
Towards Real-Time Intrusion Detection in
P4-Programmable 5G User Plane Functions

Aristide Tanyi-Jong Akem∗† and Marco Fiore∗
∗IMDEA Networks Institute, Spain, †Universidad Carlos III de Madrid, Spain

{aristide.akem, marco.fiore}@imdea.org

This is the author’s accepted version of the article. The final version published by IEEE is A.T-J. Akem and M. Fiore, “Towards Real-Time Intrusion Detection
in P4-Programmable 5G User Plane Functions,” 2024 IEEE 32nd International Conference on Network Protocols (ICNP), 2024, pp. TBD, doi: TBD.

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Recent works have shown that Machine Learning
(ML) models can be deployed in P4-programmable user planes
for line rate inference on live traffic and that these user planes can
also be used to accelerate the 5G User Plane Function (UPF). This
work builds on these capabilities to explore how ML inference in
the user plane can facilitate real-time intrusion detection in 5G
networks. As a proof-of-concept, we describe how an ML model
could be deployed into the UPF as a special Packet Detection Rule
(PDR). We then train and deploy a tree-based classifier into a P4-
programmable switch acting as the UPF and conduct experiments
on a testbed with off-the-shelf hardware using experimental data
from a 5G test network on a university campus. Our results
confirm that running ML-based intrusion detection on P4-based
UPFs ensures line-rate attack detection and classification with
an accuracy of up to 98% in terms of F1 score, while keeping
switch resource consumption increase under control.

Index Terms—Machine learning, 5G, user plane function, P4

I. INTRODUCTION

The rollout of 5G networks in recent years has led to an
exponential growth in the number of connected devices. The
surge in user numbers has increased malicious activity on the
network, with attackers leveraging Internet of Things (IoT)
devices to launch cyberattacks on the network [1]. In addi-
tion, 5G employs Software-Defined Networking (SDN) and
Network Function Virtualization (NFV) which heavily rely on
HTTP and REST API protocols, further exposing it to security
vulnerabilities by providing access paths to attackers [2]. As
such, efficiently and rapidly detecting cyberattacks on 5G
networks is crucial to ensuring network security

In the SDN context, Machine Learning (ML) models run-
ning in the control plane have been proposed for network
intrusion detection [3]–[5]. These models typically require
back-and-forth communication with the user plane to collect
traffic features or to inject rules resulting from model pre-
dictions. Such inter-plane communication traverses the slow
path of the control and user plane separation (CUPS), inducing
millisecond-level delays [6], which are undesirable in emerg-
ing applications that 5G is expected to support such as remote
and robotic surgery or augmented and virtual reality.

Recent advances in user-plane programming have given
rise to off-the-shelf programmable user-plane chips like Intel
Tofino ASICs [7] and NVIDIA BlueField DPUs [8], as well as
domain-specific programming languages like P4 [9]. This has
sparked a strong interest in offloading network functions from
the control plane to the user plane [10]. Such offloads enable
programs to run at line rate, drastically reducing latency to sub-
microsecond levels. To minimize delays in intrusion detection
and improve response time, control-plane ML models are also

UPF

Control 
Plane

InternetInternetgNB

UE

UE
PFCP

Access Network Core Network Data Network

Fig. 1: 5G architecture overview with a P4-based UPF

being offloaded to the user plane, where they are embedded
into programmable devices like switches for real-time infer-
ence on network traffic with high throughput and ultra-low
latency [11]. Yet, switches are highly constrained in terms of
available memory, supported mathematical operations, and the
number of allowed operations per packet [12]. In this context,
tree-based models like Decision Trees (DT) and Random
Forests (RF) have emerged as the most scalable options for
in-switch deployment due to a simple logical structure that
makes them easier to map to the switch pipeline [13]–[17].
However, no prior work has tackled user-plane ML inference
in the context of the 5G core network.

Users on 5G networks generate large traffic volumes which
must be forwarded at very high speeds to ensure a high Quality
of Service (QoS) and maintain sub-millisecond latency [18].
The User Plane Function (UPF) plays the essential role of
forwarding this traffic between users (UEs) and external data
networks, e.g., the Internet, as shown in Figure 1. The control
plane communicates with the UPF via the N4 interface using
the Packet Forwarding Control Protocol (PFCP) [19]. Through
this protocol, the Session Management Function (SMF) in the
control plane creates sessions on the UPF to manage GPRS
Tunneling Protocol (GTP) tunnels that enable users to commu-
nicate with external data networks and to set packet detection
rules, forwarding action rules, buffering action rules, QoS
enforcement rules, and usage reporting rules for users [20].

State-of-the-art UPFs are designed as multi-core software
packet processors that run on off-the-shelf servers, leveraging
kernel bypass tools like the Data Plane Development Kit
(DPDK) for high performance [21]. With growing network
traffic and user numbers, the UPF must perform its role
efficiently and at increasingly higher speeds. To achieve this,
recent works have demonstrated the possibility of building ef-
ficient and high-speed UPFs on programmable switches [21]–
[23]. Such hardware-accelerated UPFs can potentially boost
performance over traditional ones by about 31% per unit cost,
and about 92% per unit of power [21]. Despite this high



performance, none of the existing proposals has explored the
prospect of porting ML inference to the P4-based UPF to
enhance its abilities and enable new functions like real-time
and high-speed intrusion detection and traffic classification.

In this paper, we exploit recent advances in ML inference in
P4-programmable switches and hardware-accelerated UPFs to
propose an ML-enabled UPF which can perform line-rate and
on-the-fly cyberattack detection in the 5G user plane. Our pro-
posal involves deploying a trained model fully into the switch,
where it infers on data packets without any communication
with the control plane, hence minimizing inference latency.
The main contributions of the paper are as follows.

• We propose embedding trained ML models into P4-based
UPFs to enable high-speed inference on live 5G traffic
in the user plane with ultra-low latency. As a proof-
of-concept, we embed a tree-based classifier into a P4-
programmable switch for line-rate intrusion detection and
attack classification in 5G user planes.

• We implement the proposed model into an off-the-shelf
Intel Tofino switch to verify its feasibility in hardware,
and we make our source code publicly available1.

• We conduct an experimental evaluation with real-world
data from a test 5G network on a university campus,
on which an intrusion detection and attack classification
use case is designed. Experimental results show how our
approach can detect and classify malicious traffic with
over 98% accuracy and sub-µs latency.

We believe these contributions lay the groundwork for
an ML-enabled 5G UPF whose decision-making capabilities
are enhanced by embedded ML models, transcending current
state-of-the-art rule-based approaches.

II. THE USER PLANE FUNCTION (UPF)

The UPF is located in the 5G core network and connects
the radio access network (RAN) via gNBs to data networks.
It is the main packet processing engine of the 5G user plane
and its workflow is defined by the 3GPP TS 29.244 [19]. The
UPF processes packets for 5G users (UEs) according to the
workflow in Figure 2, based on instructions from the control
plane, specifically from the Session Management Function
(SMF). The SMF controls the UPF’s handling of packets by
establishing, modifying or deleting PFCP sessions, and by
adding, modifying or deleting rules, or activating/deactivating
existing ones [19]. The rules used by the UPF to process
packets are shown on the right of Figure 2 and are as follows.

Packet Detection Rules (PDRs). They enable the UPF to
assign each packet to a specific UE and a traffic class [22]. The
PDR specifies packet fields, e.g., 5-tuples or tunnel headers
which if fully matched identify the corresponding UE and
traffic class which could be related e.g., to QoS or pricing.

Forwarding Action Rules (FARs). FARs tell the UPF how
to forward the matching packet. FARs are invoked by the
matched PDR as shown in Figure 2, to ensure that traffic is
correctly forwarded, even when the UE changes location.

1Source code: https://github.com/nds-group/5G UPF Intrusion Detection.

Packet 
in

Packet 
out

PFCP 
session

PDR 
look up

PDR

PDR

MLR

PDR

BAR FAR

QER URR

Apply instructions 
set in the matching 

PDR 

PFCP 
session 
look up PDR

Fig. 2: Packet processing flow in the UPF

Buffering Action Rules (BARs). They indicate how down-
link packets destined for a specific UE can be buffered in
the UPF if the device is idle. BARs specify, e.g., how large
buffered packets can be or for long they can be buffered.

QoS Enforcement Rules (QERs). Each QER tags the
packet to a given QoS class. The UPF then uses these rules
to guarantee available bandwidth to each UE according to
their QoS class. These rules enable the UPF to enforce traffic
policing through per-user bandwidth caps [22].

Usage Reporting Rules (URRs). They specify when and
how uplink and downlink network usage statistics for each UE
should be reported to the control plane. These are essential to
the operator for billing and usage control.

The ordinary packet processing flow in the UPF is depicted
by the blue arrows in Figure 2. When a packet arrives at
the UPF, it first performs a lookup of the provisioned PDRs
to identify the packet’s corresponding PFCP session. Once a
session is found, it performs another lookup to find the first
PDR that matches the packet among the possible PDRs of
the PFCP session [19]. The UPF ensures that only the PDR
with the highest precedence is selected. If no matching PDR is
found, the packet is dropped. When a matching PDR is found,
sets of instructions e.g., BARs, FARs, QERs and/or URRs are
applied as shown in Figure 2 to further process the packet.

The UPF must perform its role efficiently to support high
throughputs of up to 1 Gbps/user while maintaining latency
below 1 ms. These requirements constitute a challenge for
most state-of-the-art UPFs which are designed as software
packet processors, necessitating hardware acceleration [21].
Recent works have demonstrated the possibility of imple-
menting performant P4-based UPFs in programmable network
devices [22], [23], including a full offload of the PFCP pro-
cessing [21]. This means that the full packet processing flow
depicted in Figure 2 can be implemented in programmable
switches. This creates room for deploying more functions e.g.,
ML inference for intrusion detection, within the UPF by lever-
aging the possibilities that P4-programmable devices provide.

III. INTRUSION DETECTION IN THE P4-BASED UPF
We envisage building on existing P4-based UPF proposals

such as MacDavid et al. [22], CeUPF [23], and AccelUPF [21]
to enable line-rate ML inference with high throughput and
ultra-low latency in the 5G UPF.

A. Introducing ML into the UPF workflow

As described in Section II, PDRs use specific matching
fields from packets to determine what user is associated with

https://github.com/nds-group/5G_UPF_Intrusion_Detection


the packet and to assign it to a traffic category. This is similar
to what an ML-based traffic classifier would do, i.e., extract
and match a given set of features and then assign a traffic
class to the packet. P4-based UPFs are implemented as a series
of match and action tables and actions that process packets.
Recent works have also shown how trained ML models can
be deployed in programmable switches as a series of match
and action tables for line-rate inference [14], [16], [24], [25].

To enable ML inference for intrusion detection in the P4-
based UPF, we envision deploying the model as a new set of
rules named MLRs, short for machine learning rules. Packets
targeted for inference follow the red arrows in Figure 2. When
a packet arrives at the UPF and finds a PFCP session after
the lookup, another lookup is performed for the first matching
PDR. For ML inference, the MLR and its associated PDR will
be prioritized for selection during the PFCP session’s PDR
lookup. When the MLR is selected, it executes the encoded
ML model by applying a set of tables which match packet
features and assign a traffic class e.g., benign or malicious in
binary classification, or a specific attack category.

The classification result is then added to the match key of
the associated PDR which when matched invokes a set of
specified instructions for further packet processing. This is
analogous to what happens when an ordinary PDR assigns a
traffic class to a packet leading to the selection of a FAR,
BAR, QER and/or URR. In the case of the MLR which
performs intrusion detection, its PDR could invoke a FAR
which forwards benign traffic normally but drops malicious
traffic or forwards it to a honeynet for further analysis. A full
integration of MLRs as described above will lead to an ML-
enabled UPF that can perform line-rate intrusion detection on
live 5G traffic with high throughput and low latency.

B. ML model preparation

To realize a seamless integration of ML into the 5G UPF, the
model must blend into the existing packet processing pipeline
of the programmable-switch-based UPF. Several recent works
have deployed ML models into programmable switches [14],
[16], [17], FPGA-enhanced switches [26], SmartNICs [27],
or split between switches and the control plane [28]. To
enable real-time intrusion detection at full line rate on the
programmable-switch-based 5G UPF, we opt for an in-switch
deployment.

Model choice. Most fully in-switch inference solutions em-
ploy tree-based models like Decision Trees (DTs) and Random
Forests (RFs) which have simple logical structures that make
them easier to map to the switch match & action pipeline [14],
[16], [17]. Moreover, DTs and RFs often outperform or are
on par with more complex models like Neural Networks
(NNs) when handling tabular data [29]. We therefore adopt
DT/RF models for the UPF intrusion detection task and target
inference on a per-packet basis as per normal UPF processing.

Owing to the strict constraints of programmable switch
environments, all the steps involved with model training occur
offline in an ML server [12]. The steps involved include
feature extraction, feature selection and model training, and

the mapping of the model to the switch match and action
pipeline. These steps are described next.

Feature extraction. The datasets for most in-switch ML
tasks typically come as raw packet captures in PCAP files.
In this phase, we employ Tshark to extract the packet header
fields which serve as features for per-packet inference. We
extract 13 features from TCP, UDP and ICMP packets namely;
source port, destination port, packet length, protocol, TCP
flags (SYN, ACK, FIN, PSH, RST), TCP header length, TCP
window size, UDP length, and time-to-live (TTL). When a
packet does not have any of the listed features, it is set to
zero. The extracted packets are then labelled using the labels
provided by the dataset authors and saved in CSV files. Using
only header fields ensures that privacy is preserved since we
do not inspect packet payloads containing user data.

Feature selection and model training. The feature selec-
tion and model training process follows the approach adopted
by previous work [17]. The process begins by training a large
DT model using the Scikit-Learn Python libraries [30]. This
model is trained using all 13 available features. The model’s
feature importance attribute is used to obtain feature impor-
tance and rank features according to their Mean Decrease in
Impurity (MDI). Several new models are then trained and
evaluated by adding the features one by one, starting with the
most important, and saving the results for later analysis. To
ensure that the final model will be hardware-feasible, we prune
the generated trees to limit their maximum number of leaves
to the upper limit of a TCAM match key. The maximum depth
of the DT models is not limited and the trees are allowed to
grow to full size and maximize their learning abilities. At the
end of the modelling process, the best model is chosen based
on a trade-off between accuracy and complexity.

Final model training and mapping to table entries. When
the best model and its selected features are obtained, the final
model is trained and converted to match and action table
entries that will be loaded onto the switch by the controller.
This process maps the model onto the switch pipeline using
the tree mapping scheme originally proposed in Planter [25]
and implemented in different flavours by other works [14],
[16], [17]. In this mapping technique, the tree is broken down
into feature tables, one per feature, and a code table. For each
feature, we check all the nodes of the tree and extract all
thresholds of the feature. The thresholds are then sorted in
increasing order and ranges are constructed between every
pair of thresholds. A code is assigned to each range and
the concatenation of all codes assigned along the path to a
tree leaf constitute a codeword. All the codewords and their
corresponding classes are summarized on a code table which
has as many entries as there are tree leaves. The feature tables
are independent and can all be executed in a single match and
action (M/A) stage e.g., M/A 0 in Figure 3. The code table
relies on the codes from the previous stage and so has to be
executed in the next stage as also shown in Figure 3.



Pa
rs

er

M/A 0 M/A 1 M/A 2

D
ep

ar
se

r

1

Control block

Feature 
table 1

Feature 
table 2 C

od
e 

ta
bl

e

R
es

po
ns

e
ta

bl
ePacket in Packet out

Fig. 3: In-switch workflow of the ML inference model

C. In-switch UPF model implementation

Building on Henna [17] and leveraging its open-source
code, we write a P4 program to encode the trained model into
the switch pipeline. We note that the final goal of this work
would be to embed the intrusion detection model into a P4-
based 5G UPF implementation e.g., MacDavid et al. [22] or
AccelUPF [21], leading to an ML-enabled UPF. However, as
none of these existing implementations make their hardware
code publicly available, this preliminary version focuses on
describing our vision of how to integrate ML inference into
the P4-based UPF, leaving the full integration with existing
UPF implementations to future work. The in-switch per-
packet inference solution is modelled according to the Protocol
Independent Switch Architecture (PISA) which has three main
parts; the parser, the match and action (M/A) pipeline, and
the deparser, as shown in Figure 3. The various phases of the
inference model are integrated into this architecture as follows.

Feature extraction in the parser. When packets arrive at
the switch, they are first processed by the parser as shown in
Figure 3, which extracts their header fields and saves them in
metadata in the Packet Header Vector (PHV). These header
fields constitute the features required for the inference task.
They are carried by the PHV through the M/A pipeline where
they are used for inference and any subsequent actions.

Packet classification. Once the MLR and its corresponding
PDR are matched for the identified PFCP session, its fea-
tures, i.e., header fields, are retrieved from the PHV. They
are then matched against the feature tables, represented in
Figure 3 by Feature table 1 and Feature table 2, with each table
assigning a code to the packet. The assigned codes are then
concatenated to generate a codeword which represents the path
from the root node to the leaf node where the packet arrives.
The code table is then applied by matching the generated
codeword to its corresponding leaf node to which a class is
assigned e.g., class 1, as in the outgoing packet in Figure 3.

Post-inference response. After a class is assigned to the
packet, a set of instructions can be invoked in response to the
classification result. This is depicted in Figure 3 as a response
table which in the current implementation simply drops the
packet if it is malicious or forwards it normally if it benign.
The table matches the classification result and then mitigates
the detected attack by dropping the packet or letting it go
through if it is benign. This serves as a proof-of-concept to
demonstrate how the switch-based UPF can respond to the
ML-based inference results. More complex post-classification

instructions such as BARs, URRs, and QERs can also be
applied depending on the network settings.

Deparsing. When the packet is classified and a correspond-
ing class-based response is assigned, the packet is repackaged
in the deparser and processed according to the assigned rules.

IV. EXPERIMENTAL SETUP

We implement and evaluate our solution on a hardware
testbed with Intel Tofino switches, using measurement data
from a real-world test 5G network on a university campus.

A. Experimental platform

Our testbed is based on an Edgecore Wedge 100BF-QS
switch, with the Intel Tofino BFN-T10-032Q chipset and 32
100-GbE QSFP28 ports. It serves as the P4-based UPF. We
also have two DELL PowerEdge servers with Intel 8-core
Xeon processors at 2 GHz frequency, 128 GB of RAM,
and Mellanox ConnectX-5 NICs with 100 Gbps QSFP28
interfaces. We implement the model in the switch as a P4
program for per-packet inference as described in Section III-C.
The first server injects user traffic from the test PCAP files to
the switch using Tcpreplay [31]. After inference, the traffic
is forwarded to the second server, where it is captured using
Tcpdump and stored in a PCAP file for onward analysis. We
also write a Python-based controller which also runs on one of
the servers and configures the switch during the initial setup
by loading the trained model to the switch in the form of
M/A table entries and configuring switch ports and the the
post-classification response table.

B. Use case: intrusion detection in a campus 5G network

To evaluate the proposed solution, an intrusion detection use
case based on the 5G-NIDD dataset [32] is targeted.

Dataset description. It contains traffic generated on a
testbed attached to the 5G Test Network (5GTN) at the
University of Oulu in Finland. The data is collected from two
base stations which each have several benign users and an
attacker node. Benign traffic is captured from real users on
the network. It includes traffic from various protocols such as
HTTP, HTTPS, SSH, and SFTP. Live streaming services and
web browsing generated the bulk of the HTTP and HTTPs
traffic while SSH clients and servers deployed on mobile
devices generated the SSH and SFTP traffic.

The attacker nodes target a server deployed in the 5GTN
Multi-access Edge Computing (MEC) environment. There are
two main attack scenarios: Denial of Service (DoS), and
Port Scans. The goal of the DoS attacks is to slow down
or completely shut down the target, making it inaccessible
to legitimate users. Malicious content injection and flooding
techniques are common methods for launching DoS attacks.
The dataset contains five DoS attacks namely ICMP Flood,
UDP Flood, SYN Flood, HTTP Flood, and Slowrate DoS.

Port scan attacks aim to identify opportunities for attacks
through open ports. As such, they normally precede other
attacks which exploit the discovered ports. Port scans generally
send requests to a targeted range of ports in the victim host



and wait for a response which it uses to determine the port
status. There are three port scan attacks in the dataset namely
SYN Scan, TCP Connect Scan, and UDP Scan. The goal of
the classification task is to detect the eight different attacks
and separate them from benign traffic.

Data pre-processing. The dataset comes in the CSV, AR-
GUS and PCAP formats for two base stations. For the PCAP
format, the files are provided both with and without the GTP
layer. The CSV files contain labelled files for each scenario
which we use to generate labels for each 5-tuple (source IP,
destination IP, source port, destination port, and protocol). As
we do not implement the entire 5G network architecture, we
use the PCAP files without the GTP layer. Then using Scapy,
we split them into train and test PCAP files, using a train-test
ratio of 75 − 25. The 13 features listed in Section III-B are
then extracted from the PCAPs using Tshark and Python and
saved to labelled CSV files. We process the data for each base
station separately before merging them. The feature selection
and model training process described in Section III-B is then
executed. The final DT model has a maximum depth of 37
and uses 10 features namely time-to-live, destination port, TCP
window size, packet length, TCP Push flag, TCP header length,
source port, TCP Reset flag, TCP Fin flag, and UDP length.

C. Performance metrics
The performance of the in-switch intrusion detection model

is evaluated using common metrics derived from four main
measures of a classification task, i.e., true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN).
In this work, we express these metrics percentages to ease
understanding. The metrics are computed as follows.

True positive rate (TPR) measures the number of positive
samples that are rightly classified as positive i.e., TP/(TP+FN).

False positive rate (FPR) is the fraction of negative sam-
ples wrongly classified as positive, computed as FP/(FP+TN).

True negative rate (TNR) quantifies the negative samples
that are correctly classified as negative i.e., TN/(TN+FP).

False negative rate (FNR) represents the portion of positive
samples that are wrongly labelled negative i.e., FN/(FN+TP).

F1 score is the harmonic mean of precision (TP/(TP+FP))
and recall (TP/(TP+FN)). It is widely used to express model
performances in classification problems. It is computed using
the formula 2TP/(2TP+FP+FN).

The above metrics are computed for each class and then
averaged in two ways to obtain global values. The final
value is either a macro average, i.e., a simple average of
individual class scores or a weighted average of class scores,
weighted using the number of samples of each class. The
macro score depicts the model performance irrespective of
the representation of classes in the dataset, while the weighted
score accounts for the imbalance in sample representation, and
better represents the score of any random packet in the dataset.

V. RESULTS AND DISCUSSION

We evaluate the P4-based UPF intrusion detection model in
terms of classification performance based on the metrics above
and in terms of its consumption of key switch resources.

Class F1 Score TPR FPR TNR FNR
Benign 99.993% 99.986% 0.000% 100.000% 0.014%
Slowrate DoS 90.507% 87.145% 0.663% 99.337% 12.855%
SYN Flood 100.000% 100.000% 0.000% 100.000% 0.000%
UDP Scan 99.727% 99.586% 0.000% 100.000% 0.414%
ICMP Flood 99.397% 100.000% 0.000% 100.000% 0.000%
TCP Connect Scan 99.589% 99.224% 0.000% 100.000% 0.776%
HTTP Flood 93.874% 96.292% 1.674% 98.326% 3.708%
SYN Scan 99.698% 99.891% 0.002% 99.998% 0.109%
UDP Flood 100.000% 100.000% 0.000% 100.000% 0.000%
Macro Avg 98.087% 98.014% 0.260% 99.740% 1.986%
Weighted Avg 97.985% 97.998% 0.338% 99.662% 2.002%

TABLE I: Classification performance of the in-switch model

A. Classification accuracy

The performance of the in-switch model is summarized in
Table I. Overall, the model achieves 98.087% macro F1 score
in attack classification, shedding light on how the in-switch
DT model excels in separating the 8 attacks from benign
traffic. Considering individual class F1 scores, the values range
from 90.507%−100%, with most classes scoring above 99%.
Only the Slowrate DoS and HTTP Flood attacks score less
than 99%, i.e., 90.507% and 93.874% respectively. The lower
score for the Slowrate DoS attack is not entirely surprising
since the slow rate masks the attack and makes it harder
to identify. HTTP Flood has a better score than Slowrate
DoS but its lower score relative to the other attacks could be
attributed to the diverse nature of HTTP traffic coming from
multiple web-browsing applications which renders the attack
less identifiable, hence the lower score.

The above tendencies also apply to the TPR, where only
Slowrate DoS and HTTP Flood have scores less than 99%.
TNRs are also high, greater than 98% in all cases, with an
overall value of over 99%. In terms of FPR, only HTTP Flood
has a score of more than 1%, while Slowrate DoS has a score
of 0.663%. All other classes have scores less than 0.005% as
shown in Table I, confirming that the intrusion detection model
does not wrongly classify a lot of benign traffic as malicious
and/or classify one attack class as another. FNRs are also
generally less than 0.5%, the only high ones being Slowrate
DoS with 12.855%, and HTTP Flood with 3.708%. We also
attribute these high values to same reasons we described above.

Overall, these results demonstrate that a fully in-switch
model deployed in a P4-programmable-switch-based 5G UPF
can perform attack detection and classification at line rate,
achieving high accuracy. These are promising results which
further motivate the concept of an ML-enabled UPF.

B. Resource consumption

We assess the switch memory consumption of the in-switch
model using the Intel P4 Insight tool which provides a detailed
view of the mapping of P4 programs onto switch hardware.
The results are summarized in Table II which captures the
consumption of six key resources. Looking at the top two key
resources, i.e., Static Random Access Memory (SRAM) and
Ternary Content-Addressable Memory (TCAM), the model
consumes just 1.4% and 8.0% respectively of the total avail-
able on the switch. This means our model is memory-efficient,
leaving enough resources for cohabitation with other P4-based



SRAM TCAM Ternary Match
Input Xbar VLIW Action Data

Bus Bytes
Logical

Table ID
1.40% 8.00% 11.50% 2.10% 4.60% 5.70%

TABLE II: Usage of switch resources by the in-switch model

UPF processes. For example, MacDavid et al. report that
their hardware P4-based UPF pipeline consumes less than
15% of the Tofino chip’s total available SRAM to support
17, 500 users. Thus, deploying our intrusion detection model
alongside the complete P4-based UPF will increase SRAM
consumption by only 9% of what the UPF implementation
already requires, keeping total consumption at just over 16%
of the total available on the hardware switch.

Ternary Match Input Crossbar (Xbar) consumption is rel-
atively higher, at up to 11.5%. This is due to the model’s
use of 10 features and a large tree whose codewords require
many Xbars to store the range and ternary match keys used
respectively for the feature and code tables of the model. The
Very Long Instruction Words (VLIW) enable parallelism and
manage the execution of operations. The model consumes only
2% of VLIW which is quite modest. Lastly, we look at the
Action Data Bus Bytes that transport action data across the
switch pipeline and the Logical Table ID which are used
for representing logical operations as M/A tables. Again,
consumption of these resources is moderate, at just 4.6% and
5.7% respectively, leaving enough room for other functions.

In terms of packet processing latency, the in-switch model
operates at full line rate, requiring less than 500 nanoseconds
to both infer on a packet and forward it. This ultra-low
latency combined with the low resource consumption further
contribute to making the concept of an ML-enabled P4-based
UPF an interesting prospect.

VI. CONCLUSIONS AND FUTURE WORK

The main goal of this paper was to outline a proposal for
an ML-enabled 5G UPF based on a P4-programmable switch
that can enable real-time intrusion detection on live network
traffic. We built on recent successes in deploying trained ML
models into P4 switches and advancements in developing
hardware-accelerated UPFs on similar devices to propose a
workflow for introducing ML into the UPF as a special PDR.
We then deployed a trained DT model into an off-the-shelf P4
switch and conducted experiments with data from a campus
5G test network. Our results showed how the in-switch model
achieved high classification accuracy while running at line rate
and keeping switch resource consumption at low levels.

This paper serves as a proof-of-concept on which future
work could build to enable the full integration of ML models
into new or existing P4-based 5G UPF implementations by
identifying and addressing challenges arising from the pro-
posed ML integration. We hope this paper will trigger research
efforts in that direction and contribute to enabling a more
seamless integration of ML inference into 5G user planes
for real-time traffic analytics. We expect this work to also be
relevant in the transition to 6G networks which are expected
to have native support for AI.

ACKNOWLEDGMENTS
A. Akem was supported by project PCI2022-133013 (ECO-

MOME), funded by MICIU/AEI/10.13039/501100011033 and
the European Union ”NextGenerationEU”/PRTR. M. Fiore
was supported by NetSense grants no. 2023-5A/TIC-28944
funded by Comunidad de Madrid, and by the SNS JU and
the European Union’s Horizon Europe research and innovation
program, under Grant Agreement No 101139270 (ORIGAMI).

REFERENCES

[1] S. Fonyi. Overview of 5G security and vulnerabilities. The Cyber
Defense Review, 5(1):117–134, 2020.

[2] Positive Technologies. 5G security issues, 2019.
[3] S. Khozam et al. DDoS mitigation while preserving QoS: A deep

reinforcement learning-based approach. In IEEE NetSoft, 2024.
[4] A. Chetouane and K. Karoui. A survey of machine learning methods

for DDoS threats detection against SDN. In DiCES-N, 2022.
[5] T. A. Tang et al. Deep learning approach for network intrusion detection

in software defined networking. In WINCOM, pp. 258–263, 2016.
[6] K. He et al. Measuring control plane latency in SDN-enabled switches.

In SOSR. ACM, 2015.
[7] Intel. Tofino Switch. https://shorturl.at/Ynzc6.
[8] NVIDIA. NVIDIA BlueField Networking Platform. https://www.nvidia.

com/en-gb/networking/products/data-processing-unit/.
[9] P. Bosshart et al. P4: Programming protocol-independent packet pro-

cessors. SIGCOMM Comput. Commun. Rev., 44(3), 2014.
[10] E. F. Kfoury et al. An exhaustive survey on p4 programmable data plane

switches: Taxonomy, applications, challenges, and future trends. IEEE
Access, 9:87094–87155, 2021.

[11] C. Zheng et al. In-network machine learning using programmable
network devices: A survey. IEEE Commun. Surv. Tutor., 2023.

[12] A. Sapio et al. In-network computation is a dumb idea whose time has
come. In ACM HotNets, 2017.

[13] Z. Xiong and N. Zilberman. Do switches dream of machine learning?
toward in-network classification. In ACM HotNets, 2019.

[14] A. T.-J. Akem et al. Flowrest: Practical flow-level inference in pro-
grammable switches with random forests. In IEEE INFOCOM, 2023.

[15] A. T.-J. Akem et al. Encrypted traffic classification at line rate in
programmable switches with machine learning. In IEEE NOMS, 2024.

[16] G. Zhou et al. An efficient design of intelligent network data plane. In
USENIX Security, 2023.

[17] A. T.-J. Akem et al. Henna: hierarchical machine learning inference in
programmable switches. In NativeNI, 2022.

[18] K. Du et al. Definition and evaluation of latency in 5G: A framework
approach. In IEEE 5GWF, 2019.

[19] ETSI. LTE; 5G; interface between the control plane and the user plane
nodes (3GPP TS 29.244 version 16.5.0 release 16), 2020.

[20] G. Amponis et al. Threatening the 5G core via PFCP DoS attacks: the
case of blocking UAV communications. J. Wirel. Commun. Netw., 2022.

[21] A. Bose et al. AccelUPF: accelerating the 5G user plane using
programmable hardware. In SOSR. ACM, 2022.

[22] R. MacDavid et al. A P4-based 5G user plane function. In SOSR, 2021.
[23] Z. Cong et al. CeUPF: Offloading 5G user plane function to pro-

grammable hardware base on co-existence architecture. In ICEA, 2022.
[24] A. T.-J. Akem et al. Jewel: Resource-efficient joint packet and flow

level inference in programmable switches. In IEEE INFOCOM, 2024.
[25] C. Zheng and N. Zilberman. Planter: Seeding trees within switches. In

SIGCOMM, 2021.
[26] T. Swamy et al. Taurus: a data plane architecture for per-packet ML.

In ASPLOS. ACM, 2022.
[27] G. Siracusano et al. Re-architecting traffic analysis with neural network

interface cards. In USENIX NSDI, 2022.
[28] D. Barradas et al. Flowlens: Enabling efficient flow classification for

ML-based network security applications. NDSS, 2021.
[29] L. Grinsztajn et al. Why do tree-based models still outperform deep

learning on typical tabular data? In S. Koyejo et al., editors, Advances
in Neural Information Processing Systems, volume 35, 2022.

[30] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12, 2011.

[31] A. Turner and F. Klassen. Tcpreplay, 2013.
[32] S. Samarakoon et al. 5G-NIDD: A comprehensive network intrusion

detection dataset generated over 5G wireless network, 2022.

https://www.nvidia.com/en-gb/networking/products/data-processing-unit/
https://www.nvidia.com/en-gb/networking/products/data-processing-unit/

	Introduction
	The User Plane Function (UPF)
	Intrusion detection in the P4-based UPF
	Introducing ML into the UPF workflow
	ML model preparation
	In-switch UPF model implementation

	Experimental setup
	Experimental platform
	Use case: intrusion detection in a campus 5G network
	Performance metrics

	Results and discussion
	Classification accuracy
	Resource consumption

	Conclusions and future work
	References

