
methodology for defining NI and detailing the necessary func-
tional blocks to orchestrate NI in an end-to-end way. More-
over, Section 4 presents internal and external interfaces needed
to perform such orchestration. Using the functional blocks and
the interfaces defined in the previous sections, Section 5 shows
their interactions to perform the most important orchestration
tasks (e.g., creation, management, and termination), including
the identified challenges regarding knowledge sharing and con-
flict resolution. Finally, Section 6 shows a reference implemen-
tation of the proposed NI Stratum. Section 7 concludes the pa-
per and gives an overview of the future challenges.

[9], [10, 11, 12, 13, 14, 15, 16, 17, 18]

2. Research and standardization efforts towards the inte-
gration of NI in mobile networks

The vision of Beyond 5G (B5G) and 6G networks largely
builds on conflict-free and synergic operation among various NI
algorithms across network schedulers, controllers, and orches-
trators [2, 6]. This section reviews current efforts from SDOs
and academia that aim to facilitate joint and end-to-end NI op-
eration.

Current network management frameworks proposed by ma-
jor SDOs present deficiencies when integrating and managing
NI approaches. Our examination, detailed in [5] and in Sec-
tion 5 and Appendix B of [19], reveals that standards and plat-
forms from entities like ETSI, O-RAN, and 3GPP, including
implementations such as Open Source MANO (OSM) or Open
Network Automation Platform (ONAP), lack mechanisms for
coordinating intelligence across different network micro-domains
and providing solutions for decentralized and unified data man-
agement across NI instances. Moreover, these frameworks show
minimal support for managing the NI lifecycle (e.g., O-RAN)
and only early consideration for methodologies defining and
representing NI models (e.g., ETSI-Experiential Networked In-
telligence (ENI)). Table 1 summarizes the existing frameworks’
functionalities for NI management in end-to-end control and or-
chestration of networks.

Noticing that current network management frameworks pro-
posed by major SDOs are not yet AI-native, researchers have
delved into various aspects, including the development of NI
algorithms, the orchestration of NI instances, and the coordina-
tion of NI across diverse network domains. Investigations into

2

the challenges, methodologies, and advancements in integrat-
ing NI aim to pave the way for more efficient, scalable, and au-
tonomous network operations. By examining prior works, this
paper positions its contributions within the broader context of
ongoing endeavors to enhance the intelligence and adaptability
of network architectures through the seamless integration of the
so-called Network Intelligence.

Ericsson, a major player in the telecom industry, addresses
the escalating use of AI in networks in its whitepaper [20].
Their definition of “AI-native” emphasizes the comprehensive
integration of AI, which requires a corresponding data infras-
tructure in every sub-component of an entity, as opposed to
adding AI components to non-AI-based entities. This approach
extends across multiple layers and domains, with a crucial re-
quirement being a distributed data infrastructure supporting (re-
)training of models. Ericsson also introduces an AI-native ma-
turity model as a tool for assessing a product’s position on the
AI-native spectrum and planning the evolution of its imple-
mentation towards AI-native capabilities. Additionally, they
emphasize the importance of ML Operations (MLOps) func-
tions for comprehensive end-to-end model lifecycle manage-
ment within an AI-native architecture.

In [21], Li et al. explored native intelligence solutions for
6G networks, delving into the distributed network architecture
of native intelligence. It highlights the capabilities of individ-
ual intelligent nodes and the importance of collaboration among
them. The discussion extends to cross-domain coordination and
knowledge sharing and suggests potential solutions, emphasiz-
ing the combination of distributed learning and network func-
tionalities. More than proposing an AI-native architecture, the
paper lists the requirements that AI-based functionalities pose
over the current network architecture and explains how it should
evolve towards an AI-native architecture.

Rossi et al. [22] present a vision for future networks wherein
AI attains the status of a primary commodity. The foundational
principle revolves around “fast and slow” types of AI reason-
ing, each offering distinct capabilities for processing network
data. Similar to the different timescales in data processing,
they propose that intelligence should also operate in different
timescales. Fast intelligence is used for perception tasks, where
the bias in the NI models is not noticeable or can be tolerated.
Instead of proposing a closed-loop control, the authors pose the
Data, Information, Knowledge, and Wisdom (DIKW) pyramid
as the main building blocks of native network intelligence. In
such a pyramid, there are two prominent closed loops: one be-
tween the data and the information, where the fast intelligence
resides, and another between the information and the knowl-
edge, where a more robust yet slower intelligence oversees and
controls the fast intelligence instances.

Brito et al. suggest a network architecture for implement-
ing AI-based applications across various network domains [23].
The aim is to prevent the formation of AI silos by providing
reusable data and models, ensuring scalable deployments. Their
AI-native architecture is composed of the Network and Service
Automation Platform (NSAP) and the Connect-Compute plat-
form (CCP). The NSAP spans multiple network domains and
is responsible for optimizing and managing NIFs. On the other

hand, the CCP ensures the necessary lifecycle operations for
each NIF. Besides delineating the architecture, the authors fur-
nish workflows for the comprehensive management of AI-based
applications and demonstrate the feasibility of the architecture
through a vehicular use case.

Focusing on the architectural models proposed by the O-
RAN Alliance, D’Oro et al. devised OrchestRAN, a NI orches-
tration framework for next-generation systems [24]. Specif-
ically, the authors showed that the intelligence orchestration
problem is NP-hard and proposed three complexity reduction
techniques. Deployed as a rApp in the non-Real-Time (RT)
RAN Intelligent Controller (RIC), OrchestRAN empowers Net-
work Operators (NOs) to define high-level control and infer-
ence objectives. OrchestRAN autonomously determines the op-
timal set of data-driven algorithms and their execution location,
either the cloud or the edge. In this way, the framework can ful-
fill the intentions specified by NOs, ensuring compliance with
desired timing requirements and preventing conflicts between
different data-driven algorithms that govern the same parame-
ter set.

2.1. Differences with previous works

In the preceding sections, we examined the ongoing en-
deavors of prominent standardization bodies and academic in-
stitutions in formulating an AI-native architecture. This subsec-
tion aims to underscore the distinctions between our work and
these existing initiatives. Specifically, we analyze crucial as-
pects currently overlooked by present management frameworks
and briefly elaborate on how our research addresses these gaps.
Table 1 summarizes the main differences between our work and
the reviewed literature.

One key differentiator between the proposed architecture
and the related work is how we define NI. Most works assume
the NI instance as a single block, not a composition of multi-
ple blocks. Thanks to the Monitor-Analyze-Plan-Execute over
a shared Knowledge (MAPE-K) control model, we can decom-
pose the NI in atomic elements that can be deployed across the
whole infrastructure. This approach allows for the unified rep-
resentation of NI instances independently of their inner models,
facilitates the re-use of similar blocks among different NISs,
and helps identify conflicts as demonstrated in the Radio Ac-
cess Network virtualization (vRAN) use case presented in [6].
A similar approach is presented in [22], where their DIKW
pyramid resembles the MAPE-K but lacks the concept of mul-
tiple closed-loop control.

Regarding the NI lifecycle management, Brito et al. [23]
provided appropriate workflows for NIF/NIS instantiation and
replacement. In this paper, we go a step further by providing
the necessary workflows for the complete NI lifecycle, from its
creation until its termination. Although Li et al. [21] mention
the NI lifecycle management as a main issue in AI-native ar-
chitectures, they did not discuss how it can be solved using the
proposed AI-native architecture.

A common denominator among the research work is the im-
portance of data. In [20], the pervasive nature of the NI is intri-
cately linked to a distributed data infrastructure. The ability to

3

Table 1: Main differences between our work and similar approaches proposed by major SDOs and academia.

Framework /
Related Work

Methodology
to define NI

Mechanisms to manage
the lifecycle of NI

Mechanisms to coordinate
NI across different
network segments

Decentralized and
unified data management

for NI instances

Mechanisms to
solve conflicts

ETSI MEC No No No No No
ETSI NFV No No No No No
ETSI ENI Yes No No No No
O-RAN Yes Partially No No No

Open Source MANO (OSM) No No No No No
3GPP No No No No No
ONAP No No No No No

Ericssson Whitepaper [20] No Partially Partially Partially No
Li et al. [21] No Partially Partially Partially Partially

Rossi et al. [22] Partially No Partially Partially No
Brito et al. [23] No Yes Yes Yes No

D’oro et al. – OrchestRAN [24] No Partially Partially No Yes
Network Intelligence Stratum

(Our Work) Yes [2, 5] Yes
(This work)

Yes [5, 7]
(Extended in this work) Yes [2] Yes

(This work)

execute and, when necessary, train AI models relies on the ubiq-
uitous availability of data and computing resources. Moreover,
the data ingestion speed defines the “fast and slow” intelligence
in [22]. Despite its importance, the studied works do not present
a decentralized and unified data management framework for the
NI instance. On the contrary, in [2], we analyzed the challenges
and requirements imposed by the distribution and management
of data among disaggregated infrastructure and the impact of
operating at different timescales for control systems. Moreover,
we analyzed the NI design concerning three fundamental as-
pects: data, decision-making, and decision enforcement, which
are fundamental aspects of realizing the NI Stratum.

The work presented in this paper summarizes our previous
work regarding the methodology to define NI, the importance of
data, and the mechanisms to coordinate NI instances. Addition-
ally, it extends our previous work by providing the interfaces
that allow the stratum to provide communication between their
functionalities (internals) and with external entities. Moreover,
we provide a set of detailed procedure workflows for managing
the NI lifecycle, including detailed procedures to resolve con-
flicts among multiple and colliding NI and knowledge sharing.
Moreover, we extend the reference implementation by consid-
ering the necessary extensions to support conflict resolution ca-
pabilities in top open-source platforms such as Kubernetes [25],
Kubeflow [26], and Zenoh [27].

3. Architectural design of the NI stratum

Our proposal revolves around the complete design of a NI
Stratum designed to fulfill multiple objectives within an AI-
empowered network infrastructure. Firstly, the NI Stratum aims
to facilitate closed-loop NI systematically throughout the entire
end-to-end network architecture. Secondly, it seeks to enable
the coordination of various NI instances deployed across the
network, fostering collaboration, exploiting synergies, and ef-
fectively managing conflicts. Thirdly, the NI Stratum defines
essential interfaces that NI algorithms can utilize to interact
with their respective local environments. In addressing the lim-
itations of existing academic research and industry related to

the NI Stratum, this framework is conceived as an orthogonal
approach where NI instances can effectively be integrated into
the traditional planes (data, control, and management) for easy
adoption in the industry, complementing existing architectures.

3.1. Defining and designing intelligence in the network

From an architectural viewpoint, our conceptualization for
NI management hinges upon similar design principles to those
underpinning the management of NSs in 5G networks. This
approach enables the adaptation of familiar concepts to the do-
main of network intelligence and facilitates the integration of
the NI Stratum with existing 5G architectural frameworks. Build-
ing on this strategy, and in a manner analogous to the informa-
tion model outlined for network management by entities like
3GPP, we introduce the notions of NIF and NIS, defined as fol-
lows.

NIF: This functional block within an NI instance imple-
ments decision-making functionality for deployment in a con-
troller, Network Function Virtualization (NFV) orchestrator, or
individual NF. It features well-defined interfaces and behavior
corresponding to an individual NI instance that serves a specific
functionality.

NIS: An assembly of NIFs with a specific objective, often
associated with a particular set of targeted KPIs.

To facilitate the modeling of any NI algorithm, we repre-
sent complex NI algorithms as a hierarchy of NISs that can be
broken down into one or more NIFs. There is a one-to-many
relationship between NIS and NIFs, as the former could be pro-
vided by one or more instances of the latter. NIFs themselves
could be of different kinds: they could be learning models based
on, e.g., Deep Neural Networks (DNNs) or Engineered Mod-
els, or they could be built upon specific optimization algorithms
such as the ones based on control theory or Mixed-Integer Lin-
ear Programming (MILP). The heterogeneous definition of NIFs
is not limited to complex AI models but also encompasses tra-
ditional and interpretable models that are not necessarily data-
driven.

The high-level interactions among the building blocks men-
tioned above are illustrated in Figure 1. A NIF may engage in

4

Figure 1: The high-level hierarchical taxonomy of NI algorithms. An NIF corresponds to an individual NI instance that assists a specific functionality; for example,
it could capture the implementation of a capacity forecasting task, assisting an NI edge orchestration functionality.

Network

Objective
Function

Network
Digital Twin

Analyze

Monitor

Sensor
Effector

Execute

Plan

Knowledge

Learning

Training
Loop

Inference loop

Parallel
branch for
online
learning

Figure 2: Extended N-MAPE-K abstractions for NI algorithms.

two primary interactions with the underlying layers (i.e., con-
trol plane, user plane, or infrastructure, represented by an NFV
Orchestrator): it may (i) contribute decisions and (ii) receive
information concerning the network and the contextual state of
such a configuration. These two interactions inherently imple-
ment a close-loop NI. On top of this, a NIS represents a col-
laborative effort involving one or more NIFs, potentially orga-
nized in a hierarchical structure. As an example, a NIS might
consist of a Learning-type NIF providing decisions to an en-
gineered model NIF, which, in turn, influences the underlying
infrastructure.

When diving into the internal functioning of a single NIF,
we employ a methodology akin to the MAPE-K feedback loop
to break down the stages of the closed-loop operation performed
by the NIFs. MAPE-K is recognized as one of the most influ-
ential reference control models for autonomic and self-adaptive
systems [28], yet cannot fully support the specifications of NIFs
internals. Therefore, we introduce an extended Network Monitor-
Analyze-Plan-Execute over a shared Knowledge (N-MAPE-K) [2]
model tailored to the NI environment, which augments the legacy
MAPE-K with original training and closed control loops that a
NIF may implement, as shown in Figure 2. The N-MAPE-K
model allows capturing (i) the inference loop, (ii) a traditional
supervised training loop, and (iii) a second training loop dedi-
cated to online learning.

Mapping NI algorithm components into the N-MAPE-K rep-
resentation allows highlighting the following fundamental classes
of atomic NIF Components (NIF-Cs).

• Sensor NIF-Cs specify all the monitoring probes needed
to gather the input measurement data.

• Monitor NIF-Cs specify how each NIF interacts with the
Sensor NIF-Cs and gathers their raw data.

• Analyze NIF-Cs include any pre-processing, summary,
or data preparation for the specific NI algorithm imple-
mented in the plan NIF-Cs.

• Plan NIF-Cs constitute the specific NI algorithm imple-
mented by the NIF.

• Execute NIF-Cs specify how the algorithm will interact
with the managed system and how to possibly change its
configuration parameters.

• Effector NIF-Cs specify the configuration parameters up-
dated in the NF, and the Application Programming Inter-
faces (APIs) to be used to that end.

3.2. Network Intelligence Stratum

In the supervision and coordination of NISs, NIFs, and NIF-
Cs, which collectively constitute the overall NI, we adapted the
layered structure of the ETSI NFV Management and Orches-
tration (MANO) framework. This adaptation tailors the com-
ponents to the specific requirements of NI. The resultant frame-
work forms the NI Stratum and is illustrated in Figure 3; it is
structured into three levels, namely (i) the NIO, (ii) the NIF
Manager, and (iii) the NIF-C Manager.

NIF-C Manager: This component is responsible for man-
aging the lifecycle of the NIF-C. This management encompasses
various operations, including onboarding, instantiation, termi-
nation, scaling, and state retrieval. The NIF-C Manager handles
these operations uniformly, regardless of the type of NIF-C (i.e.,
whether it is a Source, Analyze, Plan, Knowledge, or Sink) and
its connection to the network infrastructure. For example, in
the case of Sources, the IP addresses of different data producers
need to be provided, while for Sink, specific configuration API

5

Network Intelligence
Orchestrator

NIF ManagerNIF Manager

NIF component
Manager

NIF
Catalog

NIS
Catalog

MANO

NI Virtual
Infrastructure

CPU GPUMem

S
A

K
P

N

ource
nalyze
lan
nowledge

Si k

S

P
A

N S

P

AK

NIF1 NIF2
NIS1

NIS2

ML Pipelines

Figure 3: Architecture of the Network Intelligence Stratum.

endpoints must be configured. The instantiation specifics vary
based on the context of this interaction. For instance, if the
NIF operates from the core, Sinks and Sources integrate with
the Network Repository Function (NRF) and the Network Ex-
posure Function (NEF), synchronizing with the Network Data
Analytics Function (NWDAF) [29], which captures analytics
as a set of Analyze, Plan, and Knowledge components. Simi-
lar considerations apply to other network domains, such as the
RAN, where this framework can be seamlessly integrated with
the O-RAN xApps or rApps ecosystems [30].

NIF Manager: The NIF Manager, on the other hand, pro-
vides a comprehensive overview of the collective NIF-C set that
forms each NIF. In addition to overseeing the lifecycle of the
NIF, this module is tasked with monitoring the overall health of
the intelligence functions. This monitoring involves continuous
tracking of learning KPIs generated by the NIFs, including met-
rics like accuracy, particularly when the NIF is engaged in in-
ference or serves as an online learning solution. Other metrics,
such as loss and training loops, are monitored when the NIF is
undergoing training. The NIF Manager is also responsible for
configuring the meta-parameters of the models (via interaction
with the NIF-C Manager) and conveying the health status of the
NIF up into the hierarchy to the NIO.

Network Intelligence Orchestration: This module is re-
sponsible for overseeing the lifecycle management of the NIS
by effectively coordinating the NIFs that constitute each of them.
This entails the ability to share NIF-C among different NIFs
(e.g., two NIFs requiring the same input) and establishing arbi-
tration policies when two NIFs share the same sink, specifically
the configuration APIs. Importantly, this coordination occurs at
the level of the NIO, no longer falling within the purview of the
NIF Manager. It involves collaboration across NIFs, necessitat-
ing a higher-level perspective uniquely held by the NIO. The
module also handles connections to network MANO frame-
works for gathering crucial information, such as expected net-
work KPIs for the managed slice and service and the status of
the underlying network infrastructure. The NIO maintains cata-
logs of already onboarded NIS and NIFs. Notably, NIFs might
require retraining to adapt to changing or diverse conditions,
either periodically or on demand. In such cases, the NIO inter-

Figure 4: The 5GPPP Architectural WG framework [31].

faces with an external platform to construct ML pipelines and
execute such operations, exemplified by an MLOps framework.

The proposed NI Stratum moves our previous network intel-
ligence plane design [5] from a purely separate plane to a more
orthogonal approach where NIFs and NISs can effectively be
integrated into the traditional planes (data, control, and man-
agement) for easy adoption in the industry. This term, Stra-
tum, has also been embraced as part of the comprehensive ar-
chitectural framework that has been developed by the 5G In-
frastructure Public Private Partnership (5GPPP) Architecture
Working Group (WG), as illustrated in Figure 4 and reported in
the whitepaper [31], released by the 5G Architecture WG in the
5GPPP. There, the term Stratum typically denotes a collection
of elements that span various network domains. For example,
network access stratum encompasses all the elements involved
in user registration and authentication across RAN and Core.

3.3. Functionalities Supported by the NI Stratum

The NI Stratum is a unified framework that brings together
our earlier proposals for (i) the operational hierarchy of NI com-
ponents in the NI Stratum and (ii) the N-MAPE-K represen-
tation of NIF-Cs. The variety of NIFs and NISs that can be
deployed at the network generates new challenges in the way
they should be managed that are not presented in current man-
agement frameworks. Therefore, in [7], we discuss the need
for specific NI Stratum procedures to address challenges arising
from the concurrent instantiation of various NIFs and NISs. The
challenges are exemplified by using two functionalities to im-
prove the resiliency of a vRAN system [32], [33, Sec. 2.5]. The
main challenges to be managed by the NI Stratum are Conflict
Resolution, Knowledge Sharing among NIFs, Model Selection,
Catalog, and Re-training. Moreover, the NI Stratum incorpo-
rates functionalities such as Data Analytics, Knowledge Man-
agement, Monitoring, NIS Lifecycle Management, NIS Cre-
ation/Selection, Optimization, and Instantiation, Model Explain-
ability, Policy Interpreter and Configuration, NIS Workflow Con-
figuration, Network MANO Framework, and Conflict Detec-
tion and Resolution.

Conflict resolution capabilities are crucial for efficiently reusing
and combining elements across NIFs to build NISs. By repre-

6

senting NIFs as atomic NIF-Cs within the N-MAPE-K frame-
work, conflicts may arise in the sharing of different NIF-C el-
ements when composing NIFs to create NISs. In the two NIF
examples mentioned earlier, conflicts may occur when monitor-
ing data, requiring the NIF Manager to ensure information ar-
rives with the necessary granularity, and in policy enforcement,
where different NI algorithms may configure the same network
functions differently. The NIO is tasked with deploying con-
flict resolution policies to guarantee optimal decisions, over-
seeing individual NIFs, and monitoring access to data sources
and policies to amend sub-optimal decisions.

Additionally, the NIO plays a crucial role in providing cen-
tralized coordination among multiple NIFs, enabling knowl-
edge sharing for synergistic performance improvements. For
example, the knowledge learned by a NIF can support other
NIF’s decisions, and vice versa. Such knowledge-sharing capa-
bility can extend accross domains: for instance, in Section 4.2
of [34], the presence of an anomaly detection solution for Inter-
net of Things (IoT) platforms, where the user plane traverses
multiple domains. In this scenario, the NIO facilitates syn-
chronization among parties involved in building the user plane
for IoT devices, addressing challenges in root-cause analysis of
anomalies.

Model Selection, Catalog, and Re-training are essential for
NIS to adapt to the underlying environment. While not directly
derived from NI algorithms’ design, NIS may require knowl-
edge of the software/hardware environment and device loca-
tion. In a pure ML environment, tasks are handled by MLOps
frameworks like Kubeflow [26] and MLflow [35]. However, in
an NI-native architecture, close interaction with the orchestra-
tion environment is necessary. The NIO ensures that deployed
NIFs match the specific hardware-software-environmental char-
acteristics of network functions. It exchanges execution context
information with the MANO system to select the appropriate
model for inference within a NIF. This involves maintaining
a model catalog from which the NIO selects the most suitable
model based on the network’s infrastructural status. If no model
is available, the NIO can invoke training of a new model, fetch-
ing the required data as the target algorithm needs.

The NIO plays a central role in managing and coordinating
NIFs to enable NI-Native architectures. In response to chal-
lenges in deploying multiple NIFs concurrently, the NIO incor-
porates several key functionalities, which are summarized in
Figure 5 and listed as follows.

• Data Analytics: Involves pre-processing or preparing data
for the NIFs by computing statistical measures (e.g., av-
erages, variance, maximum or minimum values) or more
complex features (e.g., embeddings via autoencoders or
dimensionality reduction techniques, aggregations via clus-
tering algorithms).

• Knowledge Management: Critical for planning, organiz-
ing, acting, and controlling knowledge across all deployed
NISs.

• Monitoring: Processes information from NISs, covering
both ML-related (model-specific metrics, data drift) and

non-ML-related aspects (QoE, QoS), monitoring NIs in
both training and inference deployments.

• NIS Lifecycle Management: Handles deployment and main-
tenance of ML models, aligning with MLOps practices,
including the creation of new ML pipelines for re-training
models.

• NIS Creation/Selection, Optimization, and Instantiation:
Involves selecting, optimizing, and instantiating NISs based
on hardware constraints, with the ability to create a new
NIS if it is unavailable in the catalog.

• Model Explainability: Provides methods for human ex-
perts to understand black-box ML algorithms within the
NISs, aiding in comprehending decision-making processes.

• Policy Interpreter and Configuration: Interprets high-level
user intent objectives associated with different NIS, per-
forming changes in policy as needed.

• NIS Workflow Configuration: Integrates data engineer-
ing, ML, and DevOps to operationalize deployment, mon-
itoring, and lifecycle management in a modular and flex-
ible way.

• Conflict Detection and Resolution: Provides a mecha-
nism to solve trade-offs arising from conflicting objec-
tives in control and user planes, allowing the NIO to com-
pare policies among different NISs and perform conflict
resolution.

The NIO interacts with the MANO framework, synchro-
nizing network slices, tracking the state and health of network
slices and functions, and obtaining real-time information about
available resources. This collaboration optimizes network op-
erations, enhances resource utilization, and ensures alignment
with vertical service providers’ requirements for specific ver-
tical service domains. The NIO-MANO interaction involves
eastbound-westbound interfaces, direct extensions to MANO
modules, and mappings with MANO components such as NFV
Orchestrator (NFV-O), Virtual Network Function Manager (VNFM),
and Virtual Infrastructure Manager (VIM) in frameworks like
ETSI NFV MANO.

The architectural design presented in this section is com-
plemented next in the following ways: (i) in Section 4, by pre-
senting and discussing the interfaces that are required to allow
communication between internal NI Stratum components, and
the NI Stratum components with external entities such as the
RAN controller, Core system, and local and end-to-end man-
agement systems; and, (ii) in Section 5, by designing the set
of procedures that address the needs and challenges introduced
in [7] and that motivate the functionalities mentioned above.

4. Network Intelligence Stratum Interfaces

As shown in Figure 5, the NI Stratum is a composition of
different functional blocks that aims for the native integration of

7

Network Intelligence Orchestrator

NIF ManagerNIF Manager

NIF component
Manager

NIF
Catalog

NIS
Catalog

Network Management
and Orchestration

NI Virtual
Infrastructure

CPU GPUMem

Data Analytics

Knowledge
Management

Monitoring

NIS creation,
selection,

optimization and
instantiation

NIS Lifecycle
Management

Explainability

NIS workflow
Configuration

Policy Interpreter
Conflict

Detection and
Resolution

Network
Management and

Orchestration

ML Pipelines

Model
retrain

Data
Ingestion

Model
training

Model
testing

Model
packing

Model
registering

Nio-MLp

MLp-NCat

Nio-NCat

Nio-Mano

Nio-Nifm

Nio-NifcmNifcm-nivi

Nifm-nifnis

Mano-Nifnis

Ex
te

rn
al

 i
nt

er
fa

ce
s RIS Controller

RAN Controller

SDN/Transport Controller

Edge/Fog Orchestrator

End-to-end Orchestrator

Other
Controllers/Orchestrators

Nio-Nis

Nio-Ext
NIS 3

NIF 1 NIF 2 NIF 3
NIS 2

NIF 1 NIF 2 NIF 3
NIS 1

NIF 1 NIF 2 NIF 3

Figure 5: The NI Stratum and the functional blocks of the NIO and ML pipelines, with the internal and external interfaces of the Stratum.

NI in the network by providing the management and orchestra-
tion capabilities for NIF and NIS. Similar to other well-known
frameworks for management and orchestration on specific do-
mains, e.g., NFV-MANO [36] and O-RAN [37], the functional
blocks of the NI Stratum have their own set of internal in-
terfaces. Moreover, external interfaces will allow the NIO to
communicate with external orchestrators, facilitating efficient
resource coordination and orchestration of NI across diverse
network environments for improved interoperability and scal-
ability. In the following, we will provide a high-level definition
of such interfaces and what is expected from them.

4.1. Internal Interfaces
To successfully orchestrate and manage NI, it is essential

to establish seamless communication and coordination among
the various functionalities of the NI Stratum. In this subsec-
tion, we will outline and elaborate on the specific set of internal
interfaces presented in Figure 5. These interfaces are the foun-
dation for enabling effective communication and coordination
among the different blocks within the NI Stratum, ensuring a
harmonized and cohesive NI management framework. In the
following, we present them according to their functional defini-
tion, although from an implementation perspective, they could
be provided in a service-based fashion.

• Nio-Nifm. This interface allows communication between
the NIO and the NIF Manager to effectively manage and
orchestrate NIF instances within the NI Stratum frame-
work. It promotes efficient utilization of network resources,
optimized network service delivery, and enhanced scala-
bility and flexibility of virtualized NIF. Among life-cycle
management, the NIO relies on the NIF Manager to per-
form operations related to NIF instances, including in-
stantiation, scaling, healing, and termination. Via this
interface, the NIF Manager can also provide monitoring
information about the learning performance (e.g., the loss

function when trained), or network performance indica-
tors, and trigger healing actions in case of failures, degra-
dations, or conflicts. Moreover, the NIO can gather infor-
mation related to the status of the NIFs so it can derive an-
alytics to proactively optimize the NIFs (e.g., by chang-
ing the learning model data feeding speed/timescale to
mitigate limitation on available computing resources) or
control it (e.g., by adding a new input representation of
the data or ML model to couple it with other NIF when
instantiating a new NIS). Finally, the NIO can also gather
information from the NIFs related to explainable capabil-
ities and use it to take better orchestration and coordina-
tion actions among NIFs. Finally, this interface will allow
the NIO to perform ML workload management.

• Nio-Nifcm. This interface allows the NIO to request the
NIF-C for the allocation, placement, and lifecycle man-
agement of virtualized infrastructure resources. These
resources include computing (GPU, FPGA, CPU, mem-
ory), storage, and networking components required to
host and run NIF instances. It will also allow for gather-
ing information about the utilization and performance of
virtualized infrastructure resources. This includes moni-
toring the allocated resources’ availability, capacity, and
performance metrics and providing visibility into resource
usage and potential bottlenecks. In case of the need for
infrastructure policy enforcement, this interface allows
the NIO to enforce policies and constraints on the virtu-
alized infrastructure resources such as security policies,
learning, and QoE/QoS requirements, or specific compli-
ance regulations that need to be applied to the infrastruc-
ture hosting the NIFs (e.g., data privacy, data anonymity,
model isolation or federation, etc.).

• Nifm-Nifnis. This interface enables the NIF Manager to
manage the lifecycle of NIF instances. It allows the NIF

8

manager to perform operations such as NIF instantiation,
scaling, healing, termination, and update. In the case of
configuration and monitoring, this interface allows the
NIF Manager to provide configuration parameters and
policies to the NIF through the interface. Additionally,
it can collect monitoring data and performance metrics
from the NIF instances to ensure their proper functioning
and adherence to Service Level Agreements (SLAs) in
terms of both networking (e.g., QoS and QoE) and learn-
ing (e.g., accuracy). This NIF Manager can also perform
fault and performance management. The NIF Manager
receives fault notifications and performance data from the
NIFs through the interface, allowing it to detect and han-
dle any issues that may arise based on policies defined by
the NIO. This includes fault localization, resolution, per-
formance optimization, and ensuring the desired perfor-
mance of the NIF. Finally, the NIF Manager can manage
the state and context of the NIF instances. It allows the
NIF Manager to retrieve and update the state information
of the NIFs, including their operational status, configu-
ration parameters, and runtime data. This information
is crucial for maintaining the consistency and continuity
of the NIF operations. This interface can also provide
the capabilities to monitor, manage, and orchestrate NIS
based on abstract data information such as model knowl-
edge (e.g., Neural Network (NN) weights, expert knowl-
edge encapsulated in rule-based systems) and explain-
able model data. Moreover, it will gather information
about the NIF composition to detect possible conflicts
in NIS before deployment, given its topological struc-
ture, or after re-orchestration of the NIS when NIF are
added/removed/changed. In conjunction with the Nio-
Nifm interface, this interface allows the NIO to also con-
figure the NIS (e.g., adding a new NIF in the NIS). In
some implementations, the interaction between NIO and
NIS can be done via a specific interface, e.g., a Nio-Nis
interface.

• Nifcm-Nivi. This interface allows the NIFs to interact
with the NI virtualized infrastructure, which includes vir-
tual machines, containers, resources for storage, and net-
working components. This interface allows NIFs to uti-
lize the underlying infrastructure to perform their des-
ignated functions efficiently. For example, allowing an
ML model to switch among different computing hard-
ware (e.g., CPU, GPU, TPU, or FPGA) and modes (train-
ing versus inference).

• Nio-MLp. This interface enables the NIO to enact ML
model (re-)training via MLOps.

• MLp-Ncat. Via this interface, the ML pipeline frame-
work in the NI Stratum can access the model register,
which serves as a critical connection point in managing
and organizing ML models empowering NIF/NIS within
the pipeline framework. This interface enables seam-
less integration and coordination between the pipeline
framework and the model register, facilitating efficient

model versioning, storage, retrieval, and tracking. This
interface streamlines the integration of ML models within
the pipeline, enabling seamless collaboration, reusability,
and scalability of models across the ML workflow.

• Nio-Ncat. This interface allows the NIO to access the
catalog of NIF/NIS available to deploy in the network.
By accessing the catalog, the NIO can effectively dis-
cover, select, compose, onboard, and manage the life-
cycle of NIF/NIS within the NI Stratum. The interface
enhances the agility, flexibility, and automation capabil-
ities of the NI orchestration system, enabling seamless
deployment and efficient management of NIF/NIS within
the NI virtual infrastructure.

• Nio-Mano. The implementation and deployment of the
NIO can determine whether MANO functionalities are
integrated within the NIO or external to it. This decision
primarily involves a trade-off between a self-contained
orchestrator capable of creating, instantiating, and de-
ploying legacy NF/NS, ML-only NIF/NIS, and hybrids
NIF/NIS, and a lighter orchestrator that relies on exter-
nal MANO for tasks such as managing legacy NIF/NIS
as legacy NF/NS. The Nio-Mano interface is used in the
later case. When the MANO is deployed as an exter-
nal functional block of the NIO (e.g., in legacy systems
where MANO functionalities are already in place), this
interface provides the communication mechanism to ex-
change real-time information to track network slices, func-
tion states, and resource availability. This synchroniza-
tion allows the NIO to dynamically adapt decisions and
efficiently allocate resources based on the current net-
work characteristics. By maintaining an up-to-date view
of available resources, including computing power, stor-
age, and network capabilities, the MANO can orchestrate
network resources effectively and optimize resource uti-
lization, thereby improving performance. Thanks to this
interface, the NIO can be aware of such optimization.

• Mano-Nifnis. This interface allows MANO functional-
ity (either internal or external to the NIO) to perform or-
chestration commands directly on NIF/NIS. For example,
operations such as deployment, scaling, updating, or de-
commissioning of ML blocks can be performed via this
interface, or monitoring and reporting of ML metrics for
the data analytics and monitoring block. Also advance
functions such as security, e.g., to enforce security poli-
cies against adversarial attacks on ML models, or conflict
detection after deployment can interact with the NIF/NIS
via this interface.

• Nio-Ext. This interface communicates between the NIO
and external orchestrators/controllers in the network in
the same or across multiple domains. This interface will
be detailed in the following section.

To promote industry deployment, validation, and widespread
adoption of standardized APIs, we highly recommend that these

9

interfaces are designed following an OpenAPI representation
in YAML and JSON where available (e.g., via ETSI or IEEE),
similar to the NFV-MANO core APIs. Moreover, tools to nav-
igate the specifications and report bugs should also be provided
to enhance the usability and effectiveness of the OpenAPI rep-
resentation.

4.2. External Interfaces

The Nio-Ext interface will allow the NIO to communicate
with external orchestrators/controllers to achieve efficient col-
laboration, resource coordination, and NIF/NIS orchestration
across heterogeneous network environments (far edge, edge,
RAN, transport, core, cloud, etc.). The interface enhances in-
teroperability, scalability, and flexibility, effectively managing
and orchestrating resources and NIF/NIS in complex network
ecosystems.

This interface allows for efficient coordination of resources
by exchanging information about available resources and their
utilization across different domains. This promotes optimal re-
source allocation and utilization. Secondly, the interface en-
ables collaboration in NIF/NIS deployments across multiple do-
mains by facilitating the exchange of NIF/NIS-level informa-
tion and dependencies between the NIO and external orches-
trators/controllers. This enables the instantiation, management,
and scaling of complex NIS across multi-domain and heteroge-
neous environments.

Additionally, the interface supports policy management by
facilitating the exchange of policy information between the NIO
and external orchestrators/controllers. This ensures consistent
policy implementation and governance across different domain
systems. Moreover, the interface enables the exchange of event
and alarm information, allowing for proactive event handling,
correlation, and remediation across domains. Finally, the in-
terface facilitates information exchange and federation by en-
abling the sharing of network topologies, hardware capabili-
ties, NIF/NIS catalogs, and other relevant data (e.g., monitoring
information, model weights, etc.), improving decision-making
and coordination capabilities among different orchestration sys-
tems. In this section, we will describe two specific cases of such
interfaces.

4.2.1. O-RAN
The O-RAN Alliance is a global community of mobile net-

work operators, vendors, and research institutions established
in February 2018. Its primary goal is to drive the develop-
ment of open, intelligent, and interoperable RAN technologies.
Founded by AT&T, Orange, Deutsche Telekom, Docomo, and
China Mobile, O-RAN is now supported by over 300 organiza-
tions, including major operators and vendors. Analysts predict
that open vRANs could surpass the conventional RAN market
by 2028, generating revenues close to $20 billion.

The O-RAN architecture is a new approach to building mo-
bile networks that aims to increase flexibility, interoperability,
and innovation. It is designed to enable multi-vendor deploy-
ments, reduce costs, and improve network performance. Key
aspects of the O-RAN architecture are presented in [38], where

a very important aspect of O-RAN is the integration of AI/ML
workflows, i.e., NI that may be managed by the NI Stratum,
with the following principles [37]:

• Offline Learning: In O-RAN, even for Reinforcement
Learning (RL) scenarios, some amount of offline learn-
ing (where a model is trained with offline data before de-
ployment) is always recommended.

• Pre-training and Testing: Any model deployed within
the network needs to be trained and tested beforehand.
No completely untrained model should be deployed in
the network.

• Modularity in ML Applications: As a best practice,
ML applications should be designed in a modular fash-
ion, with the capability to share data without knowledge
of each other’s data requirements. The location or nature
of a data source should not bind them.

• Service Provider’s Deployment Choice: The criteria
for determining where an ML application should be de-
ployed (Non-RT RIC or Near-RT RIC) may vary between
service providers. Therefore, the service provider should
decide the deployment scenario for a given ML applica-
tion.

• Optimization of ML Model for Efficiency and Perfor-
mance: To improve execution efficiency and inference
performance, the ML model should be optimized and
compiled considering the hardware capabilities of the in-
ference host. There should be a balance between effi-
ciency and inference accuracy, with acceptable accuracy
loss as one of the optimization goals. The optimization
parameters should be determined based on this threshold.

Figure 6 illustrates the general framework of AI/ML pro-
cedures and interfaces and its integration into the proposed NI
Stratum, including the potential mapping between ML compo-
nents and O-RAN components.

O-RAN suggests several AI/ML deployment scenarios that
are relevant to our NI Stratum; they are summarized as follows:

• Deployment Scenario 1.1: In this case, AI/ML Contin-
uous Operation, Model Management, Data Preparation,
Training, and Inference all take place within the Non-RT
RIC (Non-Real-Time Radio Intelligent Controller).

• Deployment Scenario 1.2: Here, AI/ML Continuous Op-
eration, Data Preparation for training, and AI/ML Train-
ing are located in non-RT RIC. However, AI/ML Model
Management is outside non-RT RIC (either within or out-
side the Service Management and Orchestration (SMO)).
Data Collection for inference, Data Preparation for infer-
ence, and AI/ML Inference are in the Near-RT RIC.

• Deployment Scenario 1.3: AI/ML Continuous Opera-
tion and AI/ML Inference are within non-RT RIC. Data
Preparation, AI/ML Training, and Model Management
are located outside the non-RT RIC (either within or out-
side SMO).

10

AS K
MLOps

Nio-MLp

NIO

(Nio-Nis/Nio-Nifm)

P

N

P

K

N N

(Nio-Nis/Nio-Nifm)

Figure 6: Integration of the NI Stratum and O-RAN AI/ML Lifecycle Procedures and Interface Frameworks

• Deployment Scenario 1.4: In this scenario, the non-RT
RIC acts as the ML training host for offline model train-
ing, and the Near-RT RIC acts as the ML training host
for online learning and also as the ML inference host.

• Deployment Scenario 1.5: Continuous Operation, Model
Management, Data Preparation, and ML Training Host
are in non-RT RIC. However, the Open Central Unit (O-
CU)/Open Distributed Unit (O-DU) acts as the ML infer-
ence host.

Please note that the deployment of “AI/ML Continuous Op-
eration” outside of non-RT RIC is still under study.

4.2.2. 5G-Core
The 5G Core (5GC) is one of the most important domains

in a 3GPP mobile system, hence we analyze how the proposed
NI Stratum can interact with it. The imperative of network au-
tomation drove the design of the 3GPP system in R15, mark-
ing a significant departure from previous releases. In earlier
iterations, data generation and analytics in the network primar-
ily relied on proprietary interfaces for exchanges between net-
work elements and their respective managers. However, with
R15 and subsequent consolidations, the architecture underwent
a comprehensive overhaul to incorporate native support for col-
lecting analytics. As explained below, these analytics can be ef-
fectively utilized to establish feedback loops through standard-
ized or proprietary solutions. At the heart of this system lies the
NWDAF, which performs three key functions: (i) aggregating
data, encompassing metrics that reflect the current state of the
network, sourced from another producer NFs; (ii) conducting
analytics, involving the computation of refined statistics based
on the gathered data; (iii) sharing the computed analytics with
other consumer functions across the network.

The generated analytic reports serve as outputs that either
present statistics based on historical data or provide predictions
for specific metrics, depending on whether the requested time-
frame is in the past or future, respectively. These outputs are

crucial in optimizing the operation of NFs. Additionally, the
output may include a confidence parameter, ranging from 0 to
100, which conveys information about the reliability of the pre-
diction made. Factors determining this confidence parameter
may include the volume of data utilized in generating the pre-
diction, the age of the AI model employed, and other relevant
considerations.

Figure 7 presents the interconnections among various com-
ponents. The framework is divided into three domains and
shows where the NI Stratum takes a role. The first domain,
referred to as 5GC, is where the NWDAF resides. Within this
domain, other NFs of the core act as the primary producers and
consumers of data and analytics. These NFs utilize the data and
analytics to drive network operations in a data-driven manner.
Thanks to the NWDAF, consumer NFs no longer need to di-
rectly communicate with every potential producer to compute
analytics, as they can efficiently leverage the shared informa-
tion. NWDAF is a specific (and very important) NIF, that can
leverage on a number of NIF-C according to the analytics that
are served.

The second domain encompasses Operations, Administra-
tion, and Maintenance (OAM) activities, which involve mod-
ules such as Element Managers or Network Elements in pre-5G
networks. Starting from R15, OAM effectively enforces net-
work slicing through the service-based management architec-
ture. The OAM domain can also supply the NWDAF with data
from the RAN and 5G NFs, such as resource consumption. Un-
like the pre-5G 3GPP RAN architecture, which lacks an analyt-
ics hub like the NWDAF, alternative architectures like O-RAN
feature dedicated analytics modules. The Management Data
Analytics Function (MDAF) serves as the module responsible
for interacting with the NWDAF and provides Management
Data Analytics Services (MDAS). As discussed, the MDAF
collaborates with the NWDAF and other core NFs to generate
management analytics information, which is subsequently con-
sumed by other NFs or management procedures like the self-
organizing network. From the perspective of the NI Stratum,

11

NWDAF

5GC

Service Based Architecture

NSSF NEF NRF PCF UDMAUSF

AMF SMF

UPFu-planegNB

c-plane

UE

Service
Domain

Analytics ReportsOperation,
Administration,

and Maintenance
Domain Input Data

Analytics Reports

Input Data

Input
Data

Analytics
Reports

NF Domain

Network Intelligence
Stratum

Figure 7: The architectural framework proposed by the 5GPPP Arch WG [31].

the MDAF is an NIF that can be further split into several NIF-C
which (i) interact with the NWDAF, effectively closing the loop
with the core, and (ii) allows the internal interaction within the
management domain.

The third domain encompasses the service domain, facili-
tated through the Application Function (AF). These functions
outside the 3GPP trust domain play a crucial role in facilitating
close interaction between service providers and network opera-
tors. This interaction is achieved through enriched service lay-
ers, which aid in commoditizing the network and enhancing the
interplay between the service and network intelligence. Given
the criticality of authorization and security, verifying whether
AFs are appropriately authorized to interact with the NWDAF
and engage in data exchange with third parties is essential. Au-
thentication can be managed in three different ways. One is
basic user-password authentication, where credentials are con-
figured via a configuration file. Support of Transport Layer Se-
curity (TLS) protocol where there is a server-side authentica-
tion or mutual TLS authentication, where both server-side and
client-side authentication is required. In this case, the AF can
be seen as a specific NIF-C (either Sink or Source, depending
on the context). Overall, any NF deployed within the 5GC, the
OAM system, or any AF can contribute input to the NWDAF
and request analytic reports from it. This establishes a feed-
back loop where any NF, OAM component, or AF can provide
input data to the NWDAF and receive analytic reports gener-
ated from the collective data obtained by the NWDAF. Through
these feedback loops, the majority of automated network op-
erations can be executed, as exemplified by the ones already
provided by the NWDAF in the standard.

5. Network Intelligence Stratum Procedures

In this section, we show how the architectural building blocks
that compose the NI Stratum will interact with each other. Since
the main component of the NI Stratum is the NIO, we will show
how its internal functionalities cooperate to solve the challenges
mentioned in Section 3. Additionally, we will explore how the
different components work together to create a cohesive sys-
tem that can effectively orchestrate intelligence across multi-
ple domains. Through these interactions, the NIO will be able
to address the challenges that can emerge when NISs are de-

For NIF in
NIS

NIO MLOps
Pipeline

Model
not
found

create(nis_descriptor)

validate_existence(nif_descriptor)

model not found

model_train(nif_descriptor)

ack NIS creation

Entry Point

validate(nis_descriptor)

NIS Catalog

trigger_ml_pipeline(nif_descriptor)register model

Model
found

model_found(nif_image)

NIF
Manager

upload_nif_image(nif_image)

ack nif_mage uploaded

model_available(nif_image)

Figure 8: NIS creation process flow.

ployed across different network domains and operating in mul-
tiple timescales.

Notice that all the procedures mentioned below are depicted
using a process view. This view answers how the system be-
haves, addressing concurrency and synchronization aspects. Uni-
fied Modeling Language (UML) sequence diagrams were se-
lected as the most appropriate form. Next, we briefly describe
how combining some functional blocks can help address the
challenges described in the previous section.

5.1. Inter NIO Procedures

One of the most essential management and orchestration ca-
pabilities is to handle the lifecycle of each of its entities. The
NIO is not an exception. Regarding networking functionali-
ties, NFV MANO [36] is the referent architectural framework
to look up to. Lifecycle management is generally responsible
for the following operations: creation, instantiation or deploy-
ment, management (e.g., model selection and optimization),
and termination. However, given the intelligent nature of the
NI, several factors must be considered while addressing their
lifecycle management. In the following subsections, we will
discuss in detail how the NIO performs lifecycle management
of the different NI.

5.1.1. NI Creation
When creating a new NIS, the NIO should verify that all the

NIFs from that NIS are available in the catalog. If a NIF is un-
available, a new training should be started, e.g., based on user-
defined NIF Descriptor (NIFD)/ NIS Descriptor (NISD). This
training is represented by triggering a new MLOps pipeline.
The data ingestion for training this new NIF should be coor-
dinated between the NIO and the MLOps pipeline. Notice that
this procedure only contemplates the creation of the NIF and
not its usage.

Figure 8 shows the required interactions to create a NIS/NIF.
In the first step, the NIO should process a NIS/NIF creation re-
quest through its API. A sender can submit this request, which
could be a human, an AI agent, or another process with admin-
istration rights to trigger orchestration operations in the NIO.
The sender identifies that a new NIS/NIF is needed to perform

12

a given network operation and submits this request to the NIO.
As input for this process, the NIO should receive a NIFD/NISD
which includes, but is not limited to:

• Learning mode, if the ML model supports online learning
or if the training is made offline.

• Data on which the model is trained (whether the learning
is online or offline). This field also specifies the format
in which the input data is expected.

• Learning metrics. This typically includes accuracy, cross-
entropy, or a known loss function, e.g., Mean Squared
Error (MSE).

• Model performance upper and lower thresholds. Values
on which the training can be concluded (upper threshold).
It is assumed that once the upper threshold is met, the
ML model is ready to be deployed in production. On
the contrary, if the lower threshold is met, the ML model
deployed in production should be updated. The definition
of these thresholds may vary depending on the NI, but it
should reflect the expected performance of the NI.

• Output format. This field specifies the format the ML
will communicate its output. For instance, a classifica-
tion problem can produce a vector with the probability of
a given sample belonging to a class or the class itself.

• Last modification time. This field will indicate the age of
the ML model. Given the constant evolution of network
state and data, having an up-to-date ML model is crucial
for network operation.

• Dependencies required for operation. ML models are
created using specific libraries (e.g., NumPy, pandas, etc.).
The right versions of such libraries must be available when
instantiating the ML model in production.

As a second step, the NIO then processes the NIFD/NISD,
by checking for the existence of mandatory elements (i.e., net-
work operation, data requirements, output format, and accu-
racy) and validating the integrity and authenticity of the NIFD/
NISD. Afterwards, for every NIF in the NIS, the NIO verifies if
the NIF model exists in the catalog. Two things may happen. If
the NIF model is not present in the catalog, the NIO triggers a
training operation from the ML pipeline resulting in the execu-
tion of a new data ingestion - model training - model testing -
model packaging - model registering pipeline. Most of the data
needed to execute this pipeline is provided in the NIFD. Once
the pipeline is completed, a new image from the NIF model is
registered in the NIF Catalog. If the model is present in the cat-
alog, it can be used in inference. For doing this, the NIO makes
the NIS/NIF images available to each applicable NIF-C Man-
ager. The NIF-C Manager acknowledges successful image up-
loading. Finally, the NIO acknowledges the NIS/NIF creation
to the sender.

Empty
list

NIO
MLOps
Pipeline

instantiate(nis_descriptor)

list of nif instances

model_train(nif_descriptor)

Entry Point

validate(nis_descriptor)

NIF-C
Manager

trigger_ml_pipeline(nif_descriptor)
register model

NIF Manager

For NIF-C
in NIF

ack resource availability

validate_existence(nif_descriptor)For NIF in
NIS

nif_interconnection(nis_descriptor)

resource_availability(nif_descriptor)

ack resources
not available

ack resource allocation and interconnection

resource_allocation_and_interconnection(nif_descriptor)

ack, list of NIF instances

For NIF in
NIS

Figure 9: NIS instantiation process flow.

5.1.2. Instantiation or Deployment
Figure 9 shows the interactions required for instantiating

or deploying a NIS/NIF. As in the previous step, the NIO re-
ceives a request to instantiate a new NIS. Then, several variants
might be possible. If none of the NIFs belonging to the NIS
is instantiated or deployed, the NIS instantiation will also in-
clude the instantiation of all the needed NIF instances through
the NIF Manager. If all the needed NIF instances have already
been created, the NIS instantiation would only deal with the
interconnection of the corresponding NIF instances. Lastly, a
combination of the above is possible where some NIF instances
might exist, some might need to be created, and instantiated,
and some network connectivity between the NIFs may already
exist.

It is important to notice that if a NIF instance is already cre-
ated, it can be shared between different NISs. In this case, the
NIO should trigger the conflict resolution mechanism because
they may be deployed on the same node and/or accessing the
same resources. If no conflict is produced, the same NIF can
instantiate the current NIS. If a potential conflict is detected, the
NIO should proactively address it by deploying specific policies
implementing rules or priorities (c.f., Section 5.2) to effectively
solve the aforementioned conflict.

The main steps for NIS/NIF instantiation are as follows.
First, the NIO receives a request to instantiate a new NIS/NIF.
The NIO validates the request in terms of the request’s validity,
including validating that the sender is authorized to issue this
request and validation of the parameters passed for technical
correctness and policy conformance. For each NIF in the NIS,
the NIO checks with the NIF Manager if an instance matching
the requirements already exists. If such an instance exists, it
will be used as part of the NIS. If the NIF instance does not
exist, the NIO triggers the NIF creation procedure.

The NIO then should perform a feasibility check of the NIF
interconnection setup. For doing this, the NIO requests to the
NIF-C Manager the availability of resources needed for the NIF
interconnection and reservation of those resources. The NIF-C
Manager checks the availability of resources needed for the NIF

13

Empty
list

NIO
MLOps
Pipeline

update(nis_descriptor)

list of available nifs

model_train(nif_descriptor)

ack NIS update

Entry Point

validate(nis_descriptor)

NIS Catalog

trigger_ml_pipeline(nif_descriptor)
register model

NIF
Manager

update_nif_image(nif_image)

For model
In rem.
list

nif_mage uploaded

verify_updated_model(nif_descriptor)
For NIF in
NIS

validate_deployment_requirement(nif_descriptor)

model_selection(nif_descriptor)

list of available nifs

Figure 10: NIS update process flow.

interconnection and reserves them. The NIF-C Manager returns
the reservation result to NIO. If the resources are not available,
the NIS might not be instantiated, which results in a denial of
the NIS instantiation. However, if the resources are available,
the NIO requests the NIF-C Manager to allocate and intercon-
nect the NIF instances. The NIF-C Manager instantiates the
connectivity network needed for the NIS and finalizes with a
completion acknowledgment. Finally, the NIO acknowledges
the completion of the NIS instantiation.

5.1.3. Management
Several operations can be considered as management pro-

cedures, such as NIS/NIF update, optimization, scaling, or mi-
grating. NI solutions stored in the NIS/NIF catalog are inher-
ently trained on hardware and software platforms that may not
match the ones available in the new environment where they
need to be deployed. In such cases, the NIS creation/selection,
optimization, and instantiation block will obtain networking
and execution context information from its MANO block op-
erating in the network and select the proper model to be used
in inference within a NIF. Suppose a mismatch between trained
and targeted hardware/software appears. In that case, the same
block should perform the optimization/adaptation (e.g., com-
pression of a neural network, change of inference library from
GPU to CPU, etc.) to match the new environment. In case no
model is available for the specific execution environment, the
NIS creation/selection, optimization, and instantiation block will
create a new NIS and then notify the NIS workflow configura-
tion block to trigger a new training phase. Here, we present the
NIS/NIF update with model selection as the most relevant and
generic procedure that may involve optimization, re-training, or
selection.

Figure 10 shows the main steps for NIS/NIF updates. This
procedure includes updating the parameters of the NIS/NIF. It
is important to notice that the update process has similarities
with the NIS/NIF creation. A request for NIS/NIF update is
submitted from a sender, which could be a human, an AI agent,
or another process in the architecture, such as a data analytics
module that is detecting a mismatch of the statistics of the input
data, or a monitoring module detecting that the current model’s

accuracy is lower than expected. The sender identifies that a
new NIS/NIF needs to be updated and submits its request for
an update through the NIO API. Then, the NIO processes the
NIFD/NISD to check the existence of mandatory elements and
validate the integrity and authenticity of the descriptor.

For every NIF in the NIS that must be updated, the NIO
verifies that a new version of the NIF model exists in the cat-
alog. Similarly as in the NIS creation, if an updated model is
needed but is not available in the catalog, the NIO triggers a
re-training operation from the MLOps pipeline, starting a new
pipeline. Once the model is re-trained, an image is registered
in the NIF catalog. Consequently, the NIFD is updated with
the new version and requirements (i.e., data format, hardware,
software dependencies, etc.). On the contrary, if a model (or
more than one model) is available, then the NIO verifies that the
available models satisfy the deployment requirements in terms
of data (e.g., input rate and format), computation platform (e.g.,
CPU, GPU, TPU or FPGA), dependencies (e.g., TensorFlow,
PyTorch, etc.), and performance level. This process might re-
turn an empty list, meaning that no model satisfies the deploy-
ment requirement, and creating a new NIF is needed.

If more than one model satisfies the deployment require-
ments, model selection should be carried out. In this phase,
the component will compute an ML test score, and depending
on arbitration policies, the best-performing model is selected to
update the NIF image. The ML test score can contain learning-
related metrics (e.g., loss/reward function) and non-learning-
related metrics (e.g., QoE, QoS, or stability in deployment).
The arbitration policies are decision factors that the NIO con-
siders primordial for model deployment, for instance, if model
precision is preferred over energy consumption. If the model is
updated, it should be registered in the catalog and can be used
in inference.

Finally, once all the NIFs that compose the NIS are avail-
able, the NIO makes NIS/NIF images available to each applica-
ble NIF-C Manager. Then, the NIF-C Manager acknowledges
the successful uploading of the image, and finally, the NIO ac-
knowledges the NIS/NIF update to the sender. Other manage-
ment operations include optimization, scaling in/out, or migrat-
ing. The workflows are similar to those of NFV-MANO [36],
requiring an extra step to update the NIS/NIF, which was shown
above.

5.1.4. Termination
The request for terminating a NIS/NIF is received by the

NIO. This request might come from a human, an AI agent, or
another process in the architecture. When terminating a NIS/NIF
instance, several variants might be possible. In case all NIF
instances contributing to the NIS need to be terminated, a ter-
mination procedure is started for all the NIF, including the re-
moval of the interconnectivity between these NIF. In case some
NIF instances are contributing to other NIS instances, only those
NIFs that do not contribute to other NIS instances must be ter-
minated. The interconnectivity between them must be removed,
leaving the other NIF instances in place and the interconnectiv-
ity between them intact.

14

For terminating a NIS/NIF instance, the NIO receives a re-
quest to terminate a NIS/NIF instance using the NIS/NIF Life-
cycle Management interface. As in previous procedures, the
NIO validates the request. It verifies the validity of the re-
quest (including the sender’s authorization) and verifies that the
NIS/NIF instance exists. The NIO then proceeds to request the
NIF Manager to terminate any NIF instances that were instanti-
ated along with the NIS instantiation, provided they are not used
by another NIS. At the same time, the NIF Manager requests
the deletion (release) of resources for this NIF instance to the
NIF-C Manager. For all the NIF-C, the NIF-C Manager deletes
(releases) the resources and then acknowledges the completion
of resource deletion back to NIF Manager. This completes the
deletion of the NIF. Once the NIS is terminated, the NIF Man-
ager sends a confirmation to the NIO that the NIFs are termi-
nated.

5.1.5. Other Operations
Operations such as deleting, querying, enabling, or disabling

a NIS/NIF are also considered within the architecture defined
by the NI Stratum. However, such operations are not different
than those proposed in NFV-MANO as they do not involve or
require interactions with any NI-related block and the MANO
block can perform it. The implementation of such procedures
is shown in [36].

5.2. Intra NIO Procedures
As introduced above, a NIS is usually composed of different

NIFs and hence, some of the NIS management functionalities
take place only within the NIO itself. These intra NIO func-
tionalities address the challenges that may emerge when NISs
are deployed across different network domains and operating
in multiple timescales, including conflict resolution and knowl-
edge sharing among NIS.

5.2.1. Conflict Resolution
We introduced two specific conflict cases in Section 3.3: (i)

when conflicts emerge when monitoring data, e.g., algorithms
may need data from the same source but with different granu-
larity, and (ii) when conflicts in the policy enforcement of dif-
ferent NI algorithms may act on the same network functions but
configuring different values for the target parameters. In such
situations, the policy interpreter and configuration block will
gather information about the policy guiding the different NISs
and pass their interpretation to the conflict detection and resolu-
tion module. In both cases, a conflict will be detected, and the
NIO will identify and apply the conflict resolution rules asso-
ciated with (i) multi-timescale coordination and (ii) parameter
constraints and execution priority. After applying the rules, the
outcome should provide a plan that will trigger a configuration
modification of the NIS policies. In the case of NIS empowered
by black-box ML algorithms, the Model Explainability block
will interpret policies associated with such algorithms.

Figure 11 shows the main steps for the case of NIS Conflict
Resolution. This procedure includes checking the parameters of
the NIS against the Policy Interpreter and Configuration (Poli-
cyIC) to arbitrate the deployment of the NIS (e.g., if the NIS has

NIS CSOI

deploy(nis_descriptor)
Check_conflict(nis_descriptor)

Updated_nis_descriptor

reply

Entry Point PolicyIC ConflictResolution

Check_conflict(nis_descriptor)

resolution

policy = build_policy(resolution)

Apply_policy(nis_descriptor, policy)

Figure 11: Conflict Resolution process flow.

different monitoring granularity in a Source shared with other
NIS, or requires controlling a NF that another NIS is already
controlling with a different AI algorithm). When the NIO re-
ceives a request for the instantiation or updating a NIS, it will
be the NIS Creation Selection Optimization and Instantiation
(CSOI) component that will internally validate the NIS, indi-
cating if there is a conflict and updating and resolving the NIS
in case any conflict exists.

The validation command executed in the NIO when creat-
ing, instantiating, and updating a NIS includes the following
steps internally. First, the NIS CSOI validates the NISD. If
the NIS request is correct and sound, the NIS CSOI verifies
through the PolicyIC if there is any conflict by gathering infor-
mation about the policy guiding the different NISs and pass-
ing their interpretation to the Conflict Resolution component.
Then, the Conflict Resolution component checks if the NISs
to be deployed has any conflict with the existing NISs. The
Conflict Resolution component globally solves trade-offs that
may emerge from conflicting objectives in the control and user
planes, e.g., establishing policies (at small timescales) versus
enforcing such policies (at large timescales). For the case of
conflicting NISs, the Conflict Resolution component compares
policies among different NIS to detect conflicts that may appear
with the new/ updated NIS. It performs conflict resolution based
on comparison and resolution rules, providing a NIS configura-
tion. This configuration will result from a trade-off or priority
mechanism that the Conflict Resolution component will exe-
cute to harmonize the NISs’ coexistence. The resolution will
contain the last valid configuration if no feasible solution ex-
ists. Once the PolicyIC receives the resolution, the new policy
is built and applied to the specific NIS. Then, the PolicyIC re-
turns the NISD to the NIS CSOI. Consequently, the NIS CSOI
further proceeds with the required NIS operation (i.e., creation,
deployment, update, etc.). Eventually, the NIO acknowledges
the NIS deployment to the sender.

5.2.2. Knowledge Sharing
NISs deployed in the same or across different domains use

their knowledge to derive their execution plans. The knowledge
management block will allow the NIO to understand the knowl-
edge of each NISs, via the interaction with the Model Explain-
ability block and derive new policies that represent the shared
knowledge among NISs, by interacting with the PolicyIC block.

Figure 12 shows the main steps for the case of NIS Knowl-
edge Sharing. This procedure includes checking the parame-

15

NIS CSOI

deploy(nis_descriptor)
Check_conflict(nis_descriptor)

Updated_nis_descriptor
reply

Entry Point PolicyIC ModelExp

Updated_nis_descriptor

translate_knowledge(nis_descriptor)

Knowledge_rules

Derive_shared_knowledge_policies(nis_descriptor, knowdge_rules)

policy = build_shared_knowledge_policy(resolution)

Apply_policy(nis_descriptor, policy)

Figure 12: Knowledge Sharing process flow.

NIS CSOI PolicyIC

deploy(nis_descriptor) check_conflict(nis_descriptor)

updated_nis_descriptor

For NIF
in NIS

Entry Point ModelExp NIS WConfNIF Manager

translate_knowledge_rules(nis_descriptor)

knowledge_rules

Derive_shared_knowledge_policies(nis_descriptor, knowledge_rules)

updated_nis_descriptor

validate_existence(nif_descriptor)

list of available nifs

configure_workflow(nis_descriptor)

result

result

NIF-C
Manager

For NIF
in NIS

instantiate(nif_descriptor)

ack resource allocation and interconnection

Figure 13: Intra NIO instantiation and deployment process flow.

ters of the NIS against the PolicyIC initially (and consequently
also with the Conflict Resolution component internally). How-
ever, for the cases in which a NIS requires the use of knowledge
coming from an external domain, the NIS CSOI will first trans-
late such knowledge in the Model Explainability block before
building and applying the shared knowledge policies:

When a new NIS instantiation is requested, the NIO will
process this request similarly as described in the previous sec-
tions, i.e., validation, conflict resolution, and policy update.
With the updated NISD, the NIS CSOI requests the translation
of the external domain knowledge to the Model Explainability
block. As a result, the NIS CSOI receives additional Knowl-
edge rules. Then, the NIS CSOI sends the NISD again to the
PolicyIC, but this time together with Knowledge rules to build
and apply the shared knowledge policies. If shared knowledge
policies must be built, this is done by the PolicyIC module, tak-
ing in account possible existing conflicts. When shared knowl-
edge policies must be applied, this is also done by the PolicyIC
block by returning the NISD to the NIS CSOI. Finally, the NIO
acknowledges the NIS deployment to the sender.

5.2.3. Intra NIO Instantiation and deployment
The previously described Conflict Resolution and Knowl-

edge Sharing mechanisms are inherent to the NIS CSOI and
Lifecycle Management components interacting with external
components such as the NIS Catalog, the NIF Manager, or the
NIF-C Manager. To illustrate how the external processes would
occur inside the NIO, Figure 13 details the deployment inter-
actions between the NIS CSOI with both internal and external
components. The procedure includes the steps to validate the
NISD and identify and solve possible conflicts before deploy-

ment. Also, domain-specific policies are built and applied, fol-
lowed by training new models in case there are no instances of
them already in the catalog. Finally, the NIS Workflow Con-
figuration block combines them to build the NIS and start the
instantiation and deployment.

The detailed sequence of steps is described as follows. First,
a request for deploying a NIS is submitted from the sender (it
could also be a NIS update). The sender identifies that a new
NIS needs to be deployed and submits its request to the NIO
through the NIO API. Then, the NIS CSOI component receives
the request. The NIS CSOI processes the NISD, including, but
not limited to:

• Checking for mandatory elements (i.e., network opera-
tion, data requirements, output format, accuracy).

• Validating the integrity and authenticity of the descriptor.

If the NIS request is correct and sound, the NIS CSOI will
proceed with the validation of the NIS. Please note the vali-
dation command executed in the NIO for the creation, instan-
tiation, and update processes described in Section 5.1 also in-
cludes the procedures of Conflict Resolution and Knowledge
Sharing. Then, the NIS CSOI verifies against the PolicyIC if
there is still any conflict. As described above, the PolicyIC in-
ternally requests the Conflict Resolution component to check
further if the NIS has any conflict with existing NIS. Once the
PolicyIC receives the resolution, the new NIS domain-specific
policies are built and applied, and an updated NISD is returned
to the NIS CSOI.

With the updated NISD, the NIS CSOI requests the transla-
tion of the external domain knowledge to the Model Explain-
ability block. As a result, the NIS CSOI receives the addi-
tional Knowledge rules. Later on, the NIS CSOI sends the
NIS descriptor again to the PolicyIC, but this time together with
Knowledge rules. Hence, shared knowledge policies are built
and applied as previously described in the above sections. The
NIS CSOI now iterates for every NIF in the NIS and checks if
an instance of the given NIF already exists in the NIF Manager.
If no instance exists, a new model will be trained for that NIF
in the MLOps Pipeline.

Next, the CSOI proceeds with the interconnection of all
NIFs in the NIS. This mechanism involves requesting the NIS
Workflow Configuration block to virtually link the NIFs and
define their interactions. Finally, the NIS CSOI starts the in-
stantiation of every NIF in the NIS in the NIF-C Manager. As
previously described, this involves checking the resource avail-
ability for that NIF in the infrastructure by the NIF-C Man-
ager. If resources are available, allocate the resources for that
NIF, and interconnect with the other NIFs instances through
the NIF-C Manager. If resources are not available, notify the
sender accordingly. Eventually, the NIO acknowledges the NIS
deployment to the sender.

Table 2 summarizes the functionalities proposed in Sec-
tion 3 for the NIO and which procedures use them. Notice that
the procedures described in the previous sections are also based
on the related challenges in Section 3. However, further pro-
cedures can be defined based on other use cases, e.g., orches-

16

Table 2: Summary of the procedures proposed to address the challenges described in Section 3 and the functionalities of the NIO that can be used to achieve it.
Procedure Procedure type Functional blocks
Creation Inter NIO Procedures NIO, NIS Catalog, ML Pipelines, NIF Manager

Instantiation or Deployment Inter NIO Procedures NIO, ML Pipelines, NIF Manager, NIF-C Manager
Management Inter NIO Procedures NIO, NIS Catalog, ML Pipelines, NIF Manager, MANO
Termination Inter NIO Procedures NIO, NIF Manager, NIF-C Manager

Other operations Inter NIO Procedure As in NFV-MANO

Conflict Resolution Intra NIO Procedures
Policy Interpreter and Configuration,

Creation Selection Optimization and Instantiation,
Conflict Detection and Resolution

Knowledge Sharing Intra NIO Procedures
Policy Interpreter and Configuration,

Model Explainability,
Knowledge management

Intra NIO Instantiation and deployment Intra NIO Procedures

Policy Interpreter and Configuration,
Model Explainability, ML Pipelines,

NIF Manager,
NIF-C Manager

Figure 14: A federated learning-powered anomaly detection and service relo-
cation NIS.

tration of NI in federated domains or intelligent orchestration
of NISs, where the decisions of the NIO are empowered by
AI-based decision-making models). We expect that these pro-
cedures can be further extended to more complex cases or used
as a reference to define new ones.

6. Network Intelligence Stratum Implementation

This section shows a reference implementation of the pro-
posed NI Stratum. The first subsection shows how two NIFs
can be described and orchestrated to form a NIS. Then, assum-
ing that both NIFs are acting upon the same network element
(i.e., reallocating and scaling the same network service), we
show how selected functionalities of the NI Stratum can be im-
plemented.

6.1. Combining NIFs to build a NIS

One of the key features of the NI Stratum is to allow the
creation, management, and deployment of NISs. In this sec-
tion, we showcase a key functionality of such Stratum: com-
bining two NIFs to create a NIS. The first NIF utilizes a feder-
ated learning-powered anomaly detection algorithm, enabling
anomaly detection at the edge (NIF1 in Figure 14). This means

that the AI model for detecting anomalies is trained locally on
individual devices, while a central controller is responsible for
retaining a global model and, therefore, enhancing the local AI
model. This way, data privacy is preserved while the approach
still benefits from a collaborative learning process. The second
NIF employs a service relocation algorithm that collects real-
time monitoring information from the edge [39], such as CPU
load, memory load, used storage, and end-to-end latency mea-
sured at the client side. Leveraging a multi-criteria decision-
making function, this algorithm dynamically relocates services
based on real-time data (NIF2 in Figure 14), ensuring optimal
resource utilization and service performance. It is important
to note that by service relocation, we mean relocation of state-
less services, a procedure that deploys the correct service in-
stance on the selected edge and terminates all previous service
instances running on the other edges to save the edge resources.

Following the proposed framework based on the N-MAPE-
K to define NIS, we effectively combined the federated learning-
powered anomaly detection with service relocation capabilities
to achieve the NIS. Figure 14 shows the N-MAPE-K based dia-
gram of the resulting NIS. By integrating the federated learning
approach, the NIS ensures that anomalies are detected securely
and efficiently across the network’s edge devices. The NIS also
leverages the monitoring information collected from the edge to
make informed decisions about service relocation, maximizing
the network’s overall performance and responsiveness.

Before implementation, the NIS needs to be created, which
is a procedure that includes validating the existence of consti-
tuting NIFs, and if one of them is not found, the proper models
are created and trained, resulting in NIF images that are nec-
essary for NIS implementation (Figure 16). The communica-
tion among the NIS is implemented using the Eclipse Zenoh
data communication framework [27], which provides a reliable
and scalable solution for exchanging data between devices and
components within the network. Additionally, the implementa-
tion utilizes Kubernetes [25] to realize the NIF Manager and the
NIF-C Manager, as shown in Figure 15. Kubernetes helps man-

17

C
LO
UD

ED
G
E

SUBSCRIBER

…

E2E Orchestrator

API

S Source A P K NAnalyze Plan Knowledge Sink NIF 1 NIF 2S S

RSU-1

NIF-C Manager

Metrics APIS

MEC
APPN MEC

APPN

Edge orchestator
A K A K

Data
Manager

CPU Mem

Models Latency

RSU-2

NIF-C Manager

Metrics APIS

MEC
APPN MEC

APPN

Edge orchestator
A K A K

Data
Manager

CPU Mem

Models Latency

RSU-N

NIF-C Manager

Metrics APIS

MEC
APPN MEC

APPN

Edge orchestator
A K A K

Data
Manager

CPU Mem

Models Latency

GPCU
FL Controller

A K

Decision Maker

P
MCDM

Scheduler
Controller Manager

Cloud Controller Manager

Figure 15: Cloud-to-edge deployment of the proposed NIS and its different components.

For NIF1 in
NIS

NIO
MLOps
Pipeline

Model
not found

create(nis_desc)

validate_existence(nif1_desc)

model not found (nif1_desc)

model_train(nif1_desc)

ack NIS creation

Entry Point

validate(nis_desc)

NIS Catalog

trigger_ml_pipeline(nif1_desc)register
model

model_found(nif1_image)

NIF
Manager

upload_nif_image(nif1_image)

ack nif_mage uploaded

model_available(nif1_image)

validate_existence(nif2_desc)

model found (nif2_descr)

NIF-C
Manager

instantiate(nis_desc)

validate(nis_desc)

validate_existence(nif1_desc)For NIF1 in
NIS

list of nif1 instances

validate_existence(nif2_desc)

list of nif2 instances

model_train(nif_desc)
trigger_ml_pipeline(nif2_desc)

register
model

nif_interconnection(nis_desc)

ack resource availability

resource_availability(nif1_des)

ack resources
not available

ack resource allocation and interconnection

resource_allocation_and_interconnection(nif1_desc)

ack resource availability

resource_availability(nif2_desc)

ack resources
not available

ack resource allocation and interconnection

resource_allocation_and_interconnection(nif2_desc)

ack, list of NIF instances

For NIF2 in
NIS

Model
found

For NIF2 in
NIS

Empty list
for NIF2

For NIF1 in
NIS

For NIF-C in
NIF1

For NIF2 in
NIS

For NIF-C in
NIF2

Figure 16: NI Procedures for the example NIS.

age the deployment, scaling, and orchestration of the NIF-Cs,
ensuring smooth operation and efficient service relocation.

The Smart Highway testbed [40] located on top of the E313

highway in Belgium served as the edge environment for testing
and validating the effectiveness of the proposed NIS, providing
a real-world scenario to assess its performance and potential
benefits for vehicular services. Figure 15 shows a high-level
representation of the deployment and how the components were
deployed at the cloud (centralized server) and edge (roadside
units at the Smart Highway). As shown in Figure 15, Zenoh-
based data managers are used for collecting metrics related to
edge performance (CPU, memory, storage) and service perfor-
mance (end-to-end latency). The edge performance metrics are
used in the anomaly detection process (NIF1), while both edge
metrics and service metrics are used in the service relocation
process (NIF2). In the latter case, the service performance is
measured as end-to-end latency collected from the client. The
client is implemented on the test vehicle, which measures la-
tency in communication with services deployed at the network
edges in real-time. Once the final decision on the service reloca-
tion is made, i.e., when NIS decides to which network service
the test vehicle should connect, the subscriber running in the
vehicle receives all necessary information for connecting to the
service.

The outcome of the deployment of this NIS is an edge-
aware service relocation, which makes efficient decisions on
when and where the service should be relocated to ensure min-
imum end-to-end latency at every moment, taking into account
not only the edge performance but also its stability in terms of
possible anomalies. Such intelligent services pave the way to-
wards more reliable and high-performing deployments of ver-
tical services in future 6G ecosystems. Nevertheless, the two
NIFs presented in this section could produce conflicting deci-
sions, which might severely affect the overall NIS performance.
Thus, it is essential to ensure proper conflict resolution, as ex-
plained in Section 6.2.

6.2. Managing a conflicting NIS

The conflict resolution procedure is one of the NI Stratum
procedures with paramount importance for the stability and smooth
operation of the network. The architectural details of the pro-

18

NIS CSOI

NIFD Parser

NIF 1
Conflict resolution

matrices
Conflict
Solvers

NIF Assessment

PolicyIC Conflict Resolution

Kubernetes Cluster

NIF 2

Conflict
Analysis

Conflict Solver
Selector

Policy Generator

Policies

Policy Manager

NIS Planning
Orchestrator

NIFD ForwarderNISDNISD

NISDNISD

Kubernetes
Manifests

K8S Deployer

12

1

2

3

4

5
6

7

8

9

10

11

13

NIFDs

14

Rule 72ded95d-7d5d:
(On rsu-orch Action):
rsu-orch CALL PolicyIC
PolicyIC wait 30s
PolicyIC CHECK controller
IF controller NO ACTION
PolicyIC CONFIRM rsu-orch
ELSE CANCEL rsu-orch

Figure 17: Conflict resolution process.

cedure are described in detail in Section 5.2.1, while in this
section, we develop and demonstrate how to enforce this pro-
cedure when conflicts emerge between two different NIFs al-
gorithms acting on the same network functions but configuring
different values for the target parameters. During the prototyp-
ing, Kubernetes was used as the main deployment infrastruc-
ture, while the following phases of the conflict resolution pro-
cess were addressed: (i) NIFD creation and annotation follow-
ing the N-MAPE-K taxonomy; (ii) initial assessment based on
N-MAPE-K types; (iii) conflict identification and; (iv) conflict
resolution. The process is illustrated in Figure 17 and explained
in the current section.

To demonstrate the conflict resolution capabilities of the NI
Stratum, two NIFs were created and deployed. The first NIF
includes a federated learning-powered anomaly detection algo-
rithm (identical to the NIF1 presented in Section 6.1) extended
with a basic service resource management capability (e.g., scale
in/out on resource under/ overutilization). The second NIF re-
mains identical to the NIF2, as explained in the previous sec-
tion. The configuration actions of the above NIFs (scale in/out
and service relocation) cause conflicts because they may act
upon the same service, driving the network to unstable con-
ditions if executed in a similar time window. Therefore, in
the prototype, we showcase the identification of the conflict
while appropriate policy rules are generated before deployment
to avoid unstable conditions by orchestrating the configuration
actions.

Initially, the NIFDs of both NIFs are created. Since each
NIF-C is deployed as Pod in Kubernetes, we create the NIFDs
directly from the Kubernetes manifest files. In this direction,
the NIFDs are generated by extending such files in two ways:
(i) labels are used to discriminate between different N-MAPE-K
types (Sensor, Monitor, Analyse, Plan, Execute, Effector); (ii)
annotations are used to specify the configuration capabilities of

Figure 18: Descriptor of a NIF (NIFD) that can perform service scale out.

Figure 19: Descriptor of a NIF (NIFD) that can perform service relocation.

19

the NIF in a self-descriptive way. This process is illustrated in
steps (1) and (2) in Figure 17.

The NIFDs of the two aforementioned NIFs are illustrated
in Figure 18 and Figure 19 respectively. The first NIFD (Fig-
ure 18) is of type “Knowledge” due to the federated learning-
powered anomaly detection capabilities and “Plan” since it can
perform service scale out. In detail, the possible configura-
tion targets follow the prefix “daemon.nmapek.plan.target” fol-
lowed by the resource they can configure. This structure is al-
ready used in the Kubernetes manifest files (e.g., “spec. con-
tainers.resources.requests.memory”). In the same manner, Fig-
ure 19 illustrates the NIFD of the second NIF. This NIF is of
type “Plan” since it can perform service relocation, affecting
the “spec.containers.nodeSelector” part of a Kubernetes mani-
fest file.

Then, the CSOI module is responsible for parsing the pro-
vided NIFDs to identify the N-MAPE-K types included in the
NIF and the possible configuration actions that the NIFs can
generate (step 3 in Figure 17). In addition, an initial assess-
ment is performed to quickly identify if a conflict process is
required (step 4). The CSOI communicates with the PolicyIC
module, which forwards only the relevant parameters to the
Conflict Resolution module. The Conflict Resolution module
executes a thorough analysis to identify any possible conflict
(step 6). The analysis is based on a set of conflict resolution
matrices and the list of already deployed NISs.

In this direction, a conflict may be identified between an ex-
isting NIS and a new NIS to be deployed. In case of conflicts,
the conflict solver selector is triggered. This module selects
the appropriate Conflict Solver from a set of available Conflict
Solvers (step 7). The Conflict Solver is a software component
that can resolve a conflict during the deployment and operation
phases. This means that it may update the existing capabili-
ties of a NIS or generate Policies as a set of rules (step 8) to
handle conflicting situations during the operation of conflict-
ing NIFs. An example of a rule is also illustrated in Figure 17,
where NIF2 will wait 30 seconds before relocating the service
if NIF1 already scaled it. In the case of new Policies, the Policy
Manager is responsible for adding them to the Policies database
and becoming responsible for keeping them updated during the
whole lifecycle. After all checks are made and any Policies are
generated and activated, the new NIS is deployed by the K8S
Deployer (steps 10 and 11).

During operation, all the certified NIF coexist conflict-free
in the same Kubernetes Cluster (step 11). In the case of a con-
flicting NIF, the candidate conflicting NIF communicates with
the PolicyIC (and NIS Planning Orchestrator) before any con-
flicting action is realized (step 12). Then, the NIS Planning Or-
chestrator is responsible for retrieving the related Policies from
the Policy Manager and applying their rules. After the related
Policies are executed, the PolicyIC may or may not give the
green light to the NIF to complete the requested configuration
(step 14).

7. Conclusion

This paper presents the architectural design of the NI Stra-
tum, an evolution of a NI plane, an end-to-end orchestrator for
NI. This design serves multiple purposes: it supports closed-
loop NI across the entire network infrastructure, enables coor-
dination of NI instances to exploit synergies and manage con-
flicts, and defines necessary interfaces for NI algorithms to in-
teract with local environments. This architectural approach is
pivotal in structuring NI more effectively and is instrumental in
enhancing the efficiency and effectiveness of NI deployment in
network infrastructures.

We build upon our previous work on defining NI, highlight-
ing the importance of data and the mechanisms required for
coordinating NI instances. We have extended this prior work
by introducing a comprehensive workflow for managing the NI
lifecycle. This includes detailed procedures for resolving con-
flicts among multiple NI instances and strategies for knowledge
sharing. The methodology outlined in the paper is an important
step forward in the field, addressing key challenges in NI coor-
dination and conflict resolution.

The research presented in the manuscript not only extends
theoretical and methodological aspects of NI but also focuses
on practical applicability. The paper expands the scope of the
reference implementation to include necessary modifications
that support conflict resolution capabilities in leading open-source
platforms such as Kubernetes, Kubeflow, and Zenoh. This ex-
pansion is crucial for broadening the potential impact and util-
ity of the research, making it more relevant and applicable in
real-world scenarios.

7.1. Open Challenges

Deploying and managing a NI Stratum is a complex pro-
cess that involves the integration and coordination of multiple
frameworks, not only including network MANO and MLOps
frameworks, as shown in this paper, but also data management
frameworks [41]. Moreover, developing production-ready NI
models is cumbersome, comprising the optimization of com-
plex networking tasks and hyperparameter tuning, all while ad-
hering to network constraints such as throughput and latency.
This complexity hinders the efficient and error-free deployment
and management of NI and calls for proficiency not only in ML
but also in network design and programmable hardware.

An ongoing challenge in the deployment of the NI Stratum
involves the detection and resolution of conflicts, especially
when multiple NI operate within different network domains.
The need for effective policy interpretation, configuration, and
enforcement to manage these conflicts is crucial. This requires
a robust mechanism for interpreting NI decisions and outcomes.
Besides improving trustworthiness in black-box NI models, Ex-
plainable AI (XAI) [42] can offer insights into the inner work-
ings of NI models, thereby demystifying their outcomes. More-
over, as networks become increasingly autonomous, explaining
decisions by the NI becomes imperative, especially in scenarios
where the decisions may have critical consequences. XAI pro-
vides a framework for ensuring that AI-driven decisions within
NI are fair, unbiased, and compliant with regulatory standards.

20

Although out of scope in this paper, developing accurate
network digital twins is also a paramount direction for future
research in NI. These abstractions help to bridge the gap be-
tween ML model training and deployment in autonomous net-
works. During training, the NI model parameters are fine-tuned
to suit the particular challenges the model is intended to solve.
To mitigate the risk of introducing instability to the network
due to premature decisions, the outputs from the training phase
should be first tested within a digital twin of the network. Such
a digital twin acts as a safe environment, allowing potential er-
rors or inefficiencies from an incomplete training process to be
identified and rectified without any adverse impact on the actual
network operations, as suggested by Almasan et al. [43]. The
challenge lies in creating a digital twin that precisely mirrors
the complexities and dynamics of the target network, which re-
mains an open issue in the field.

Acknowledgment

This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agree-
ment No. 101017109 “DAEMON”.

References

[1] Saad, W., Bennis, M. and Chen, M., A vision of 6g wireless systems: Ap-
plications, trends, technologies, and open research problems, IEEE Net-
work 34 (3) (2020) 134–142. doi:10.1109/MNET.001.1900287.

[2] Camelo, M. et al, Requirements and Specifications for the Orchestration
of Network Intelligence in 6G, in: 2022 IEEE 19th Annual Consumer
Communications & Networking Conference (CCNC), IEEE, 2022, pp.
1–9.

[3] ETSI, Zero-touch network and Service Management (ZSM): Means of
Automation, Group report, ETSI (2020-05).

[4] Wang, Y. et al, From design to practice: ETSI ENI reference architecture
and instantiation for network management and orchestration using artifi-
cial intelligence, IEEE Communications Standards Magazine 4 (3) (2020)
38–45.

[5] Camelo, M. et al, DAEMON: A Network Intelligence Plane for 6G Net-
works, in: 2022 IEEE Globecom Workshops (GC Wkshps), IEEE, 2022,
pp. 1341–1346.

[6] Gramaglia, M. et al, Network intelligence for virtualized ran orchestra-
tion: The daemon approach, in: 2022 Joint European Conference on Net-
works and Communications & 6G Summit (EuCNC/6G Summit), IEEE,
2022, pp. 482–487.

[7] Chatzieleftheriou, L.E. et al, Orchestration Procedures for the Network
Intelligence Stratum in 6G Networks, in: 2023 Joint European Confer-
ence on Networks and Communications & 6G Summit (EuCNC/6G Sum-
mit), IEEE, 2023, pp. 347–352.

[8] h2020, D., Daemon nip presented live at eucnc 2023 (Sep. 2023).
URL https://www.youtube.com/watch?v=-7qOyYUBKf0

[9] Manias, D.M., Chouman, A. and Shami, A., Model drift in dynamic net-
works, IEEE Communications Magazine (2023).

[10] Bassoli, R. et al, Deliverable D5.2: Analysis of 6G architectural enablers’
applicability and initial technological solutions, accessed: 2024-06-19
(Oct. 2022).
URL https://hexa-x.eu/deliverables/

[11] Khorsandi, B.M. et al, Deliverable D1.4: Hexa-X architecture for
B5G/6G networks – final release, accessed: 2024-06-19 (Jul. 2023).
URL https://hexa-x.eu/deliverables/

[12] Akgul, O. et al, Deliverable D3.3 Initial analysis of architectural enablers
and framework, accessed: 2024-06-19 (Apr. 2024).
URL https://hexa-x-ii.eu/results/

[13] Stańczak, S., Utkovski, Z. et al, Toward 6G: Key Directions and Research
Questions, accessed: 2024-06-19 (2022).
URL https://6g-ric.de/6g-ric/#position-paper

[14] Taleb, T. et al, White Paper on 6G Networking. 6G Research Visions,
accessed: 2024-06-19 (2020).
URL http://urn.fi/ urn:isbn:9789526226842

[15] Yates, R.D. et al, Age of information: An introduction and survey, IEEE
Journal on Selected Areas in Communications 39 (5) (2021) 1183–1210.

[16] Ahmad, R. et al, Zero-day attack detection: a systematic literature review,
Artificial Intelligence Review 56 (10) (2023) 10733–10811.

[17] Benzaı̈d, C. and Taleb, T., Ai for beyond 5g networks: A cyber-security
defense or offense enabler?, IEEE network 34 (6) (2020) 140–147.

[18] Naeem, F. et al, Security and privacy for reconfigurable intelligent surface
in 6g: A review of prospective applications and challenges, IEEE Open
Journal of the Communications Society (2023).

[19] Paez, I. et al, DAEMON Deliverable 2.1: Initial report on require-
ments analysis and state-of-the-art frameworks and toolsets (Jun. 2021).
doi:10.5281/zenodo.5060979.
URL https://doi.org/10.5281/zenodo.5060979

[20] Iovene, M. et al, Defining AI native: A key enabler for advanced intelli-
gent telecom networks, Tech. Rep. BCSS-23:000056 Uen, Ericsson (Feb.
2023).

[21] Li, P., Xing, Y. and Li, W., Distributed AI-native Architecture for 6G
Networks, in: 2022 International Conference on Information Processing
and Network Provisioning (ICIPNP), IEEE, 2022, pp. 57–62.

[22] Rossi, D. and Zhang, L., Network artificial intelligence, fast and slow,
in: Proceedings of the 1st International Workshop on Native Network
Intelligence, 2022, pp. 14–20.

[23] Brito, F. et al, A network architecture for scalable end-to-end management
of reusable AI-based applications, in: 2023 14th International Conference
on Network of the Future (NoF), IEEE, 2023, pp. 98–102.

[24] D’Oro, S. et al, OrchestRAN: Orchestrating Network Intelligence in the
Open RAN, IEEE Transactions on Mobile Computing (2023).

[25] Kubernetes, accessed: 2024-01-08 (2024).
URL https://kubernetes.io/

[26] Kubeflow, accessed: 2024-01-08 (2024).
URL https://www.kubeflow.org/

[27] Eclipse Zenoh, accessed: 2024-01-08 (2024).
URL https://zenoh.io/

[28] IBM, An architectural blueprint for autonomic computing, White paper,
IBM (Jun, 2006).

[29] 3GPP, Architecture enhancements for 5G System (5GS) to support net-
work data analytics services, Technical Specification (TS) 23.288, 3rd
Generation Partnership Project (3GPP), version 17.3.0 (December 2021).
URL https://www.3gpp.org/DynaReport/23288.htm

[30] Garcia-Saavedra, A. and Costa-Perez, X., O-RAN: Disrupting the virtu-
alized RAN ecosystem, IEEE Communications Standards Magazine 5 (4)
(2021) 96–103.

[31] Bahare, M.K. et al, The 6G Architecture Landscape - European perspec-
tive (feb 2023). doi:10.5281/zenodo.7313232.

[32] Garcia-Aviles, G. et al, Nuberu: Reliable RAN virtualization in shared
platforms, in: Proceedings of the 27th Annual International Conference
on Mobile Computing and Networking, 2021, pp. 749–761.

[33] Garcia-Saavedra, A. et al, DAEMON Deliverable 3.2: Refined design
of real- time control and VNF intelligence mechanisms (Nov. 2022).
doi:10.5281/zenodo.7525876.
URL https://doi.org/10.5281/zenodo.7525876

[34] Fuentes, L. et al, DAEMON Deliverable 4.2: Refined design of
intelligent orchestration and management mechanisms (Jan. 2023).
doi:10.5281/zenodo.7544155.
URL https://doi.org/10.5281/zenodo.7544155

[35] MLFlow, accessed: 2024-01-29 (2024).
URL https://mlflow.org/

[36] ETSI, Network Functions Virtualisation (NFV); Management and Or-
chestration, Specification, ETSI (2014).
URL https://www.etsi.org

[37] O-RAN Alliance, O-RAN Working Group 2 AI/ML workflow description
and requirements, Technical report, O-RAN Alliance (Oct, 2020).

[38] Polese, M. et al, Understanding O-RAN: Architecture, interfaces, algo-
rithms, security, and research challenges, IEEE Communications Surveys
& Tutorials (2023).

21

[39] Slamnik-Kriještorac, N. et al, An ml-driven framework for edge orches-
tration in a vehicular nfv mano environment, in: 2023 IEEE 20th Con-
sumer Communications & Networking Conference (CCNC), IEEE, 2023,
pp. 728–733.

[40] Smart Highway Testbed, accessed: 2024-01-08 (2024).
URL https://www.fed4fire.eu/testbeds/smart-highway/

[41] Zeydan, E. and Mangues-Bafalluy, J., Recent advances in data engineer-
ing for networking, IEEE Access 10 (2022) 34449–34496.

[42] Brik, B. et al, A survey on explainable ai for 6g o-ran: Archi-
tecture, use cases, challenges and research directions, arXiv preprint
arXiv:2307.00319 (2023).

[43] Almasan, P. et al, Network digital twin: Context, enabling technologies,
and opportunities, IEEE Communications Magazine 60 (11) (2022) 22–
27.

22

