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Abstract

Edge computing has been a topic of interest for several decades, with different re-
search directions tackled (e.g., CDNs, cloudlets, fog nodes). However, only with the
development of 5G networks, edge computing started to be seamlessly integrated into
cellular network ecosystems, thanks also to the efforts made by the European Telecom-
munications Standard Institute (ETSI) with the standardization of the Multi-access Edge
Computing (MEC) paradigm. The presence of computing resources at the edge of the cel-
lular infrastructure will help support the growth of novel use cases in everyday life. Some
examples are connected cars, and IoT devices but also novel and computing-hungry use
cases such as Augmented Reality (AR), Virtual Reality (VR), cloud Gaming, smart manu-
facturing, and eHealthcare. However, each of these use cases, or industrial verticals, poses
significant but also distinct challenges (e.g., low latency guarantees, reliability, and pri-
vacy concerns among others). Furthermore, the deployment of edge computing resources
in a cellular network comes with several challenges for the network operator. First, the
deployment and maintenance of these edge resources are costly, in terms of both Capi-
tal Expenditure (CAPEX) and Operating Expenses (OPEX). Therefore network operators
should consider novel strategies to grant the edge architecture’s monetary sustainability.
Next, network operators should deploy novel infrastructures that are also sustainable in
terms of carbon footprint. In other terms, stakeholders’ infrastructures should decrease
their overall carbon emission (i.e., using less energy generated by brown sources such as
carbon). Different worldwide organizations (United Nations, European Union) are push-
ing towards this sustainable path, which is considered also one of the key pillars of future
(i.e., 6G) cellular networks. A possible solution for network operators could be leverag-
ing renewable sources to generate local green energy to power the edge infrastructure.
Indeed intermittent renewable sources such as solar/wind could generate virtual energy
with no cost for network operators therefore allowing them to jointly tackle the goal of
decreasing overall monetary costs and carbon footprint. However, those two goals are
conflicting, since a network operator would like to maximize the use of its edge infras-
tructure by admitting end-users tasks as much as possible for revenue maximization but
with the downside of possibly using costly brown energy. One key strategy that could
help decrease costs and carbon footprint is the smart allocation of computing resources.
Indeed, computing resources at the edge are notorious for being scarce and less power-
ful than their cloud counterparts, and therefore a smart allocation of these resources is
pivotal to sustaining novel computing-hungry use cases while decreasing overall costs
for network operators. Some of the novel use cases require lots of computing resources
(such as cloud gaming and AR) and therefore the smart allocation of offloaded comput-
ing tasks should be carefully evaluated. The rise of paradigms such as Network Function



Virtualization (NFV) allows the softwarization of network functions and applications (us-
ing for instance virtual machines or containers), allowing novel techniques and scenarios
to emerge such as the migration of computing resources to support novel verticals and
strategies.

In this thesis, we answer some of the questions and scenarios highlighted above. In
particular, we first give an updated review of the state-of-the-art, focusing on several
important aspects of the MEC provisioning (such as standardization efforts, techniques to
efficiently deploy and support migration of end-user applications, if and allow the offload-
ing of computing tasks). This also gives us the motivations behind this thesis’ goals and
contributions. Next, we focus on proposing a novel scenario, green edge gaming, where
edge computing resources are partially or completely dependent on renewable sources and
they have to accommodate heavy computing tasks coming from gaming devices. Another
novelty of this scenario is that, since edge servers are located closely, it is possible the
migrate allocated gaming jobs between edge servers, according for instance to the avail-
ability of green energy. Next, we leverage powerful machine learning techniques such as
Deep Reinforcement Learning (DRL) to propose a DRL-based solution for the allocation
and migration of AR tasks at the edge. Since the goal of maximizing the admittance of
AR tasks while leveraging as much as possible the green energy availability is conflicting,
we use a proportional fairness structure, which, thanks to the DRL approach, helps to find
a sweet spot between these two goals compared to greedy heuristics. In conclusion, in
this thesis, we propose two novel solutions to tackle the problem of allocation and migra-
tion jobs in an edge infrastructure, where edge servers depend on intermittent renewable
sources. Since one of the key pillars of 6G networks is sustainability, this thesis could lay
the foundation for more studies in this evolving scenario.
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1. INTRODUCTION

One of the main features of 5G and future cellular systems is the possibility of supporting
novel industrial verticals (e.g., by offloading computation tasks or letting run applications into
more powerful servers) [1]. However, those use cases could have stringent requirements in terms
of optimal Quality of Experience (QoE) and Quality of Service (QoS) and therefore the Cloud
Computing paradigm alone cannot support those verticals anymore. For instance, some verticals
require a tight latency deadline for a smooth experience (e.g., AR/VR), which is difficult to achieve
if processing servers are located in a data center thousands of kilometers away from end users. One
way to support these verticals is to leverage edge computing, a decentralized computing model,
that positions computational resources closer to the end-users promising enhanced performance,
reduced latency, and increased throughput.

This thesis fits into this domain and by leveraging standardized paradigms proposed by 3GPP
and ETSI, it tries to find efficient solutions to dynamically support verticals at the edge while at
the same time keeping an eye on sustainability (both in economical and energy-efficiency terms)
for network operators. In detail, this thesis supports novel verticals by developing intelligent algo-
rithms (e.g., heuristics and DRL-based solutions) for the allocation and migration of computing-
demanding tasks in edge servers dependable on intermittent renewable sources, with the ultimate
goal of maximizing revenues for network operators while leveraging as much as possible the pres-
ence of renewable sources (i.e., decreasing overall costs).

Moving smaller computational resources from the cloud to the edge is not a completely new
idea, since for instance several years ago the Fog Computing paradigm was proposed [6], with
Cloudlets being a possible application [7]. It is also possible to argue that the more general idea
itself stems from Content Distribution Networks (CDN) in 1999 [8]. However, it is with the
first rollout of 5G networks, combined with standardization efforts (e.g., ETSI with the so-called
MEC paradigm [9]), that edge computing resources are deployed and seamlessly connected to a
cellular network ecosystem [10]. However, from the network operator’s point of view, realizing
the full potential of edge computing requires a meticulous exploration of technical challenges and
innovative solutions, while at the same time committing to new compelling general goals.

In the following Section, we describe the novel challenges this thesis will consider and how
it will fill the gap with respect to the state-of-the-art. Finally, in Section 1.2 we describe the
contributions and impact of each of the publications supporting this thesis.

1.1. Thesis’ challenges and contribution

This thesis addresses practical challenges starting from showing bottlenecks and constraints of
supporting use cases from an edge infrastructure point of view to defining novel sustainable sce-
narios and proposing algorithms that take into account the dynamicity of an edge network (e.g.,
variable presence of green energy, variable workloads among the others).

Let us now briefly analyze below the major challenges we considered in this work:
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• Supporting disruptive verticals: A novel computing infrastructure deployed at the edge of
the cellular network could help grow several industrial verticals, opening the same new
possibilities of revenues for network operators. However, each of these verticals has sev-
eral divergent requirements in terms of QoS and QoE (e.g., automotive has different QoS
constraints compared to smart factories or video streaming). Therefore it is important to
address possible bottlenecks, in terms of bandwidth, computing capabilities, and reliability.

• Sustainable edge: Network infrastructures, should nowadays become more and more sus-
tainable in terms of carbon footprint, a goal which is indeed one of the key pillars for future
6G networks [11], [12]. Expected beyond 5G and 6G use cases such as cloud gaming and
AR are computational and energy-hungry. Therefore a sweet spot should be found to sup-
port those novel use cases at the edge while intelligently leveraging the available presence
of green energy at edge sites. On the same line, sustaining a novel edge infrastructure
should also be economically profitable for network operators.

• Flexible edge provisioning: Novel networking concepts such as network slicing, Software
Defined Networking (SDN), and NFV give a novel flexibility on how to allocate resources at
the edge of the network. As we know, edge capabilities are scarce compared to the cloud and
therefore resources should be carefully allocated. Timely migration of resources between
close edge servers could help the edge paradigm to achieve a better usage of resources
(i.e., decreasing monetary costs) and a decreased carbon footprint, leaving room for novel
strategies and algorithms.

We now deeply focus on each of these challenges, showing limitations from the recent related
literature and commenting on the thesis’ contribution for each of the aforementioned challenges.
Next, we mention the publications supporting this thesis and how they contribute to the overall
work.

1.1.1. Supporting disruptive verticals

One of the goals of future cellular networks is to support the growth of industrial verticals such
as IoT, Automotive, Augmented/Virtual Reality, eHealthcare, Media, Smart Factories, and Smart
Cities. However, the realization of these applications introduces challenges due to their stringent
and divergent requirements. For instance, cloud gaming and AR demand ultra-low latency and
significant computing capacity, placing strain on the finite resources available at the edge. Besides,
it is already been demonstrated [13] that VR will not be supported in 5G networks and it will be
difficult even for the next cellular generation. Furthermore, it is well known that computing edge
resources are scarce, and therefore efficiently allocating and managing these resources is critical
to ensuring a seamless and responsive user experience. Addressing these challenges brings NFV
to the forefront and opens novel opportunities for research.

NFV, thanks to the flexibility given by the software and Virtual Networks Functions (VNFs)
enables the dynamic provisioning and management of edge resources, allowing for real-time ad-
justments based on specific application requirements (a deal-breaker for some verticals [14]). This
flexibility ensures that edge resources are optimally utilized, meeting the diverse needs of latency-
sensitive verticals and meanwhile minimizing network operators’ resource wastage keeping an
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eye on sustainability. Furthermore, nowadays Artificial Intelligence (AI) and especially Machine
Learning (ML) techniques are becoming more advanced, with the possibility of exploiting them
in a cellular networks context (as is also happening in other contexts such as Open-RAN [15].
Techniques such as supervised Machine Learning or DRL could indeed help network operators
intelligently allocate and manage their edge resources in an automated manner. According to our
survey [1] (and we will discuss it more in Chapter 2), we discovered that some verticals have not
been fully evaluated yet even though they are considered important use cases for future-generation
cellular networks. In this thesis, we focus our attention on two particular verticals: cloud gaming
(especially on its edge version) and Mobile Augmented Reality (MAR). Both verticals represent
a growing market [16], [17] and their tight requirements (e.g., computing and latency) require
particular attention from network operators to both guarantee a pleasurable QoE for end users and
a good utilization of edge network resources. Network operators could support those verticals by
for instance allowing the computing of online gaming sessions at edge servers, or by allowing the
offload and computation of MAR tasks. We now present an overview of related works with an
emphasis on cloud gaming, edge gaming, and MAR tasks offloading, and later on we comment on
the thesis contributions in these topics.

Cloud gaming: Cloud gaming has been well studied and is becoming a pervasive use case,
with some projections highlighting that 20% of gaming sessions will be soon on cloud [18]. Sev-
eral recent papers addressed this paradigm, focusing especially on: i) server allocation, ii) costs
and iii) QoS guarantees. In [19], the authors study the server provisioning problem for cloud
gaming with the double goal of reducing server running and software storage costs. Similarly, the
authors in [20] propose several heuristic algorithms to solve the problem with both server alloca-
tion costs (for server renting fees and data transfer) and the bandwidth costs, taking into account
real-world latency constraints, while Wu et al. [21] design an online control algorithm to reduce
both latency (focusing especially on queuing delay) and server provisioning costs. Some works
study resource utilization, using real testbeds: Li et al. [22] focus on minimizing resource usage
when interference between co-located games at the same server happens (i.e., decreasing QoS).
According to [14], games could fall into two categories: CPU-critical and memory-input-output-
critical. Therefore, they propose several task scheduling strategies to optimize resource allocation.
In [23], the authors propose a framework called T-Gaming that uses off-the-shelf consumer GPUs,
prioritized video encoding, and adaptive real-time streaming based on deep reinforcement learn-
ing to reduce hardware and network costs. Other works analyze the resource placement problem.
For example, Hong et al. [24] study the Virtual Machine (VM) placement problem for maximiz-
ing both the profit for service providers and the overall gaming QoE for end-users while in [25],
the authors propose a distributed algorithm to optimize VM placement in mobile cloud gaming
through resource competition.

Edge gaming: Compared to cloud gaming, edge gaming is a newer concept tied up with edge
computing. Indeed, edge computing could help the cloud gaming paradigm in both storage [26]
and computation (by offloading tasks [27] or rendering whole games), minimizing the overall
response time. In [28], the authors leverage edge servers to offload computation-intensive tasks
for gaming, showing that this strategy could reduce network delay and bandwidth consumption.
Yates et al. [29] develop a Markov model to optimize frame rate and lag synchronization of server
and player in low-latency edge cloud gaming systems, employing an age of information metric to
characterize the system performance.
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MAR: The problem of allocating MAR tasks in an edge scenario has been extensively studied
in the literature from different perspectives. For example, [30] studies this problem on a multipath
edge network, Ren et al. [31] propose a three hierarchical MEC-based computation framework for
supporting AR, and in [32] the authors design an edge network orchestrator trading off between
low latency and accurate object analytics. [33] and [34] provide a detailed implementation on how
to integrate ETSI MEC and 5G networks with MAR. Many other papers in this domain considers
also the energy efficiency problem on the end-device side. We will comment on some of them in
the following subsection.

Thesis Contribution: To summarize, while cloud gaming and MAR topics have already been
covered by the research community in different flavors, edge gaming is still in its early steps,
therefore leaving room for more research studies. This thesis focuses on supporting these two use
cases (edge gaming and MAR) in a cellular network while also considering the sustainable aspects
(both in economical and carbon footprint terms) at the edge infrastructure side, which has not been
evaluated yet in these two domains.

1.1.2. Sustainable edge

The deployment of an edge computing infrastructure requires substantial investments in hardware,
connectivity, and ongoing maintenance [35]. Striking the right balance between cost-effectiveness
and scalable infrastructure is pivotal to ensuring the economic viability of edge computing. A
strategic approach to managing both CAPEX and OPEX is essential for the successful deploy-
ment and sustainability of edge computing solutions. Nowadays, many interesting solutions and
paradigms have been proposed and deployed. For instance, with NFV [36] the softwarization of
network functions is possible, with the benefit of using general-purpose hardware instead of spe-
cialized one. Then, standardization efforts are becoming more and more predominant in research
and industry (ETSI MEC [9], Open-RAN [37] among the others), thus paving the way for a com-
mon hardware and interface infrastructure between different players. These solutions could help
network operators in decreasing monetary costs when deploying novel infrastructures. Moreover,
a novel edge infrastructure could open the door for additional sources of revenue for network
operators (e.g., by leasing their edge computing capacities to verticals or users) but, at the same
time, over-utilizing edge resources could lead to using more energy (i.e., an increased electrical
bill (OPEX costs)) and a decrease of QoE for end-users.

We also live in an era dominated by environmental concerns and the carbon footprint associ-
ated with infrastructure operations, demands urgent attention. Indeed, the United Nations issued
several Development Goals [38] and among them, there is the goal of building and promoting
sustainable industrialization. On the same level, the European Commission issued the EU Green
Deal, and the research community agreed that future 6G networks should employ energy-efficient
techniques. Edge computing deployments must align with sustainable practices, and network op-
erators should emphasize energy-efficient models/techniques and incorporate renewable energy
sources (or use energy generated from these sources, the so-called green energy) into their infras-
tructure. Indeed, it has been demonstrated that leveraging on energy efficient techniques could
help network operators save more money, thanks to decreasing general OPEX costs [11], [12],
[39]
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More in detail, in our survey (and also reported in Section 2.2, we show that CAPEX and
OPEX costs will rise for sustaining a pervasive edge infrastructure. While the numbers of Fig-
ure 2.11 represent a future cellular generation scenario, since nowadays only a few MEC nodes
(where edge computing resources are placed) have been deployed in a metropolitan context, how-
ever, the monetary costs are non-negligible. Since there is a growing awareness of making infras-
tructures more sustainable to decrease the overall carbon footprint, a possible solution to making
the edge more sustainable would be to leverage on intermittent renewable sources (e.g., solar/wind)
to generate green energy close to edge servers. In this way, edge servers could benefit from the
presence of free or zero cost green energy to power their edge system and in case only take costly
brown energy (e.g., generated in carbon-fuel power plants) from the network grid when required.
This could be an option for network operators to decrease the overall carbon footprint while also
reducing OPEX costs.

Looking at the literature, there are not many papers that consider the presence of green energy
on the server side in cloud/edge gaming and MAR use cases. At a high level, only the authors
in [40] discuss green energy solutions for cloud gaming while in [41], Chuah et al. propose
a control algorithm to decrease GPU power consumption while guaranteeing the Service-Level
Agreement (SLA). Instead, of focusing on MAR, there also exist works that focus on the interplay
of edge offloading for MAR tasks and energy efficiency with the use of ML techniques, which
are consequently closer to our thesis’ scope. For instance, Chen et al. [42] minimize the energy
consumption of each user when offloading MAR tasks to MEC. In a similar scenario, the authors
in [43], leveraging Deep Learning techniques, propose an energy-efficient task offloading algo-
rithm to minimize the battery consumption of devices. Always leveraging DRL, Chen et al. [44]
propose an AR tasks offloading scheme that maximizes the computation rate and energy efficiency
in Beyond 5G systems, and Wang et al. [45] design an energy-aware system that enables MAR
clients to dynamically change their parameters to minimize their per-frame energy consumption.
Furthermore, Cheng et al. [46] study AR task delay and power consumption minimization, while
in [47] the authors leverage DRL to reduce the overall (transmission and server computation) en-
ergy cost while meeting the latency requirements. Ahn et al. [48] propose a theoretical framework
to improve both the resolution of offloaded frames and the energy efficiency of multiple MAR
devices connected to a single MEC server. In [49], the authors configure the AR tasks offloading
problem as a partially observable Markov decision process to minimize the energy consumption
of mobile devices while guaranteeing the deadlines of real-time tasks.

However, due to the unpredictability of renewable sources (e.g., sun/wind [50]), network op-
erators cannot completely rely on the presence of green energy generation, and at the same time,
they should be able to serve as many users as possible to increase their revenue streams (e.g.,
by leasing their edge servers to AR applications for offloading computing tasks). Therefore, a
network operator should be able to create strategies that help them in both benefiting the pres-
ence of green energy as much as possible but also maximizing serving end-users. More in detail,
operators should be able to strategically place workloads based on the availability of renewable
energy, to reduce OPEX costs while contributing to environmental sustainability. Due to the in-
termittence of this energy generation, network operators should also consider the importance of
dynamic resource (or task) migration between close edge servers, which could help in optimizing
the allocation of edge resources based on evolving goals and demands. Migrations could facil-
itate load balancing and scalability. Indeed, during peak periods, resources can be redistributed
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to handle increased workloads, preventing bottlenecks and maintaining consistent performance.
Instead, during low-demand periods, resources can be efficiently consolidated to minimize en-
ergy consumption. Especially for some verticals (e.g., cloud gaming and AR), where latency and
computational capacity are critical, dynamically migrating tasks between edge servers becomes
essential for maintaining optimal QoS and QoE for end-users. To conclude, migrating resources
based on the presence of green energy sources at different edge locations offers the dual benefit
of (i) decreasing operational costs by tapping into renewable energy but also (ii) aligning with
environmentally conscious practices.

Thesis Contribution: As discussed above, in literature, not many papers consider the presence
of green energy given by intermittent renewable sources at edge servers side in both edge gam-
ing and MAR use cases. This thesis fills this gap by proposing and analyzing scenarios where
edge servers partially or completely depend on intermittent renewable energies while they have
to support computation and energy-hungry use cases. On the same line, edge operators should
consider revenues and monetary costs, to make the edge infrastructure profitable. We remark that
this sustainable scenario has not been fully evaluated yet and represents a clear novelty to the
literature.

1.1.3. Flexible edge provisioning

The problem mentioned above (finding a sustainable sweet spot between leveraging as much as
possible of green energy while keeping up a high revenue stream) is conflicting. Indeed, a network
operator wants to maximize the acceptance of users’ tasks in their edge system (bringing new
revenues to them) but at the same time it wants to decrease the OPEX cost of using brown energy,
which means that if there is a little presence of green energy, the acceptance of users tasks should
decrease. In this dynamic scenario, a network operator should be able to dynamically allocate and
migrate users’ tasks across several edge nodes, to follow the presence of green energy, reducing
the impact of using costly brown energy and therefore accepting as much as users’ tasks (which
bring more revenues in the system).

Allocation and migration of resources is a well-known problem, which has been studied espe-
cially for centralized cloud systems [51]. Notwithstanding, edge nodes could be constrained for
instance in bandwidth, energy, storage, or computing capabilities, and it is difficult to apply the
same strategies designed for cloud systems into an edge scenario due to these multiple constraints
on the edge resources. Among the works that consider this challenge in edge networks, [52]
proposes a joint service placement and request scheduling scheme, while [53] proposes a random-
ized rounding technique for the joint optimization of service placement and request routing in a
MEC network. Both papers consider several constraints on edge nodes. Other papers provide
solutions from a different perspective, and they make use of a machine learning approach; for
example, Wang et al. [54] propose a joint task offloading and migration schemes in a mobility-
aware MEC network. Their scheme is based on Reinforcement Learning (RL) and their goal is
to obtain the maximum system utility minimizing the migration costs. In [55], the authors use a
deep learning framework for proactive migration (based on service replication) of MEC resources
in a 5G vehicle scenario, to minimize the total energy expenditure, without considering hardware
limitations such as on memory and CPU cycles. In [56], the authors leverage on deep reinforce-
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ment learning to minimize the average completion time of tasks under migration energy budget,
while in [57] the authors investigate the task migration issue for multiple Unmanned Aerial Ve-
hicles (UAV)s in the MEC-based UAV delivery system. Specifically, they study an energy-aware
decision-making strategy for dynamic task migration to optimize the UAV energy consumption.
Wang et al. [58] propose a Markov decision process framework for dynamic service migration to
follow users’ movement, without considering edge nodes’ capabilities. In [59], the authors pro-
pose a resource-aware VM migration technique, without taking into account energy consumption,
while the authors in [60], on the opposite, focus on a VM migration mechanism that is aware
and adapts to the fluctuating available green energy, minimizing therefore the energy consumption
from non-renewable sources, but without considering other constraints. Braun et al. [61] propose a
new migration protocol to migrate a MEC gaming application through different edge servers while
in [62] the authors have developed Talaria, an in-engine content synchronization solution. The lat-
ter allows for unnoticeable game instance migration between edge servers, which is mandatory to
maintain a satisfactory QoE for end-users in fast-paced games. Finally, many works consider the
broader topic of edge allocation for generic tasks using DRL [63]–[65].

Thesis Contribution: None of the papers consider the allocation and migrations of resources
in the scenario of edge gaming or MAR offloading tasks with edge servers that could depend on
intermittent renewable energies. In this thesis, we propose two different allocation and migration
strategies for both verticals. In particular, for edge gaming, we propose an intelligent heuristic
that greedily allocates and migrates gaming tasks according to the variable presence of available
green energy. Instead, for the more challenging MAR use case, we leverage machine learning
techniques, and in particular DRL, to build a DRL-based solution. In our thesis, we show that both
approaches obtain performance close to optimal ones and have a clear improvement compared to
state-of-the-art approaches.

1.2. Research output and publications

Driven by all the above observations, in this thesis we present different ideas and solutions to
solve the aforementioned problems. The main contributions of this thesis have been published
in 4 publications. More specifically, 1 has been published in IEEE Communications Surveys &
Tutorials (indexed in Journal Citation Reports (JCR)) and 1 in Elsevier Computer Communications
(indexed in JCR). Moreover, 1 publication has been published at ACM MSWiM 2023 and another
one at WoWMoM ’22, tier A and B according to CORE2014 datasets. In details,

Contribution 1. Extended literature review on MEC, with a special focus on how supporting
verticals at the edge.

First of all, we provide a literature review of the MEC paradigm, in particular focusing on
three aspects: (i) we first devise the efforts for standardizing MEC and in particular we focus on
the work done by ETSI. Next, we (ii) focus on the flexible provisioning of edge resources, focus-
ing on NFV techniques and migration procedures. Afterwards, we (iii) highlight how verticals
(IoT, Automotive, (AR/VR, eHealthcare, Entertainment, Smart Factories, and Smart Cities) could
leverage MEC and show what has been done and open research challenges. Finally, we studied a
smart metropolitan example which helped us in understanding bottlenecks and difficulties in sup-
porting several verticals in a smart metropolitan context. Here we give a glance at the expected
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costs for deploying and maintaining a pervasive edge infrastructure and how several topics have
been not extensively tackled yet in the literature (especially some particular verticals) and how
network operators could leverage green energy at edge servers side.

• F. Spinelli and V. Mancuso, "Toward Enabled Industrial Verticals in 5G: A Survey on MEC-
Based Approaches to Provisioning and Flexibility," in IEEE Communications Surveys &
Tutorials, vol. 23, no. 1, pp. 596-630, Firstquarter 2021, doi:
10.1109/COMST.2020.3037674.

Contribution 2. Study of the green edge gaming scenario and proposal of a smart heuristic
called GREENING.

Based on open research questions we got from our survey, we developed and studied an inno-
vative concept called green edge gaming. This concept describes a scenario where online gaming
sessions are allocated in an edge network, with edge servers partially or completely depending on
green energy. As mentioned before, due to the high variability of renewable sources and the scarce
computing capacities of edge servers, it is important to timely allocate and migrate resources while
maintaining a high acceptance rate of gaming sessions in the network, which could lead to a new
stream of revenue for network operators. We formulate an optimization problem and we propose
a smart heuristic, GREENING, which allocates and migrates gaming resources depending on the
presence of green energy.

• F. Spinelli and V. Mancuso, "A Migration Path Toward Green Edge Gaming," 2022 IEEE
23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), Belfast, United Kingdom, 2022, pp. 347-356, doi:
10.1109/WoWMoM54355.2022.00033.

• F. Spinelli, Antonio Bazco-Nogueras, and Vincenzo Mancuso. "Edge Gaming: A Greening
Perspective." Computer Communications 192 (2022): 89-105.

Contribution 3. Present a DRL-based solution to find a compromise (with a proportional
fairness structure) between incoming revenues and the decreasing of carbon footprint.

We present another different edge scenario, in which AR computing tasks have to be offloaded
into an edge network. In particular, we show how the problem of accepting tasks and using green
energy as much as possible is conflicting and therefore we formulate an optimization problem
with a proportional fairness structure that helps us in finding a compromise between these two
goals. For this problem, we leverage DRL, since ML techniques are becoming more and more
important for the automation of network management, due to both the rising complexity of the
network and their power to address highly complex problems that involve large amounts of data.
Therefore, we propose GreenRL, a DRL-based solution that intelligently offloads and migrates
AR tasks according to the presence of green energy at the edge servers side.

• Francesco Spinelli, Antonio Bazco Nogueras, and Vincenzo Mancuso. 2023. Offloading
Augmented Reality Tasks with Smart Energy Source-Aware Algorithms at the Edge. In
Proceedings of the Int’l ACM Conference on Modeling Analysis and Simulation of Wire-
less and Mobile Systems (MSWiM ’23). Association for Computing Machinery, New York,
NY, USA, 73–82. https://doi.org/10.1145/3616388.3617523.
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Chapter 4

Chapter 3

Chapter 2 • Enabling future verticals with edge computing

• Green Edge Gaming

• Green AR offloading

Figure 1.1: High-level illustration of the thesis structure.

1.3. Outline of the thesis

The rest of the thesis is organized in different chapters detailing the contributions aforementioned
in the previous subsection, as shown in Fig. 1.1.

In Chapter 2 we perform an extended literature review of MEC. In particular, we focus on
three different aspects of MEC: the standardization process, in Section 2.1.1, the flexibility given
by NFV (Section 2.1.2) and how industrial verticals can leverage on the MEC presence (Sec-
tion 2.1.3). Next, in Section 2.2 we also present a study where we focus on bottlenecks and
issues in supporting several verticals simultaneously in a smart metropolitan context. Finally, in
Section 2.3 we conclude the Chapter.

In Chapter 3 we analyze a novel concept we developed (green edge gaming), or how to support
gaming at the edge with edge servers that depend on green energy. In Section 3.1 we motivate our
concept; in Section 3.2 we present the system model. In Section 3.3, there is the formulation of
an instantaneous optimization problem and we prove that it is NP-hard in the strong sense. Next,
in Section 3.4 we extend the problem in time and propose an efficient heuristic to solve while in
Section 3.5 we analyze the performance of our heuristic in several scenarios. In Section 3.6 we
summarize the Chapter

Afterwards, in Chapter 4 we leverage machine learning applications to support the smart of-
floading of AR tasks at the edge maximising the presence of green energy. In particular, in Sec-
tion 4.1 we overview our scenario of green AR offloading and in Section 4.2 we show the system
model of the study. Next, in Section 4.3 we formulate our optimization problem and we show
that it is NP-hard. In Section 4.4 we present our solution based on Deep reinforcement Learning
solution, in the next Section 4.5 we show the results and in Section 4.6 we summarize the Chapter.

Finally, in Chapter 5 we present the concluding remarks of the thesis and we identify possible
future research lines that arise from our work.
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2. ENABLING FUTURE VERTICALS WITH EDGE COMPUTING

The increasing number of heterogeneous devices connected to the Internet and tight 5G re-
quirements have generated new challenges for designing network infrastructures. Industrial ver-
ticals such as Automotive, Smart City, and eHealthcare (among others) need secure, low latency,
and reliable communications. To meet these stringent requirements, computing resources must be
moved closer to the user, from the core to the edge of the network. However, the deployment and
provisioning of edge resources come with added challenges for network operators. In this Chap-
ter, we give an extended and updated literature review of some of the most challenging aspects of
MEC and in particular we answer three research questions about the MEC as a means to deploy
virtualizable edge computing services in mobile networks: (i) how?, (ii) where?, and (iii) for what?
For the first question, we overview the ETSI efforts for MEC standardization. Indeed, vertical in-
dustries’ use cases in 5G and 6G networks impose major architectural changes to mobile networks
to simultaneously support a diverse variety of stringent requirements. Therefore, it is important
to develop a standardized, open environment for efficient and seamless integration of applications
from vendors, service providers, and third parties across multi-vendor computing platforms at the
edge of mobile networks. In Section 2.1.1 we briefly overview the ETSI MEC architecture and
its integration with 5G networks, showing that thanks to NFV, the MEC architecture could be de-
ployed in 5G networks in flexible ways, thus leaving room for novel research scenarios. Finally,
we comment on recent efforts from ETSI and researchers to contribute to the MEC standardization
process. For what concerns the second question, in Section 2.1.2 we build upon what we discussed
in the previous Section and we focus on MEC provisioning features within 3GPP network archi-
tectures, giving a glance of possible techniques and issues in supporting verticals with MEC. In
particular, we focus on computation offloading, how and where to deploy MEC resources, and
the agile migration of MEC-VNF-based resources. Finally, in Section 2.1.3 we explore how the
MEC can be used to deploy online services and specifically how it will enable several industrial
verticals in 5G and future cellular networks. In Section 2.2, we give a high-level example of MEC
deployment in a smart metropolitan area supporting multiple industrial verticals at the same time,
exposing bottlenecks and constraints. Eventually, we comment on how the findings present in this
Chapter shaped our following works and therefore this thesis.

2.1. Enabling Multi-access Edge Computing

According to ETSI, MEC is IT service environment and cloud-computing capabilities at the
edge of the mobile network, within the Radio Access Network (RAN) and close to mobile sub-
scribers [66]. Examples of MEC applications include caching of DNS entries, caching of contents
to deliver to customers, and tracking of devices. Furthermore, there are many proposals about
using the MEC for implementing advanced network functions, e.g., for enhanced secure VPNs, as
well as for computational offloading and collaborative computing purposes, indoor localization,
distributed data analytics, assisted driving and control of vehicle platoons, smart infotainment with
adaptive video transcoding and support for augmented and virtual reality, control of smart grids,
and support for IoT and smart environments in general (smart cities, smart factories, smart health
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Figure 2.1: ETSI MEC Framework.

care systems, etc.).

MEC has been standardized by ETSI, which created a MEC Industry Specification Group
(MEC ISG) and published the first white paper in September 2014 [67]. ETSI has released and
updated more white papers and technical specifications in the following years. A new technology
standardization process is very important for many reasons: (i) it allows interoperability between
products, (ii) to brainstorm and clarify the challenging technical aspects and (iii) merge technical
solutions with research advancements.

2.1.1. How: Standardization

Fig. 2.1 illustrates the general entities involved in the MEC architecture, according to ETSI [9].
Three different levels are present: the upper one is the MEC System Level, which has a global
visibility on the MEC architecture and therefore coordinates every block in the levels below. In
the middle, the MEC host level includes MEC host and MEC host level management. The MEC
host is an entity that includes the platform and the virtualization infrastructure used to run the
MEC, and which provides network resources, storage, MEC services, and computing power for
MEC applications. MEC services are provided and consumed by MEC applications or the MEC
platform. Some examples are the Radio Network Information (RNI), which gives information
on the radio network state, the location service, which gives location-related information and
the bandwidth manager service, which helps prioritize and handle traffic. Containers or virtual
machines run as well in the MEC host and can leverage MEC services. At the bottom of the stack,
Fig. 2.1 shows various transmission entities such as 3GPP cellular networks and local/external
networks. This shows that the MEC will be able to support many access technologies, even at
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the same time, giving the possibility to exploit fixed mobile convergence1, which is a 5G feature
meant to allow devices to connect through both wired/wireless transmissions at the same time.

Figure 2.2 shows all the most important elements contained inside the MEC reference archi-
tecture, and the reference points connecting the whole system. Reference points are divided in 3
different categories:

• Mp are the reference points located inside a MEC platform, allowing the connectivity
between MEC platforms, MEC applications and the data plane.

• Mm reference points are instead for management purposes.

• Mx reference points connect MEC elements towards external entities.

Describing the MEC system from the top (hence from the system level), requests to the MEC
infrastructure are sent in two different ways: with a User Equipment (UE)/Device Application,
or through a Customer Facing Service (CFS) portal. The latter allows operators’ third parties to
select a set of MEC applications given their needs and it is directly connected to the Operations
Support System (OSS) through the Mx1 reference point. Instead, from the UE, the requests are
first sent through a Mx2 reference point to the User application life cycle management proxy. This
entity checks if the requested application is already instantiated and, otherwise, it forwards the
request to the OSS. Moreover, it also informs the UE about the state of the application and it
supports applications relocation inside or outside the MEC system. It is connected to the OSS
through the Mm8 reference point, and to the Multi-Access Edge Orchestrator (MEO) via the Mm9
reference point.

The OSS receives the requests from both the CFS and the proxy and determines request grant-
ing, sending the requests to the MEO in positive cases. The OSS leverages the Mm1 reference
point, which triggers the instantiation and the termination of MEC applications, and on the Mm2
to connect with the MEC platform manager. Furthermore, the OSS gives the possibility, upon
device request, to relocate MEC applications to external clouds. The last element of the system
Level is the MEO. It maintains an overall view of the MEC system, knowing the available re-
sources, services, and deployed MEC hosts, and it also monitors the topology. It selects the best
host where to deploy an application, taking into account available resources, services availability,
and constraints such as latency. Moreover, it is responsible for operator policies and it interfaces
with the Virtualization Infrastructure Manager (VIM) for preparing the physical infrastructure. It
is connected with the MEC platform manager via the Mm3 reference point, for application life
cycle management and for keeping track of the available MEC services, and with the VIM.

Three different entities are present in the MEC host level: the MEC host, the VIM, and MEC
platform manager. The latter is responsible for managing the life cycle of both applications and
MEC platforms, and for receiving information on faults and performance measurements from the
VIM, hence informing the MEO if any relevant event happens. The MEC platform manager is
connected to the VIM via the Mm6 reference point and to the MEC platform via Mm5 reference
point, allowing the platform configuration and applications life cycle procedures. The VIM allows
the management of the virtualization infrastructure located inside the MEC host, managing the

1https://www.telefonica.com/en/web/press-office/-/telefonica-presents-the-first-prototype-of-an-open-
and-convergent-access-network-that-integrates-fixed-and-mobile-and-enables-edge-computing
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Figure 2.2: MEC Architecture.

allocation and release of virtualized resources, preparing the infrastructure to run a software image
and it supports the rapid provisioning of applications, as described in [68]. It is connected with the
virtualization infrastructure through the Mm7 reference point. The MEC host is further divided
into three different sub-entities:

• Virtualization infrastructure, which provides the computing and network resources and the
data plane.

• MEC platform, which offers its services to the applications and talks with other MEC plat-
forms under the same MEO; moreover, the MEC platform receives traffic rules and DNS
configurations from the MEC platform manager and instructs the data plane following those
rules.

• MEC applications are deployed as virtual machines or containers on top of the virtualization
infrastructure. They interact with the MEC platform, providing the required services or
leveraging on already instantiated MEC services and management information. Services
hence are placed either inside the MEC applications or in the MEC platform, meaning they
are directly deployed and controlled during the MEC platform instantiation.

As an example, Fig. 2.3 shows a possible ETSI MEC framework deployment supporting pla-
tooning of assisted-driving vehicles. Thanks to its distributed architecture, the MEC host is de-
ployed at the network edge, near the base station (the gNB, using the 5G jargon), while MEO
and OSS, which need a more centralized view, can be deployed more inside the network. The
MEC will provide support for platooning by storing, updating, processing, and sharing infor-
mation about road traffic, handling requests to join or leave the platoon, or helping vehicles by
offloading part of their computation tasks.
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Figure 2.3: MEC deployment in Platooning use case.

MEC and 5G

Together with SDN and NFV, MEC has been a key pillar of 5G since early discussions [66]. 5G
networks require tight constraints on bandwidth and latency, achievable only by moving comput-
ing resources from the network core to the edge [69]. At the same time, operators are transforming
themselves into vendors of versatile service platforms, so that the MEC concept becomes desirable
for them [66].

The concept of MEC had been already partially standardized in a 4G context when 5G re-
quirements and the actual design were still in a primordial phase. However, the deployment of
MEC in 5G is different from the one for 4G. MEC was an add-on for 4G, which was already
deployed when ETSI first introduced the MEC. Instead, 5G has been holistically designed with
the MEC [10]. In particular, ETSI standardization efforts are built on top of the 3GPP specifi-
cations for 5G systems (such as 3GPP TS 23.501 [70]), allowing therefore the mapping of MEC
blocks onto Application Functions (AFs) of 5G.2 This allows the use of services and information
of 5G 3GPP network functions in the MEC. Furthermore, new functionalities have been defined to
provide flexible support for several MEC deployments, taking into account MEC support for user
mobility.

Fig. 2.4 shows the integration of MEC in 5G. Since this chapter and thesis focus mainly on
MEC, the figure only shows 5G network functions needed for MEC deployment. The User Plane
Function (UPF) is the most important one. UPF is a distributed and configurable data plane (seen
from the MEC perspective), routing user plane traffic to the appropriate Data Network (DN). Its
deployment is coupled with one of the MEC hosts, which is either located in the same DN, to
achieve low latency and high throughput at the edge, or reachable through the N6 reference point,

2Application Functions are logical elements of the 5G architecture defined by 3GPP. They provide
session-related information, used to enable the interaction between control-plane Network Functions.
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which could be external to the 5G system, thanks to the deployment flexibility given by the UPF.
Focusing on the MEC control side, the MEC Orchestrator can interact with the 3GPP Network
Exposure Function (NEF) or with the target 5G network function3. At the MEC host level, the
MEC platform can interact with the 5G network functions. MEC hosts will be deployed either
at the edge or inside the mobile network, even at the core of the network. It is the responsibil-
ity of UPF to steer the traffic towards the targeted MEC applications. Moreover, in [70], 3GPP
presents the most important enablers for edge computing, which are fundamentals for a correct
MEC deployment in 5G networks [10]. These enablers are:

• Local Routing and Traffic Steering: The 5G core network architecture allows routing and
steering traffic inside the local data network. AFs can also define specific traffic rules.

• User plane Reselection and Selection: AFs can define UPF traffic routing and (re)selection.
This depends on the UPF deployment scenario and on the configuration of MEC services.

• (Support of) Local Area Data Network (LADN): This is enabled thanks to the UPF location
flexibility, allowing to deployment of MEC hosts between UPFs and a data network.

• Session and Service Continuity (SSC): It allows MEC to fully support user and application
mobility.

• Network Capability Exposure: Through the NCE, the MEC has indirect access to 5G net-
work functions.

• QoS and Charging: This makes it possible to route traffic to a LADN according to the QoS
required.

3Other 5G network functions are Network Resource Function (NRF) and Network Slice Selection Func-
tion (NSSF). For more details, please refer to [10].
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Moreover, ETSI has recently published recommendations for the MEC support network slic-
ing [71]. According to recommendations, entities such as MEO, MEC platforms, and MEC plat-
form managers should be aware of slices. Therefore, ETSI proposes to expand the reference points
between these entities to include information on network slices. This was revealed to be a very
powerful tool. Indeed, based on ETSI recommendations, and on the results presented in [71],
Ksentini et al. [72] were able to design an ETSI MEC orchestration/management architecture for
network slicing, compliant with both ETSI and 3GPP. However, ETSI recommendations for net-
work slicing still have several shortcomings. In [73], the authors addressed those limitations and
proposed two solutions for multi-slice MEC support: a Slice Control Function (SCF) to deploy
slice-aware MEC App allocation and an inter-slice communication channel to allow the exchang-
ing of data in the same MEC facility.

Fig. 2.5 shows four deployment possibilities of MEC in 5G networks [10]: (i) MEC and UPF
collocated together with the gNB, (ii) MEC deployed with a transmission node, possibly with a
local UPF, (iii) MEC and local UPF located together with a network aggregation point, and (iv)
MEC collocated with Core Network functions, inside a data center. The options presented above
show how MEC can be flexibly deployed in different locations from near the gNB to a remote
data network, which means that, notwithstanding its name, the MEC does not necessarily run at
the edge of the mobile network!4 The UPF is deployed and used to steer the traffic towards the
targeted MEC applications and the network.
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Figure 2.5: MEC deployment scenario in the 5G context.

On the 3GPP side, several technical reports explain how to deploy MEC in 5G networks. For
instance, 3GPP SA2 TR 23.748 [74] provides suggestions for several edge computing architecture
enhancements in the 5G core network (5GC). The key system enhancements consist in:

• methods to discover the application server IP address at the network edge;

4Running MEC hosts far from the edge will be useful in scenarios in which compute power requirements
are tighter than latency ones.
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• 5GC enhancements to support seamless migration of application servers;

• methods to provide local application servers with network and/or traffic information, in a
small amount of time;

• support for traffic steering in an edge N6-LAN.

That document also provides deployment guidelines for use cases such as URLLC, CDN, V2X,
AR/VR.

In SA6 TS 23.558 [75], 3GPP specifies the application layer architecture (based on previous
3GPP technical reports), procedures, and information flows needed for a correct deployment of
edge applications over 3GPP networks. Further, they provide a first high-level example of how
their application layer architecture would merge with ETSI MEC. Finally, in TR 23.758 [76],
3GPP specifically studies architecture requirements for authentication of clients and discovery of
edge services, stating that the mapping of those entities and ETSI MEC is considered future work.
Therefore, given the flexibility by NFV, novel techniques and approaches should be studied to fully
leverage on the presence of MEC in a 5G and beyond 5G networks. In the following subsections
(2.1.2 and 2.1.3) we comment on some of these approaches and how MEC can support novel use
cases.

Other standardization contributions:

ETSI has also standardized MEC features together with other concepts such as the NFV MANO
framework. In this case, the goal of ETSI was to build a MEC system on top of the NFV MANO
framework, connecting the MEC entities with the NFV MANO entities [77]. Other efforts consist
of integrating MEC and Cloud RAN [78], proposing a MEC deployment in an enterprise environ-
ment [79], and in 2018 ETSI published a white paper about MEC supporting V2X uses cases [80].
More recently, ETSI has also considered several novel networking scenarios, taking into account
different use cases and players. For instance, in [81], ETSI tries to answer the question of how
several MEC systems (i.e., a MEC federation) can communicate with each other seamlessly, while
in [82] ETSI explores security-related use cases and requirements. Instead, in [83] the standard-
ization body explores the so-called edge native applications (from the "cloud" native) concept and
how the ETSI MEC paradigm could support it, while finally in [84] the white paper focuses on
communication between ETSI MEC and M2M-IoT devices. At the same time, the MEC concept
is being explored and extended by other organizations and researchers. Arora et al. [85] propose a
new MEC architecture for the Radio Network Information Service (RNIS), based on OpenAirIn-
terface and fully compliant with the new ETSI MEC in NFV standard [77]. This service, present
in the MEC platform, allows edge applications to know RAN conditions, to be able to modify their
behavior and match the network conditions [86]. They create two different message brokers of the
RNIS, one with RabbitMQ and the other with Kafka, with the first one being superior in terms of
lightweight CPU utilization. Ksentini and Frangoudis focus on extending ETSI MEC to support
LoRa communications while Zanzi et al. [87] focus on the introduction of a MEC Broker on top
of the ETSI MEC architecture, between the OSS block and the tenant (i.e., the UE). The MEC
broker enables tenants to access management options such as life cycle management and appli-
cation administration privileges. In addition, they propose an orchestration solution called M2EC
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(from multi-tenancy MEC), which allows for minimizing overall resource utilization. The authors
in [88] extend ETSI MEC to support stateful application relocation by leveraging container migra-
tion techniques. Castellano et al. [89] propose a split MEC architecture, in contrast with the current
monolithic ETSI MEC architecture we have described in Section 2.1.1. They argue that standards
are not helping the MEC deployment in real scenarios and, at the same time, companies are look-
ing at MEC as an opportunity to save money or generate revenues. Therefore, they propose to
further separate the ETSI MEC architecture into Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS), and Software-as-a-Service (SaaS) levels, to help the MEC deployment. In [90], the
authors propose a constrained MEC (cMEC) architecture to deploy a MEC platform in constrained
devices such as terminals or edge robotics). Huang et al. [91] present in detail an SDN-based MEC
framework, compliant with both ETSI MEC and 3GPP architectures. According to the authors, it
provides the required data-plane flexibility and programmability, improving overall latency. Taleb
et al. [92] propose the concept of a Content Delivery Network (CDN) slice, which is a CDN ser-
vice instance created upon a content provider’s request. They base their proposal on the latest
versions of MEC, and NFV and on proposals produced in the frame of 5G standardization efforts.
In their work, they tackle QoE-driven cloud resource allocation and elastic resource management.
Finally, the authors in [93] propose an open-source framework ETSI MEC and 4G/5G complaint
to evaluate the performance of MEC apps, while Cicconetti et al. [94] proposed a prototype for a
hospital use case, where end-clients and edge apps host Quantum Key Distribution devices, with
a complaint ETSI MEC architecture.

2.1.2. Where: MEC flexible provisioning

MEC provisioning is an important feature because, thanks also the degree of flexibility provided
by NFV as also shown in the previous subsection in 5G networks, it will help the MEC paradigm
to set itself with a primary role in the deployment of future cellular architectures. Efficient provi-
sioning is achieved using both careful MEC resource deployment, and the capacity to follow user
mobility. Therefore, this section answers the question where should MEC resources be deployed?
To answer, we cover two important MEC aspects: (i) (flexible) MEC resources deployment and
(ii) agile migration of MEC resources. Indeed, it is of crucial importance for URLLC applications
that devices can reach MEC resources in a few milliseconds or less (i.e., with extremely low la-
tency) and that edge resources are fairly assigned to services [149]. Moreover, the MEC must also
support user mobility, which requires rapid service provisioning and fast migration of applications,
VNFs, and MEC services. These features enable innovative solutions for a well-known MEC re-
search problem, i.e., for computation offloading. Table 2.1 summarizes the works overviewed in
this area.

Flexible MEC resources deployment

Location deployment: A fundamental problem studied in the literature concerns where to phys-
ically deploy MEC resources. Some examples can be found in an Intel white paper [117] and
several papers in the literature address this topic. In [118], Pérez et al. highlight that in future de-
ployments, mobile network operators will have to decide how many MEC points of presence are
needed, also considering the presence of gNBs. Therefore, they created a model, based on inho-
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Table 2.1: List of papers related to MEC flexible deployment

MEC
Provisioning

References Use Case Tools Evaluation
Most relevant lessons

learned

Computation
Offloading

[95], [96], [97]
[98], [99], [100]

[101], [102], [103]
[104], [105], [106]
[107], [108], [109]
[110] [111], [112]
[113], [114], [115]

[116]

- IoT
- Privacy preserving
- Inter task

dependency
- Energy efficiency
- Parallel computing
- Autonomous devices
- Caching
- M2M
- Wireless Energy

Transfer (WET)
- LEO
- Digital Twin
- RIS

- (Mixed) Integer
Program (MIP)

- Logic Based Benders
Decomposition

- Lyapunov optimization
- Gibbs Sampling
algorithm

- Markov Decision
Process (MDP)

- Deep Learning
- Non-convex MIP
- Dinkelbach’s method
- Game theory
- DRL

- Numerical
simulations

- Adding privacy constraint
does not affect (very much)
performance (< 5%)

- Deep Learning algorithms
can save energy up to
87% compared to baselines

- Novel 6G scenarios and
use cases will increase
the complexity of
offloading decisions

Flexible MEC
resources

deployment

[117], [118], [119]
[120], [121], [122]
[123], [124], [125]
[126], [127], [128]

Location deployment

- Model with
inhomogeneous Poisson
point processes

- Voronoi cell-based
analysis

- Graph-based algorithm
- (M)IP
- Meta-heuristic

- Simulations
with real
scenarios

- Datasets
- Numerical
simulations

- Prototype
implementation

- Sumo5G

- Considering the New
Radio profiles of 5G, FDD
120 kHz is the one that
minimises the number
of MEC stations deployment

- Up to 50% of traffic can
be absorbed by MEC servers

- Beyond 5G networks are
required to scale up MEC
services

[129], [130], [131]
[132], [133], [134]
[135], [136], [137]
[138], [139], [140]
[141], [142], [143]

VNF placement
at the edge

- Heuristic
- Architecture design
- (M)IP
- Genetic Algorithm
- Randomized Rounding
algorithm

- Machine Learning

- Numerical
simulations

- Prototype
implementation

- Trace-driven
simulations

- Test-bed

- Both Randomized
Rounding and genetic
algorithms seem
a viable solutions
for VNF placement
at the edge, with
performance close to the
optimal

[144], [19], [145]
[146], [147], [148]

Systems
deployment

- Framework design
- MEC platform
deployment

- ETSI-MEC with
5G core

- Systems-level
evaluation

- Open Air
Interface
prototype

- 5G-MEC V2X
testbed

- MEC over FiWi could
prolong devices battery
up to 11.30 h

- MEC can reduce latency
up to 60% compared to a
cloud datacenter

- An end-to-end open
ETSI-MEC simulator
has not been fully
developed yet
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mogeneous Poisson point processes, which studies the MEC deployment with simulations based
on a real topology. Since the cell tower presence constrains MEC deployments, Syamkumar et
al. [119] analyze a 4M dataset of antennas located in the US to evaluate the MEC deployment in
a real case scenario, showing in which areas new network infrastructures are needed. Similarly,
in [120], the authors study how to allocate MEC resources as a function of service demand. They
propose a graph-based algorithm to provide a partition of MEC clusters, which takes into account
the capacity of MEC servers. The authors evaluated it with a mobile communications data set,
containing real-world spatio-temporal human dynamics. Furthermore, in [121], the authors study
how the mobility of citizens in a city should also affect the optimal placement of MECs. Kherraf
et al. [122] formulate the problem of MEC resource provisioning and workload assignment for
IoT services (RPWA) with a mixed integer programming formulation. Given its complexity, they
decouple the problem into two sub-problems: (i) delay aware load assignment and ii) mobile edge
servers dimensioning. Through numerical simulations, they show that their scheme achieves a
higher admission rate (from 1% to 44%) compared to the solution proposed in [150].

Miltiades et al. [123] provide another way to deploy efficiently MEC resources. Indeed, the
authors focus on the control plane, studying the latency of packet transfer and processing inside
an NFV environment. To minimize the latency, they design proximity zones around MEC plat-
forms hosting MEC application instances, showing how these zones could help for a flexible and
latency-aware use of the MEC platform. Castellano et al. [124] propose a distributed algorithm
to coordinate the resource allocation in edge computing scenarios. They consider the optimal
resource assignment and evaluate its feasibility with a prototype implementation that follows a
Pareto-optimal resource assignment. Several recent papers also address this issue, thanks to the
increasing interest in MEC and the rollout of 5G networks. For instance, Virdis et al. [125] make a
performance evaluation, using Sumo5G and CoFLuent, of different MEC deployments in cellular
networks (4G, 5G non-standalone, and 5G Standalone) for an infotainment vehicular use case.
Chantre et al. [126] consider the problem of MEC location with protection schemes, selecting
edge locations to place MECs hosting protected slices. Filippou et al. [127] also highlight sev-
eral options for MEC app deployments in 5G networks, highlighting the pros and cons of each
deployment. Finally, the authors in [128] study an ETSI-MEC compliant scenario for a MEC app
placement scheme in a full federated edge architecture. They formulate an Integer Linear problem
and through meta-heuristic Tabu-Search they propose a solution that can instance a MEC applica-
tion considering constraints such as computing resources, latency, and MEC service availability.

VNF placement at the edge: MEC (resource) placement can be made flexible thanks to the
use of VNFs on top of virtualized infrastructure, using virtual machines and containers. Hence,
new scenarios are now available to be explored together with the MEC paradigm: the VNF place-
ment and resource migration (which we will overview in the following sub-section). Depending
on the type of service, different constraints (e.g., low latency, high compute power, and/or a fixed
dedicated uplink/downlink bandwidth) are present and the MEC Orchestrator should be able to
decide quickly where to place the VNFs, e.g., near the core of the network or at the edge. In [129],
the authors propose a data-driven VNF placement strategy with ONAP across distributed data
centers, hence in a MEC scenario. Through simulations, they compare their solution against other
ones proposed with an Openstack-based approach, showing that their strategy is better in terms of
overhead and data center utilization. Salsano et al. [130] propose an architecture for the dynamic
deployment of VNFs leveraging on the MEC. According to the principles designed in the Super-
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Fluidity project, they decomposed the network functions needed for MEC as software reusable
functional blocks (RFB), which hence allows for flexibility in the architecture. The proposal has
been validated by studying a video streaming service use case.

For the VNF placement problem, many papers propose a mixed or integer linear programming
formulation which is then solved by a genetic algorithm. For instance, in [131], the authors build a
VNF placement strategy on top of ETSI standards for MEC and NFV MANO. They propose a ge-
netic algorithm, considering access latency and service availability constraints. Through numerical
results, they show the feasibility of their algorithm, reaching near-optimal performance. Similarly,
Yuan et al. [136] propose a genetic algorithm for a latency-optimal placement problem which
also considers MEC CPU time, total network latency, and long-term scaling cost. The authors
in [137] study a similar problem and solution but in their case they also consider an SDN/NFV-
MANO enabled edge architecture, arguing that to obtain better performance it is necessary to
consider a coordinated placement of VNFs with SDN, NFV, and MEC. Thiruvasagam et al. [138]
state that VNFs, MEC and cloud servers, and communication links are subject to failures due to
software bugs, misconfiguration, overloading, hardware faults, cyber-attacks, power outage, and
natural/man-made disaster and therefore propose a resilient and latency-aware deployment of net-
work slices in MEC cloud facilities problem, formulating it as as a binary integer programming
(BIP) model and proposing a genetic heuristic to solve it.

Poularakis et al. [132], focus on joint service placement and request routing problem in a
MEC multi-cell scenario with multiple constraints, aiming to minimize the load of the centralized
cloud. They propose a custom randomized rounding algorithm, showing that, in terms of cloud
load, they can achieve a 25% better performance with respect to the greedy solution proposed
in [151]. Similarly, the authors of [152] explain how to design an edge computing framework,
including a service orchestration algorithm. The latter permits to move and place services within
25 ms and it can scale and support services instantiated on a per-user basis. In [133], the authors
propose a two-scale framework that jointly optimizes service placement and scheduling of requests
under storage, communication, computation, and budget constraints, proving that the problem is
NP-hard. Furthermore, they develop a service placement polynomial-time algorithm that reaches
performance close to the optimal solution (up to 90%). Moreover, some papers deal with an edge-
cloud architecture. Yang et al. [134], for instance, study the problem of service chaining with
VNFs in a mixed edge-cloud scenario. They minimize the maximum link load ratio under delay
constraints. Finally, the authors in [135] study the optimal provisioning of edge services with both
shareable and non-shareable resources via joint service placement and request scheduling. They
show that the problem is NP-hard and propose several heuristics which are then evaluated via data-
driven simulations. The authors in [139] study the problem of VNF placement for IoT applications
in edge nodes, proposing an efficient heuristic and validating their results with a test bed. Also,
in [140], the authors consider MEC-based VNF placement depending on the type of AR tasks
offloaded to MEC nodes, while Behravesh et al. [141] propose a mixed inter linear programming
problem to solving a joint user association, SFC placement, and resource allocation problem in
MEC-enabled 5G networks. The authors in [142] consider a joint problem of communication and
computing resource allocation comprising VNF placement and assignment, traffic prioritization,
and path selection to minimize the total cost of allocations. To solve their NP-hard problem, they
propose a Double Deep Q-learning (DDQL) technique showing its effectiveness using numerical
results. Instead, Nemeth et al. [143] analyze the problem of VNF placement in a realistic use case-
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based scenario (mobile robotics for warehousing solution in the Valencia city haven), showing the
need for VNF placement solutions with strict delay bounds and reliability constraints, while taking
into account radio coverage, mobility, and battery conditions and proposing an efficient heuristic.
Finally, for interested readers, the authors in [153] present a recent state-of-the-art review of VNF
placement techniques and also focus on the placement of Containers Network Functions (CNFs)
in edge/fog computing, highlighting the most prominent studied techniques while also considering
future challenges.

Systems deployment: Some works dig more into system implementation. Rimal et al. [144]
propose a MEC deployment over Fi-Wi, which is a combination of mmWaves and optical fibers
that allows ultra-high speed. The authors discuss the possible benefits of the framework, such
as prolonging the discharge of edge device batteries, with a capacity of just 1000 mAh, up to
11.5 hours, depending on the offloaded traffic load. In [19], the authors provide a MEC platform
deployment solution for 4G LTE networks using a middlebox, for which they have designed a
prototype based on the OpenAirInterface (OAI) cellular platform. Other works propose the inte-
gration with different technologies. For instance, in [145], Kempen et al. provide the design of
the so-called MEC-ConPaas platform, a mobile-edge cloud platform that aims to support future
research on edge cloud applications, leveraging Raspberry Pi devices. Their experiments show
that it is possible to support real cloud applications with extremely simple edge devices. The
authors in [146] show a full-fledged MEC architecture integrated with 5G core (therefore follow-
ing the ETSI-MEC 5G specification) with an application (video streaming) deployment use-case.
Wadatkar et al. [147] examined existing 5G-MEC V2X testbeds and categorized them, exposing
gaps between the ETSI-defined deployment model and the end solutions and also showing current
issues with open source available 5G V2X testbeds. Finally, the authors in [148] proposed an
updated survey on some of the systems deployment challenges, highlighting existing testbeds and
still open issues in real system deployments such as mobility awareness, offloading decision, AI
at the edge, and privacy compliance.

Agile migration of VNF-based MEC resources

In addition, due to user mobility, it is of primary importance to establish a connection between
the end user and MEC resources and maintain it throughout all the necessary stages, with the
services that should be able to migrate quickly depending on user movements. Table 2.2 provides
a summary of works in this area.

Mobility support (Follow me Cloud and Service Replication/Migration): The relation be-
tween MEC and the mobility of users and the dynamics of their demands is also an object of
investigation. Several works addressed the performance and optimization strategies for migration
in a MEC scenario, to keep performance levels high and use resources efficiently.

One particular paradigm developed for user mobility support is the so-called Follow me Cloud,
which has been proposed in [154]. Follow me Cloud uses an approach similar to Information Cen-
tric Networks (ICN): it proposes the replacement of the IP addressing for a service/data identifica-
tion. This allows for a continuous connection between mobile user and service, even when service
migration occurs. After the initial paper in 2013, Follow me Cloud has been further extended.
In [155], the authors compare the Follow me Cloud paradigm with other two testbeds based on
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Table 2.2: List of papers related to agile migration of VNF-based MEC resources

MEC
Provisioning

References Use Case Tools Evaluation
Most relevant lessons

learned

Agile Migration of
MEC-VNF-based

resources

[154], [155], [156]
[157], [158], [159]
[160], [161], [55]
[162], [163], [164]
[165], [56], [166]
[167], [160], [168]

Mobility support

- MDP
- Integer Linear
Programming

- LSTM
- Lyapunov
techniques

- DRL

- Numerical
simulations

- Testbed
experiments

- Follow me Cloud with MEC
can reduce the iterative
migration time up to 61%
compared to existing
solutions

- Increasing the number of
service replicas reduces
the probability of user
reactive migration (from 21%
to 26.5%)

- Novel ML techniques
could help reducing
the number of migrations

[169], [170], [171]
[172], [173], [174]
[61], [175], [176]
[177], [178], [179]

[88]

Migration with
containers

- MPD
- Optimal stopping
theory

- Architecture
design

- Testbed
experiments

- Data traces
simulations

- ETSI MEC
Prototype
implementation

- Numerical
simulations

- Containers reduce
up to 56% the handoff time

- A dynamic placement
scheduler reduces
VNFs migrations up to 94.8%
compared to baselines
schedulers

- Containers achieve
from 2x up to 8x faster
migration time compared to
VMs migration

- Different migration strategies
should be applied w.r.t.
applications features

locator/identifier separation protocol (LISP) and SDN, showing the potential of their paradigm
and its feasibility for real-world deployment.

In [156], Addad et al. merge the Follow Me Cloud concept with the MEC paradigm, to pro-
vide lightweight live migration at the edge, based on container technologies. They evaluate their
proposal with a real testbed. According to their results, using Follow me Cloud with MEC would
decrease iterative migration time by 50% compared to the baseline solution proposed in [175].

Finally, in [157], the authors focus on the vehicular networking case and develop a new archi-
tecture named Follow me edge-Cloud (FMeC). Leveraging on the strict requirement of the auto-
motive vertical, they created an FMeC architecture based on MEC and SDN/OpenFlow principles,
and validated their new concept through theoretical analysis and simulation experiments. Instead,
Farris et al. [158] study the proactive service replication problem, to reduce the overall migration
time and guarantee good QoE. They leverage the prediction of user mobility patterns and the over-
all synchronization of states of service replicas. At the same time, this technique collides with
limited edge resources. Therefore, the authors formulate two different optimization problems: one
minimizes QoE degradation during handover, while the other minimizes the cost of service repli-
cas. Through simulations, they show that increasing the number of service replicas would reduce
the probability of user reactive migration by up to 26.5%. Similarly, the authors of [159] deal
with the fast relocation problem of services due to user mobility, investigating container-based
virtualization techniques. In their work, they support the use of mobility in a MEC infrastructure
by designing a framework with three different modules (Service Manager for monitoring applica-
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tions, Edge Manager for container placement, and Edge Orchestrator, which manages the overall
framework) to guarantee fast response time and exploiting service replication. They show the ben-
efits of classic migration procedures. They further state that this framework may also be integrated
into the ETSI MEC architecture.

Several recent papers consider other proactive techniques for service migration in a MEC sce-
nario. The authors in [161] show the benefit of using a LSTM network to predict MEC services
deployments. In particular, their algorithm has to choose between four deployment actions ac-
cording to user mobility: migration, replication, scale, and retain. Labriji et al. [55] study an
IoV MEC scenario and propose a novel proactive technique (considering both vehicles’ trajec-
tories and multi-modal mobility estimation) for the online migration of computation service in
vehicular 5G networks. Shah et al. [162] propose to use SDN to provide a unified control plane
interface in a scenario with several MEC nodes to perform effective network and service mobil-
ity management for vehicles (i.e., allowing seamless service migrations) while managing also the
resource-constrained MEC servers. The authors in [163] use Lyapunov techniques to decide the
optimal time to trigger service migration and select which MEC Hosts are better placed to host the
migration of the running service. The authors in [164] focus instead on the minimization of migra-
tion events rather than on maximizing the usage of resources. They state that service migrations
can create significant service downtime to applications that need low latency and high reliability,
while also in addition to increasing traffic congestion in the underlying network. They propose
an induced service migration minimization (PrISMM) algorithm after defining a Markov Deci-
sion Process and show the effectiveness of their solution by numerical results. Liang et al. [165]
state that offloaded tasks can be seamlessly migrated between base stations without compromis-
ing the resource-utilization efficiency and link reliability and therefore they propose a a policy for
migration/handover between base stations by jointly managing computation and radio resources,
developing an efficient relaxation-and-rounding based solution. Other studies leverage machine
learning techniques to solve the problem of mobility support. For instance, both [56] and [166]
use (deep) reinforcement learning for their task/service migration problem supporting end-users
mobility in a cellular network with MEC nodes, while in [167] the authors consider a deep learn-
ing approach to allocate and migrate UE requests to edge servers. Finally, a few papers consider
also privacy aspects for users mobility. Indeed, Sangaiah et al. [160] propose to leverage machine
learning techniques on MEC nodes to preserve position confidentiality of roaming users, arguing
that MEC servers would help maintain both a low latency service and position confidentiality.
The authors in [168] formulate the service migration progress as a joint optimization problem that
minimizes service response latency due to service migration and location privacy leakage risk,
ensuring protecting user’s location privacy.

Migration with containers: Resource migration mainly deals with VNFs, e.g., migration
of the virtual machines and containers that run the VNFs, across different hosts. Normally, in a
centralized data center most of the virtualized resources and migrations are for virtual machines.
However, placing resources at the edge of the network leads to the deployment of small data cen-
ters in which it is not possible to execute the same virtualization technologies of typical large data
centers [169]. Therefore, services would be better deployed using containers, which represent a
lightweight solution for deployment and migration. Therefore, many studies focused on container
migration. The authors of [170] evaluate Docker, which is the most commonly adopted and pow-
erful container technology as of today, at least in the scenario of edge computing. They base their
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evaluation on four different aspects: deployment and termination, resource and service manage-
ment, fault tolerance, and caching. They show that Docker is a valid candidate platform for edge
computing. Furthermore, Avino et al. [171] state that a key beneficial feature of MEC would be
the ability to ensure server portability with low overhead. They show that this can be achieved
using Docker. To prove this, they quantify Docker CPU utilization in two use cases in an experi-
mental setup: online gaming and video streaming. In both cases, the Docker overhead was quite
small, even though for the online gaming case the overhead slightly increases with the number
of supported servers. Wang et al. [172] state that in a MEC scenario, the migration of resources
is difficult to perform since the environment is very dynamic and volatile. Hence, they propose
a Markov decision process to deal with this uncertain scenario, validating their model using mo-
bility traces for San Francisco taxis. Recently, Doan et al. [173] have proposed a measurement
framework to study the existing data center migration approaches in a MEC scenario. They show
that these approaches are unfeasible due to the high migration time, causing therefore substantial
service degradation.

The papers mentioned above do not consider stateful migration. With stateful migration, the
service is migrated and resumed in the exact state in which it was before migration, without losing
connection with the users. In [174], the author’s goal is to achieve a seamless live migration, with a
focus on reducing the file transfer size during the migration procedure. They study Docker layered
storage and propose to share common storage layers across Docker hosts to reduce file transfer
size. They propose and evaluate a prototype, which shows interesting performance improvements
(up to 56% reduction of hand-off time with respect to reference approaches defined in [180]).
In [61], the authors argue that containers would be fundamental for meeting low latency require-
ments. They study state-of-the-art migration techniques with Docker and with virtual machines
using KVM. Moreover, they propose an application-level live migration protocol that eliminates
common drawbacks like the lack of hardware abstraction at the host. The work of Machen et
al. [175] proposes a 3-layer framework for supporting stateful live service migration encapsulated
in containers in a MEC scenario, to ease the implementation with popular container and virtual
machine technologies. They validate their solution with small-scale experimental results, showing
that containers can achieve from 2x up to 8x (depending on the scenario evaluated) faster migration
times compared to VMs migration. Finally, Cziva et al. [176] propose a more general framework
for VNF migration. They focus on a dynamic placement of VNFs at the edge of the network and
especially on the dynamic re-schedule of VNF placement. Their approach leverages optimal stop-
ping theory. They run simulations based on a nationwide backbone network with real-world ISP
latency and show that their solution incurs much fewer VNF migrations (up to 94.8%) than other
existing migration schemes.

Other recent papers also considered container migration in a MEC scenario. Hathibelagal et
al. [177] assess the viability of different migration strategies for three different containerized MEC
applications (for V2X use case), using a real testbed and the ETSI MEC Sandbox. They show that
depending on the features of the application, a different migration strategy should be applied.
Some of the same authors in [178] propose a testbed with Kubernetes to support the migration of
MEC apps between two MEC Hosts. The authors in [179] propose ShareOn, a framework with dy-
namic container migration, validated using a set of edge-cloud nodes distributed in San Francisco
and which aims to execute a real-time application to detect license number plates in automobiles.
Finally, Barbarulo et al. [88] extends ETSI MEC to let it support stateful application relocation by
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running applications as containers and exploiting existing container migration technologies.

Computation Offloading

A well-known research problem coupled with MEC is the computation offloading problem. In-
deed, thanks to the deployment of edge resources and their agile migration, it is possible to offload
computation tasks from mobile users, with benefits for instance on the device battery life. Com-
putation, according to [181] could be fully offloaded to the MEC, partial offloaded, or utterly
processed at mobile device (local execution). Hence, this new paradigm raises new questions and
challenges in the MEC resources deployment domain, such as the trade-off between minimizing
device energy consumption and achieving acceptable execution delay due to offloading. Of course,
the delay also depends on the MEC resource deployment [181]. Another problem is in identifying
the edge server that should be selected for offloading. In [95], the authors propose a delay-sensitive
IoT services scenario, in which task offloading is jointly considered with (MEC) resource alloca-
tion and (task) scheduling. They formulate the mixed-integer problem “Dynamic Task Offloading
and Scheduling (DTOS)”. Due to its complexity, they decompose the problem using a technique
called logic-based benders decomposition and perform several simulations to check the effective-
ness of their proposed solution. Finally, with the same algorithm, they evaluate trends in different
vertical industries, namely tactile Internet, Telesurgery, Factory Automation, ITS, and Smart Grid,
with variable latency requirements. In [96], the authors focus on the privacy aspect of offloading
to a MEC server. They show that existent privacy-preserving techniques do not work well in this
new edge scenario and so they create PEACE, a scheme that jointly considers privacy-preserving
and cost-efficient task offloading. According to their experiments, adding the privacy constraint
does not affect very much the overall performance (≈ 5%). Yan et al. [97] study the inter-user
task dependency in an MEC system. First, they focus on a two-user MEC scenario (in which the
input task of a user requires the output task of the other user). Their goal is to minimize both the
energy consumption of users and task execution time through an optimal task offloading policy
and resource allocation problem; the problem is further solved using a reduced complexity Gibbs
sampling algorithm. Further, they extend the scenario to a general multi-user MEC, in which an
input task of a user requires final task outputs from multiple users. They evaluate this extension
with the same algorithm proposed for the single-user case and find that their solution performs
well compared to other sub-optimal schemes. Meng et al. [98] aims to achieve a delay-optimal
computation offloading policy for computation-constrained MEC systems, taking into account
also the future delay performance of the MEC system. To deal with this problem, they create a
finite horizon Markov decision process (MDP) for two cases: single-user single-MEC server and
multi-user multi-MEC server scenario. They manage to derive a closed-form multi-level water-
filling computation offloading solution and show via simulation that it outperforms other schemes
proposed in [182] and [183] by ≈ 4% in terms of average delay. In [99], the author’s goal is to
improve the energy efficiency of a MEC system hosting both URLLC and delay-tolerant services.
To solve this problem, they use a Deep Neural Network (DNN), trained with a so-called digital
twin model (a virtual digital model that merges data from the real network and fundamental rules
from theoretical studies), showing the benefits of their DNN framework. Compared to baselines,
it enables energy savings of up to 87%. In [100], the authors state that virtualization on shared I/O
resources, which could happen in an edge computing scenario, might lead to computation degrad-
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ing (meaning that the speed of VMs sharing the same hardware might degrade due to interference).
Therefore, they study the problem of joint radio-and-computation resource allocation (RCRA) in
multiuser MEC systems in the presence of I/O interference, showing that their solution performs
well against optimal algorithms (≈ 4% of difference). In [101], Josilo et al. focus on the coordina-
tion problem of offloading to the MEC decisions of autonomous devices, such as vehicles, drones,
or manufacturing machines, to minimize device energy consumption and task completion time
through a game theoretical analysis. Wang et al., in [102], portrays a joint optimization problem
on the computation offloading and content caching strategies for wireless cellular networks with
MEC. They propose an alternating direction method of multipliers (ADMM) algorithm, evaluating
its effectiveness with different system parameters.

In [103], the authors focus on the integration between virtualized Small Cell Networks (SCNs)
with MEC. Their solution might help in reducing the energy consumption of UEs thanks to of-
floading procedures. However, complexity might explode. The authors formulate the problem
as a mixed integer nonlinear program and then transform it into a biconvex problem. Through
simulations, they compare it against the optimal and an algorithm proposed in [184]. Their solu-
tion achieves better performance, with a gain of about 20% against [184], while nearly reaching
optimal performance.

The authors of [104] state that nowadays Machine-to-Machine (M2M) communications at-
tract ever-growing attention. Differently from other communications networks, M2M uses high-
frequency small packet size, therefore needing a special optimization of both energy consumption
and computation. Therefore, the authors introduce a MEC architecture for virtualized cellular net-
works with M2M communications, to decrease energy consumption and optimize the computing
resource allocation. They create an observable MDP to minimize the system cost. Mao et al. [105]
propose to use Wireless Energy Transfer (WEF) to prolong device battery life. However, it is hard,
for the MEC system, to jointly schedule radio and computational resources as well as energy uti-
lization maintaining at the same time the overall performance requirements. Hence, they study
energy efficiency and delay in a multi-user wireless powered MEC system with multiple access
schemes. They design a low-complexity online algorithm based on Lyapunov optimization theory,
allowing them to transform their problem into a series of deterministic optimization problems.
Through theoretical analysis, they show that their algorithm allows to trade off energy efficiency
for delay.

Sardellitti et al. [106] formulate the computation offloading problem, from the mobile users to
the cloud server, in a multi-cell mobile edge computing scenario. They define it as the joint opti-
mization of radio and computational resources to minimize multi-user energy consumption under
latency constraints. They find that in the MEC scenario, offloading becomes more convenient with
high computational loads.

Thanks to advanced techniques, novel technologies, and future 6G scenarios, different novel
approaches have been considered in the study of computation offloading at the edge. For instance,
in [107] the authors study the problem of computation offloading and resource allocation in a Dig-
ital Twin MEC scenario using Federated Learning techniques. Others instead use distributed deep
reinforcement learning [108] or Multi-Agent deep reinforcement learning [109] to the “standard"
deep reinforcement learning. Novel technologies also give new scenarios to the computation of-
floading problem, such as Reconfigurable Intelligent Surfaces (RIS) coupled with MEC [185],
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Low Earth Orbit (LEO) satellites [110], [111], O-RAN [112] and 6G scenarios [113]–[116] Fi-
nally, for interested readers, different surveys give a systematic review of machine learning for
computation offloading [186], [187].

Summary, lessons learned and future research

We now summarize lessons learned from the existing work and highlight potential improvements
to existing solutions. We also identify possible future research directions.

MEC deployment: One of the most important novel aspects of MEC is its proximity to
the UE. This leads to new unexplored scenarios and gives the possibility to enhance different
features, such as computation offloading. However, MEC provisioning is challenging. Indeed,
network providers should carefully consider both the QoS required by services (e.g., the ones
using URLLC) and the cost of deploying and maintaining a new edge infrastructure. In [117], to
achieve this tradeoff, the authors propose to expand the existing infrastructure, i.e., the network
provider’s towers and offices. Otherwise, new deployment possibilities lay inside the last mile
network, thus helping with the development of the smart city paradigm. Hence, new sites could be
stadiums, private/public buildings, enterprises, or homes. Moreover, the NFV paradigm introduces
a degree of flexibility. For instance, it will be possible to create a disaggregated MEC architecture,
where the MEC Orchestrator is placed in a more centralized node and MEC hosts are instead more
decentralized, nearer to users. Thanks to NFV, MEC can also be placed in different parts of the
cellular networks, as shown in [125]. At the same time, NFV allows MEC to support user mobility
by migrating virtual resources across the edge infrastructure.

From the papers surveyed, the key lessons learned are:

• Computation offloading is one of the most studied paradigms within MEC and, in general,
edge computing. Hence, the following considerations account only for the most recent
papers in this area. Most of the papers focus on minimizing device energy consumption
playing with offloading tasks, resource allocation or delays ([95], [97]–[101], [103]–[106]).
Among all results, we would like to mention the performance of deep learning which, ac-
cording to [99], can save devices energy up to 87%. Moreover, the authors of [96] consider
also privacy issues, showing that the privacy constraint does not affect performance very
much (i.e., within ≈ 5%). However, it would be interesting to see more works considering
new scenarios such as user mobility within different MEC hosts and 5G features such as net-
work slicing [71]. During the writing of this thesis, we found only two works that consider
slices into a MEC scenario [126], [138]. Novel application scenarios, e.g., cloud gaming or
Digital Twin, are not fully explored. Similarly, there is a need to study VNF (applications)
sharing (like in [188]) or the revenues/economical costs of offloading decisions, possibly
also leveraging both novel artificial intelligence and computing tools. More recently, there
have been several papers that consider computation offloading with MEC in several next-
gen scenarios, such as LEO [110], [111], UAV, and advanced ML techniques [108]. For
interested readers, we mention the survey of Mach et al. [181] on MEC with computation
offloading.

• Several papers focus on the MEC location deployment. While [120] confirms the benefit
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stemming from the presence of MEC, other authors provided useful insights on possible
MEC deployments according to 5G constraints [118], [119], [189]. They consider smart
cities, as well as industrial and rural scenarios. The authors of [121] study the MEC de-
ployment in a smart city, considering pedestrian mobility. The authors of [123] enhance
MEC host deployment by designing proximity zones around MEC platforms, helping them
to become more latency-aware. Finally, the authors of [122] and [124] provide a more the-
oretical approach. [124] considers a decentralized orchestration while [122] shows that in
terms of admission rate their scheme reaches higher performance (from 1% to 44%) com-
pared to [150]. Thanks to the ongoing rollout of 5G networks, new papers focus on the
MEC deployment problem, studying scenarios and proposing different solutions that are
also ETSI MEC compliant [125], [127], [128].

• Afterwards, different papers focused on VNF placement at the edge. Several approaches
have been proposed, ranging from different frameworks [129], [130], [152] to theoretical
works [132]–[135], [141], [142]. The latter mostly focused on formulating mixed-integers
programming problems, with genetic algorithms proposed as the main solution in different
works [131], [136]–[138].

• Finally, some systems-related works have been highlighted [19], [144], [145], giving several
interesting insights. For instance, MEC reduces latency up to 60% compared to a cloud dat-
acenter. More recent works also considers or propose ETSI-MEC compliant testbeds [146]–
[148]. More specifically, for interested readers the authors in [147], [148] provide an up-
dated state-of-the-art view of MEC test-beds and tools.

Concerning possible future work on MEC deployment, we mention the following points:

• It would be interesting to investigate more location deployments and VNF placement re-
sources at the edge, especially in real-case system-oriented scenarios, leveraging new pos-
sibilities given by novel network protocols, standardized interfaces [147], technologies such
as UAV and LEO ([110], [190], [191]) and new scenarios such as Digital Twin for 6G net-
works [115], [116]. ML techniques could also help in this particular scenario. For instance,
the authors in [192] use a Graph Neural Network (GNN) model to plan the location of novel
5G cells. Something similar could also be proposed for edge node deployments, also keep-
ing in mind issues such as network scalability and constraints such as QoS, QoE, CAPEX,
and OPEX.

• Future works on MEC deployments should also consider standardization efforts made by
SDOs such as ETSI MEC and O-RAN, also pointing out possible shortcomings and filling
these missing gaps (some examples are [85], [72] and [193]). During the draft of this
thesis, we noticed that while ETSI MEC-compliant solutions are becoming more and more
popular, there are still some open challenges, as also stated in [147].

• Furthermore, researchers should exploit new scenarios as the ones proposed at the end of
this section, under other research challenges.

MEC migration: Regarding the agile migration of VNF-based MEC resources, two main
paths have been evaluated:
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• Mobility support given by the stateful Follow me Cloud paradigm [154], [155], which is
shown to work better than solutions based on LISP and SDN. The authors of [156] and [157]
have merged that paradigm with vehicular networks and MEC, whereas [158] and [159]
propose a proactive service replication to reduce migration time. They showed that increas-
ing the number of service replicas would reduce the probability of user reactive migration
(from 21% to 26.5%). Recent papers also use ML techniques. For instance [160] proposes
to leverage both MEC and ML for maintaining services position confidentiality, while the
authors in [56], [161], [166], [167] use deep reinforcement learning or deep learning (e.g.,
LSTM) solutions showing their feasibility in supporting users mobility at the edge. Another
possible direction could be to use SDN [162] to provide a unified control plane interface to
perform effective network and service mobility management, especially in an IoV scenario.

• Migration of VNFs and especially containers, since the latter is more lightweight to VMs
(an important feature in a scarce-resource edge infrastructure). Indeed, according to [175],
containers achieve from 2x up to 8x (depending on the scenario evaluated) faster migration
times compared to VMs migration. This thesis analyzed preliminary stateless migration
papers ([170], [171], [173]) and more recent works, focusing on stateful (live) migrations
([61], [174], [175]). We have also addressed some more theoretical works ([172], [176]).
Recent papers provide also novel test-beds and frameworks to study container migrations
for the edge scenario [88], [177]–[179].

Future works on migration should consider the following points:

• There is a need for evaluating the performance of network protocols (e.g., segment routing
per IPv6 [194]) for the migration and connection of MEC resources, thanks to their ability
to support Service Function Chaining. Another interesting paradigm worth studying in this
scenario is Intent-Based Networking.

• While VM migration has been deemed too heavy and slow for an edge infrastructure,
more work is needed for understanding stateful lightweight migration, also considering new
paradigms such as serverless computing [195], which seems the most promising feature to
guarantee smooth QoE.

• New works should also consider new scenarios mentioned in the following paragraph.

Other research challenges. Finally, some possible open research challenges can be identi-
fied:

• Privacy and security are still open challenges for MEC [196]. In the design of the new
generation of network infrastructure, privacy, the protection of data in general, and security
are becoming important new constraints to consider. So far, the literature provides only
a limited overview ([96], [126], [160], [197], [198]), while many subjects (authentication
between edge/core, proper encryption, how to provide access only to secure devices, etc.)
remain unexplored. Moreover, security attacks can also happen during VM migrations, in
compromised VNFs (which might be migrated and accessed in another location with fewer
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security policies) but also with physical hardware (power cutout or NFV state Manipula-
tion Attack [199]). Researchers should consider all these threats when considering resource
migration or deployment. For interested readers, the survey of Khan et al. [199] outlines
several security and privacy threats in 5G and NFV systems, commenting on potential so-
lutions.

• In recent years, the use of Artificial Intelligence at the edge has gained traction, thanks to
novel techniques and powerful computing hardware to train ML models. Many works in the
literature use (deep) reinforcement learning and deep learning techniques for the allocation
and migration of resources at the edge. Others also leverage federated learning [200] or
distributed learning [201], which also have the benefit of considering privacy and security
issues (since the training is performed locally to where the data is located). Thanks to the AI
wave, many new techniques and models are being released and therefore researchers should
consider applying them in their work (Graph Neural Networks, Generative Adversarial Net-
works to name a few) since they promise dramatic improvements in terms of efficiency and
cost reduction, especially for use cases involving complex systems and cyber-physical sys-
tems. However, one of the main problems of using deep learning techniques is that they
are a kind of “black-box" and therefore it is hard to understand how they operate and make
certain decisions. Therefore, it is also important to consider Explainable AI and Generative
AI techniques in the edge scenario, to understand how and why the machine learning mod-
els apply certain decisions. This would be beneficial not only for researchers but also for
network operators, who could then implement those techniques in their systems.

• While many papers try to minimize the energy consumption at the user side, it is still unclear
how to minimize the energy consumption at MEC side, exploiting therefore the green MEC
paradigm [202]. Already nowadays, data centers are one of the most energy-consuming in-
frastructures, and the deployment of new resources at the network edge will surely increase
energy consumption, together with capital expenditures of network providers. Indeed, one
of the main goals of future 6G networks is to create a sustainable infrastructure. Exploiting
hence green energy at the edge (wind, photo-voltaic, etc.) represents a possible solution
to overcome these issues [203] [204]. On the line, researchers should also consider the
energy efficiency of their solutions and/or architectures. For instance, it is known that ML
is a powerful tool but also that the training ofML models is energy-expensive. Using more
advanced and complicated techniques would also mean using more energy, with the possi-
bility of raising the carbon footprint of the network infrastructures. Some possible solutions
could be to leverage the presence of renewable energy at the edge, or the use of specialized
hardware for training (e.g., GPU).

• More system-oriented literature, considering hence standards or novel network protocols
and infrastructures, would help in understanding the suitability of MEC in real-case scenar-
ios in the wild. For instance, it would be interesting to evaluate the integration of MEC with
several open-source projects and new Internet architectures such as hybrid ICN (hICN), Re-
cursive Inter Network Architecture (RINA), Intent-Based Networking and programmable
network tools such as Open Flow or Net-FPGA [205]. The authors in [147], [148] provide
an updated state-of-the-art of MEC test-beds and tools but also highlight pending issues and
shortcomings.
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• Finally, while 5G is slowly becoming widely available thanks to its ongoing rollout, there
are already preliminary research efforts on 6G. For instance, as we mentioned before, sus-
tainability will play a major role in the future cellular network but the advancement of
hardware and virtualization will also open the door to novel scenarios. For instance, in
the so-called edge-cloud continuum, different MEC applications and use cases may re-
quire varying levels of centralization or distribution (edge/fog/cloud). Also, the growing
presence of heterogeneous computing models that exploit hardware acceleration solutions,
including the likes of FPGAs, GPUs, or ASICs, could create novel challenges in supporting
specific applications. Other research directions could be the creation of a Quantum MEC,
investigating the potential impact of quantum computing on MEC architectures and the in-
tegration of blockchain to enhance the security, transparency, and trustworthiness of MEC
systems.

MEC in 
verticals

Automotive
Smart City

Media

Manufacturing eHealthcare

Figure 2.6: MEC in industrial verticals.

2.1.3. For what: Verticals industry

Future network infrastructures will be able to serve different verticals simultaneously. Neverthe-
less, verticals require different constraints, which can be handled through the MEC. For instance,
MEC will guarantee low-latency computing resources with a high degree of flexibility offered to
verticals and network providers. Here, we explore the impact of MEC on the most relevant vertical
industries defined by 5G-PPP5, as also summarized in Fig. 2.6: Automotive, Smart City, Media,
eHealthcare, and Manufacture. In particular, we will give an updated review with respect to our
survey [1] and later comment on how the literature advanced in these three years. Table 2.3 and
Table 2.4 summarize surveyed papers focusing on vertical industries.

5https://5g-ppp.eu/verticals/
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Table 2.3: List of papers related to automotive and smart city verticals

Industrial
verticals

References Use Case Tools Evaluation
Most relevant lessons

learned

Automotive

[206], [207], [208]
[209], [210], [211]
[212], [213], [157]
[214], [215], [216]
[217], [218], [219]
[220], [221], [222]
[223], [224], [225]
[226], [227], [228]

[229], [230],

- Safety
- Avoid collisions

between vehicles
and vehicles/
Vulnerable
Road User

- Advanced driving
assistance (ADAS)

- Computation
offloading

- Vehicular clouds
- Infotainment

- Optimization Models
- Fuzzy logic
algorithm

- Collision avoidance
algorithm

- Network model
- Graph theory
- Stackelberg game
- Age of
information

- DRL

- Numerical
simulations

- Network
simulations

- Real
testbeds

- MEC hosts reduce
latency up to 80% compared
to common network architecture

- Integrating several access
technologies together (sub-6
GHz band, mmWave and
IEEE 802.11p) improve
performance in highly dense
scenarios with low bandwidth

- Autonomous cars detect
100% of collisions.
With human drivers, the
number slightly decrease by 14%

- Using Deep Learning for
infotainment caching
reduces backhaul traffic by 61%

- Edge servers cooperation
could prevent dangerous collisions
during users’ handover

- Edge computing could help
supporting several ADASs
scenarios

Smart City

[193], [231], [232]
[233], [234], [235]
[236], [237], [238]
[239], [240], [241]
[242], [243], [244]
[245], [246], [247]
[248], [249], [250]
[251], [252], [253]
[254], [255], [256]

[257]

- Augment ETSI
MEC standard to
support Smart City

- Smart Home
- IoT-Based energy

management in
smart cities

- Access service rate
for big crowds

- Task scheduling
for smart city
applications

- Blockchain for sharing
economy services

- Security threats
on physical layer

- privacy preserving

- Big Data
- DRL
- Optimization
- Lagrangian function
- Deep Learning
- Lyapunov theory
- Data model (Ontology)
- Federated Learning
- Blockchain

- Numerical
simulations

- Testbed
simulations

- Trace-driven
simulations

- Cooperative DRL (leveraging
both cloud-edge resources)
reduces delay up 25% and energy
cost up to 60%, compared to an
only-cloud based solution

- DRL can also achieve higher
service access rate for big
crowds compared to baseline
solutions (OSPF and EOSPF)

- Physical layer security can be
added in a heterogenous IoT
scenario thanks to it low
complexity and resource
allocation

- UAVs could support
some Smart Cities use cases

- The use of Blockchain
could increase security and
privacy
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Automotive

From the early 1990s, Intelligent Transportation Systems (ITS) have been studied to exploit
communications between vehicles and infrastructures, to improve the safety and efficiency of
transportation. In this context, IEEE developed a new communication protocol called IEEE
802.11p [258]. However, that standard presents several limitations such as poor scalability and
lack of performance guarantees. One way to help meet the tight requirements of automotive sys-
tems is to leverage cellular networks, e.g., using the C-V2X (Cellular-based vehicle-to-everything)
communications paradigm, first proposed for LTE and now extended to 5G networks. Especially
5G should become one of the most important enablers for vehicle communications since, thanks
to SDN, NFV, and MEC technologies, it aims to achieve high reliability jointly with low latency
(i.e., with URLLC-based slices) [259].

Several papers pointed out the benefits for the automotive industry from leveraging MEC sys-
tems. In [260], the authors explain the motivations behind using MEC in ITS, stating that IEEE
802.11p and pure cellular networks might not be sufficient to serve the stringent requirements of
the automotive industry. Instead, using the MEC can guarantee reliable low latency communica-
tions, seamless service delivery, and highly localized computing resources, necessary to achieve
effective C-V2X connections, as further confirmed using extensive simulations in [261]. The au-
thors of [260] also outline possible research challenges such as resiliency, security and privacy,
resource management and orchestration, and cooperative awareness among others.

However, in literature, most of the works focus on technical challenges such as enabling edge
communications with different access technologies, computation offloading, ad hoc computing
resources (vehicular clouds), or supporting driving paradigms such as platooning.

For instance, Hu et al. [213] propose a MEC framework for automotive systems, composed of
different communications technologies (mmWave, IEEE 802.11p and licensed sub-6 GHz band),
to supply services and contents to vehicles. They show through simulations that the adoption
of three different access technologies outperforms solutions with only mmWave or sub-6 GHz +
mmWave access technologies in various scenarios, especially in the highly dense and low band-
width ones.

Furthermore, in 2017, the 5G Automotive Association (5GAA) defined the concept of Coop-
erative Intelligent Transportation Systems (C-ITS), stating that edge computing and in particular
MEC will be the enabling technology for V2X communications. In their white paper [262], 5GAA
proposes to categorize the main use cases into four groups (as the ETSI MEC standard for V2X
does [80]):

• Safety: This group studies how to avoid collisions between vehicles, for instance at an
intersection.

• Convenience: This group provides time-saving services to manage data and the health of
the vehicle (such as the delivery and management of automotive software updates).

• Advanced Driving Assistance: It includes cases such as traffic signal timing. improving
traffic flow, Real-Time Situational Awareness, Cooperative Lane Change (CLC) of Auto-
mate Vehicles, and High Definition Maps. According to [262], for its processing of a large

34



amount of data with low latency and high reliability, this is the most challenging use case
for MEC.

• Vulnerable Road User (VRU): Finally, this group studies communications between vehi-
cles and pedestrians.

Safety and VRU. In the literature, several papers focus on safety issues or VRU discovery with
MEC. For instance, Nyuyen et al. [208] discuss a method to avoid a collision between pedestrians
and vehicles, deploying a MEC server near a base station. This deployment would help smart-
phones to save energy, giving the possibility to offload the calculation of the Collision Detection
Algorithm (CDA) to the MEC server and therefore avoiding both the smartphone battery drainage
and calculation latency issues. Through simulations, they show that this solution would improve
phone energy efficiency. In [206], the authors propose an enhanced collision avoidance (eCA)
mechanism, placed in a MEC server, based on both a Collision Avoidance Algorithm (CAA),
and a Collision Avoidance Strategy (CAS). The first algorithm evaluates future vehicle trajec-
tories through beacons while the second strategy decides which vehicles should slow down to
avoid collisions. They perform simulations based on SUMO and NS-3, showing the benefits of
their strategy by reaching almost 100% of avoided collision in all the scenarios evaluated. Mal-
inverno et al. [209] extend the collision detection algorithm, showed in [210], to avoid collision
between pedestrians and vehicles, leveraging a MEC-based architecture. Through a detailed sim-
ulation scenario, they showed that with autonomous cars 100% of the collisions can be detected
on time before the accident happens, while with human drivers, the number decreases by 14%.
In [207], Avino et al. developed a MEC platform based on ETSI standards and OpenAirInterface,
to support automotive systems with tight latency requirements such as safety services. In their
simulations, they show that it is possible to obtain better performance in terms of end-to-end delay
to the cloud-based approaches (≈ 25%-30%).

More recent papers also considered the impact of edge computing resources in the VRU use
case. For instance, the authors in [224] study the problem of collision risks between users associ-
ated with different edge servers. Indeed, users located at the boundary of one edge server domain
could receive late or miss the alert entirely, putting them in a dangerous situation. Therefore, they
propose an edge server cooperation mechanism to prevent users from receiving alerts when they
are in the middle of changing the edge servers they are anchored to. Teixeira et al. [225] propose
a multi-sensing and communication algorithm to prevent potential accidents between vehicles and
VRUs. Indeed, to predict accidents, they leverage information from smart city sensors, OBUs,
in the VRUs (e.g., smartphones and smartwatches), and on the road itself (e.g., video cameras,
radars, lidars). They test their solution in a real environment with real infrastructure, showing that
it achieves small latencies, high accuracy, and scalability. On the same line, the authors in [226]
realized a multi-operator MEC live trial with a VRU use case. In their paper [227], the authors
illustrate and evaluate the impact of using C-V2X sidelink and 5G-NR radio technologies to pre-
vent critical pre-crash situations while Barmpounakis et al. [228] propose a novel V2X service
and algorithm, namely VRU-safe, capable of identifying and predicting potential imminent road
collisions between vehicles and VRUs. They also highlight how the pervasive deployment of
edge servers (therefore managing a higher number of OBUs) could lead to better results. Instead,
Emara et al. [229] use Age of Information (AoI) to measure the impact of the packet inter-arrival
time on the timeliness of VRU messages arriving at nearby vehicles, while in [230] the authors
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propose a mobility-aware workload orchestration model for VRU safety applications. For inter-
ested readers, an updated survey on vehicle-to-pedestrian (V2P) communication considering VRU
has been published [263].

Advanced driving: platooning. A key ITS application that will benefit from the presence of
MEC is platooning [264]. The latter is a paradigm that allows a group of vehicles to drive together,
in line, decreasing the distance between vehicles. This allows for an increase in the number of ve-
hicles on the roads without incurring traffic jams, to augment safety, and to save money on fuel,
thanks to the drag effect, thus limiting the overall emissions. Platooning requires very low latency
because vehicles can travel several meters in a fraction of a second and a fast access to computing
capabilities. Figure 2.3 shows an example of platooning leveraging a possible MEC deployment
whose applications to platooning have been recently proposed in a few works. As an example
of system design, Montanaro et al. [219] present a 3-tier architecture for controlling and manag-
ing platoons of vehicles using cloud and edge computing capabilities. Furthermore, the authors
of [220] propose a MEC architecture to avoid shock waves, for instance, due to asynchronous
brakes, during platoon driving. As an example of computing opportunities offered by platoon-
ing, the authors of [265] study the offloading decision of collaborative task execution between a
platoon and a MEC server, to minimize task offloading decisions. In [221], the authors provide
a framework where the MEC performs a platoon formation and coordination algorithm, receiv-
ing periodic updates from vehicles on speed and position. They show that their algorithm achieves
low computations and delays in a realistic LTE-Advanced simulation scenario. Quadri et al. [266],
[267] state that a MEC centralized control of speed and acceleration of platoon vehicles is a viable
alternative to common distributed approaches such as V2V communications. Through a detailed
Python simulator, they show how, notwithstanding the impact of delay and packet loss probability
caused by new UL/DL communications towards the RAN, a MEC centralized control of platoons
in 5G networks will help in reducing fuels costs (i.e., allowing smaller inter-vehicle distances),
while at the same time supporting a large density of vehicles without incurring in congestions.

Recent papers also study the platooning use case. For instance, in [268], the authors propose a
high-level ETSI-aligned architecture for MEC-assisted platooning control, where the centralized
platoon controller is a virtualized application running on an edge server, showing that it could be a
promising solution for support platoons with all driving-related tasks (e.g., joining a platoon, leav-
ing the platoon). Nardini et al. [269] propose the paradigm of Platooning-as-a-Service (PlaaS) in
a multi-operator ETSI MEC environment. In their paper, they describe a comprehensive software
architecture to implement ETSI MEC-based platooning in a multi-operator environment. In the
latter, operators leverage MEC federation to share, in a controlled way, the information that allows
users to locate, join, cruise along with, and leave, platoons formed by vehicles subscribed to mul-
tiple operators. Carletti et al. [270] state that redundant context information from nearby vehicles
in the platoon can increase computational costs for the Platoon Leader and that a possible solu-
tion could be to form vehicular micro-clouds to enable collective data processing and aggregation,
thus reducing the Platoon Leader’s perception workload. Their solution is called Platoon Local
Dynamic Map (P-LDM) and the idea behind it is to create a single database of context informa-
tion, distributing the data aggregation load among all members of the platoon. Other papers focus
also on computation offloading in a platooning scenario. The authors in [271], [272] study how
UAV-assisted MEC can support a platoon of vehicles while Zheng et al. [273] consider the gen-
eral problem of optimizing the allocation of both the communication and computing resources for
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vehicles offloading their computing tasks to other platoon members. Finally, the authors in [274]
use deep reinforcement learning to train vehicles to form platoons when sharing a similar path to
decrease the amount of fuel consumption.

Other advanced driving assistance: While platooning has been extensively studied by re-
searchers, also other advanced driving assistance use cases have been investigated in recent years.
Liu et al. [275] want to achieve real-time global information in high-definition maps and there-
fore they propose to share perception information among connected and automated vehicles. To
achieve this goal, they design both a data plane to detect, match, and track objects on the road and
a control plane with two new algorithms to schedule vehicles and optimize offloading decisions
under network dynamics. Tesei et al. [276] propose an architecture for deployment at the edge
of real-time and mission-critical autonomous driving applications. In particular, they describe and
show how this particular architecture could support a Cooperative Autonomous Driving Maneuver
Control application for the cooperative lane change use case. Focusing on the architecture side,
in [277] the authors propose to merge ICN and NFV in 5G networks to support Advanced Driver-
Assistance Systems (ADASs) based on AR. This novel architecture has the double goal of both
high mobility and real-time requirements of ADASs and resource orchestration and service man-
agement of big data in intelligent transportation systems and they will implement it in a real sce-
nario. Similarly, Giannone et al. [278] focus on a scenario with the double goal of supporting the
QoE of an in-vehicle infotainment video delivery service, while taking into account the required
bandwidth for coexisting high-priority services, such as ADASs. They build their approach on the
ETSI MEC standardization, leveraging for instance MEC-native services such as the RNIS. Also
the authors in [279] describe a real-world scenario for the development and testing of ADASs with
cellular networks. On the same line, the authors in [280] propose EdgeDrive a networked edge
cloud services framework that can support low-latency applications during mobility taking into ac-
count the needs of the driver, nature of the required service and key network features. Some works
consider also AI applied to autonomous cars and to human behavior [281], [282] . Vyas et al. [283]
state that predicting both driver’s stress and behavior is a feature of ADASs systems. Therefore, in
their work, they analyze historical trip data to calculate the driving stress and its impact on differ-
ent driving behaviors. They use LSTM to predict the corresponding stress level of the driver and
leverage Federated Learning in a Vehicular Edge Computing architecture, enabling RSUs to do
all computing of data (i.e., training) on them. For interested readers, the authors in [284] provide
a survey on autonomous driving applications deployed on autonomous embedded platforms and
edge devices, focusing especially on energy-efficient approaches for connected autonomous driv-
ing, ranging from vehicular communication, edge computing, approximation techniques to novel
software-hardware frameworks.

Vehicular clouds. Several works propose to move the computing resources within the ITS
users. Zhang et al. [212] propose a hierarchical cloud-based Vehicular Edge Computing (VEC)
offloading architecture, to reach the optimal computation offloading, considering both the mini-
mization of task delays and the maximization of the network provider’s revenue. Similarly, the
authors in [285] show how the presence of computing resources in cars could help in sustaining
the offloading of computing tasks of low-latency applications. In [211], the authors propose a col-
laborative MEC scenario depending on the so-called heat zones, where the different degree of heat
stands for vehicle density inside a certain area, for vehicular task offloading. To achieve the MEC
cooperation they formulate it as a utility maximization problem by designing a non-cooperative
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game-theoretic strategy. Through simulations, they show the feasibility of their solution compar-
ing it with several policies. In [157], the authors propose to use FMeC for handling computing
problems with the computing power of vehicular clouds (see Section 2.1.2 for further explana-
tions). Other works focus on the possibility of using the vehicles themselves to create a (micro)
cloud. In particular, this branch of research is often referred to as vehicular cloud computing.
The definition was first proposed by Gerla in [286] and it has been further developed in [287].
With the vehicular cloud computing paradigm, a user sends a request to a car using V2V or V2I
communications and then the request is forwarded to discover a communication path to a vehicle
offering the desired computing service. Afterward, data exchange and computation happen. For
instance, Copeland et al. [214] describe the AVEC paradigm (automotive virtual edge communica-
tor), which leverages computing resources and advanced technologies that could be present inside
vehicles and that could be exploited during emergencies. In [215], Dressler et al. leverage parked
cars as edge network and storage infrastructure, forming, therefore, a vehicular cloud, to boost the
performance and scalability of vehicular networks. In this scenario, they propose a protocol called
virtual cord protocol, to sustain the dynamic of this scenario (with cars that can come or leave) and
show that their protocol can sustain this scenario. Hagenauer et al. [216] introduce the concept of
vehicular micro clouds (a cluster of cars acting as virtual edge servers). These clusters aggregate
all the data which are then transferred to the data center in the cloud. In their paper, they propose
a map-based clustering, which is then evaluated against different aggregation rates and backhaul
technologies. In another paper [217], the same authors deal with two major problems given by this
infrastructure: the selection of the gateway nodes and consequentially, the handover procedures.
In [218], Dressler et al. propose a novel approach called macro-micro-cloud, to reduce the com-
munication complexity and improve the QoS, exploiting an additional layer, called virtual edge
computing layer, between the data center placed at the core of the network and the users which
should use the MEC features. This part is called macro cloud, while the micro clouds are clusters
of cars.

Infotainment. Finally, some examples of vehicular infotainment are provided. Ndikumana et
al. [222] propose to serve self-driving cars by deploying MEC resources at macro base stations,
Wi-Fi access points, and roadside units for caching infotainment contents near the customers. The
same authors, in [223], propose infotainment caching in self-driving cars, where caching deci-
sions are based on passengers’ features obtained using deep learning, showing that their approach
reduces the backhaul traffic by 61%.

IoT and Smart City

IoT: IoT takes under its umbrella all the devices that can connect to the Internet. Some examples
are UAVs, devices for home automation such as lighting, fridges but also Alexa, Google Home,
medical devices, and manufacturing devices. They all need different requirements in latency,
storage, bandwidth, and security [288], and to support the new possibilities given by 5G such as
network slicing [289]. Therefore, the advent of the MEC paradigm seems perfect to help IoT
meet all its requirements, as discussed in [290]. However, in this chapter, we do not focus on
the MEC support for general IoT, since in literature several surveys already cover this topic (see,
e.g., [291], [292] and [293]). We rather focus on new MEC-enabled verticals, one of which is
smart city.
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Smart City: Indeed, thanks to the increasing importance of the IoT paradigm, also cities are
now evolving, installing sensors and IoT devices and therefore becoming smart [294]. The collec-
tion of data from users, IoT devices, sensors, or more generic devices will allow us to understand
deeper which are the critical points of city management and therefore help develop new strate-
gies, to reduce costs, and improve safety and resource consumption. Furthermore, projects such
as SmartSantander [193], 5Gcity [232], or SynchroniCity [294] are giving a glimpse of what the
city of the future will look like. According to [294], five macro-themes are currently evaluated in
most of the smart cities:

• Mobility: This includes smart and secure car/bike parking, electric bike usage monitoring,
public transportation usage, traffic optimization, and adaptive lighting.

• Sustainability: Some examples are noise pollution planning, air quality evaluation, urban
waste management, and water management (also called Smart Water).

• Governance: for instance, agile governance, environment monitoring, open data accessi-
bility, and citizens’ engagements in urbanization.

• Data Mining: data lake value extraction.

• Security: citizens awareness of IoT.

We now comment on how the literature addresses those macro-themes.

MEC implementation: MEC seems the most promising technology to sustain the smart city
paradigm. Indeed, thanks to its multi-access paradigm, it will support the connectivity of a variety
of devices (GPRS/UMTS/LTE, Wi-Fi, or wired interfaces) altogether. Moreover, it can collect
and real-time process, for instance, large amounts of data, and store local information (for security
purposes), thanks to its deployed physical edge capabilities. Thanks to the low latency achieved
by the MEC presence, a driver could then be informed in a very short time if an accident happened
somewhere in the city and which alternatives, he/she could take. Similarly, cameras can perform a
first processing of the recorded images at the edge, sending the frames to a central cloud only for
special purposes.

Even though the literature on MEC in smart cities is still scarce (most of the papers are mag-
azines), it is possible to draw some directions on the ongoing research efforts. Several papers
tackle the issues of MEC implementation in smart cities or even in smart homes, the latter lever-
aging D2D communications [295]. For instance, in [193], the authors propose a MEC architecture
for large-scale IoT deployments (as Smart Cities) supporting existing and future IoT platforms
and compliant to the ETSI MEC standard. The authors of [235] propose a smart city scenario
in which real-time and time-sensitive applications offload their tasks to MEC servers deployed in
cars. They propose an optimization problem to minimize the completion time with a given cost of
task scheduling, developing four evolving task scheduling algorithms. Through simulations, they
compare them against each other, highlighting that only one (the distributed and improved Jacobi
ADMM algorithm) reaches performance close to the optimal.

Recent papers considered also the presence of UAVs in a smart city scenario. For instance,
in [240] the authors leverage UAVs for analyzing the position of vehicles in the industrial areas
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of the smart city while Xu et al. [241] consider an energy-aware multi-UAV task computation
management problem for tasks offloading and scheduling according to a realistic Autonomous
Delivery NETwork (ADNET). The authors in [242] propose to use MEC to assist electric ve-
hicles in deciding on where to charge or switch their batteries when they are close to finishing
their reserve. In this case, the presence of MEC could help by decreasing the amount of informa-
tion sent between vehicles and infrastructure (i.e., communication cost) and increasing the service
satisfaction rate. Thanks to the presence of MEC many application services could be run at the
edge of the cellular network. However, services could have different requirements (e.g., low la-
tency, reliability, etc.) and therefore it is fundamental to understand how to efficiently deploy
these services to fully support all types of applications. Within this research problem, the authors
in [243] propose MAACO, a Mobility-Aware priority-driven service placement model that priori-
tizes applications according to their criticality and minimizes critical applications’ latency, while
considering predicted paths for mobile users. In [244], the authors overview the merging of MEC
and ICN architecture, giving a possible use case for a smart city scenario. Finally, for interested
readers, the authors in [245] provide a survey on general edge computing in smart cities, devising
a taxonomy according to different parameters, such as edge analytics, edge intelligence, resources,
caching, resource management, characteristics, sustainability, and security.

Machine learning: Furthermore, in smart cities it is important that decisions at MEC level
are fast and mostly correct. Machine learning, especially in the form of DRL, seems a promising
solution to achieve these goals. In [231] the authors propose a framework that leverages SDN,
ICN, and MEC computing capabilities to provide caching and dynamic orchestration of comput-
ing resources at the edge. Their goal is to improve the performance of applications in Smart Cities.
They developed a big data DRL algorithm and through simulations, they showed the higher per-
formance of their solution in terms of total utility (up to 60%) compared against several schemes
(e.g., same scheme but without edge caching or virtualization etc.). Liu et al. [233] state that green
energy management systems are becoming more and more important due to the development of
smart cities. Hence, they develop a model for an IoT-based energy management system, lever-
aging DRL, on top of an edge computing infrastructure. They compare their solution in terms
of delay and energy cost against baseline energy scheduling methods (e.g., only-cloud methods),
showing that their DRL-bases method achieves less energy cost (up to 60%) and a smaller overall
delay (25%).

Recent papers also use advanced or novel ML techniques. For instance, the authors in [246]
use distributed deep learning to perform tasks offloading from IoT devices, considering the pres-
ence of heterogeneous computing environments (i.e., edge and cloud nodes). Ale et al. [247] state
that IoT services demand exhibit spatial-temporal features and therefore it is of uttermost impor-
tance to deploy and allocate MEC servers at optimal locations to meet service requirements in a
smart city. They propose a spatiotemporal Bayesian hierarchical learning approach to learn and
predict the distribution of MEC resource demand over space and time to improve MEC deployment
and resource management. Instead, Siya et al. [248] propose a RL-based joint communication-
computational resource allocation algorithm, showing that it achieves saving energy consumption,
reducing processing time, and guaranteeing QoS for 5G applications in smart cities. The authors
in [249] focusing on traffic congestion and road congestion, propose a Deep Learning algorithm
to build a short-term traffic flow prediction model of 5G IoV while Want et al. [250] propose a
data augmentation based cellular traffic prediction model using generative adversarial networks to
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improve the cellular traffic prediction performance while protecting data privacy and alleviate the
negative impact of data insufficiency.

Zhao et al. [234] study the always-changing service demand due to crowds in a Smart City.
To balance the network load and avoid network congestion and annoying delays, they developed a
smart algorithm based on DRL, showing that it achieves better performance than algorithms such
as OSPF and EOSPF (from 10% and up to 50%, on average).

Video streaming: smart cities themselves will also be a container where other verticals (e.g.,
automotive, media, manufacturing) will be merged and further studied. However, in this context,
only media has been evaluated in smart cities with MEC so far (especially for video streaming).
In [232], the authors explain the 5Gcity project, which has the goal of creating a MEC neutral
host platform for smart cities, focusing especially on ultra-high definition video streaming, live
streaming, and AR/VR use cases. To show the feasibility of their architecture, they evaluate
three different use cases by deploying testbeds in three European cities (Bristol, UK; Lucca, Italy;
and Barcelona, Spain), In another paper that tackles video streaming in smart cities, Taleb et
al. [296] propose the merge of FMeC concepts (evaluated in Section 2.1.2) with MEC capabilities
to maintain constant the QoE of video streaming while users move. Specifically, they enable MEC
service migration to follow users. Zhao et al. [251] propose a hierarchical emotion recognition
system using DNN enabled by MEC, since according to them computing DNN tasks in IoT devices
will be too costly while the authors in [252] propose a classical joint video content caching and
user association in MEC networks, to decrease overall latency and handover latency in smart cities.

Security: Both security & privacy are topics of uttermost importance for smart cities. Indeed,
collecting, managing, and processing sensible data at the edge could lead to attacks from malicious
users or to data breaches, with catastrophic scenarios. The next discussed group of papers focuses
on several security aspects of MEC in smart cities.

In [237], the authors propose a selective recommendation mechanism based on compiling dy-
namic black- and white-lists, to identify trustworthy participants that can access smart city devices.
With data-driven experiments, based on both personal health and air quality monitoring, they show
the effectiveness of their solution in avoiding malicious attacks in various scenarios, comparing it
also against other similar algorithms proposed in [297] and [298]. Wang et al. [238] focus on the
security threat given by low-cost IoT devices and the MEC deployment near the RAN. They state
that upper-layer cryptography is not feasible for resource-limited scenarios and propose a com-
parison between information security mechanisms implemented via physical layer approaches.
Rahman et al. [236] propose a framework that leverages blockchain, AI, and edge nodes to offer
secure smart city services (sharing economy, smart contracts, and cyber-physical interaction. Fi-
nally, Gheisari et al. [239] propose a privacy-preserving architecture, leveraging ontology at the
edge network, for IoT devices in a Smart City scenario. Through simulations, they show that the
ontology would allow for preserving privacy in a heterogeneous IoT scenario.

Recent studies consider the task offloading problem coupled with privacy/security concerns,
leveraging techniques such as game theory [253], [254] or deep learning [255]. In the latter in
particular, the authors propose a novel MEC architecture in a smart city scenario to mitigate IoT
attacks, using federated deep learning. Finally, some papers use blockchain as a way to increase
security and privacy. Lin et al. [256] propose a Peer-to-Peer (P2P) computing resource trading sys-
tem to balance computing resource spatiotemporal dynamic demands in an IoV-assisted smart city,
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leveraging blockchain to guarantee privacy and security. They formulate a two-stage Stackelberg
game, evaluating their proposal through numerical experiments. Similarly, Ye et al. [257] study a
task offloading IoV scenario with MEC nodes deployed in a smart city context using blockchain
for added security. They formulate an optimization problem and a MDP, proposing then a deep
reinforcement learning algorithm.

Table 2.4: List of papers related to media, manufacturing and eHealthcare verticals

Industrial
verticals

References Use Case Tools Evaluation
Most relevant lessons

learned

Media

[299], [300], [301]
[302], [303], [304]
[305], [306], [307]
[308], [309], [310]
[311], [312], [313]
[314], [315], [316]
[317], [13], [318]
[319], [320], [321]
[322], [323], [324]
[325], [326], [327]
[328], [329], [330]

- ABR video
streaming with MEC

- Cache placement
- Block chain video

streaming assisted
by MEC

- QoE enchantments
- Cooperative video

processing
- AR/VR/XR support
- Metaverse
- UAV assisting

video streaming
- Digital Twin

- (M)ILP
- Optimization
- Auction
frameworks

- Dynamic
programming

- Optimal matching
theorem

- Multipath routing
algorithm

- Lyapunov theory
- Machine Learning
- DRL
- Lagrangian
optimization

- Numerical
simulations

- Network
simulations

- Testbed
performance
evaluation

- Caching with MEC will improve
backhaul traffic load and average
access delay with respect to
established approaches

- MEC, together with fiber-wireless
access networks, will outperform
the Mobile Cloud Computing
paradigm in terms of RTT
latency (up to 50% of difference)

- MEC could support VR in
in terms of latency reduction
(compared in scenarios w/o MEC)
and energy efficiency

- MEC processing of VR tasks
will decrease the traffic in core
and radio access up to 80.5%)

Manufacturing

[331], [332], [333]
[334], [335], [336]
[337], [338], [339]
[340], [341], [342]
[343], [344], [345]

- Resource scheduling
for manufacturing

- Multi-tier MEC
for satisfying IIoT
requirements

- Task offloading
- Avoiding deadlock in

resource provisioning
- Digital Twin
- Automated Guided

Vehicles (AGVs)
- Support smart

factory process

- DQN
- Multi-agent DRL
- Two-step
algorithm

- Deadlock
avoidance
algorithm

- D2D offloading
with MEC

- Prototype
evaluation

- Numerical
simulations

- ETSI-MEC
compliant
simulations

- MEC’s proximity will decrease
computing delays (up to 40%)
and energy consumption.

- Some examples of devices
affected by the energy
minimization are AGVs and/or
robots in smart factories

eHealthcare

[346], [347], [348]
[349], [350], [351]
[352], [353], [354]
[355], [356], [357]
[358], [359], [360]

- Abnormal patter
detection in patient’s
state

- Comprehensive
MEC architectures for
smart health

- EEG- based
pathology detection
system

- Blockchain based
health monitoring

- Monitoring COVID-19
- Internet of Medical

Things

- Feature extraction
- Signal processing
- Tree-based deep
model

- Bloom filter
- Deep Learning
- Stackelberg game
optimization

- Blockchain
- Sample Average
Approximation

- D2D

- Numerical
simulations

- Testbed
experiments

- MEC will help health applications
in a wide range of fields, from
Data reduction, bandwidth and
energy saving and low latency

- MEC will reduce the latency up
to 50% compared to cloud-based
networked healthcare systems

- Different computing models
could support distinct
eHealthcare use cases

Media

As of today, 70% of the overall data traffic is owned by video applications, e.g., it comes from plat-
forms like Netflix, YouTube, and Twitch. In the next years, this share is expected to grow due to the
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advent of virtual and augmented reality applications. These applications impose tighter constraints
than other video applications, especially in terms of delays, bandwidth, and computation [13],
[361]. Therefore, both for canonical video streaming and AR/VR, it is of vital importance to
move resources at the edge of the network, leveraging the new MEC paradigm.

Video streaming: In this context, MEC will be useful for increasing the overall Quality of Ex-
perience (QoE), exploiting several approaches such as caching, cooperation between MEC nodes,
and offloading of heavy computational tasks (e.g., transcoding), even merging these concepts.
For instance, Tran et al. [299] propose to leverage collaborative MEC servers to enhance video
caching and processing support for adaptive bit rate (ABR) video streaming. This collaborative
joint caching and processing problem is formulated through an integer linear problem, to minimize
the average access delay to video users. To address this problem, they formulate a low-complexity
online request. They use simulations to show that their approach outperforms by ≈ 20% caching
techniques such as Most Popular Caching and other schemes [362]. The authors of [302] study
the caching at the edge for improving the QoE of live video streaming. They propose two auc-
tion frameworks for the caching space allocation at backhaul (Edge Combinatorial Clock Auction
and Combinatorial Clock Auction in Stream), showing via simulations that they achieve higher
performance, about 10% better if compared to baselines.

In [300], the authors design a scenario for video streaming with MEC resources, studying how
fairness (of edge computation capabilities) and QoE can be improved with MEC against baseline
client-based DASH heuristics. Using a network simulator (SimuLTE) they show the superiority
of their scenario in terms of bitrate per client (20% higher on average), initial buffer delay (≈
15%-20% smaller), and Jain’s fairness index [363]. The goal of Long et al. [364] is to improve the
detection accuracy of human presence using cameras. They leverage cooperative MEC nodes for
pre-processing tasks. Their focus is especially on how to partition video tasks and how to match
tasks to edge nodes. The MEC, thanks to its edge computing resources, can exploit tools such as
machine learning and blockchain to support QoE improvements. The authors of [304] propose a
proof of concept based on LTE for MEC support for mobile video streaming. The MEC server
caches popular videos and, based on the radio condition, chooses the most suitable video quality.
They further propose two machine learning algorithms for popular video prediction and forecast
of channel quality. Through numerical simulations, they show, for instance, that the prediction
model for radio channel quality reaches over 80% of prediction accuracy. Instead, Liu et al. [301]
propose a blockchain video streaming framework assisted by MEC, where heavy computational
tasks such as video transcoding can be offloaded to MEC nodes. They compare their solution
against the same one without the blockchain component, showing that the latter performs worse,
up to 35%, in terms of average delay.

Finally, several papers tackle MEC implementation with real LTE testbeds, to support video
streaming. Martin et al. [303] design a new MEC component for video streaming called MEC4FRE.
This application retrieves data analytics from layers 2 (RAN awareness), 3 (media delivery met-
rics), and 7 (MPEG-DASH manifest for local caching) to dynamically prevent QoE degradation
and keep radio efficiency high. The authors compare their solution against a best-effort delivery
strategy in a real LTE infrastructure, where they proved that their solution achieves better perfor-
mance.

Ge et al. [305] present a novel MEC real-time QoE estimation VNF, which has been imple-

43



mented and deployed in a real LTE-A network edge. They show that their VNF can correctly
estimate QoE in real time and its CPU and RAM usage are both very low.

Recent papers continue to focus on increasing the overall QoE for end-users, using a vari-
ety of different techniques. For instance, the authors in [311] use a reverse-fuzzy particle swarm
optimization algorithm for QoE-aware offloading problem, while Shi et al. [312] consider a QoE-
aware MEC selection scheme to select the best MEC to serve end-users. The authors [313] for-
mulate a mixed integer nonlinear programming (MINLP) problem to minimize the video service
latency in a joint caching, computing, and power allocation problem. To solve this problem, they
transform the problem into an Integer Linear Problem and then which is thereafter solved by MAT-
LAB intlinprog function. Chen et al. [314] jointly address the caching placement, video quality
decision, and user association problem in the live video streaming service coupled with MEC
and formulate a NP-Hard problem which is then solved with a Lagrangian optimization. Also
in [315] the authors consider a joint optimization problem of video segment caching and transcod-
ing in MEC servers and resource allocation to improve the QoE. Again, their problem is NP-Hard
and therefore they propose a low-complexity heuristic. Some recent papers considered also the
presence of UAVs assisting MEC to support video streaming or other video-related actions (e.g.,
transcoding) [316], [317]. Interested readers, who want to deepen how MEC could support video
streaming should also check the following updated surveys [365][366].

AR/VR: Thanks to the recent technological hardware advancement, more and more realistic
Virtual Reality (VR) and Augmented Reality (AR) applications are present, notwithstanding the
demanding bandwidth and delay requirements. According to Huawei Technologies and the China
Academy of Information and Communications Technology (CAICT) [367], to achieve the entry
level of immersion experience in VR, with a 4K 2D video, the bandwidth provided to the service
should range between 20-50 Mbps with a round trip time (RTT) latency of maximum 40 ms.
Instead, for a full immersion experience (with a 24K 3D screen), the bandwidth should range from
2 to 5 Gbps and RTT below 10 ms.

Indeed, a recent paper showed how supporting VR would be impossible for current 5G net-
works and even for beyond 5G networks [13]. However, it is important to study novel techniques
that could be applied in future scenarios with next-gen technologies. For instance, Du et al. [318]
consider using bandwidth-rich terahertz (THz) communications to support the offloading to MECs
of the viewport rendering for high-quality immersive VR video service while the authors in [319]
study how cache placement in several MECs could help to sustain the end-to-end latency for VR
video delivery.

Indeed, according to [368], MEC features such as high proximity computing, proactive caching,
and support to mmWave are needed for AR/VR successful delivery, taking into consideration also
that computing and communications delays are the two most relevant bottlenecks in AR/VR cases.
Hence, a MEC deployment becomes of primary importance. The authors of [306] propose an in-
tegrated heterogeneous networking scheme, taking into consideration the fiber-wireless access
networks, using a virtualization technique to achieve the demands of the applications. They evalu-
ate their solution with a testbed, showing that this infrastructure supports the AR/VR requirements
and outperforms other paradigms such as Mobile Cloud Computing in terms of RTT latency (with
differences up to 50%). In [308], the authors define the main challenges for a full wireless inter-
connected VR (Quality-rate-latency tradeoff, Localization and tracking accuracy, green VR among
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others). Further, they focus on three possible interconnected VR study cases: the first is about
leveraging the joint resource allocation and computing, the second one shows the benefits stem-
ming from exploiting proactive computing against reactive computing, and the last one studies an
AR-enabled case with self-driving vehicles. With simulations, they show that with nowadays tech-
nologies it is still impossible to reach a fully interconnected VR scenario. Similarly, the authors
in [309] argue that most of the works in this area consider only computation-constrained MEC
scenarios, neglecting the communication perspective. Therefore, they propose a MEC framework
to reduce communication resource consumption by leveraging caching and computation resources
of VR devices. They formulate an optimal task scheduling policy to minimize the average trans-
mission data per task. Through numerical simulations, they show that it achieves higher per-
formance in terms of average communication costs (≈ 45%) compared to baselines. Immersive
videos for VR, also known as 360-degree videos, provide an interesting VR feature, thanks to
the omnidirectional view they offer. Several papers tackle the use of MEC for immersive videos.
Liu et al. [369] develop a multi-connectivity scenario for 360-degree videos (MEC’s computing
resources for active transcoding and caching +mmWave/sub 6 GHz for supporting high bandwidth
VR). Furthermore, within their scenario, they formulate a novel communication and computation
resource allocation problem. Through simulations, they compare their solution against cases in
which some technologies were not present, showing that it achieves better performance in terms
of latency and energy efficiency (from 15% up to 25% on average). In their paper, Sun et al. [310]
model several trade-offs between communications, caching, and computing with MEC in a mobile
360-degree VR scenario. They first propose a novel MEC framework for this scenario and then
formulate an optimal joint caching and computing policy to minimize the average transmission
rate, under several constraints (latency, cache size, and average power consumption constraints).
They obtain a closed-form expression and evaluate it against several greedy algorithms, showing
that it achieves higher performance (depending on the scenario, from 30% to 50%). Mangiante
et al. [307] propose a rendering solution for 360-degree videos leveraging MEC, to optimize the
latency and bandwidth resources. Through preliminary tests, they show the benefits of having an
edge network infrastructure in terms of reducing by up to 80.5% data traffic delivered towards a
centralized cloud and radio access.

Recent papers considered also using machine learning techniques such as RL [320] and DRL
video [321].

XR/Metaverse: Two novel concepts recently introduced are the eXtended Reality (XR) and
the Metaverse. The first one is an umbrella term that describes immersive technologies that can
merge the physical and virtual worlds (i.e., reaching for instance the digital twin paradigm). Un-
der its term, it blends AR, VR, and Mixed Reality (MR). Within this paradigm, at the moment
researchers focused on applying ML techniques such as DRL to support the offloading of XR
tasks to MEC/cloud systems [322], [323], or using a cooperative non-orthogonal multiple access
(Co-NOMA) scheme to support several XR devices [324]. Instead, regarding the Metaverse, which
refers to creating virtual worlds where users control and interact with avatars, researchers focused
on different aspects such as proposing novel architectures to support the stringent requirements of
the metaverse [325], or creating novel QoE metrics, such as the “meta-distance" (i.e., to measure
both the service delay and social distance among metaverse users) [326]. Others focused on the
digital-twin aspects of the Metaverse [327], [370] on localization (e.g., how MEC could help in
decreasing the end-users localization errors [328]) and finally Yao et al. [371] leverage blockchain
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to create an assisted secure cross-metaverse authentication scheme in a MEC-metaverse enabled
scenario. For interested readers about the Metaverse, two interesting surveys have been recently
published [329], [330].

Finally, we mention that an updated review of some aspects of this vertical has also been
presented in Section 1. In that section, we reviewed recent papers on cloud/edge gaming and
MAR, with a particular emphasis on jobs/tasks offloading and energy aspects.

Manufacturing

In 2019, the 5G Alliance for Connected Industries and Automation (5G ACIA)6 was created. Its
goal is to apply 3GPP 5G specifications for Smart Factories [372] to the operation of manufactur-
ing and processing industries. 5G ACIA has six working groups, covering aspects like architecture
and technology for industries, use cases and requirements, and spectrum and operating models
among others.

Smart factories are context-aware systems that “assist people and machines in the execution
of their tasks” [373]. The context includes the status and position of an object based on virtual and
physical information available, enabled by both machine-type communications and IoT devices.

The MEC is an important means of implementing some of the key design principles intro-
duced with the Industry 4.0 paradigm. In particular, it paves the way towards interoperability of
machines, virtualization of physical resources, decentralization, and real-time capabilities in the
analysis of data (thanks to the support of VNF, 3rd party, and industrial applications). The use of
MEC also helps in terms of achieving low delays, which is vital for some IIoTs applications that
tolerate no more than 250 µs delay [374] (such as robot motion control and packaging machines).

In real case examples, the MEC might have access to all the processes in a Smart Factory, from
logistics to supply and inventory management. The MEC might therefore be able to retrieve data
from all the sensors of IIoT devices, and automatically and dynamically make decisions according
to a predetermined goal.

MEC infrastructure: Due to the diversity and complexity of factories in terms of produc-
tion, machinery, spaces, and specialized workforce, the MEC infrastructure needs to be carefully
designed to allow the proper level of flexibility for smart manufacturing plants. A first attempt
to provide a specific MEC infrastructure for smart factories is in [331]. The authors propose a
3-level hierarchical smart factory architecture, in which they highlight a physical resources layer,
a network layer, and a data application layer. The first layer contains all the manufacturing re-
sources that, through sensors and RFID (among others), can interact with the second level. The
latter includes networking technologies such as access points access and switches (deployed ac-
cording to new paradigms like MEC and SDN). Finally, the third layer allows for the analysis of
the retrieved data to gather useful information about the status of the smart factory, to be sent to
end users (workers or engineers). Similarly, Dao et al. [333] propose an mMEC, i.e., a multi-tier
MEC architecture keeping in mind several IIoT challenges such as the processing of big IIoT Data
with ultra-low latency and reliable response, and context awareness. Finally, the authors of [332]
propose a hybrid computing solution framework, to propose a resource scheduling strategy for

6https://www.5g-acia.org/
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real-time smart manufacturing applications in an edge computing scenario. Through a proto-
type implementation, they show that their strategy outperforms other approaches, e.g., centralized
cloud, in terms of computing latency (≈ 15%-33% on average).

Reliability: This is a topic of uttermost relevance in smart factories. IIoT devices need >
99,999% of successfully transmitted packets, to avoid malfunctioning in the production lines and
accidents that could harm workers. The following papers provide the most relevant examples of
issues that impact the overall reliability of a MEC system in smart factories. The authors in [335]
study a resource request banker’s algorithm to avoid deadlocks that could occur in the presence of
several IIoT devices accessing the MEC resources (a behavior that they confirmed through sim-
ulations). With their algorithm, they prove that the probability of a deadlock in a MEC scenario
will be reduced up to 12% compared to a scenario without any deadlock avoidance algorithm.
Luo et al. [336] propose an adaptive task offloading auction mechanism that allows Industrial
Cyber-Physical Systems (ICPS) to offload their tasks to several MEC servers chosen based on
task deadlines and the required security levels. Using simulations, they show the superiority of
their approach compared to baseline schemes using randomized and FIFO scheduling. Finally,
the authors in [334] propose a two-tier partial offload MEC-cloud framework in a heterogeneous
energy-constrained IIoT scenario to optimize the transmission reliability and IIoT energy con-
sumption. They formulate a low-complexity solution and evaluate it through simulations. They
compare their algorithm against two baseline solutions, showing that it achieves higher perfor-
mance in energy consumption and blocked devices (from 10% to 20%).

Recent papers tackle several aspects of smart factories. For instance, Hsu et al. [337] propose a
two-tier MEC architecture for the partial task offloading in a computation, and communication (of
licensed and unlicensed bands) resource allocation problem, considering both energy efficiency
and QoS satisfaction. In [338], the authors also study the problem of task offloading coupled
resource scheduling. In this case, the scenario is multiple Automated Guided Vehicles (AGVs)
performing smart factory patrol service and the authors’ goal is to minimize the overall energy
consumption of the AGVs, by jointly using MEC and D2D offloading. Other papers propose
using Machine Learning. For instance, in [339], the authors use DQN to schedule tasks from a
smart factory process in an edge-cloud architecture, while Cao et al. [340] propose a Multi-agent
DRL approach for the multichannel access and task offloading problem in a MEC-enabled indus-
try 4.0 scenario. Some papers consider the ETSI MEC standardization paradigm in their work.
For instance, the authors in [341] implement in ns-3 ETSI MEC entities and functionalities to al-
low the simulation of smart factory scenarios with an ETSI MEC-compliant architecture. Instead,
Borsatti et al. [342] propose an ETSI-MEC compliant architecture to support the automated de-
ployment of Industrial IoT applications at the edge while in [343], the authors want to satisfy the
requirements of industrial applications using traffic steering, using ETSI-MEC nodes for packet
payload inspection and processing. The authors in [344] propose a MEC framework to support
the instance of an IoT service layer at the network edge to enhance the QoS of IoT applications,
showing as an example the remote control in manufacturing. Lee et al. [345] instead propose
an integration of the blockchain concept in MEC systems to support smart manufacturing sys-
tems. Finally, for interested readers, the authors in [375] surveyed how MEC-empowered network
slicing solutions could sustain IIoT scenarios.
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eHealthcare

Another important vertical that is gaining attention is eHealthcare. Medical tools are becoming
more and more sophisticated, with multiple sensors and data (ranging from video, signals, and
personal data) that have to be processed. Moreover, consumers are paying progressively more
attention to well-being, with an increasing demand for quality devices, safety, and data storage.
Therefore, these requirements bring the necessity to move computational resources closer to de-
vices, to perform faster, efficient [376] and accurate decisions.

Edge nodes can also be leveraged for performing data pre-processing, to send only selected
data toward a centralized cloud, helping in both reducing bandwidth utilization and improving
privacy. On this line, the authors of [346] study an abnormal pattern detection mechanism of a
patient’s state at the edge of the network, where edge nodes send only the most important features
in a centralized cloud. Further, in case of detected anomalies in the patient’s state pattern, it pings
the nearest healthcare provider. In another paper, the same authors enhanced the framework pro-
posed earlier with the MEC architecture [350], highlighting the benefits that MEC will bring in
several smart health applications (for instance low latency for real-time epileptic seizure detection
or prediction of bradycardia in preterm infants or reducing bandwidth allocation for continuous
services such as remote cardiac monitoring or Parkinson’s disease detection). Similarly, in [347],
the authors leverage the MEC for a preliminary data processing of electroencephalogram signals
(for smart pathology detection) before sending the data to a centralized cloud. Pace et al. [351]
propose to create an edge layer between cloud and IoT devices belonging to end users, to reduce
communications delay and increase privacy levels. They evaluate their framework with a real test
bed in two different scenarios (workers in a factory and athletes in a fitness center), showing that
their framework would reduce the communications delay and the overall data transmitted to the
centralized cloud by 20%-50%. In [349], the authors propose to collect health information to mon-
itor patients’ health via UAVs and then process the data in MEC servers (possibly in the nearest
one) leveraging blockchain to increase data security. Through simulations, they show the effec-
tiveness of their scenario. Chen et al. [348] describe a cognitive edge computing smart-healthcare
system, with the double goal of evaluating the patient’s health using an edge cognitive computing
paradigm and, depending on the health-risk grade of each patient, allocating edge communications
resources to better assist them in emergencies. Furthermore, in [352], Muhammed et al. propose a
framework called UbeHealth, which leverages edge computing, deep learning, big data, and high-
performance computing to support healthcare systems in smart cities. They developed a proof of
concept and performed an evaluation based on a nationwide networked healthcare system with
three different data sets. They show that, with their proof of concept, latency is reduced by 50%
compared to cloud-based healthcare solutions. Finally, Li et al. [377] present Edgecare, a secure
and efficient data management system, to improve the management of decentralized healthcare
data, leveraging edge computing paradigms such as MEC. They propose an optimization prob-
lem and, through numerical simulations with security analysis, showed the effectiveness of their
framework.

Novel papers also tackle the eHealthcare scenario. The authors in [353] propose a task of-
floading problem in an IoT-eHealth scenario where devices could also migrate (and therefore tasks
allocated in edge servers should be migrated). They propose a Multi-Stage Stochastic Program-
ming formulation and solve it using a Sample Average Approximation algorithm. COVID has
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widely impacted the lives of millions of people and researchers started to study this phenomenon
correlated with MEC. Feriani et al. [354] propose a hierarchical MEC framework to monitor the
physical conditions of human subjects and COVID-19 symptoms in particular (e.g., fever, cough-
ing, and fatigue) while in [355] the authors envision several use cases for realizing contact-less
approaches that assist the mediation of COVID-19. Suraci et al. [356] proposes an eHealth system
architecture, in which low-latency enabling technologies like Device-to-Device (D2D) communi-
cations and MEC are integrated and supported by security mechanisms. Their goal is the optimal
management of sensitive health data collected by Internet of Medical Things (IoMT) devices.
Zhang et al. [357] develop an algorithm that employs a forecasting model to extract user behavior
characteristics and quantifies the forecast results reasonably by introducing queuing theory, pro-
viding a basis for the matching of resources and users. Blockchain is also studied in this domain,
especially for security aspects. In [358], the authors design a data-sharing scheme, which enables
data exchanges among healthcare users by leveraging blockchain and interplanetary file systems.
Particularly, they integrate a smart contract-based authentication mechanism with MEC to perform
decentralized user access verification without requiring any central authority. In [359], the authors
propose a Combinatorial Auction and Improved Particle Swarm Optimization Computation Of-
floading Approach (CA-PSO) for the offloading at the network edge of low-delay healthcare in-
formation given by Internet of Medical Things (IoMT) devices. Alekseeva et al. [360] study how
three computing models (local computing, MEC, and Mobile Cloud Computing) could support
several eHealthcare use cases such as Remote medical examination, robotic surgery, and cardiac
telemetry. For interested readers, the authors in [378] delineate future research efforts for the
eHealthcare vertical in 6G networks.

Summary, lessons learned and open challenges

During our literature review in 2019 we discovered that, in general, so far MEC had not been fully
evaluated for vertical industries. Most of the papers reviewed were architectural, with few of them
that analyzed real datasets or evaluate performance figures of real devices.

Looking at a more general perspective, Tables 2.3 and 2.4 show that the most studied verticals
were automotive, smart city, and media. With the help of the table, we next updated the review on
lessons learned and open research challenges for each of the verticals.

Automotive: Focusing firstly on the automotive domain, we see that MEC is considered a
fundamental building block for achieving efficient C-V2X communications and novel use cases,
thanks to its possibility to achieve low latency [259], [260]. The main takeouts can be summarized
as follows:

• 5GAA has identified four possible use case groups: safety, convenience, advanced driv-
ing assistance, and VRU. Important research efforts have been devoted to safety and VRU
([206]–[210], [224]–[226], [228]–[230]), showing that the MEC presence, thanks to its
proximity to the end users and high computation power and pervasivity [228], will be of
great help to improve both vehicle and pedestrian safety (for instance by offloading the
computation of collision detection algorithms to close MEC servers). Indeed, according to
to [209] 100% of collisions with autonomous cars could be detected on time, while with
human drivers the number slightly decreased by 14%. Notwithstanding, particular caution
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should be made to users who are changing the edge server to which they are anchored [224].
Finally, some works also provided results and considerations from real-world experiments,
showing the feasibility of MEC for VRUs in real case scenarios [225], [226].

• However, offloading decisions are not trivial to make, since they should also consider the
presence of a possibly high density of vehicles [211], and revenues generated by different
vehicles [212]. Novel metrics and tools could help study the network performance, such as
AoI [229]. Due to the scarce presence of edge nodes, also the orchestration or resources is
very important [230], [379].

• MEC will also help to provide infotainment to drivers and passengers ([125], [222], [223]),
especially leveraging caching together with deep learning, which allows reducing backhaul
traffic by 61%.

• Most of the available papers have identified several technical challenges, such as enabling
edge communications ([213] proposes to use three different access technologies), or ad
hoc computing resources such as vehicular clouds [214]–[216], [218]. The vehicular cloud
paradigm allows computing resources even within vehicles, pushing the MEC paradigm to
the very edge. This scenario however imposes tough challenges due to its volatility (for
instance, a car might join the cloud at any time). Specifically, data management and com-
munications between clouds and backhaul (both in uplink/downlink) become cumbersome,
needing, therefore, more in-depth research effort.

• Furthermore, it emerges that the MEC also supports pioneering assisted-driving applica-
tions, such as platooning. Several papers addressed this topic, showing that MEC offers
a possible solution to sustain this paradigm. For instance, [219] and [220] propose an ar-
chitecture for managing platoons and avoiding shockwaves, [265] focused on offloading
decisions, [221] proposed a MEC that can form and coordinate platoons. [266], [267]
showed that a MEC centralized control of speed and acceleration of platoon vehicles is a
viable alternative to V2V communications. Some recent papers also studied the support of
platoons through a standard ETSI MEC architecture [268], [269] while others considered
the general problem of task offloading in a platooning scenario (leveraging edge servers
or the presence of computation in vehicles in the same platoon [273]. Some works even
studied using UAVs to support the formation and control of platoons [271], [272]. With
the advancement of new technologies, also new papers consider different assisted-driving
applications. [270] and [275] for instance focused on developing tools for creating high-
definition maps to support vehicles or platoons, while in [276], the authors presented an
architecture to support a Cooperative Autonomous Driving Maneuver Control application
for the cooperative lane change. Other works [277]–[280] presented solutions to support
ADASs while a handful of papers use Machine Learning techniques to support assisted-
driving use cases [281]–[283].

Notwithstanding the large amount of published papers, still many open research challenges
remain, e.g.:

• Security is the uttermost theme to be developed in vehicular networks assisted by MEC.
Indeed, with the growing possibility of having more connected cars and edge resources
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on the road, there are also more possibilities for malicious attacks. These scenarios must
be avoided and therefore research should focus more on the security aspects of this new
paradigm that embraces connectivity and computation. Some examples of risky procedures
in the MEC environment are migration of resources (VMs and Containers), MEC deploy-
ment billing, and what refers to the coordination of multiple new nodes introduced with the
MEC architecture [199]. Some recent papers considered those security aspects [380], even
for instance relying on blockchain [381] but more works are needed.

• More work should also be oriented to VRU and general safety, with the development of new
collision detection or avoidance algorithms, also leveraging on prediction techniques given
by machine learning which take into account both physical resources and wireless chan-
nels [382]. In particular, novel machine learning techniques such as federated/distributed
learning could help the development of lightweight algorithms, since the training and val-
idation of these approaches could be done in local servers, thus enabling fast training and
also a secure one, since data will be confined in the local vehicles/devices/servers [383].
Also the smart deployment and management of resources (e.g., VNFs, containers, MEC
services etc.) [379] could play a role in supporting safety use cases, with also the goal of
ensuring reliable connectivity.

• According to Intel,7 a single autonomous car could generate up to four terabytes of data
each day. Hence, the MEC should be able to handle and process that amount of data. Which
is more, the MEC should support multiple autonomous cars at the same time. Therefore,
big data processing and analytics is of fundamental importance for both connected cars
and MEC paradigms. However, only a few works [275], [278] have so far addressed jointly
these issues in a vehicular scenario. A possible idea could be to make use of cooperation
between federated MEC nodes [384] to achieve better results. Another solution could be to
leverage Edge AI for real-time processing of sensor data, such as cameras and LiDAR, to
improve safety features like collision detection, lane-keeping, and adaptive cruise control.

• With the possibility to deploy computing resources at the edge, new business opportunities
arise, together with the possibility to increase revenues, in multi-operator scenarios [262].
While [212] provided a first example of a possible MEC-based revenue generating sys-
tem and in [385] the authors showed how deploying different MEC clusters could lead to
different monetary cost, more research is needed to cover the complexity of this scenario
fully.

• Many examples provided by 5GAA [262] and [386] have not been fully studied and evalu-
ated yet: while some examples have been studied (such as real-time situational awareness
and handling high-definition maps [270], [275], others have to been fully evaluated yet in an
ETSI MEC supported context (e.g., see-Through, self-driving cars, traffic management and
control systems). Moreover, future work should also consider 5G features such as network
slicing, or the support for new internet architectures, such as ICN [387]. Also, O-RAN will
become very important for future cellular network deployments and therefore it would be
interesting to study how O-RAN can support the automotive verticals together with edge
computing. Finally, it would be interesting to see how MEC could support human-machine

7https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-driving/
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interaction (e.g., allowing edge-based natural language processing, gesture recognition, and
augmented reality interfaces for a more intuitive and responsive in-car experience.

• Finally, the car manufacturing world is slowly shifting from traditional oil-based vehicles to
electrical/hydrogen vehicles. It would be interesting to study how and if this shift would
also affect the MEC support for vehicular networks, and if the MEC could play a role
in making cars greener and more efficient, and smarter in general. In particular, energy
efficiency will play a big role in future networks, and creating algorithms that not only
achieve good performance but are also energy-efficient (e.g., meaning for instance that they
require low computation at the vehicle’s side) would be important. Finally, for interested
readers, many novel surveys have been published tackling several aspects of automotive,
with some of them considering also the presence of edge computing [263], [388], [389].

Smart city: While IoT as a macro concept has been widely studied, what it has not been fully
explored yet is the MEC implementation in smart cities, where the MEC can play a fundamental
role in the communication part. Indeed, while the smart city paradigm embeds different verticals
(e.g., Automotive, Media, eHealthcare) altogether, it poses new challenges and constraints due
to its enhanced IoT deployment nature. For example, in the SmartSantander case, more than
20000 sensors (between fixed, mobile, and smartphone ones) and 2500 RFID tags [193] have
been deployed in a Spanish city (Santander), posing, therefore, scalability and QoS challenges
(for instance, how to avoid that collision between packets coming from hundreds or thousands of
devices would degrade the throughput significantly).

Below are listed some lessons learned and open research challenges:

• First of all, most of the papers surveyed are magazines, even though recently some papers
started to appear in journals, mostly in the IEEE Internet of Things Journal. While they
give a great overview of most of the possible technical scenarios for smart cities, they lack
an in-depth technical view, which instead is needed to better study this vertical.

• Several papers identify the need to define new framework architectures to support this ver-
tical. [193] proposed an architecture compliant to the ETSI MEC architecture, to support
enchanted IoT deployments, [231] merged MEC, SDN, and ICN for caching at the edge
while [232] showed the 5Gcity project, aiming to develop testbeds for UHD video stream-
ing in smart cities. More recently, in [244], the authors provided an updated overview on
the merging of MEC and ICN architecture, giving as an example a smart city scenario while
the authors in [255] considered a novel MEC architecture to mitigate possible IoT attacks.

• Many papers claim that optimization techniques and machine learning are key to finally
deploying smart cities ([231], [233]–[236]). Both [233] and [234] show that using deep
reinforcement learning for energy management systems at the edge and network load bal-
ancing in the presence of moving crowds can outperform traditional approaches (e.g., only
centralized cloud methods) and algorithms (such as OSPF and EOSPF) from 10% up to
60%. [235] shows how optimization problems for offloading tasks are crucial for real-time-
sensitive applications and [236] unveiled the advantages of blending blockchain, AI, and
edge computing to support sharing economy services. ML techniques could also be used
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to predict short-term traffic for traffic and road congestion [249], [250], to distribute tasks
offloading and/or resource allocation [246], [248]

• Finally, several papers point out that severe security issues are unresolved. [237] shows that
selecting trustworthy participants for accessing smart city services is desirable, while [238]
points out that the main information security challenges are in the physical layer. [239]
warns against the lack of suitable privacy-preserving mechanisms. However, several novel
research approaches considered security and/or privacy issues in their work, even though in
a task offloading/scheduling scenario [253], [254], [257].

Indeed, while the concept of smart city has been theorized many years ago, more technical
work is still needed to make it real:

• As for the other verticals, increasing connections between users and things in a smart city
context gives hackers the possibility to obtain important personal data, both directly (so-
cial security numbers, bank accounts, etc.) or indirectly (by inferring political or religious
preferences, etc.). Attackers could leverage the weaknesses of the network infrastructure.
Hence, more comprehensive work on security and privacy issues should be performed,
maintaining both a full stack overview and aiming at lightweight solutions, which could
be deployed on simple objects with the help of the MEC. Furthermore, we believe that re-
search should specifically consider security physical attacks such as power cutout, fire, and
link break [199] (due to the presence of a high population density scenario) creating a more
resilient distributed system. Several recent works in other verticals leveraged blockchains
to assure security and privacy and naturally seems a promising paradigm to leverage also in
a smart city scenario.

• Machine learning would be a useful tool to predict crowd/vehicle movements or network
traffic, e.g., to avoid congestion. Among all the techniques, federated learning seems the
most promising one to preserve users’ privacy, since it allows the decentralization of data
by only exchanging encrypted machine learning parameters between edge nodes and a cen-
tralized server. Recent works started to leverage advanced machine learning techniques
(e.g., Federated or Distributed Learning), but there are still many open issues such as how
and where to gather and keep the data, and where to process it (e.g., where to perform the
training and inference part). Similarly, as already discussed in Section 2.1.2, Green MEC
systems should be considered to reduce costs for operators or even for public administration
entities. For instance, edge nodes could control or gather data from smart grids, performing
therefore environmental monitoring.

• While the papers surveyed cover a quite wide spectrum, however, many real use cases are
still unexplored [294]. Some interesting examples are how to deal with waste manage-
ment in real-time through smart grids, the use of smart management, or the synchronization
of traffic lights given the presence of crowds and vehicles, leveraging also on ML tech-
niques. Other use cases would be to support users’ mobility, since only few works addressed
it [242], Public Safety and Security, supporting smart healthcare applications within urban
environments [251], Human-Centric Edge Applications that enhance the quality of life for
city residents MEC, thanks to its computing capabilities and user proximity, will be a possi-
ble enabler for these use cases. Researchers should also consider merging several verticals,
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like media or automotive, together with smart cities to provide a more realistic scenario. In
general of the five macro-themes discussed before (mobility, security, sustainability, gover-
nance, data mining) only the first three themes have been touched by researchers.

• Most of the works are theoretical: it would be interesting to leverage real testbeds such as
AWS Green Grass or Azure IoT Edge to compare the performance in real-case scenarios.
Moreover, cities are now becoming smarter and smarter, and coupled with the first presence
of edge nodes in smart metropolitan areas, it would be interesting to see works tackling
real-world case scenarios, datasets, and deployments.

• Researchers should also address these fundamental problems: how to provide scalability
with a high number of IoT devices (the SmartSantader project deployed more than 20000
sensors), interoperability between several propriety interfaces (for instance how to allow
communications and cooperation between AWS Green Grass, Azure IoT Edge, and the
ETSI MEC framework), study how to develop new business models (since this scenario
gives new revenue opportunities to operators), or how to support network slicing for multi-
ple tasks or verticals on a shared MEC server/infrastructure or support smart caching at the
edge.

• As a possible smart city sub-case, MEC together with smart homes has not almost been
evaluated yet. Nowadays, our homes are welcoming more and more “smart" devices (e.g.,
TVs, home automation devices, vocal assistants such as Alexa, and so on). MEC would
help those appliances in several ways: from contents cached in close MEC servers to im-
prove QoE to IoT Data pre-processing at the edge (leading to less information sent over the
internet, with implications on users’ privacy), to support of integration in the local smart
grid.

• Finally, an interesting paradigm in smart cities is UAV communications with MEC. Indeed,
UAVs (commonly known as drones) are becoming more and more powerful while at the
same time, their costs are decreasing. Nowadays, UAVs are exploited in many different
fields ranging from weather monitoring, and precision agriculture, to package delivery and
traffic control [390]. Therefore they are also evolving the concept of a smart city into a big-
ger smart “metropolitan” area (see Section 2.2). MEC together with UAVs enhance com-
puting offloading at the edge (with a UAV-based MEC server that computes users’ tasks) or
helps UAVs themselves during heavier computing tasks (particularly helpful since in most
cases UAVs batteries have a limited battery life) [293]. On the same line, LEO satellites
could fulfill or extend the UAVs’ role in enhancing the computation-communication con-
nectivity in smart metropolitan areas. Finally, MEC can exploit the O-RAN architecture
to better support UAV communications (e.g., to allow radio resource allocation for UAV
Applications or flight path-based dynamic UAV resource allocation [391]). For interested
readers, we mention more focused surveys related on MEC together with UAV communi-
cations ([292], [293], [390]).

Media: MEC will also help in the development of new reliable video streaming connections
and in the improvement of AR/VR applications, which impose very tight requirements on band-
width and latency. The key points we discovered are:
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• To improve the QoE of video streaming, a few approaches are beneficial: leveraging caching
thanks to the new MEC computing capabilities [299], [300], [302], [313]–[315],blockchain
([301]), cooperation between MEC nodes [299], [364], offloading of heavy computational
tasks such as adaptively adjusting bitrate or transcoding [299], [301], [303], [364], leverag-
ing technologies such as UAVs to assist video streaming [316], [317] and machine learning
techniques to forecast the channel quality [304]. The MEC will help in improving perfor-
mance from 20% up to 35%.

• Many works provide also insights on performance within real LTE infrastructures [303]–
[305], showing that the MEC presence, even just in LTE architectures, will be beneficial in
terms of QoE estimation to prevent degradation, mainly thanks to its computing capabilities
at the edge.

• On the AR/VR side, papers point out the need for a novel architecture [306], [368], [369]
able to manage resources to trade performance, communications, or computing capabilities,
taking into consideration the highly demanding AR/VR requirements, against the however
limited MEC resources [307]–[310]. Recent papers could also leverage novel technologies
such as terahertz frequency bands [318] or ML techniques such as DRL [321].

• Finally, some works start to focus on innovative but futuristic use cases such as XR and the
Metaverse. In particular, papers explore using advanced techniques such as DRL or NOMA
to support XR with a MEC system [322], [323], [324], while for the Metaverse, researchers
investigate the creation of digital twin models [327], [370] or consider other aspects such
as MEC-assisted users localization [328] and blockchains applied to Metaverse [371]. For
interested readers, two interesting surveys have been recently published [329], [330].

There are several open research challenges:

• Regarding video streaming, only a few works addressed the live case, which imposes tighter
requirements than classic video streaming. Live streaming websites such as Twitch and live
video conferencing are becoming more and more important for the everyday user, especially
in alert circumstances like the one generated by the Covid-19 pandemic, hence it would be
interesting to dig more into how to improve the overall QoE, leveraging the MEC concept.

• While some works propose to use ML to forecast channel quality ([304]), the possibility of
deploying an intelligent MEC node between the end users and a remote cloud server has not
been fully evaluated yet. ML can help with smart caching, forecasting the video streaming
load according to traffic patterns, and smart transcoding, among others, and therefore it will
be useful in resource-constrained scenarios.

• Most of the available testbeds use LTE. While 5G is continuing its rollout in several coun-
tries around the world, some works appeared that use 5G testbed and MEC for supporting
video streaming [392], [393]. However, it would be interesting to see more work relying on
real 5G infrastructures.

• On the AR/VR side, many works focus on the highly stringent requirements and perfor-
mance tradeoffs ([13], [308], [310], among the others), questioning whether edge/MEC
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solutions would be a possible enabler. The answer is still unclear: while it is undoubted
that for a fully interconnected VR, the road is still long, for baseline AR/VR, the MEC is
however helpful for some task offloading, transcoding, and caching functionalities. How-
ever, current MEC solutions are quite limiting, also because MEC resources should be
shared among different tenants, not necessarily belonging to the same vertical. In fact, for
latency reasons, task processing delays caused by high AR/VR task demands might be still
a relevant bottleneck for MEC and AR/VR applications. Therefore, tradeoffs between the
edge computing infrastructure and VR devices should be further evaluated [368] (see Sec-
tion 2.2 for further considerations). In the introduction chapter 1, we also focus on the
energy aspects of AR/VR, showing that these use cases are computational and therefore
energy energy-hungry. Most of the work done in the AR energy-efficiency domain focuses
on increasing the energy efficiency of devices or base stations (or both at the same time).
However, as mentioned in Section 2.1.2 the Green MEC paradigm could open novel pos-
sibilities for researchers to create a joint end-to-end energy efficiency scenario that jointly
considers devices, base stations, and MEC.

• Another important new sector is cloud gaming. While existing solutions are somehow lim-
ited so far (Nvidia Geforce Now) due to the stringent requirements of gaming streaming (for
instance, bandwidth requirements range from 10 Mbps for 1080p to a minimum of 35 Mbps
for 4K8), 5G and MEC proximity deployments to end-users will surely help this paradigm
to grow in terms of introducing newly available bands and offering smaller latency. This
would open new possibilities to research (and to markets). One research challenge consists
in enabling cloud gaming applications to leverage several access technologies at the same
time to increase the overall QoS and QoE. However, at the time of this thesis, many cloud
gaming services have closed for different reasons, with the biggest being Google Stadia.
This remarks how the presence of MEC could be an opportunity for cloud gaming ser-
vices providers to leverage added computing capabilities in the network, also thanks to the
growing presence of dedicated hardware (e.g., GPUs).

Manufacturing: Another vertical that would benefit from the MEC presence is Manufactur-
ing. Indeed, IIoT devices require low latency communications, high bandwidth, and computing
capabilities, reliability, and security and at the moment only edge computing can satisfy all these
requirements at the same time [394]. Reviewing the literature, we discover that:

• Most of the papers show the need to design a dedicated multi-level edge infrastructure for
supporting smart factories, considering different constraints such as big data processing
([331], [333]), resource scheduling strategies ([332]) and reliability [334]. Compared to
cloud solutions for manufacturing and smart factories in particular, a MEC infrastructure
will decrease the computing latency and energy consumption by up to 40%.

• Other works show the need to make the MEC reliable for IIoT, to prevent deadlocks [335],
and highlight how offloading to MEC needs to be made based on manufacturing task dead-
lines [336].

8https://www.forbes.com/sites/tiriasresearch/2020/02/04/nvidia-launches-affordable-geforce-now-
cloud-gaming-service/#773ef8e1588b
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• Recent papers also consider novel techniques such as blockchain [345], ML [339] or net-
work slicing [375] while others start considering a ETSI-MEC compliant architecture stan-
dardization [342][343][341].

Many challenges remain open:

• The 5G ACIA has provided several useful insights on 5G deployment in smart facto-
ries [395], [396]. Focusing on the many MEC-related challenges in a smart factory, for
instance, the MEC should be able to address a heterogeneous scenario consisting of sev-
eral IIoT devices, each one with different demands and requirements. As an example, the
MEC should support at the same time motion control devices (requiring a latency of <
1ms), mobile robots (latency of 10-100 ms), and traffic for human-machine interaction (for
instance through VR devices). Hence, it would be of fundamental importance to study (i)
how the MEC could provide and manage at the same time different QoS constraints and (ii)
its resilience when dealing with variable data traffic (such as bursts). A possible solution
could be offered by leveraging network slicing for differentiating several slices according
to the QoS required. Finally, while some work focusing on the manufacturing vertical has
recently appeared (e.g., [397] and [398]) with some proposing also a ETSI-MEC compliant
architecture, it is still interesting to evaluate how this vertical can benefit from a general
edge computing standardization process.

• Also in this case, ML could be useful to solve some issues such as the ones related to
the allocation of MEC resources. Furthermore, researchers could exploit the Green MEC
paradigm to propose energy-efficient solutions for smart factories.

• Another very important aspect of MEC applications for manufacturing is security. The
latter is fundamental for keeping IIoT data integrity. Otherwise, attackers might induce
machine failure or product quality issues. Data confidentiality is also key because industry
secrets must be protected. Security and safety in smart factories are very much tied since
security breaches might cause malfunctioning of production lines and products, which could
potentially harm workers as well as customers. A survey on the most common security
attacks in NFV and 5G systems can be found in [199]. Reliability is a complementary
aspect, since IIoT needs >99,999% of successfully transmitted packets. For instance, this
can be achieved by deploying several MEC servers to create redundancy of resources (like
in cloud datacenters) and/or a communications-wise management system, able to avoid
extensive packet collisions. However, these solutions must also be cost-efficient.

• 5G ACIA also suggests exploring possibilities to converge together many communications
technologies (D2D, Wi-Fi, antenna AP, sensors, RFID) to avoid wireless congested scenar-
ios. As a possible solution, they propose to converge MEC and 5G with the Time-Sensitive
Networking (TSN) framework, whose goal is to deliver deterministic services via IEEE 802
networks for wired industrial Ethernet solutions.

• Next research steps should also consider the novel architectures proposed by 5G ACIA and
evaluate their solutions with real data-driven traces, to study MEC in real case scenarios.
Furthermore, Digital Twins will become an important use case for 6G networks and it seems
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that will be extremely beneficial for smart factories. Therefore the next question is how
MEC could support digital twins (in general but also related to smart factories vertical.

eHealthcare: The advent of IoT devices is changing also the healthcare system, which now
is becoming smarter. While it is true that it somehow overlaps with IoT, eHealthcare systems
present unique features that can be exploited to design an effective MEC system. Vice versa,
the MEC can be exploited to deliver unprecedented life-saver technologies. For instance, every
patient might have his/her data processed independently and securely, and health alarms might be
triggered reliably, avoiding privacy intrusions and false alarms, which means that the MEC should
be thought as a secure and robust system. In turn, the presence of computing resources at the edge
would help in the development of more sophisticated health machinery, which includes the support
for remotely-driven surgery (e.g., tactile-Internet-based tele-surgery systems). By overviewing
state-of-the-art works, we notice that:

• Most of the papers have identified MEC potentials for data pre-processing, to avoid sending
too much sensible data over centralized clouds and to decrease sensible delays, up to 50%,
compared to cloud-based networked healthcare systems ([346], [347], [350]–[352]).

• [349] showed that blockchain can be also exploited to increase the security level with
eHealth devices while, with the same goal, [377] proposes to manage healthcare data in
a decentralized manner thanks to MEC nodes’ presence. Finally, [348] showed how edge
resources could monitor a patient’s health and be allocated in case of emergencies.

• Recent papers leverage data or scenarios from the COVID-19 pandemic [354], [355] or
they focus on different problems such as task offloading in an eHealthcare scenario [353],
[359], selecting the best computing model (if local or MEC) [360], leveraging D2D [356]
or blockchains [358]. For interested readers, the authors in [378] delineate future research
efforts for the eHealthcare vertical in 6G networks.

Many open research challenges are still open:

• As for the previous vertical, also eHealtchcare can leverage ML techniques. Indeed, due to
the presence of edge computing resources, ML algorithms can be trained and applied to,
e.g., quickly detect symptoms of diseases from images, therefore helping doctors in their
diagnoses. In particular, federated learning seems a promising paradigm for privacy-related
issues, since it allows us to maintain the data locally in multiple decentralized edge devices.
Blockchain could also be used to add protection to personal data from malicious attacks
and to make auditable the logs reporting the operation of the health staff, as well as the
actions of patients. This might help to ensure that good practices are followed and would
allow for to identification of conduct responsibilities in case of health issues.

• Moreover, it is interesting to notice that security and privacy are of fundamental importance
in this vertical. However, adding advanced cryptography levels also increases computing
overhead for resource-constrained edge nodes. Therefore, careful tradeoffs between se-
curity, computing, and the use of communications resources should be evaluated. For an
overview of possible security threats, please refer to [199].
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• Future works also address users/patients’ mobility, with all the challenges it brings (see
Section 2.1.2 for an in-depth analysis of the mobility challenges).

• While some works provided experiments in a real healthcare infrastructure [352], with the
advent of even more wearable devices in the next years, it would be interesting to propose
more system oriented MEC-related works, resulting in or driven by real data traces.

Many open challenges have to do with security/privacy aspects and machine learning. Here
we do not analyze those aspects, because they have not been studied in light of MEC and edge-
computing-related deployments. However, the interested reader could find more on those aspects
in recently appeared surveys, e.g., [199], [201], [399], [400].

2.2. A smart metropolitan example

1 KM
1 KM

LEGEND

MEC

M1

Figure 2.7: MEC deployment scenario in a smart city district.

In this section we highlight the features of the MEC deployment in a smart metropolitan en-
vironment, tackling the QoE requirements of citizens and workers, and the possible infrastructure
bottlenecks, considering several verticals all together and a massive user presence.

The presence of connected devices is enhancing the cities and factories into smart entities
with increasingly richer capabilities, evolving the concept from smart cities into a wider smart
metropolitan area, which goes beyond the city itself since it includes a mix of areas where people
leave and work, and also where services are produced and manufacturing happens. This allows
for new communication and computing scenarios, e.g., for the interaction between (autonomous)
vehicles and pedestrians, the dynamic management of electrical resources, and of AR/VR applica-
tions. To make these and other applications happen, it is of fundamental importance to guarantee
the promised high data rates, high compute power, and low latency that came with 5G systems.
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The edge computing paradigm is pivotal in this framework, and the MEC could be a key technol-
ogy enabler.

Fig. 2.7 shows a district in a smart metropolitan area. The cellular network covers an area
of one square kilometer and consists of twelve 5G antennas deployed near a corresponding MEC
host, as described in [118]. According to the topology of access and transport networks proposed
in [401], which is based on ITU recommendations [402], six 5G antennas (hence in our case six
MEC hosts) are grouped under a single M1 access node, which is placed at an average distance of
10-20 km from the MEC hosts. Hence for each square kilometer, there will be two M1 dedicated
nodes. Inside most of the biggest European cities, the M1 access node would hence be placed
outside of downtown. Every group of six M1 access nodes is connected to an M2 node, typically
located 80-100 km from the M1 node. However, here we do not consider M2 nodes and higher
concentration nodes, whose distance from the user makes the propagation delay non-negligible.
According to a recent (2024) report [403], nowadays in major European metropolitan areas the
adoption of edge nodes is still at the beginning, with only a dozen edge nodes deployed throughout
all of Europe. However, the same report shows that numbers are steadily increasing year by year,
therefore likely reaching the number in the scenario presented in this section.

2.2.1. Network capabilities and use cases

Table 2.5 shows the values for network capabilities and requirements of MEC hosts, as suggested
by 3GPP [404], and the corresponding values for computational capabilities, taken from [308].
In 1 km2 the backhaul will offer a downlink (DL) capacity from the core of the network of 750
Gbps, distributed over two M1 nodes. The uplink (UL) will be more than 125 Gbps per square
kilometer. Every MEC host can use, on average, at least 62.5 Gbps in DL and 10.41 Gbps in UL.
With six gNBs per M1 node, these numbers correspond to the backhaul capacity of each gNB.
These values are much higher than what can be offered by existing access network technologies,
which therefore introduce a bottleneck for what concerns the actual speed observed by the users.
For instance, the new standard for wireless communications 802.11ac will achieve a maximum
throughput of 1.3 Gbps while the new 5G NR will achieve throughput up to a few Gbps [405].

Computational resources offered within the considered district are also quite powerful: for a
MEC node located next to a gNB, it is possible to deploy a few servers (e.g., 16 servers), each
with a few cores and GHz CPU rates (e.g., four cores at 3.4 GHz). For a MEC located on the M1
node, the number of servers can grow much higher, e.g., 256 [308].

In the example portrayed in Fig. 2.7, MEC resources are exploited only by users located out-
side buildings, without considering indoor hot-spots [404]. We consider a highly dense metropoli-
tan area, with up to 25 000 users connected in square kilometer [404], which is the order of magni-
tude of the population density in the biggest European capitals. In particular, we build an example
based on four representative use cases: (i) vehicle collision warnings with Cooperative Awareness
Message (CAM) and Decentralized Environmental Notification Message (DENM) messages, (ii)
video streaming and broadcasting, (iii) smart factories and (iv) VR/AR. Table 2.6 summarizes the
per-use-case requirements, taken from [206], [406], [232], [407], [395], [334] and [367]. In our
example, for the sake of simplicity, we assume that each user generates one task at a time for each
request.
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Table 2.5: Network capabilities and computational resources

DL bandwidth UL bandwidth
Compute power

(machines × cores × CPU speed)

MEC host at gNB site 62.5 Gbps 10.41 Gbps 16 × 4 × 3.4 GHz
MEC at M1 access node > 375 Gbps > 62.5 Gbps 256 × 4 × 3.4 GHz

Table 2.6: Per-use-case requirements

Use case DL bandwidth UL bandwidth RTT Compute power
Vehicle collisions warning 4 kbps 70 kbps 10 − 100 ms up to 43 × 106 cycles/task, minimum of 217600 tasks/s

Video streaming 70 Mbps 25 Mbps 10 ms up to 1 × 109 cycles/task, minimum of 2176 tasks/s
Smart Factories > 1 Mbps > 1 Mbps 1 − 100 ms up to 1.936 × 109 cycles/task, minimum of 114 tasks/s

AR/VR
4K 2D 100 Mbps

6, 45 Mbps
30 ms

up to 40 × 109 cycles/task, minimum of 6 tasks/s
24K 3D 2 − 5 Gbps 10 ms

Thanks to new connectivity possibilities, nowadays it is possible to improve road safety by
leveraging CAM and DENM messages delivered from or to a vehicle, with collision avoidance
algorithms processed at MEC nodes. The goal of these messages is to check if a collision can
eventually happen and, in case, to warn nearby vehicles. Partially due to the small payload of mes-
sages, DL and UL minimum requirements for successful deliveries of CAM and DENM messages
are quite small: 4 kbps for DL and 70 kbps for UL, while latency should range between 10 ms
and a maximum of 100 ms [406], which corresponds to the generation rate of CAM messages (10
Hz) [206]. Instead, video streaming imposes more stringent and powerful requirements per service
request: 70 Mbps for DL, 25 Mbps for UL, and a maximum latency of 10 ms [232]. However, the
considered bandwidth requirements have been taken from measures from video broadcasting case
scenarios (such as video sharing during a concert or sport live event inside a crowded stadium)
and therefore, depending on the actual video streaming, requirements may vary.

Smart factory requirements vary as well, depending on the use case. For instance, controlling
mobile robots needs at least a data rate of 10 Mbps and a latency of 10-100 ms, while motion
control devices (such as packing machines) require less bandwidth (at least 1 Mbps) but a stricter
latency (1 ms) [395].

The AR/VR use case imposes very stringent requirements: for a basic experience with 4K
resolution of 2D videos, according to [367] [307], the DL bandwidth needed is 100 Mbps with an
RTT of <30 ms, whilst for a full immersive experience (24K and 3D) the requirements go up to
2 − 5 Gbps of DL bandwidth, with less than 10 ms of round-trip latency [367]. A possible UL
value for AR/VR applications is 6, 45 Mbps [408].

2.2.2. Bottlenecks and scalability

Taking a look at bandwidth capabilities, it is already possible to draw several conclusions: for in-
stance, in the worst-case scenario, with all 25 000 users connected at the same time, the bandwidth
for a fully immersive AR/VR experience cannot be guaranteed at all by gNBs and backhaul. How-
ever, if up to 30% of the users are connected (7 500 users), the full backhaul can provide enough
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bandwidth for the most basic AR/VR applications. Still, with 1.5 Gbps available for UL at the
antenna, the single gNB cannot serve more than about 15 AR/VR users with the least acceptable
quality, so no more than 180 users can be served by the 12 gNBs present in the district. While ful-
filling the enormous requirements for a fully interconnected VR is still a utopia, as also highlighted
in [308], other verticals instead could benefit from the MEC presence in terms of bandwidth, com-
puting capabilities, and latency. For instance, considering the same capabilities, the infrastructure
can serve 22 video streamers per gNB, and a total of 264 users. In the other considered cases, the
numbers grow very much. Indeed, a single gNB supports up to 1 500 IIoT devices in UL, enough
for the average number of devices envisioned for a smart factory (according to [395], the number
of IIoT devices could range from 2 up to 10 000 per km2).

Furthermore, for vehicle collision warnings, the numbers are even higher: more than 375 000
parallel communication sessions are supported between the infrastructure and vehicles! Anyway,
it is important to highlight that for smart factories and vehicle communications, MEC improved
bandwidth capabilities are not as important as maintaining a reliability of 99.999%, otherwise,
catastrophic situations could occur (such as collisions between vehicles or IIoT malfunctioning
devices, with enormous economic damages for factories).

As a remark, real case scenarios are much more complex: gNBs and MEC nodes should be
able to sustain several verticals at the same time, therefore providing bandwidth resources for
AR/VR but also for vehicle collision warnings and smart factories, etc. When bandwidth becomes
the bottleneck, a solution might be offered by deploying several gNBs per MEC node, although
it would incur further CAPEX/OPEX costs. Furthermore, we need to consider computational and
latency limits as well.

Looking at the latency requirements, they should always be guaranteed apart from the pro-
cessing tasks delay. Indeed, thanks to the dense antenna and MEC deployment in the considered
area, propagation delays on air, copper, and/or fiber are negligible (below half a millisecond per
100 km [409]), while processing packet delay at a MEC host running at medium load is of the order
of one µs [410]. However, congestion must be avoided, which boils down to under-utilizing links
and MEC hosts. For instance, typical queueing and computing architectures do not experience the
buildup of large queues if used below 65 − 75% of their capacity, depending on the distribution
of task arrivals [411]. It is, therefore, safe to count only on two-thirds or at most three-quarters
of the transmission capacity in the deployment (the same holds for computational capacity). For
instance, this means that, at least from a point of view of available transmission resources, one
should not accommodate more than ≈ 5 250 AR/VR streams and 1 050 IIoT devices.

Moreover, the numbers reported above need to be modified in case the computing power be-
comes the bottleneck. Specifically, focusing on computational resources, Figure 2.8 shows the
maximum number of users U that can be served at the same time as a function of the processing
cycles required to serve a task. We obtained these values by dividing the total computing power
(CPU cycles per second) C of a MEC node by the ratio between the processing cycles (PC) re-
quired for a task and the task deadline D (i.e., the number of CPU cycles per second required to
serve a task):

U =
C
PC

D. (2.1)

In this example, we consider various numbers of servers, processing cycles, and task deadlines.
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Figure 2.8: Number of users satisfied in parallel, according to different demands of pro-
cessing cycles per task. Each user generates 1 task at a time for request.

Specifically, the deadlines reported in Fig. 2.8, i.e., 10 ms, 50 ms and 100 ms, indicate latency
values that cannot be exceeded to provide optimal QoE ranging from video streaming services to
vehicle collisions warnings, whereas server provisioning per MEC node consists in typical values
of 16 or 256 servers. The heavier the computing tasks, the less the number of users that can
be served at the same time, with an inversely proportional relation between the two quantities
(which appears as linear in the log-log scale used in the figure). For instance, by exploiting light
computing services, it is possible to serve more than 100 000 users respecting the deadline of
10 ms. It is the case of vehicle collision warnings, where short message size is mandatory to
achieve faster information spreading across the vehicles. Further, it is possible to notice that
both bandwidth and computing capabilities do not represent a clear bottleneck for this service,
which therefore depends on the proximity of MEC resources [207] for latency issues. Instead,
video streaming requires higher computational loads: considering a face recognition use case,
a single task can require up to 1 billion cycles. So, taking into account a latency of ≈ 10 ms,
the infrastructure can support a maximum of 3 000 users. The same happens for IIoT devices:
according to [407] a critical task requires up to 1.93 × 109 cycles, hence ≈ 1 200 devices can be
satisfied at the same time, a scenario one order of magnitude higher than the one described by 5G
ACIA [395]. Finally, for a fully interconnected experience, AR/VR hits computation limits before
bandwidth ones, and only 100 users can be served in the smart city district of our example in the
case of 37 billion cycles per task for massive VR applications (as highlighted in [308]).

Summarizing, apart from the vehicle use case, all other considered cases show important lim-
itations to support a massive presence of users (the scenario evaluated considered up to 25 000
people) in terms of computing capabilities. Furthermore, it is important to highlight two main as-
pects: (i) proposed computing capabilities are an over-provisioning exercise for very edge nodes
(for instance a Nokia edge datacenter supports up to five servers) (ii) to avoid uncontrollable re-
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Figure 2.9: Density of MEC hosts required in different use cases, according to bandwidth
requirements (refer to table 2.5 and 2.6 for parameters).

sponse times depending on the distribution of jobs arrival [411], MEC host capacity should not
be exploited more than 65 − 70%. This means that, compared with the numbers described in
Figure 2.8, for the same amount of processing cycles, servers should be used to serve no more
than 65 − 70% of the nominal capacity, in terms of number of users. Therefore, if we consider a
reduction of 50% of the server capabilities, which are then used only for the 65− 70% of their full
capacity, the numbers are quite different. For instance, now video streaming is supported for up
to 1 050 users in parallel on the same MEC host, which is still more than what can be served with
the available bandwidth. However, in the smart factory use case, up to 140 IIoT can be supported,
and for the fully interconnected VR case, the MEC node can serve only 25 AR/VR devices. These
numbers, compared to the ones obtained by considering the bandwidth, show that computation
power can soon become the bottleneck. Furthermore, it is important to highlight that computing
resources could be also shared among different slices. Therefore, as for the bandwidth capabili-
ties case, fewer computing resources could be available causing a reduction of served users or an
increase in processing delays [100].

The number of tasks per second supported by one MEC host varies depending on the number
of users connected at the same time and it is inversely proportional with the processing cycles
required. Table 2.6 shows the values in the worst-case scenario, when tasks require more process-
ing cycles: for vehicle collision warnings, it is possible to sustain a minimum of 217 600 tasks/s,
while the number drops to 2 176 tasks/s for the video streaming case. Furthermore, one MEC
host supports up to 114 tasks/s in the smart factory case and 6 tasks/s in the AR/VR case. As for
the previous cases, if we considered a reduction of 50% in MEC servers’ capacity, and consider-
ing that they can serve only for the 65 − 70% of their nominal capacity, supported tasks/s would
decrease accordingly (e.g., 40 tasks/s for a smart factory and a minimum of 4 tasks/s for AR/VR).
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2.2.3. Required density of MEC hosts and its cost

Now we want to consider how many MEC hosts are required to support a given number of users
connected simultaneously, considering different use cases for bandwidth constraints or computing
power limits, and evaluate the associated cost (Fig. 2.11).

Fig. 2.9 shows the density of MEC hosts needed as a function of users density, according to the
bandwidth requirements of different verticals, which are listed in Table 2.6. Here we considered
one MEC host per gNB site. Firstly, it is important to notice the behavior of the warning collision
messages use case: the bandwidth required for both DL and UL is so small that only a single MEC
host can sustain the full range of user densities considered here (up to 25 000 users/km2). Instead,
for all the other use cases, the curve of required MEC hosts has a staircase shape. While the smart
factory use case needs six MEC to sustain up to 25 000 users in a square km, therefore remaining
under the threshold of 12 MEC hosts per square km proposed earlier, all the other cases (video
and AR/VR and mixed traffic) require extra deployments of MEC hosts. If 25 000 users connect
at the same time in a square km area, and everyone leverages on AR/VR services, at least 41 MEC
hosts are needed in that area to guarantee enough bandwidth for both DL and UL, while 62 MEC
hosts are needed for the video use case. The curve labeled as Mixed traffic represents a scenario
in which a mix of all four use cases is present. Specifically, we design the mix of traffic according
to Cisco9 and Ericsson10 traffic forecasts for the following few years: 70% video traffic, 15% car
traffic, 10% smart factory and 5% AR/VR. For 25 000 mixed users/km2, more than 40 MEC hosts
per square km are required (i.e., more than the 12 proposed earlier). In all of our considered cases,
UL imposes tighter constraints, so that the bandwidth bottleneck is imposed by the aggregate UL
traffic.

Furthermore, we study the required density of MEC hosts according to computing power
needs of the users. In Fig. 2.10, we consider the presence of the MEC hosts at gNB sites as
well as M1 nodes, with a ratio of one M1 node for every six MEC hosts. To avoid unrealistic
deployment scenarios, we limited the deployment of new MEC hosts up to 96 (hence ≈ one MEC
hosts per 100 m2). This justifies the curves ending before reaching the maximum population
density considered (i.e., curves stop where the capacity of 96 MEC hosts per square km, and
the associated M1 nodes, have been reached). In the figure, we notice that, while the vehicle
warning messages use case again requires very low computing capabilities (only one MEC host per
square km), the other cases behave differently. The AR/VR use case saturates the MEC computing
capacity (up to 96 MEC hosts) within less than 2 000 served users. Instead, video streaming, smart
factory, and the mixed traffic scenarios are all able to sustain a traffic of 25 000 users/km2 or more.
More specifically, up to 82 MEC hosts plus 16 M1 nodes are needed in the area of one square
km to serve the mixed traffic case. The numbers go down to 60 MEC hosts and 12 M1 nodes for
the smart factory case, and further down to 22 MEC hosts plus 6 M1 nodes for video streaming.
It is possible to notice that, apart the the video streaming use case, all other cases require more
MEC nodes to provide computing capacity than what they need for bandwidth. This shows that
computing represents the real bottleneck in most of the cases.

9https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-
report/white-paper-c11-741490.html

10https://www.ericsson.com/en/mobility-report/reports/november-2019/mobile-traffic-by-application-
category
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Figure 2.10: Density of MEC hosts which are required, with their associated M1 nodes,
to serve different use cases based on computing power requirements (see Table 2.5 and 2.6
for parameters).

Fig. 2.11 shows the infrastructure CAPEX needed to deploy MEC nodes in a square km, as
a function of user density. This time we consider both bandwidth and computing power require-
ments. In the figure, we consider a cost of ≈ 2 000 USD per deployed server plus other CAPEX
costs such as new base stations deployments, civil works, and small cell equipment (≈ 94 000
USD) [35]. We also consider the cost of M1 nodes, for each of which we use the extracted
CAPEX cost of deploying a 256-server datacenter (≈ 1.5 million USD) evaluated with AWS cost
calculator11.

From the figure, it is possible to see that, again, the cost to sustain the vehicle warning mes-
sages case remains steady, due to the low bandwidth and computing requirements. Video stream-
ing and smart factories have the same long-term behavior: they can sustain the whole population
while reaching a final cost of 25 million USD per km2.

In the mixed traffic scenario, the cost to sustain as many as 25 000 users per square km is
higher, summing up to 34.8 million USD per km2. In the AR/VR case, we observe the highest
costs (up to slightly more than 35.8 million USD with less than 2 000 users/km2). However, it
is interesting to notice how the AR/VR use case alone increases the infrastructure CAPEX costs,
therefore giving a new design constraint to infrastructure providers. This behavior could be viewed
especially in the mixed traffic scenario, where it contributes only 5% to the overall traffic.

Summary: We showed how in a smart metropolitan context both the bandwidth and the
computing capabilities, even when quite powerful, require the deployment of new MEC nodes,
exceeding therefore the threshold of 12 MEC nodes. Furthermore, we showed that especially the
computing capabilities represent a clear bottleneck for the network infrastructure. This however

11https://awstcocalculator.com
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Figure 2.11: Infrastructure CAPEX cost per km2.

does not mean that a heterogeneous smart metropolis is not possible: while advanced AR/VR is
still much beyond the nowadays network capabilities, connected cars exchanging simple colli-
sion warning messages together with video streaming and smart factories might coexist together,
placing a first step towards the path of a fully interconnected metropolitan area.

2.2.4. Open challenges

The analysis of network deployment in a smart metropolitan area highlights some lessons learned
and points out some problems that need to be addressed: First, the computational capabilities of the
MEC deployment should be carefully considered as a function of the expected verticals operated
in the served area, since different verticals (e.g., video streaming, smart factories or AR/VR) have
very different requirements [412]. Second, it seems very impractical, from a pure cost perspective,
to scale up a typical 5G use case for a big crowd of devices. For instance, according to Intel12, in
the next future a single autonomous driving car will generate up to 4 terabyte of data per day, which
would require either very powerful MEC hosts or very dense and expensive MEC deployments
just to serve a few tens of cars per unit area. Third, future MEC host solutions should consider
leveraging GPUs instead of CPUs for entertainment use cases such as gaming or AR/VR, and
leveraging ML per forecasting task arrivals, allowing to allocate/scale resources in advance. In
addition, they could leverage smart computation offloading in order to avoid unnecessary offload
to MEC hosts.

In addition to the above points, our simple examples show that the MEC deployment in a
urban district or a metropolitan area can require high densities, which incurs logistic problems and
constraints, and hence requires carefully designed deployment plans which account for presence

12https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-driving/
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of natural or artificial obstacles while guaranteeing uniform reachability and access to bandwidth
and computational resources. The use of renewables would be desirable, in accordance to recently
proposed energy-awareness efforts, e.g., to follow the guidelines of the European Green Deal
agenda13 or of the Microsoft Green Computing initiative14.

2.3. Summary and conclusions

In this Chapter, we discussed some general aspects of MEC and how they will shape the future
of edge computing capabilities in cellular networks. More in detail, we tackled the ETSI efforts
in standardizing MEC, discussing at a general level what has been done by both SDOs and re-
searchers and we showed how standardization processes are going to be important in the future
networks, also considering the progress in other closely-related domains (such as O-RAN). We
commented on the overall ETSI-MEC architecture and how it will merge with the ongoing rollout
of 5G networks. Next, we tackled some of the most challenging aspects of the MEC provisioning.
We focused on the difficulties in proposing and evaluating certain scenarios such as jobs/tasks
offloading, migration of edge resources, and the (flexible) deployment of MEC nodes in cellular
networks. We overviewed several different techniques or technologies, such as ML, optimization
techniques, stateful/stateless migration, containers, and VM, commenting on benefits, drawbacks,
and possible future research challenges. In particular, we understood that due to the scarce pres-
ence of computing resources at the edge, the migration of resources will play an important role
in the future for allowing the sustainability of edge infrastructures, while also targeting the strin-
gent QoS and QoE of future use cases. Afterward, we showed how MEC could support vertical
industries. We surveyed recent papers from the literature, highlighting several approaches and
techniques tackled by researchers while also commenting on some possible future works and sce-
narios. We showed how several verticals have not been fully yet, leaving room for further studies.
Finally, we considered a smart metropolitan scenario, exposing several constraints (e.g., band-
width, computing, and economics) and limitations on supporting several verticals at the same in a
future smart metropolitan context. In the next chapters of the thesis, we present two different novel
scenarios stemmed from the above extended literature review and we provide two efficient solu-
tions, leveraging different techniques. More in particular, our two novel scenarios are edge gaming
and MAR, which will have an important impact on future cellular networks. In the previous chap-
ters, we showed that while MAR is an object of ongoing study between several researchers, edge
gaming is still in its initial phase but it is gaining traction thanks to the more and more powerful
computing (i.e., GPU) capabilities. However, both use cases are computing-hungry and have strin-
gent QoS constraints and therefore the presence of MEC, as commented in Table 2.4, is mandatory
to support them. At the same time, sustainability (in terms of carbon footprint) is going to be piv-
otal in 6G networks [11], [12] and the Green MEC paradigm, as highlighted earlier sections, has
not been evaluated yet by the research community. Therefore, we consider the study of both sce-
narios (edge gaming and MAR) taking in mind a sustainable effort, with MEC nodes that could
(partially) depend on the availability of renewable sources. Our main goal is to make the edge in-
frastructure sustainable for a network/edge operator, meaning that we want to leverage as much as
possible the intermittent presence of renewable sources but also the infrastructure should be prof-

13https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
14https://blogs.microsoft.com/green/

68



itable (i.e., the infrastructure should be able to serve as much paying users as possible, therefore
increasing the overall revenues). These two goals (maximizing revenues while decreasing carbon
footprint) are conflicting and some intelligent algorithms should be developed. One possible way
to deal with this scenario is to allow the migration of already allocated resources (e.g., jobs/tasks)
within close-edge servers, thus following the presence of renewable energy to decrease costs and
also smartly leaving space for more arriving tasks (with increased revenues). In the thesis, we pro-
pose two different solutions to tackle these problems: one is an intelligent heuristic that allocates
and migrates jobs according to the presence of available green energy. We show the robustness of
this approach in different scenarios. Next, leveraging machine learning techniques, we propose a
DRL-based solution, showing that DRL approaches achieve better performance when they have
to deal with a proportional fairness structure (i.e., finding a balance between revenues and carbon
footprint).
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3. GREEN EDGE GAMING

In this Chapter, we tackle the problem of how to support gaming at the edge of the cellular
network. According to what we discussed in the previous Chapter 2, the edge gaming paradigm
represents a promising concept that has not been fully evaluated yet. Indeed, the reduced la-
tency and higher bandwidth that the edge enjoys with respect to cloud-based solutions implies that
transferring cloud-based games to the edge could be a premium service for end-users. At the same
time, edge servers have scarce computing resources compared to cloud ones and for sustainability
reasons, they could depend on intermittent renewable energy sources. Therefore, it is critical to
efficiently allocate computing resources in such a constrained scenario (i.e., the edge network), es-
pecially when considering computing demanding use cases, like gaming sessions. As mentioned
in earlier chapters, the flexible provisioning given by NFV allows for a dynamic allocation and mi-
gration of resources, helping network operators achieve their goals (e.g., maximizing revenues and
decreasing carbon footprint). The goal of this chapter is to design a scheme compatible with MEC
and network slicing principles of 5G and beyond, maximizing the utility of a service/infrastructure
provider with time-varying edge node capacities due to access to intermittent renewable energy.
We formulate a multi-dimensional integer linear programming problem, proving that it is NP-hard
in the strong sense. We mentioned as an important aspect of this dynamic scenario the possibil-
ity of migrating resources across different nodes. Therefore, we propose an efficient heuristic,
GREENING, which considers the allocation of gaming sessions and their migration according to the
presence of available green energy. For the mentioned scenario, we analyze a wide variety of re-
alistic configurations at the edge, studying how the performance depends on (i) whether the games
have a static or dynamic workload, (ii) the distribution of renewable energy through nodes and
time, and (iii) the topology of the edge network. Through simulations, we show that our heuristic
achieves performance close to that achieved by solving the NP-hard optimization problem, except
with extremely lower complexity, and performs up to 25% better than state-of-the-art algorithms.

The rest of this Chapter is organized as follows. We give an overview of the importance of edge
gaming in Section 3.1, while also defining the novel concept of green edge gaming. Afterward,
we provide the system model in Section 3.2. In Section 3.3, we formulate an instantaneous opti-
mization problem, proving its NP-hardness and submodularity. In Section 3.4, we tackle the more
general online problem of green game session allocation and we propose our efficient heuristic:
GREENING. Section 3.5 highlights our main results and finally Section 3.6 summarizes the Chapter.

3.1. Background

Cloud gaming allows users to play the newest-generation games requiring only an internet connec-
tion and a screen (e.g., a TV screen, laptop, or mobile phone) by leveraging a cloud infrastructure.
Games are located and processed in a cloud server, which streams the content to the end-user
screen. Initial attempts were unsuccessful (e.g., OnLive) mainly due to the lack of infrastructure,
but nowadays cloud gaming is having a second life. It is a growing market—reaching by 2023 a
total revenue of eight billion dollars [16])—and many tech companies are launching cloud gaming
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services within their network infrastructure, for example, NVidia with Geforce Now, and AWS
with Amazon Luna, to name just a few. In 5G and beyond, MEC allows exploiting cloud gaming
at the edge, developing the concept of edge gaming.

We can highlight three main benefits of edge gaming with respect to cloud gaming: (i) notably
reduced latency, which makes the gaming experience immersive and interactive, with different nu-
ances, as shown in Figure 3.1; edge gaming will enable in particular fast-paced games, where
timing is fundamental—e.g., First Person Shooter (FPS)—and competitive online multiplayer
gaming. (ii) At the same time as allowing for tighter latency requirements, allocating games at
the edge will reduce network core congestion [28], therefore reducing the possibilities of packet
losses while allowing higher video quality. Finally, (iii) the edge gaming paradigm could easily
leverage the roll-out of new networking principles such as network slicing and new MEC standards
defined by standardization bodies such as ETSI [9].

However, constrained edge resources are scarce and variable, and new techniques should be
proposed to efficiently provision resources to meet several quality and cost constraints. In partic-
ular, it is expected that energy will become a crucial bottleneck for the deployment of this kind of
systems [18], and there is a growing interest in making infrastructures more sustainable by lever-
aging renewable energies [413], [414]. Indeed, edge nodes and datacenters could be endowed with
their own sources of renewable energy, which means that MEC nodes would have time-varying
capabilities depending on the fluctuating energy resources, raising the possibility of migrating re-
sources across several edge nodes if necessary. This is particularly true for gaming applications,
as games have a highly dynamic behavior in terms of both workload and instantaneous resource
requirements [14]. As a matter of example, we can imagine that the workload required for the
same game differs when it renders a static scenario with respect to the case where the scenario
quickly changes (e.g., where the character moves); such change of requirements may happen also
if the frame rate has changed from 30 to 60 fps.

Games could exploit migration at the edge because migration delays are negligible in such a
scenario due to the proximity of edge servers in residential areas [1] and new efficient migration
techniques that can be exploited [61], [62], [415]. Hence, the possibility of migrating online gam-
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ing servers in a few milliseconds would enable seamless game sessions and therefore an increased
QoE for end-users even in a dynamic scenario with twofold variability—in game requirements
and node capabilities. In such a (possibly unsteady) scenario, resource allocation and migration
become one of the most challenging tasks.

Main contributions

Motivated by the aforementioned, we focus on the problem of resource allocation in a sustainable
edge-based online gaming scenario, which we refer to as green edge gaming. In this scenario,
we aim at maximizing the utility of the system taking into account revenue and costs of energy,
deployment, and migration. Accordingly, we develop a smart allocation and migration algorithm
for online game sessions under several realistic constraints.

The main contributions of this chapter are as follows.

• We develop the concept of green edge gaming with time-varying edge node capabilities due
to the fluctuating availability of renewable energy. We show that this concept is compliant
with ETSI MEC standardization and with modern networking principles such as network
slicing.

• We argue that this concept could lead to a premium business scenario for which we formu-
late an accurate multi-dimensional linear integer programming problem, showing that it is
NP-hard in the strong sense and sub-modular.

• We develop GREENING, an efficient online heuristic for game session allocation and migra-
tion which maximizes the utility by maximizing the use of renewable energy (green energy)
instead of the one proceeding from polluting sources (brown energy).

• We study the proposed algorithm in realistic settings, where (i) the amount of available
renewable energy is obtained from a database of real values for solar and wind energy
generation whose average levels depend on the time of the day; (ii) maximum capabilities
of edge nodes are taken from actual commercial equipment; (iii) resource requirements of
game sessions can be either static (e.g., as an approximation for their maximum possible
values) or dynamically change at a fast pace, in accordance with real measures of online
gaming. We are the first to model and study the job’s dynamics in a gaming scenario at the
edge.

• We evaluate the proposed algorithm against several benchmarks, and we show they achieve
near-optimal performance without high complexity. The results show that the proposal
obtains values up to 25% better than state-of-the-art approaches.

Novelty of our work: To the best of our knowledge, the green edge gaming scenario, in which
games are allocated in nodes with time-varying capacity and in the presence of both fluctuating
energy and workloads and of several nearby edge nodes, has not yet been analyzed. In this scenario
migration of tasks may play a significant role, since they can not only reduce costs and pollution,
but also avoid congestion in the network core, with improved QoE for end-users.
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Many works in the cloud gaming area have tackled QoS or QoE metrics (on delay and band-
width especially), although they do not incorporate other aspects as storage, energy, or computa-
tion limitations, since these constraints are usually not challenging in a cloud infrastructure due to
higher amount of resources. However, they are indeed very important for the edge infrastructure.
In this Chapter, we attempt to consider all the types of resources that may become the bottleneck
in the green edge gaming scenario, namely bandwidth, delay, storage, node computation capabili-
ties, and energy available. Besides, we consider a twofold dynamic setting, where we consider that
both the capacity of the nodes (due to variable amount of renewable energy) and the requirements
of the jobs (due to the inherent varying nature of games specifications) are time-varying, which
has not been evaluated before in edge/cloud gaming scenarios.

Most of previous works focused on a subset of the constraints here considered and the migra-
tion of tasks, if taken into account, was mainly based on user’s mobility. We will show in this
work that migrations have a fundamental role independently of user mobility. We assume that
the migration of already-on-the-system jobs can be performed within nearby edge servers for two
main reasons: first, to optimize the use of energy and other resources, but also to make space in the
system for newly arrived jobs while respecting all the considered constraints. This is only possible
in the edge context, since migrations cannot be considered in legacy cloud gaming contexts [24].
Finally, we are the first ones that study the jobs’ dynamics in an edge gaming scenario, exposing
how resources should be delicately allocated at the edge with jobs having dynamic workloads. In
this scenario, migrations are necessary in order to maintain a high QoE for end-users.

3.2. System Model

Figure 3.2 shows a schematic of our reference scenario. We model a layered 5G edge network
infrastructure [416] containing a set of edge game servers, with a set of network links connecting
these servers between them and with the end-users. We denote the set of network links by Z,
and the size of this set as Z = |Z|. The set of edge computing servers is denoted by N and it is
composed of N servers. We consider two types of servers, which differ in their capabilities and
proximity to end-users. Among the N nodes, B servers reside on far-edge nodes, each deployed at
a base station (BS), and primarily meant to serve users of that BS, whereas the rest of the servers
are each located at a different M1 node, placed in the edge/transport network where the traffic
of multiple BSs converges [416]. M1 nodes have bigger capacities compared to edge nodes, in
terms of computation, energy, and memory capabilities, although these capabilities must be shared
across users belonging to multiple cells.

We distinguish two different types of energy powering the servers, whether it comes from
renewable (green) and non-renewable (polluting) energy sources. Regarding green energy avail-
ability, we restrict ourselves to locally generated energy, and thus we only consider wind and solar
as renewable sources, which have already been applied in edge computing contexts [417]. Non-
renewable energy is always available at M1 nodes, while edge nodes might not have access to it.
When a server can only access green energy, its computing capacity is proportional to the available
green energy. In all cases, we assume that green energy can be used at no cost, but brown energy
has a non-negligible cost.

The infrastructure is used to run online game sessions, each of which is referred to as a job.
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Figure 3.2: 5G Edge Infrastructure compliant with ETSI MEC.

The operation time is slotted, and we consider that the game sessions’ requirements are random
variables that may follow different distributions. The jobs arriving over time are modeled by
a set J . The operator accepts to process the job in exchange for a monetary payment, such
that a certain job j provides a revenue R j to the operator that includes many factors, e.g., user’s
fees, percentages of game purchases, advertising, etc. At the same time, jobs incur a cost of
deployment, management, and processing which depends on the amount of computation, memory,
and communication resources, the energy required, and the duration of the job, which are variable
quantities that evolve. Furthermore, job interruption (due to a shortage of energy) or migrations
also incur a certain non-negligible cost.

In the following, we explain in detail the time-slotted operation of the system, and the statisti-
cal model considered for energy fluctuations, jobs requirements, and nodes capabilities.

3.2.1. Resource allocation for Green Edge Gaming

The system operates in a time-slotted manner. We consider a centralized decision maker that is
aware of the state (in terms of capability and load) of each server. At the beginning of each time
slot, there exists a set of newly arrived job requests, as well as another set of jobs that are already
being served. Furthermore, the amount of renewable energy at each node and the energy and
computation requirements of each job may vary from one-time slot to the next. The system’s task
is to migrate ongoing jobs, interrupt them, and accept and allocate current requests to optimize the
utility of the scenario. The optimization is applied each time slot in which something has changed,
i.e., upon new jobs arrive, the available level of green energy changes, or job requirements change.
Note that considering dynamic energy levels and workloads is challenging because past optimal
job allocations might soon turn into non-optimal and call for reconfiguration at a frequent pace.
We will analyze different settings in which the frequency of these changes varies.
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The network does not know the future duration of each job, as game sessions have an unknown
duration in nature. However, we assume that at each time slot, the decision maker knows the job
requirements (bandwidth, delay, memory, computation, and energy) for the starting slot. This
assumption can model a scenario where the network can estimate and/or predict with high enough
precision the average consumption of a certain job based on the information available (type of
game and device, previous values, etc.) and the considered optimization time slot is short enough,
e.g., a few tens of seconds for a game whose computing and rendering power typically change
significantly only upon significant changes of scene.

3.2.2. Energy fluctuation model

We consider that each edge node is equipped with on-site renewable energy sources. In particular,
we consider that each edge node has installed a personal-use-size windmill and a one-square-
meter solar panel. Both energy generators amount to a total maximum capacity of 1.5 kW, as per
specifications of current commercial devices.15

Due to the unpredictability of wind/solar resources [50], we model the green energy behavior
in a stochastic manner [418]. We make use of the dataset provided by a Belgian operator called
Elia to create samples that match the trends and randomness of green energy generation in a real
power grid. In particular, Elia provides weekly forecasts of both wind [419] and solar [420] energy
generation in Belgium, with a granularity of 15 minutes, and we have used the data generated for
the period from 21st to 27th of March 2022 for specific areas in Belgium.

In addition to the most probable forecast, the dataset provides confidence intervals. We will
use such information to generate random realizations of energy forecasts that conform to daily
changes in green energy availability. Figure 3.3 shows a weekly solar and wind power generation
forecast together with confidence intervals, with data taken from the dataset made available by
Elia. We can observe that the amount of available green energy varies considerably depending on
the time of the day but also between different days. For simplicity, we do not consider the use of
long-duration batteries at edge nodes, and therefore green energy is not stored from time slot to
time slot. Another reason is that we are interested in leveraging as much as possible the presence
of green energy. In other words, we are in a scenario where there are continuously arriving jobs
and we want to maximize the use of the edge infrastructure to maximize the revenues, while at the
same time using as much as possible all the available green energy.

3.2.3. Job monetization and cost

Each accepted job brings a revenue R j to the operator, which may depend on the requirements of
the job. At the same time, jobs require an operating cost that is proportional to such requirements.
In particular, the total cost associated with job j, which is denoted by C j, is composed of the cost of
deployment, the cost of the non-renewable energy consumption, the possible cost from migrating
the job, and the interruption cost.

15E.g., see Tumo-Int 1000W Vertical Wind Turbine Generator or GONGJU 1000W Vertical Axis Wind
Turbine Generator for windmills, and Jinko TIGER Pro 545W or Longi Hi-MO 4 455W for solar panels.
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Figure 3.3: Weekly solar and wind power generation forecast provided by Elia for Flan-
ders (wind data) and for a federal region of Belgium (solar data), from the 21st to the 27th
of March, 2022. Values reported in the figure are normalized to the solar peak average
expected on the third day (about 3 MW for the entire region to which the dataset applies).
This forecast dataset was re-scaled to account for the fact that only a limited number of
solar panels and a windmill can be mounted at an edge node, and used to produce the
numerical results presented in Section 3.5.

a) Deployment cost: It represents the cost of instantiating and deploying resources to support
the accepted jobs, and it is denoted by C(d)

j .

b) Energy cost: This cost is proportional to the amount of polluting energy consumed by the
job at each time unit, and hence is not constant over time. It is denoted by C(b)

j .

c) Migration cost: The migration cost represents the induced operating cost derived from
re-deploying, re-scheduling, and migrating resources among nodes within the edge network.

For simplicity, we do not consider migrations triggered by handovers as an optimization prob-
lem. We do so not only because that topic has been covered in other studies [61], but also because
we are interested in the evaluation of interactive game sessions, which are typically several minutes
long and are played at home or in a static environment [421].
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d) Interruption cost: A job interruption leads to a loss of performance and the termination
of the user experience. Consequently, the cost associated with interruptions (C(p)

j ) is considerably
higher than that of migrations and can take out the revenue associated with that job, because of the
premium nature of the user’s subscriptions. Accordingly, jobs have to be scheduled immediately
or rejected rather than queued. A job interruption can occur both when the availability of green
energy decreases and/or allocated jobs change their workload, causing the server’s computing or
energy capacity to become insufficient for all running jobs, and migration cannot be enforced.

Note that our approach to revenue and cost values does not consider topological factors such
as the distance between nodes. Those factors lead to negligible differences in the edge scenario
(cf. [1]).

3.2.4. Game requirements model

Jobs originate from devices such as mobile phones, laptops, or smart TVs. Thus, considering a
large potential number of users, we consider that jobs arrive according to a Poisson process and
have a duration extracted from a Weibull distribution, which realistically models the duration of
online game sessions [421].

Every job will need powerful dedicated resources to work smoothly, in particular for en-
ergy [18] and computing power. The jobs, which we recall that refer to online game sessions,
must meet QoS requirements in terms of delay and bandwidth, and they are characterized by their
requirements in terms of energy, memory, and computation consumption.

Let us describe separately these aspects.

a) Delay: The overall response delay is the total time between an end-user submits his/her
commands and the time the corresponding game frame is displayed to the user [422].

Response delay (Dr) is composed of network delay (Dn), processing delay (Dp), game logic
(Dg) and playout delay (Do), i.e., Dr = Dn +Dp +Dg +Do [422]. The network delay is the round-
trip-time (RTT), which depends on where the server is placed; the processing delay is the delay
to encode/decode and packetize commands and frames (which could take from 5 ms to 100 ms,
depending on many factors [62], [422]); game logic delay denotes the time required by the game
software to process a user’s command and render the next game frame that contains responses to
the command. This delay strongly depends on the game, with a range from 5 ms [62] to 50 ms
with cases reaching even 130 ms [422]. Finally, the playout delay is the time required for the client
to receive, decode, and display a frame, and it takes an average of 4 ms [62].

For simplicity, we work with average delays and focus on the network delay budget of each
job, D j, considering the other delay components (which are less correlated to network management
and more dependent on the particular game) as constant.

Furthermore, we assume that queuing delays at switches are negligible since our premium ser-
vice could prioritize packets, avoiding unnecessary delays. The network delay budget is therefore
spent over the links that connect the user to the game server, the resulting delay being the sum of
average per-link delays dz.
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Since the time scale of our scheduling problem and the duration of the time slots is in the
order of minutes, we also neglect the migration time because it is possible to obtain seamless
game migration across several edge servers at millisecond timescale (cf. [62]).

b) Bandwidth: Focusing instead on the bandwidth requirements, we assume that each job
requires a constant downlink bandwidth t j, chosen at random from a uniform distribution with
realistic bounds, while the uplink bandwidth is assumed to be negligible [422]. This assumption
of constant t j follows from the fact that it is possible to play games in streaming mode with several
screen resolutions.

Furthermore, since we focus on the edge environment, we assume that the downlink band-
width of far-edge nodes and M1 nodes is the bottleneck, rather than the per-link bandwidth, and
consequently, we ignore the latter.

c) Memory: Each job j requires a per-time-slot memory s j at the node where it is running. We
assume that this memory requirement is known and constant for the whole duration of the job,
although it randomly varies for each job.

d) Computation requirements and energy consumption: Both energy consumption and
computation requirements of a game session are strongly correlated. In particular, we consider
that there exists a linear relation between both parameters and that they may be different for each
job. At a given time, we denote the energy consumption of job j as e j, and its required computing
power (in terms of processing cycles) as p j.

We consider practical values for these requirements, extracted from some studies on gaming
energy consumption [18] (in particular, from the resources in [423], [424]), such that we define
both a minimum and a maximum value for both computation and energy consumption levels, as
well as a mean value. Furthermore, we consider that the energy and computation for each job have
a random value within the range of practical levels.

We consider two different scenarios regarding the jobs’ requirements. First, we will consider
that these values remain constant during the whole duration of the job. The second scenario is a
practical generalization where the energy and computation requirements of a job vary over time.
In such a case, we assume that the required values evolve as a random walk process constrained
within the maximum and minimum values.

In general, by considering fixed computing workloads and the use of resources for each job,
we make a tractable simplification that makes sense to evaluate a system in which resources are
always guaranteed to the user, hence they are allocated based on the peak demand of the online
game session, which makes sense for a premium service like the one studied in this chapter. It
has been shown in the literature that co-locating several games at the same server that has to share
un-isolable resources (e.g., GPU) leads to a general performance degradation of the QoS [22].
However, in our work, we do not consider such degradation since we do not have un-isolable
resources.

With the above, we next formulate a utility optimization problem on how to allot jobs to nodes
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Table 3.1: Notation used in Chapter 3

Notation Meaning

C j Total Cost of job j
C(b)

j Energy cost (per slot) for job j

C(d)
j Deployment cost for job j

C(m)
j ,C

(p)
j Migration and interruption costs for job j

J , J Set of jobs and its size
N ,N Set of nodes (game servers), and its size

R j Revenue of job j
T Set of consecutive time slots
Z,Z Set of links and its size
Tn Bandwidth of node n
t j Downlink throughput for job j
dz Delay incurred on link z
D j Maximum delay for job j

Gn, En Green and total power at node n
e j Power required by job j
Pn Computing power at node n
p j Computing power for job j
S n Memory capacity at node n
s j Memory required for job j

w jz = {0,1} (Variable) 1 if job j passes through link z
x jn = {0,1} (Variable) 1 if node n handles job j

to maximize the overall utility by serving as many jobs in full and minimizing total costs. This
means that the use of green energy has to be prioritized, migrations should be used only if they
bring more revenue than cost, and job interruptions should be avoided.

3.3. Instantaneous Utility Optimization

First, we consider the instantaneous version of our problem, meaning that revenues and costs are
allocated at each time slot, every job is allocated and executed in a single time slot, and there are
neither migrations nor job interruptions.

3.3.1. Problem formulation

We consider the following variables: R j is the revenue of accepted job j while C j is its total cost.
C j includes deployment C(d)

j and brown energy costs C(b)
j associated to the computation required

for the job.

Our decision variables, denoted by x jn for all j ∈ J and all n ∈ N , are binary variables that
indicate whether job j is allocated at edge node n (x jn = 1) or not (x jn = 0). w jz is another binary
variable, whose value is 1 if job j passes through link z and 0 otherwise.
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Table 4.1 summarizes the notation used in the Chapter. The problem is therefore formulated
as follows:

max
∑︂
n∈N

∑︂
j∈J

(︂
R j −C j

)︂
x jn; (3.1a)

s.t.:
∑︂
n∈N

x jn ≤ 1, ∀ j ∈ J ; (3.1b)∑︂
j∈J

t jx jn ≤ Tn, ∀n ∈ N ; (3.1c)∑︂
j∈J

p jx jn ≤ Pn, ∀n ∈ N ; (3.1d)∑︂
j∈J

e jx jn ≤ En, ∀n ∈ N ; (3.1e)∑︂
j∈J

s jx jn ≤ S n, ∀n ∈ N ; (3.1f)∑︂
z∈Z

dzw jz ≤ D j, ∀ j ∈ J ; (3.1g)

where:

• The objective function (3.1a) expresses the net utility;

• Constraint (3.1b) states that job j can only be allocated to a single node n;

• Constraints (3.1c) to (3.1f) ensure that a job’s placement does not violate the server’s ca-
pacity in terms of: downlink bandwidth (Tn), processing power (Pn), available energy (in-
stantaneous power En), and memory (S n);

• Constraint (3.1g) ensures that the average delay is guaranteed for each job;

• All weights t j, p j, e j, s j, and dz, capacities Tn, Pn, En, S n, and delay budgets D j take
positive values.

The above described problem is non-trivial to solve if no server can accommodate all jobs. In
that case, the problem is NP-Hard, as shown next.

Theorem 1. Constraints (3.1b) and (3.1c) alone make the problem NP-hard (in the strong sense).

Proof. We reduce the Multiple Knapsack Problem (MKP) to our problem formalization. Accord-
ing to [425], the MKP could be written as follows: considering a set of K knapsacks with capacity
Wk each, k ∈ {1, . . . ,K}, and a set of I items to store (K ≤ I) where each item i has positive reward
ri and positive weight wi, i ∈ {1, . . . , I}. The objective expression is

∑︁K
k=1
∑︁I

i=1 rixik, which has to
be maximized under the constraints that

∑︁I
i=1 wixik ≤ Wk,∀k, and

∑︁K
k=1 xik ≤ 1,∀i, with xik being

a binary variable indicating whether item i is allocated to knapsack k.

We consider the special case where C j = 0 and p j, e j, s j, and dz are all equal to 1, whereas
Pn, En, and S n are equal to J and D j = Z. In this special case, constraints (3.1d)-(3.1g) are all
redundant and always satisfied.
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With this special configuration, our problem is a MKP with K = N knapsacks of capacity Tn

and I = J items with weights t j and rewards R j. This means that the MKP is a particular case of
our problem. Therefore, we could argue that our problem is complex as much as the MKP, which
is NP-hard. Since this reduction can be built in polynomial time, it follows that our problem is
NP-hard. However, we highlight that due to this reduction to MKP, our problem is NP-hard in
the strong sense, meaning that no polynomial-time approximation scheme is known [425] unless
P = NP. □

3.3.2. Sub-modularity

We now show that the problem in Section 3.3.1 is sub-modular, which leads to useful performance
guarantees. First, let us re-formulate the problem as a set-optimization problem. Let S ⊆ J × N
denote the set of selected single-service placements, where ( j, n) ∈ S means that job j is placed at
node n. Let Θ(S) denote the objective value of (3.1a), so that (1) becomes

max Θ(S) (3.2a)

s.t.: S ⊆ J ×N (3.2b)

(1b) to (1g). (3.2c)

Theorem 2. The optimal value of Θ is a monotone increasing and sub-modular set function.

Proof. Consider that a real-valued set function f is monotone increasing if ∀ S1 ⊆ S2 ⊆ S, f (S1)
≤ f (S2). Moreover, the function f (·) is sub-modular if ∀ S1 ⊆ S2 ⊆ S and u ∈ S \S2, it holds that
f ({u} ∪ S1) − f (S1) ≥ f ({u} ∪ S2) − f (S2).

The monotonicity of the solution of our problem is clear because expanding S (i.e., putting
more jobs and/or nodes) enlarges the solution space of (3.2a) and therefore increases its optimal
value. The solution is also sub-modular since, for a given amount of green energy, any increase in
the number of allocated jobs will increase the amount of required polluting energy at the nodes,
and therefore the overall utility obtained by including more jobs will be progressively reduced.
For this class of problems, it is known that we can construct a greedy algorithm that iteratively
selects the element that maximizes (subject to the constraints) the objective function, such that this
algorithm achieves a performance guarantee of 1 − 1/e [426]. □

We present in Algorithm 3.1 the legacy GREEDY algorithm that solves problem (3.2) in poly-
nomial time with performance guarantees using its submodularity property. Since the structure of
the algorithm is well known and derives from [426], we omit a detailed explanation about it and
refer to [426] for further information.
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Algorithm 3.1 GREEDY Algorithm
1: Input: Network topology, N , jobs J (with parameters t j, p j, s j, e j,D j ∀ j ∈
J),Tn, Pn, S n,Gn, En ∀n∈N , dz ∀z∈Z

2: Output: Job-to-node placement map S
3: Initialize: S = ∅; J∅ = J; S∅ = J ×N

4: while ∃( j, n) ∈ S∅ s.t. S ∪ ( j, n) satisfies (3.2c) do
5: ( j⋆, n⋆)← arg max( j,n)∈S∅ Θ(S ∪ ( j, n))
6: S ← S ∪ ( j⋆, n⋆)
7: J∅ ← J∅ \ j⋆

8: S∅ = J∅ × N

9: end while

3.4. Online Problem

3.4.1. Online Problem with Migrations and Penalties

The problem in Section 3.3 can be extended to the case where jobs last more than the duration
of a time slot and arrive asynchronously. This situation is important because it represents the
practical problem to be solved online in a real system. For this case, the objective function of the
optimization problem becomes

max
∑︂
τ∈T

∑︂
n∈N

∑︂
j∈J

(︂
R j(τ) −C j(τ)

)︂
x jn(τ) (3.3)

where T is the time interval (a set of consecutive slots) over which we optimize the utility of the
system, and where we recall that the total cost C j(τ) is obtained as C j(τ) = C(d)

j (τ) + C(b)
j (τ) +

C(m)
j (τ) + C(p)

j (τ). In (3.3), we consider a one-time revenue rather than a per-time-slot revenue,
such that R j(τ) is a non-zero value only at the time slot of the arrival of request of acceptance for
job j, and it does not depend on the job duration. Similarly, the deployment cost (C(d)

j ) is only

non-zero at acceptance time, whereas the penalties for migration (C(m)
j ) and for job interruption

(C(p)
j ) are only applied in the time slots in which the corresponding events occur.

The only term that appears in every time slot (due to its possible fluctuation) is the variable cost
incurred by consuming non-renewable energy (C(b)

j ). In this optimization problem, the objective
function in (3.3) must satisfy the same constraints as the problem in (3.1a), i.e., (3.1b)–(3.1g),
except for the fact that these constraints have to hold at any time slot τ ∈ T .

In this new formulation, jobs can arrive in different time slots, and decisions must be made
online at the slot boundaries. It is worth noting that, if migration and job interruption costs are
neglected, the problem is equivalent to the one shown in Section 3.3, because it is enough to
maximize the objective function slot by slot. Therefore the sub-modularity property will hold also
for the online job allocation problem under such simplifying assumptions. Instead, if we consider
those penalties, sub-modularity is not guaranteed. However, with realistically small migration
costs and rare job interruptions, the problem can be considered, in practice, still sub-modular or as
a small perturbation of a sub-modular case. From that, it is intuitive to consider that we can extend
the greedy heuristic approach also to the online version of the problem, as shown in the following.
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3.4.2. Proposed online heuristic

For sub-modular problems, it is known that the simple strategy of maximizing the instantaneous
utility at each time that a new job arrives achieves high performance. This approach precludes the
possibility of rejecting a job just because it might prevent the acceptance of future jobs. However,
this strategy does not limit us to only using the GREEDY algorithm in Algorithm 3.1.

For the sake of readability, we have split the description of the GREENING algorithm in two
sequential stages and one auxiliary function: The general description of our proposed algorithm
is shown in Algorithm 3.2, which includes the entire procedure; however, the latest part of the
algorithm, which handles the acceptance of newly arrived jobs, is disclosed in Algorithm 3.2-a
due to space and pages limitations. Finally, a migration function called by both Algorithm 3.2 and
Algorithm 3.2-a will be presented in Algorithm 3.2-m. The migration function is called in two
circumstances: when an arriving job is not allocated with a direct placement and when there is a
change of green energy levels due to changes in energy generation or in gaming workloads. Next,
we detail the algorithm and each one of its parts.

The algorithm is triggered at the beginning of each time slot. It has two main stages. One is
dedicated to react and re-schedule active jobs in the possible event that either the energy availabil-
ity at the nodes or the energy requirements for the jobs change with respect to the previous time
slot. The second part focuses on the admission control and optimizes the resource allocation in
order to accept new jobs if it is possible.

Re-allocating ongoing jobs (Algorithm 3.2).
First, the GREENING algorithm checks whether the amount of available renewable energy has
changed at any node. In the case in which the jobs energy and computation requirements can
dynamically change, the algorithm also monitors if these values have evolved. If any of these
events happen, some nodes might no longer have enough power to serve all their allocated jobs,
and therefore some jobs must be migrated or interrupted.

The algorithm proceeds node by node and, for each node with not enough resources (in terms
of either computation or energy resources), it examines if some job can be migrated to other—less
loaded—nodes in order to avoid job interruptions. This search of both jobs to migrate and feasible
destination nodes is carried out by the migration function Migration-Greening presented in
Algorithm 3.2-m. This function takes as input a node n and a set of candidate jobs J (m) to be
migrated from node n, and it outputs which one of the candidate jobs has to be migrated ( j(m)) and
toward which node is the migration conducted (n(m)).

Importantly, before starting the search for possible migrations the nodes are sorted by the
amount of available green energy, in descending order.16

For that, let us introduce some useful notations. We define En,eff as the total energy required
by all the jobs currently running in node n. Pn,eff is similarly defined for the computation resources
required at node n. From the definition of En,eff , it follows that the amount of green energy cur-
rently available at node n is obtained by subtracting En,eff from the total amount of green energy

16Sorting nodes according to the total available level of green energy is also possible, as shown in our
preliminary work [2], although using the residual energy is more robust to dynamic workloads.
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Algorithm 3.2 GREENING – Proposed heuristic algorithm

1: Input: N , active (J (τ)) and new (J (+)) jobs with current parameters
t j, s j, p j(τ), e j(τ),D j ∀ j ∈ {J (τ) ∪ J (+)},
network parameters Tn, Pn, S n, E

(τ)
n ∀n ∈ N ,

dz ∀z ∈ Z, and previous allocation S(τ−1).
2: Output: S(τ),Θ(τ)

3: Initialize: S(τ) ← S(τ−1); Θ(τ) ← 0;
4: if Jobs or Nodes energy levels change then
5: for n ∈ N do
6: En,eff ←

∑︁
j:( j,n)∈S(τ) e j(τ)

7: Pn,eff ←
∑︁

j:( j,n)∈S(τ) p j(τ)
8: while E(τ)

n < En,eff or P(τ)
n < Pn,eff do

9: Jn ← { j | ( j, n) ∈ S(τ)}

10: N
(τ)
g ← sort(N ,G

(τ)
n − En,eff)

11: j(m), n(m) ← Migration-GREENING(Jn, n)
12: if n(m) == −1 {interruption} then
13: j(m) ← arg min j:( j,n)∈S(τ){R j}

14: J (τ) ← J (τ) \ { j(m)}

15: Θ(τ) ← Θ(τ) −C(p)
j(m)

16: S(τ) ← S(τ) \
{︂
( j(m), n)

}︂
17: else if n(m) ≠ n {migration} then
18: Θ(τ) ← Θ(τ) −C(m)

j(m)

19: S(τ) ←
{︂
S(τ) \ ( j(m), n)

}︂
∪
{︂
( j(m), n(m))

}︂
20: end if
21: En,eff ←

∑︁
j:( j,n)∈S(τ) e j(τ)

22: Pn,eff ←
∑︁

j:( j,n)∈S(τ) p j(τ)
23: end while
24: end for
25: end if
26: Execute: Acceptance-GREENING (Algorithm 3.2-a)
27: Θ(τ) ← Θ(τ) −

∑︁
( j,n)∈S(τ) C(b)

j {Substract energy cost}
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in the node (G(τ)
n ), where a negative value of G(τ)

n − En,eff indicates the amount of polluting energy
consumed at node n. Let us further denote the set of nodes ordered based on G(τ)

n − En,eff as N (τ)
g ,

and the node index in the i-th position of N (τ)
g as ηi. From this notation, it follows that N (τ)

g is
ordered such that (G(τ)

ηi − Eηi,eff) ≥ (G(τ)
ηi+1 − Eηi+1,eff ) for any i < N. This ordering is motivated by

the fact that nodes that have more available green energy incur less costs.

If no other node can accommodate any of the jobs in node n, Algorithm 3.2-m returns that the
destination node is −1. In this latter case, when no job can be migrated, the job with the smallest
revenue (since the interruption cost is comparable to the revenue) in the node is interrupted. This
process is repeated until all energy and computation constraints are satisfied.

Migrating function (Algorithm 3.2-m).
The previously mentioned migration function operates a simple search on the set of potential
migration destination nodes and checks the feasibility of migration based on the problem’s con-
straints. For each candidate job jc in the input set J (m), we evaluate if jc can be migrated to other
node n′.

Algorithm 3.2-m Migration-GREENING
1: Input: J (m) (Set of candidate jobs to migrate)

n (node that needs to migrate jobs)
2: Inherit: State and variables of Algorithm 3.2
3: Output: j(m) (job to migrate)

n(m) (node where j(m) migrates)
4: Initialize: n(m) ← n
5: for jc ∈ J

(m) do
6: for n′ ∈ N (τ)

g \ {n} do
7: if allocating jc to n′ satisfies (3.1c)–(3.1g) then
8: n(m) ← n′

9: j(m) ← jc

10: break double loop over J (m) and N (τ)
g

11: end if
12: end for
13: end for
14: if n(m) == n {No node to migrate} then
15: n(m) ← −1
16: end if

In order to check the feasibility of the migration, the search starts from the node with more
available green energy and the list of nodes follows by the amount of available green energyN (τ)

g .
In this manner, we give priority to the nodes that reduce the cost of energy consumption. The
search stops as soon as a destination node is found. Once we find a node n′ ∈ N (τ)

g \ n that can
allocate a job jc ∈ J (m), we set job jc as the migrating job ( j(m)) and node n′ as the destination
node (n(m)), which are the outputs of the function. If there is no feasible pair ( j(m), n(m)), the
function returns n(m) = −1.
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Algorithm 3.2-a Acceptance-GREENING – Proposed heuristic algorithm (Part II: Ac-
ceptance of new jobs)

1: Continue from line 25 in Algorithm 3.2
2: En,eff ←

∑︁
j:( j,n)∈S(τ) e j(τ) ∀n ∈ N

3: N (τ)
g ← sort(N ,G

(τ)
n − En,eff)

4: Define: S̄(τ)
( j1→ j2),n as

{︁
( j2, n) ∪ {S(τ)

\ ( j1, n)}
}︁

5: for jarr ∈ J
(+) do

6: for n ∈ N (τ)
g do

7: if ( jarr, n) satisfies (3.1c)–(3.1g) then
8: J (τ) ← J (τ) ∪ { jarr}

9: S(τ) ← S(τ) ∪ {( jarr, n)}
10: Θ(τ) ← Θ(τ) + R jarr −C(d)

jarr

11: break loop over n
12: end if
13: end for
14: if jarr ∉ J

(τ) {New job not placed} then
15: for n ∈ N (τ)

g do
16: Jarr,n ← { j | ( j, n) ∈ S(τ) and

S̄
(τ)
( j→ jarr),n satisfies (3.1c)–(3.1g)}

17: j(m), n(m) ← Migration-GREENING(Jarr,n, n)
18: if n(m) ≠ −1 then
19: J (τ) ← J (τ) ∪ { jarr}

20: S(τ) ← S(τ) ∪ {( jarr, n)}
21: S(τ) ←

{︂
S(τ) \ ( j(m), n)

}︂
∪
{︂
( j(m), n(m)), ( jarr, n)

}︂
22: Θ(τ) ← Θ(τ) + R jarr −C(d)

jarr
−C(m)

j(m)

23: break loop over n
24: end if
25: end for
26: if jarr ∉ J

(τ) then
27: Reject job jarr

28: end if
29: end if
30: end for
31: Continue in Algorithm 3.2
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Acceptance of new jobs (Algorithm 3.2-a).
After handling the continuity of the jobs that are already in the system, GREENING focuses on the
admission of newly arrived jobs. For that, it tries to allocate them one by one, in a sequential order.
For each one of the arrived jobs, the algorithm verifies if the job fits in any of the servers. This
verification follows the same available green energy orderN (τ)

g as described in the previous stage,
such that the nodes with the highest available green power have priority in the job allocation.

The algorithm tries a direct placement on the node at the top of the list, and moves to the
next node only if the allocation is not possible according to any of the constraints. This is aligned
with the greedy heuristic of the instantaneous problem, although considering just energy levels
rather than overall allocation utilities. Yet, the probability of making the same decision as the
greedy algorithm is high, because nodes with higher unused green energy are likely to be the ones
offering the highest utility.

However, if no node in the list can take a newly arrived job, GREENING tries to migrate some
of the already allocated jobs so that the new job can fit in the system. This section of the algorithm
substantially differs from a standard greedy heuristic. In order to do this, the algorithm invokes
again the migration function Migration-Greening from Algorithm 3.2-m on the already allo-
cated jobs. In this case, however, there exists a difference with respect to the other call to the
function. Before, the set of candidate jobs J (m) was the whole set of jobs allocated to node n, i.e.,
J (m) = { j | ( j, n) ∈ S(τ)}. Now, since we need to have enough space to allocate the new job, we
restrict the set of candidate jobs to be composed only of the jobs enabling the new admission. This
set is given by J (m) = { j | ( j, n) ∈ S(τ)} ∩ { j | S̄(τ)

( j→ jarr),n satisfies (3.1c)–(3.1g)}, where we have

defined S̄(τ)
( j1→ j2),n as the resulting allocation set obtained from substituting the already allocated

job j1 by the new job j2, i.e., S̄(τ)
( j1→ j2),n =

{︁
( j2, n) ∪ {S(τ)

\ ( j1, n)}
}︁
.

As before, the nodes are ordered by the amount of available green energy. If the migration
function does not find any migration combination that makes enough room for the new job, the
job is rejected and its revenue is lost. Otherwise, the job is allocated, bringing a revenue of R j and
a cost of deployment of C(d)

j , and the migration is committed with an incurred cost C(m)
j .

Eventually, the algorithm discounts from the objective function the cost due to the amount of
polluting (non-renewable) energy consumed during the time slot.

Note that the described migration function is greedy and so Algorithm 3.2 is still a greedy al-
gorithm, in the sense that it makes instantaneous decisions without considering what could happen
in the future. However, allowing migrations can only improve the utility obtained with a scheme
without migrations, be it Algorithm 3.1 or Algorithm 3.2 simplified by skipping the call to the
migration function. Therefore, we can expect that Algorithm 3.2 will offer better performance
guarantees than the value 1−1/e of Algorithm 3.1.

To conclude, the complexity of this GREENING heuristic described in Algorithm 3.2 is O(N2J2),
which would reduce to O(NJ2) in case of direct placement of the arriving jobs, without migrations.

3.4.3. ETSI MEC and network slicing compatibility

In this subsection we comment on how green edge gaming is compliant to both ETSI MEC and
network slicing concepts.
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In the case of ETSI MEC, the MEC Orchestrator (MEO), which has an overview of the com-
plete MEC system and therefore could be deployed in more centralized nodes, could consider the
objective function (3.1a) to place games in its system. Indeed, one of the MEO’s roles consists
in selecting appropriate MEC host(s) for application instantiation based on constraints, such as
latency, available resources, and available services [9]. To this aim, the MEO talks directly to
the Virtual Infrastructure Manager (VIM), whose role is to physically deploy resources. MEC
hosts provide compute, storage and network resources for the MEC applications and they could
be deployed in edge and M1 nodes, where games are actually installed. Finally, games could be
deployed as MEC applications, leveraging several on-board MEC services, such as Radio Net-
work Information, location and traffic management to sustain the appropriate QoE level. Edge and
M1 nodes could be connected through several reference points: with the MEO through a Mm3
link and they could communicate between each other through a Mp3 link [9]. Indeed, Figure 3.2
shows also a high level example of the edge gaming scenario implemented through ETSI MEC.
Green edge gaming could also leverage network slicing to guarantee resources to servers. A ser-
vice provider could reserve a slice of resource in order to satisfy end-users in terms of bandwidth
computing power.

3.5. Numerical Evaluation

In this section we evaluate numerically the proposed algorithm on a set of green edge gaming
scenarios, and we provide a performance comparison with alternative online gaming solutions. To
perform our experiments we built a simulator with Matlab 2021a, in which we implemented our
solution as well as several baselines and state-of-the-art alternatives. We study the performance
of the considered solution in a set of different configurations. We are interested in analyzing
how the different parameters and possible topologies of the edge computing system impact the
results. For that, we run a set of experiments, where in each of the experiments we vary one
aspect of the network (e.g., the arrival rate of jobs, the energy dynamics, the relation between
number of far-edge nodes and M1 nodes, etc.). Among the compared algorithms, we consider
cases where migrations are not considered, or where the type energy (renewable or not) is not
taken into account, so as to better understand the impact of each of the features.

We start by describing the general parameters of the scenarios considered, and later we will
detail each variation and its implications.

3.5.1. Simulation scenario and setup

We study the problem in a metropolitan area where users leverage online game servers in far-edge
and M1 nodes, with the QoS requirements described before in terms of computing power, latency,
memory, and bandwidth. For each of the settings considered in the following, we evaluate different
sizes of the edge network, i.e., a set of values of the number of nodes N, always within the range
compatible with the number of edge and M1 nodes that will be initially deployed in a metropolitan
framework [416]. We will vary the total number of nodes between 4 and up to 48.

We simulate a green edge gaming environment during a whole day, and repeat the experiment
several times until we obtain small confidence intervals. We solve Problem (3.3) with multiple
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Table 3.2: Simulation parameters in Chapter 3

Edge server Job

Bandwidth 350 Mbps U(10, 30) Mbps

Computing
3 × 3.5 GHz (Far-edge)

5 × 3.5 GHz (M1)

Random walk within

315 to 385 Mflops

Memory
3 × 64 GB (Far-edge)

5 × 64 GB (M1)
U(750, 850) MB

Power
1.5 kW (Far-edge)

2 kW (M1)

Random walk within

70 to 130 W

Delay U(2, 15) ms U(50, 150) ms

Revenue - U(0.03, 0.0367) $

Duration - Weib(2504.8, 2.9637)

Deployment
0.01 $ (Far-edge)

0.015 $ (M1)
-

Migration - 0.0003 $

Interruption - 100% of the revenue

Energy - 0.35 $/kWh

approaches, on a slot-by-slot basis. We consider that each time slot lasts one minute, which is
much shorter than a typical online game session (∼40 minutes [421]) and much longer than any
job migration mechanism (lasting from tens of milliseconds [62] up to seconds) or game session
launching (which takes less than a second [415]).

Network topology and server specifications

The network topology is hierarchical, as displayed in Figure 3.2, and the connectivity in between
servers is assumed to be a full mesh. Throughout the experiments, we will vary the portion of the
nodes that belong to the M1 type.

Server capabilities are based on a NVidia blade server [427] for edge computing. In particular,
we consider that far-edge servers dedicate 3 blades to our use case, whereas M1 nodes dedicate
4 blades. Each of these blades is endowed with a CPU of 3.5 GHz for computing power, 64 GB
of RAM memory and requires 450 watts (W) of energy. From this, we consider that the far-edge
nodes require 1.5 kW to work at full capacity, while M1 nodes require 2 kW.

Besides, we assume that the bandwidth and incurred delays for the edge nodes are constant
and in line with 5G values; specifically, we consider that each node has a downlink bandwidth of
350 Mb/s and incurs a latency of the order of 5-10 ms.

Job statistics

We assume that the time of arrival of jobs follows a Poisson process, such that the number of
arrivals in each time slot is given by a Poisson random variable with rate λ. In general, we will
scale the arrival rate proportionally to the number of nodes, such that λ can be generically written
as λ = αN, where α is a constant.
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The duration of a job is extracted from a Weibull distribution, which is known to precisely
characterize the distribution of the duration of online game sessions [421]. In particular, we con-
sider a Weibull distribution with parameter k = 2.9637 and µ = 2504.8, which yields an average
duration of about 40 minutes for a typical session, and which also yields that the probability of
having durations above two hours is negligible.

The computation requirement of each job ranges from 315 to 385 Mcycles/s, which amounts
to 10% to 15% of a standard server CPU core. The energy requirements of the game sessions are
strongly correlated with the computation requirements, and they are randomly generated within the
range 70–130 W, with a mean of 100 W. These values are obtained from studies on online gaming
requirements (cf. [18], [423], [424]). We provide more information about energy dynamics in the
next couple of paragraphs.

In terms of bandwidth requirements, we consider that it can vary uniformly from 10 to 30 Mb/s,
which matches the requirements for video resolutions that range from 720p to 4K [428]. Other
game session requirements (memory, delay, CPU) are in line with previous works [14], [18]. For
instance, the maximum delay allowed for each game session is a random variable uniformly dis-
tributed between 50 and 150 ms, and RAM requirements are also uniformly distributed in the
interval from 750 to 850 MB.

With the above numbers, a system working at full capacity at all the nodes can allocate on
average up to 14 jobs in each far-edge node and a maximum of about 20 jobs at each M1 node.
Note that, for the already mentioned dependency on renewable energy, this peak of capacity is
likely never reached in the far-edge nodes.

We would like to note that, for the assumed specifications of both nodes and jobs, the system
is saturated (i.e., the servers are using all the available resources for active jobs) for α > 0.6,
while α < 0.1 implies generically that all nodes have always room for more jobs and every job is
accepted and served.

Energy fluctuation and workload dynamics

Let us explain how the energy availability at the edge nodes and the jobs’ energy requirements
evolve over time.

We focus first on the availability of green energy at the nodes. We consider that the green
energy available at each node (and locally generated) changes every 15 minutes. In contrast
with our previous work [2], we consider that the energy available presents space-time correla-
tion. We generate random samples of green energy availability from the datasets provided by Elia
for wind [419] and solar [420] energy generation. For each node, we select an energy profile from
a different day of the forecasting dataset (see Figure 3.3 for a sequential visualization of the profile
for seven different days).

Every 15 minutes, each node changes its available green energy following the given statistics
(in terms of mean, minimum, and maximum expected value) from the random day profile. The
specific value is obtained as a random sample of a PERT distribution [429] characterized by the
mean, minimum, and maximum values provided by the energy profile. The PERT distribution,
which is highly related to the well-known Beta distribution, is usually considered for modeling
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and estimating the effect of uncertainty. The total green energy available is then the sum of both
wind- and solar-generated resources.

The far-edge nodes are assumed to rely only on the local green energy available (apart from a
minimum constant energy that ensures the functioning of the server). If no green energy is avail-
able at a certain time, jobs in the far-edge node must be migrated to another node or interrupted.
This implies that the capacity of the far-edge nodes varies over time. Actually, in our experiments,
the average capacity of the far-edge nodes ranges between 25% and 80% of the nominal capacity
(i.e., between 375 W and 1.2 kW out of a nominal peak power of 1.5 kW). On the other hand, the
M1 nodes always have access to the same amount of energy (2 kW), irrespective of the amount of
green energy, which in our experiments is covered by green sources for up to 1.2 kW, i.e., up to
60% of the power available at an M1 node can be green.

We will consider two cases for the M1 layer: The default case (green M1), in which the green
energy availability at M1 nodes follows the same statistics as the one for far-edge nodes. The only
difference in this case between nodes is that M1 nodes use polluting energy to obtain the remaining
amount of energy until 2 kW of power. Hence, they can secure a certain level of reliability in the
system at the expense of a higher cost due to the cost of energy. The second case (brown M1) is
the case in which M1 nodes make only use of the general electricity grid, i.e., they only consume
non-renewable energy, while they keep enjoying the constant 2 kW. With these two cases, we try
to understand the impact of heterogeneity in access to green energy resources.

Next, we describe the dynamics of the energy/power requirements for the game sessions. We
also consider two different cases. The first one is the realistic scenario in which the energy require-
ments of a particular game session vary at each time slot (dynamic workload). This continuous
variation is inherent to the nature of gaming. We consider that the power a job requires for the next
time slot follows a random walk with standard deviation 5 W. We limit the value of this variable to
the maximum and minimum values provided before (70 and 130 W, respectively), since in practice
a game has a limit on both maximum and minimum requirements. The second case is the simpli-
fied case in which the energy required by a job is randomly picked at the start of the game session
but then it remains constant with this initial value throughout the session (static workload). In
both cases, the initial energy value is selected in the same way, and the dynamic scenario uses
a process of zero mean, so the average energy value remains the same.This particular case is an
abstraction to the approach in which the jobs are allocated the maximum amount of resources that
they will ever need, such that there is no need to monitor the current demand, but at the same time
implies overprovisioning and hence a waste of resources due to the inevitable variation of the real
requirements, as the worst-case (maximum) value will not be frequently reached.

Monetary gains and costs

Each job provides a monetary gain R j that ranges between 0.03$ and 0.0367$. The revenue of the
job is assumed to be uniformly distributed in this range. The motivation to pay a higher fee is that
higher-revenue jobs will have less chances of being interrupted. On the other hand, the migration
cost of a job is fixed to 0.0003$, which is also the deployment cost at the far-edge nodes; the
deployment cost for jobs allocated to M1 nodes is considered to be 50% more expensive than
that of far-edge nodes, due to the longer distance. In case of a job interruption, the penalty is a
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monetary cost equal to the revenue previously paid by the user (R j). This value follows from the
fact that this use case is a premium service scenario, for which the user expects to receive a great
QoS, which would not be possible in case of interruption of an active game session.

With respect to the cost of energy consumption, we assume a price of 0.35$ per kWh, which
is a realistic value in line with current prices in Europe (by first half of 2022). We consider that
the energy generated from renewable sources does not incur any monetary cost, since it is locally
generated at the edge node and cannot be stored for long term. Hence, only the energy from
non-renewable (polluting) sources will incur the cost of 0.35 $/kWh. We assume that the energy
obtained from the general grid is coming entirely from non-renewable sources.17

Metrics and algorithms

In our experiments, the main performance metric is the system utility, which is computed on a per
time slot basis. The average system utility is proportional to the objective function of our online
optimization problem (3.3), so that it represents the performance of the tested algorithms.

Besides the average utility, we also consider other metrics to shed light on the behavior of the
system. For that, we also evaluate the user’s QoE by means of comparing the normalized time
played, which we define as the ratio between the sum of the service offered to all active accepted
jobs over the total aggregate nominal duration of all (accepted and rejected) jobs. This metric
provides us with information about the percentage of users that are satisfied with the system.

In order to provide a broader perspective of the functioning of the algorithms, we also provide
the average amount of jobs in the system, as well as the amount of rejected, interrupted, and
migrated jobs. We omit the study of other typical QoS metrics like jitter or packet losses because
in the edge gaming scenario here considered their values are typically small and thus they are less
relevant.

The above metrics are computed in terms of average and 95% confidence intervals for eight
different algorithms:

• Solver is an algorithm that solves integer linear program (3.3), evaluated at each time
slot over a time horizon of one time slot (|T | = 1). It uses the Matlab intlinprog function
with a timeout of 40 seconds for each simulated time slot, in order to avoid long lasting
experiments. A single experiment showed in what follows can require up to one week to
complete notwithstanding the imposed timeout. Due to such huge complexity, we only
provide the solution with this algorithm in a subset of the experiments.

• GREENING is our proposed heuristic defined in Algorithm 3.2.

• PFPJ-1 is derived from [59], which presents a resource-aware allocation and migration
algorithm designed for IoT Cloud applications. It clusters servers into highly and lightly
loaded subsets, and enforces migrations from highly to lightly loaded servers to enforce

17The portion of energy generated from renewable sources varies strongly for different countries and for
different periods of the year or of the day. Our simulations are directly applicable under the assumption
of mixed generation just modifying the price of the energy based on the percentage of green energy pg as
0.35(1 − pg) $/kWh.
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load balancing. We have added a power constraint in the original algorithm for a fairer
comparison with our scheme.

• PFPJ-2 is the original placement algorithm defined in [59].

• GREENING-NoMig is a simplified version of GREENING where we disable the migration
function, so that the heuristic becomes very similar to the baseline greedy approach of
Algorithm 3.1, although with energy context information used in the sorting of candidate
nodes for job allocation.

• Random performs probabilistic placement and does not consider migrations. It considers a
random job placement with all nodes having equal probability to be chosen.

• Free-Green is a green-energy-aware probabilistic placement that does not consider migra-
tions. In this case, the random job placement assigns probabilities to nodes proportionally
to the level of green energy available at the node but yet not assigned to other jobs.

• Total-Green is a variant of Free-Green in which the random job placement assigns prob-
abilities to nodes proportionally to the total level of green energy available, independently
on whether the energy is already in use or not.

To obtain the values reported in this section, Solver takes several days on a Dell T640 server
with 128 GB of RAM and 40 logical cores with a variable clock rate (but intlingprog uses only
1 thread per instance, so we parallelized the number of experiment replicas rather than the single
experiment), while all other algorithms need just a few minutes.

We also made several experiments with another version of the GREENING algorithm, where
we sort nodes according to the total available level of green energy (i.e. not considering if al-
ready allocated jobs are using green energy). However, in our experiments, we found out that the
results were similar, even though in some cases the former GREENING algorithm achieved worse
performance. Therefore in this Chapter, we will show only the results obtained with the GREENING
version that considers the available green energy.

3.5.2. Results

To assess and start comparing the behavior of the eight algorithms described before, Figure 3.4 and
3.5 report the average number of online gaming sessions active at an edge node over time, for a 24-
hour period taken at random from the Elia’s dataset. Here we use a baseline network configuration
with 9 far-edge nodes, 3 M1 nodes, and a total intensity of arrivals λ = 0.25N (expressed in terms
of gaming session requests per slot). This load corresponds to a moderately high utilization of
edge game resources of about 75% of the total available computing resources.

M1 nodes are allowed to use green energy according to its availability, according to the green
M1 case described above. Figure 3.4a shows statistics for far-edge nodes with static workload,
while Figure 3.4b refers to M1 nodes in the same experiment. The figures clearly show a depen-
dency on the availability of green energy, which allows far-edge nodes to host more jobs in the
central hours of the day. Solver is particularly able to offload jobs to far-edge servers as soon as
possible, followed by GREENING and GREENING-NoMig. PFPJ-1 and PFPJ-2 perform similarly,
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(a) Far-edge nodes with static workload (b) M1 nodes with static workload

Figure 3.4: Average number of jobs per node for an entire simulated day for the case
in which the energy of far-edge nodes is 100% green whereas up to 75% of the energy
available at M1 nodes can be green (but in practice only up to ∼ 60% in this example),
with N = 12 nodes, 3 of which are M1 nodes, and λ = 0.25N. Static workload scenario

(a) Far-edge nodes with dynamic workload (b) M1 nodes with dynamic workload

Figure 3.5: Average number of jobs per node for an entire simulated day for the case
in which the energy of far-edge nodes is 100% green whereas up to 75% of the energy
available at M1 nodes can be green (but in practice only up to ∼ 60% in this example),
with N = 12 nodes, 3 of which are M1 nodes, and λ = 0.25N. Dynamic workload
scenario
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Number of edge nodes in the system

(a) Brown M1 nodes, static workload

Number of edge nodes in the system

(b) Brown M1 nodes, dynamic workload

Figure 3.6: Utility comparison as the network size scales up (λ = 0.25N, far-edge to M1
node ratio equal to 3:1).

Number of edge nodes in the system

(a) Green M1 nodes, static workload

Number of edge nodes in the system

(b) Green M1 nodes, dynamic workload

Figure 3.7: Utility comparison as the network size scales up (λ = 0.25N, far-edge to M1
node ratio equal to 3:1).
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Number of edge nodes in the system

(a) Brown M1 nodes, static workload

Number of edge nodes in the system

(b) Brown M1 nodes, dynamic workload

Figure 3.8: Utility distance from upper bound as the network size scales up (λ = 0.25N,
far-edge to M1 node ratio equal to 3:1).

Number of edge nodes in the system

(a) Green M1 nodes, static workload

Number of edge nodes in the system

(b) Green M1 nodes, dynamic workload

Figure 3.9: Utility distance from upper bound as the network size scales up (λ = 0.25N,
far-edge to M1 node ratio equal to 3:1).

96



while the other algorithms are less reactive to green energy level changes. From this figure, it
is clear that enforcing migrations or not has an impact, although limited. However, the way the
algorithms account for the presence of green energy makes a bigger difference. Differences are
further exacerbated if we consider the case of dynamic workload in Figures 3.5a and 3.5b. In this
case, the average of active jobs decreases with all algorithms, which tells that gaming session de-
viations from the average behavior require more resources, as expected. This effect is particularly
detrimental for algorithms that cannot enforce migrations. Indeed, GREENING-NoMig drastically
reduces the number of active jobs in M1 nodes. Both under static and dynamic workloads, the
Free-Green algorithm tends to balance the load across all available nodes, so that it is the only
algorithm under which the occupancy of M1 nodes increases also in the central hours of the day.
Total-Green behaves almost as Random, because the total level of green energy fluctuates for all
nodes following the same daily trend. All other algorithms tend to move jobs to the far-edge when
the green energy is more abundant. This also tells that the network is not saturated when the green
energy level is higher although the load is quite high. Indeed, consider that, with the parameters
of Table 3.2, a far-edge node can handle up to 15 jobs, on average, while an M1 node can host up
to 20 jobs.

To see how the above described behaviors map onto system utility, Figures 3.6, 3.7 depicts
average results for GREENING and the other algorithms based on the trend of Elia’s traces for green
energy availability as described in Section 3.5.1, for the 4 cases with green or brown M1 nodes
and static or dynamic workloads. Here we fix the intensity of job arrivals per node and per slot
to 0.25N, as in Figures 3.4, 3.5 and we test different network sizes, up to 48 nodes, although for
Solver we only report results up to 12 nodes.

All bar charts in Figures 3.6, 3.7 show that the utility increases more or less linearly with the
size of the network (note that the intensity of job requests scales linearly as well), although some
differences are visible. In particular, while with a tiny network scale and static workloads (N = 4
in Figures 3.6a and 3.7a) the differences between the 8 algorithms are small, the advantages of
GREENING become evident as N grows and especially when considering dynamic workloads (see
Figures 3.6b and 3.7b).

With static workloads, most of the algorithms perform at the same level, with GREENING and
Solver only being slightly superior. This occurs because the revenue deriving from accepting a
job is greater than its cost, so eventually all algorithms tend to maximize the amount of accepted
jobs. They do that using direct placement, with migration only used when strictly necessary.

With dynamic workloads, the importance of timely migration becomes more evident, and per-
formance differences emerge more clearly. For instance, the performance of GREENING-NoMig,
which is almost as good as GREENING under static workloads, here decreases significantly because
of the impossibility to perform migrations when the workloads are dynamic. This can cause up
to a 35% of utility reduction in the case of dynamic workloads with respect to static workloads
with the same average. PFPJ-1 and PFPJ-2 suffer dynamic workloads as well because they only
enforce migrations from highly loaded to lightly loaded servers. The impairment is less evident,
but it becomes substantial as the number of edge nodes increases.

Therefore, Figures 3.6, 3.7 show that well orchestrated migrations are key to achieve good
results. In particular, fetching information on the dynamic properties of jobs is key to adapt the
optimization on a per-slot-basis, which is what GREENING exploits better than the other algorithms
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because it constantly adapts to changes in green energy levels and game session workloads.

Figure 3.6, 3.7 also show that the impact of having brown vs. green M1 nodes is much higher
than the impact of dynamic vs. static workloads, because the use of brown energy entails high
costs. Interestingly, GREENING is the only algorithm that practically performs the same with static
and dynamic workloads and green M1 nodes, and its loss of performance with respect to the case
with green M1 nodes and dynamic workload is very close to (or even less than) what observed
for Solver. We conclude that GREENING is very robust to the network context, whereas the other
heuristics suffer much more.

It it important to note that GREENING achieves practically the same utility as Solver in all
cases, although with much less complexity. This means that the utility improvement achieved
with Solver by offloading more jobs from M1 to far-edge nodes (see Figures 3.5, 3.4) has limited
importance in most of the cases.

GREENING clearly performs close to Solver, which however is not guaranteed to be optimal
because it solves Problem (3.3) with a very short time horizon (1 time slot only), while the results
commented so far are computed for jobs lasting much longer (tens of time slots).18 Therefore, a
question that might arise at this point is: how far is GREENING from the optimal? To answer this
question, we derive a simple upper bound on the utility. The bound is computed by multiplying
the average revenue of a job, minus its deployment cost, times the average number of jobs arriving
in a time slot. The above does not account for energy costs, so that we then subtract the cost of
the average quantity of energy required by all jobs in a slot, but only for the part that complements
the volume of energy available from renewables in the overall system. This bound is optimistic
because it assumes that no brown energy is used if there is spare green energy anywhere in the
system. This is definitely not the case for brown M1 nodes, and is also an overestimate on the use
of green energy for any other node. In addition, the bound neglects the costs of migrations and
interruptions.

Figures 3.8, 3.9 show the gap between the utility reported in Figures 3.9, 3.8 and the upper
bound. The results clearly show that GREENING’s distance from the (unfeasible) upper bound is
slightly above 10% with brown M1 nodes and at about 10% with green M1 nodes. Solver does
only slightly better, while PFPJ-1 and PFPJ-2 pay 5% to 10% more than GREENING and the other
heuristics are 3 times less efficient.

As an interesting note, since GREENING and Solver are close to the lower bound, we can
argue that our bound must be tight with respect to the optimal. The bound is valid not only
for greedy allocations with finite time horizon, but it is valid in general over any time horizon
and scheduling of jobs (including for jobs delayed before being deployed), because the bound
considers the overall job arrival rate, not just the accepted jobs. Therefore we must conclude
that GREENING and Solver are near-optimal with respect to any possible allocation policy, and in
particular achieve much better performance than what guaranteed by using any standard greedy
algorithm, which cannot guarantee anything better than 1−1/e ≃ 63% of the optimal. In addition,
GREENING significantly outperforms state-of-the-art algorithms in the evaluated scenarios.

The above-described results show that static workloads are preferable. However, real work-

18Note that Solver becomes optimal as the cost of migration goes to 0 because in that case the greedy
optimization of each time slot becomes optimal, as explained in Section 3.4.
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Number of edge nodes in the system

(a) Brown M1 nodes

Number of edge nodes in the system

(b) Green M1 nodes

Figure 3.10: Average jobs in the system with dynamic workloads as the network size
scales up (λ = 0.25N, far-edge to M1 node ratio equal to 3:1).

Number of edge nodes in the system

(a) Brown M1 nodes

Number of edge nodes in the system

(b) Green M1 nodes

Figure 3.11: Rejected jobs per time slot with dynamic workload as the network size scales
up (λ = 0.25N, far-edge to M1 node ratio equal to 3:1).
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Number of edge nodes in the system

(a) Brown M1 nodes

Number of edge nodes in the system

(b) Green M1 nodes

Figure 3.12: Percentage of game time played with dynamic workloads as the network size
scales up (λ = 0.25N, far-edge to M1 node ratio equal to 3:1).

loads are rarely static, and can be used to idealize the service behavior under specific circumstances
and with some approximation. For instance, the online game operator might want to allocate re-
sources as the maximum possible rate required by players when there is no information about job
dynamics. This is useful and provides users with strict guarantees, but incurs overprovisioning.
Therefore, to further analyze the performance of GREENING and the other benchmarking algo-
rithms, next we will consider results for the dynamic workload case only, which is more realistic.

The average number of jobs active in the system is depicted in Figure 3.10 for different cases
and as the number of edge nodes increases. PFPJ-1, PFPJ-2 and GREENING-NoMig perform
almost as Solver and GREENING, and only GREENING-NoMig exhibits a significant degrade of
performance. The other algorithms sustain much less jobs, on average. Therefore, the superiority
of GREENINGwith respect to, e.g., PFPJ-1, is not due to its capacity to accept more jobs or keeping
a higher number of active game sessions. It must reside instead in the ability to use resources better
and avoid job interruptions.

To proceed with the analysis of the causes of utility differences between the tested algorithms,
we next evaluate job rejections. Figure 3.11 shows that Solver and GREENING reject about 10%
of online game session requests in all of the cases shown in the figure. For instance, with 12
nodes in total, out of which 3 are (either green or brown) M1 nodes, there are 0.3 rejected jobs
per slot out of λ = 0.25 · 12 = 3 requests per slot. Interestingly, Solver and GREENING can reject
more jobs than PFPJ-1, PFPJ-2 and GREENING-NoMig. The other heuristics are much worse. For
instance, with brown M1 nodes, the Total-Green rejects about 42% of requests (e.g., with 48
nodes, the total arrival rate is 12 requests per slot, out of which about 5 are rejected), and 25% with
green M1 nodes (e.g., with 48 nodes, about 3 requests out of 12 are rejected). Therefore, against
intuition, high numbers of active jobs do not necessarily mean less rejected jobs. In fact, it is more
convenient to reject some jobs rather than interrupt them.

Rejecting more jobs must occur because Solver and GREENING have on average more jobs
allocated and less jobs interrupted, therefore having less space to admit new jobs. To evaluate the
correctness of this deduction, let us observe the time played for accepted jobs, normalized to the
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λ/N (requests/node/slot)

(a) N = 4

λ/N (requests/node/slot)

(b) N = 8

Figure 3.13: Utility comparison as the arrival rate λ size scales up for different network
sizes, with dynamic workloads and far-edge to M1 node ratio equal to 3:1, and green M1
nodes.

nominal duration of all jobs, as shown in Figure 3.12. Indeed, the figure shows that GREENING and
Solver guarantee the highest percentage of time played, i.e., less and shorter job interruptions.
Solver misses about the 10% of played time, which corresponds to the 10% of rejected jobs
visible in Figure 3.11. Here, GREENINGmisses an additional 2% to 3% of played time with respect
to Solver, which is therefore due to rare job interruptions in addition to the ∼ 10% of rejected
jobs. Other heuristics accept more jobs, but then they are forced to abruptly interrupt many more
jobs, thus experiencing lower utilities. In particular, probabilistic allocation algorithms reject
and interrupt many more jobs, which is because they can allocate jobs to nodes that are close to
saturation. Specifically, Total-Green incurs about 13% to 16% of interruptions, as it yields a time
played as low as 42–45% with brown M1 nodes and ∼ 60% with green M1 nodes (and, as noted
before, about 25% and 42% of the missing played time is due to rejections for the cases with brown
and green M1 nodes, respectively). Similarly, the other random algorithms cause interruptions for
about 15% to 20% of the time. PFPJ-1 and PFPJ-2, whose rejection rate is negligible, still have
a played time of about 80%, which implies a 20% of losses due to interruptions of jobs. This hints
to the fact that considering migrations only when a server is highly loaded, as done in PFPJ-1
and PFPJ-2 with different metrics, is more expensive and less effective than enforcing migrations
continuously, as done with GREENING and even more massively with Solver.

To generalize the conclusions drawn so far, we eventually evaluate the impact of the load, by
varying λ and the ratio between far-edge and M1 nodes in the system.

The results of Figures 3.13 and 3.14 were obtained with 4 different levels of load and report
the utility per time slot, normalized to the number of nodes. At λ/N = 0.1 requests per node per
time slot, the system is underloaded and all algorithms perform similarly, with GREENING being
a bit better than the others, for all values of N considered in the figure. The case λ/N = 0.25 is
the one described before in this section, which shows that GREENING offers non-negligible gains,
especially as the network size increases. The remaining two cases, with λ/N = 0.4 and λ/N = 0.6,
are cases in which the network is lightly or heavily overloaded, respectively. In those cases,
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λ/N (requests/node/slot)

(a) N = 12

λ/N (requests/node/slot)

(b) N = 24

Figure 3.14: Utility comparison as the arrival rate λ size scales up for different network
sizes, with dynamic workloads and far-edge to M1 node ratio equal to 3:1, and green M1
nodes.

Number of edge nodes in the system

(a) Far-edge to M1 ratio: 3:1

Number of edge nodes in the system

(b) Far-edge to M1 ratio: 6:1

Number of edge nodes in the system

(c) Far-edge to M1 ratio: 9:1

Figure 3.15: Utility per time slot with green M1 nodes and dynamic workload at λ = 0.3N
and different far-edge to M1 node ratios.

GREENING is always the best choice, offering at least 20% more utility than other algorithms with
at least 12 edge nodes in the system. It is interesting to note that, as the network saturates, random
allocations become competitive with respect to baseline algorithms with migrations, PFPJ-1 and
PFPJ-2. This behavior occurs because, differently from GREENING, these heuristics do not attempt
to minimize energy costs.

Figure 3.15 compares different far-edge to M1 node ratios, starting with the case 3:1 consid-
ered so far in this section, except here λ = 0.3N. M1 nodes are green and the game sessions exhibit
dynamic workloads. The ranges for the number of nodes evaluated in each plot are different as it
was not possible to use a common range that satisfied all ratios exactly. The case 3:1 is the one in
which the gain of GREENING is the least, whereas the gain can become much higher under higher
ratios like 6:1 or 9:1. Small ratios are appropriate to model early stage MEC deployment scenarios
in 5G networks, due to the cost of deploying MEC hosts and controllers. Instead, much higher
ratios are foreseen for future releases of 5G and beyond. Therefore, we can conclude that while
GREENING can offer decent gain in limited deployment frameworks, its potential would be truly
unleashed as the roll-out of 5G and beyond 5G networks progresses.
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3.6. Summary of the Chapter

In this Chapter, we have studied the green edge gaming concept and how to maximize the utility by
leveraging MEC-like facilities and locally generated green energy. We have formulated a multi-
constrained integer-linear problem for the one-shot allocation of game sessions to servers, and
shown that it is NP-hard in strong sense. The problem is however sub-modular over a single
step time-horizon, and practically also over any time-horizon optimization instance, at least if
migration costs are limited with respect to energy costs and/or per-job revenues. This fact might
encourage the use of greedy heuristics with strict performance guarantees (of the order of 1 −
1/e). However, we have shown that it is possible to sensibly improve performance by exploiting
energy context information and timely migrations. In particular, we have shown that the green
energy component is key to drive the optimization of job allocations and migrations. Moreover, a
dynamic optimization is needed to account for energy level dynamics in green energy generation
as well as in job power absorption. As network size and load increase, and far-edge nodes become
largely prevalent in number, our proposed algorithms, GREENING, largely outperforms state-of-
the-art approaches and achieves near-optimal results with very low complexity. Notably, without
the possibility to timely migrate online game sessions, which is a feature of the edge context, the
greening of online gaming could not be a viable solution.
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4. GREEN AR OFFLOADING

In the previous Chapter, we presented a heuristic solution to tackle the problem of allocation
and migration of jobs in a green edge gaming scenario. However, thanks to novel technological
advancements in the AI field, ML algorithms (deep learning and reinforcement learning among the
others) are becoming more and more sophisticated, with many research efforts devoted to apply-
ing those algorithms to a resource allocation and migration problem [63]–[65]. As we know, the
development of novel use cases in beyond-5G and 6G networks will rely, among other aspects, on
the availability of computing resources at the edge, therefore enabling the realization of applica-
tions that are both computationally demanding and latency-constrained, such as mobile augmented
reality. In this context, applying ML algorithms becomes interesting since they (i) are capable of
learning and adapting to the complexity of dynamic edge computing environments and (ii) they
can adjust to changing conditions and evolving user demands, leading to more efficient resource
allocation and task migration decisions. Therefore, it seems natural to try to apply ML algorithms
in a scenario where tasks need to be allocated and migrated dynamically in an edge computing
environment with intermittent renewable energy sources. In this Chapter, we analyze the edge op-
erator’s resource allocation to support the energy-aware offloading of MAR tasks at the edge of the
cellular network with the goal of not only maximizing service acceptance (i.e., revenue) but also
optimizing the operator’s business utility, which depends on its carbon footprint and the profit of
operating the service. We leverage Deep Reinforcement Learning to propose an efficient solution
(called GreenRL) to operate the edge resource allocation that can adapt to different utilities. We
compare our solution against baselines and another heuristic, showing how adaptability plays a
key role in increasing performance.

The rest of the Chapter is organized as follows. We propose the problem of greening offloaded
MAR tasks in Section 4.1 and afterward in 4.2 we show our system model. In Section 4.3 we
formulate our optimization problem and we propose two different objective functions, according
to the end goals of network operators. In Section 4.4 we present GreenRL, our DRL-based solu-
tion and finally Section 4.5 provides a numerical evaluation of our proposal while in Section 4.6
presents our concluding remarks.

4.1. Background

In beyond-5G networks, the MEC paradigm [9] places computing nodes at the edge of the cellular
network, enabling new disruptive low-latency use cases. Among those use cases, we highlight Ex-
tended Reality (XR) applications [430], which cover under their umbrella both Mobile Augmented
Reality (MAR) and VR applications. While the network support for the latter will be challenging
even for 6G networks [13], MAR applications are becoming widespread among end-users thanks
to the development of mobile equipment: a recent Huawei report [17] indicates that by 2026 the
MAR market will generate over $30B in revenue, led by social apps and AR games. However, this
will only be possible with the help of edge servers to offload at least partially the computation of
MAR tasks [430], since many of these devices will be battery-constrained. Deploying networks
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Figure 4.1: Edge scenario where MAR devices offload their computation to an edge net-
work with migration capabilities.

that are technically capable of supporting such demanding applications (e.g., with edge comput-
ing resources) is an important challenge, but there is an even more crucial aspect to eventually see
these systems deployed in real networks: sustaining the required deployment has to be profitable
for operators. One manner to provide income to network operators to compensate for the large
CAPEX required to deploy a MEC system is the business model based on leasing edge resources
to service providers or to users on a pay-per-use model [431].

In this work, we try to answer one of the main questions arising on the topic of how to realize
XR applications in next-generation communication networks: “How to distribute computation
and data between different components in future XR systems?” [432], which is crucial due to the
limited available resources at the edge both in computing and energy terms [1].

In particular, we study how to allocate and migrate MAR tasks in an edge network, where
edge nodes have a variable amount of renewable energy. Our objective is not only to maximize
the operator’s profit but also to find a compromise between profit and carbon footprint, with the
ultimate goal of making an edge network sustainable in both costs and energy consumption. We
provide a DRL–based algorithm to propose a smart model for the allocation and migration of
MAR tasks. The main contributions of this chapter are:

• This is the first work considering both the tasks’ migration and the awareness of variable
renewable energy at the edge.

• We optimize both profit and a weighted fair utility to compromise between profit and sus-
tainability.

• We propose a heuristic and a DRL algorithm, which can dynamically allocate and migrate
jobs according to the presence of renewable energy. We evaluate the algorithms through
simulations with different loads, costs, etc., which shows that our DRL model outperforms
the benchmarks and is able to adapt to different utility expressions.

Novelty and main contributions: Most of the state-of-the-art works focus on the energy
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efficiency of the end-user side, while almost none of them focus on the service/operator side and,
more importantly, they do not consider the impact of the availability of intermittent renewable
energy. Indeed, this aspect can play a significant role for the operator, as nowadays non-renewable
energy sources may incur exorbitant prices with high variability. In this Chapter, we fill this gap
by analyzing how MAR jobs can be offloaded in an edge system dependent on both renewable
and non-renewable energy and in particular focusing on how this could be sustainable for an
infrastructure provider in monetary terms.

4.2. System Model

A MAR application is composed of a video source, a tracker of the user’s environment position,
a model for object recognition in the environment, and a rendering tool that shows the augmented
world on the user’s display. Except for the video source, the other tasks can be offloaded to the
edge network with different latency deadlines [30]. We consider the offloading of jobs associated
to the processing of video frames, as done in other works [30], [32].

Our objective is to find an allocation policy that allows the edge operator to maximize its
long-term utility, where allocation refers to both the initial job assignment and its re-allocation
(migration to another node) that might be enforced during task execution.

The utility depends on two main components: (i) the monetary profit, which has to be max-
imized, and (ii) the environmental footprint, which has to be minimized. These two objectives
can clearly be contrasting. Thus, besides a mere cost-revenue function, we design a function that
describes the inherent trade-off between profit and environmental footprint. The function is in-
spired on proportional fairness [433] for the normalized versions of the two unaligned objectives
identified above, as we will explain in detail.

4.2.1. Network

We consider a MEC system as illustrated in Fig. 4.1, where a VNF is responsible for (re-)allocating
resources every time slot of duration TTS. Each edge node n ∈ N is characterized by its maximum
power consumption (P(max)

n ) and its CPU capability (C̃n), i.e., the maximum amount of processing
cycles per time slot. Each MEC node is powered by renewable energy sources, which can be
located on-site at the same edge node [3]. Consequently, each node has access to a variable amount
of green energy that varies through time, and we assume that the amount of renewable power
available at the nodes follows a generic distribution Ξ. The available green energy is variable, and
the remaining power required to reach the maximum P(max)

n is provided by the standard electric
grid. The grid’s energy source is considered to be non-renewable since a power grid fueled by
a mix of renewable and non-renewable sources would only modify the relative goodness of grid
energy versus the locally acquired green energy.

Offloading MAR tasks to the edge servers prevents the user from draining its battery, and the
use of renewable energy sources at the edge implies that offloading tasks is an environmentally
beneficial decision. Therefore, we consider that MAR tasks are by default offloaded to the edge
network, provided that doing so does not entail a loss of QoE for the user, e.g., by increasing the
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delay beyond a maximum acceptable threshold. If the user does not enjoy the required wireless
channel conditions, its computation is done locally at the end-user device, and such the user does
not request any offloading. Hence, and because we are interested in optimizing the use and alloca-
tion of computing and energy resources independently of how offloading requests are generated,
we omit the modeling of the wireless network access. The impact of wireless access quality and
congestion might be evaluated in future work. Finally, we consider that the edge servers are not
located far away from each other, such that the fiber link connecting each other only introduces a
few milliseconds of delay [434], which is below the MAR latency budget.

4.2.2. MAR tasks

We consider that each job corresponds to a MAR session requested by a user. We assume that each
job has a duration ℓ j measured in time slots of TTS seconds, and t⋆j denotes the arrival time slot of
job j. Each job has a required processing load that remains constant throughout the session, and
the number of processing cycles per time slot required to compute job j (i.e., its size) is given by
c j. The job requests’ arrival times follow a generic distributionΛ, and the size of the jobs follows a
generic distribution Φ. If a job has been accepted, then it must be served without interruptions for
the duration of the session, as it is assumed that this type of applications demands a great quality
of service, and interruptions will not be tolerated by users paying a premium service.

4.2.3. Economic model

We consider that job j provides a revenue η j if accepted, which is lost if it is interrupted or rejected.
The revenue is assumed to be proportional to the duration and the requirements of the job. Thus,
for a given fixed service fee η̄ representing revenue per time slot per chunk of processing resources,
job j’s revenue is η j = η̄ℓ jc j. The constant η̄ already includes all the non-variable costs associated
with the operation of the service. In this way, the only remaining OPEX to be taken into account
is the variable cost of energy consumption. We consider that the locally generated green energy
incurs no OPEX, but its availability is not guaranteed, as it fluctuates over time; conversely, the
remaining energy obtained from the general power grid is acquired at a cost δ per energy unit and
is always available. The power grid can contain a variable amount of green energy, and we model
such an aspect by varying the cost δ, although we consider it to be fixed for the duration of each
experiment because the price of energy from national grids changes at most every hour.

4.2.4. Decision variables

We denote the placement variable of job j at node n and time t as x(t)
jn ∈ {0, 1}, such that x(t)

jn = 1
indicates that job j is being managed by node n at time slot t. The processing cycles dedicated
at time t for job j are similarly denoted by c(t)

j . We further denote by J the total amount of jobs
arriving in the system. Next, we formally present our metrics of interest before introducing the
optimization problem.
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4.2.5. Revenue metric

Let us first define a j ∈ {0, 1} as the parameter that indicates whether job j has been accepted, i.e.,

a j ≜ 1 −
∏︂N

n=1

∏︂t⋆j +ℓ j

τ=t⋆j
(1 − x(τ)

jn ), (4.1)

where a j = 1 if job j is accepted and a j = 0 otherwise, t⋆j is the arrival time of the job and ℓ j its
duration.

Since job j provides a revenue η j, the total revenue obtained by the operator is R ≜
∑︁J

j=1 η ja j,
while the maximum possible revenue, achieved only if all jobs are accepted, is Rmax ≜

∑︁J
j=1 η j.

From this notation, we define the normalized revenue R̄ ∈ [0, 1] as

R̄ ≜
R

Rmax
. (4.2)

4.2.6. Power consumption metric and associated cost

We assume that the power consumption derived from the computation of a job is naturally propor-
tional to the dedicated computation resources. Specifically, job j consumes an amount of power
in node n equal to αc(t)

j + γ if it is served at time t, where α and γ are constant factors that translate
computation capabilities to power consumption.

Furthermore, we assume that serving a job incurs an extra power cost due to the need of
reconfiguration, allocation, and initialization of the resources that handle the said job. This cost
appears when a job is accepted but also when a job is migrated, since, from the perspective of the
node that receives the job, a migrated job is equivalent to accept such job in terms of resource
reconfiguration. Hence, the power consumed at node n and time t to serve job j is

p(t)
jn ≜ (αc(t)

j + γ)x(t)
jn + βy

(t)
jn (4.3)

where y(t)
jn ∈ {0, 1} is 1 only if job j arrives to node n in the current time slot, i.e., it is given by

y(t)
jn =
(︁
x(t)

jn − x(t−1)
jn
)︁
x(t)

jn. (4.4)

The cost of migration accounts for the resources’ instantiation and management, and β is a constant
factor translating such instantiation procedure into power consumption.

Since we are only interested in the consumption of non-renewable (-source) energy, we define
the non-renewable energy consumption at node n as p(t)

n , which is given by

p(t)
n ≜ max

(︂∑︂J

j=1
p(t)

jn − g(t)
n , 0
)︂

(4.5)

where g(t)
n is the green energy available at node n at time t. Thus, the total non-renewable energy

consumption is P ≜
∑︁T

t=1
∑︁N

n=1 p(t)
n , and the associated monetary cost is δP.

4.2.7. Migration of jobs

We consider that jobs can be migrated from one edge server to another. Specifically, we consider
that, once a job (i.e., a MAR session) is allocated to one server, such server computes and sends
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the video frames back to the user, e.g., either 30 or 60 frames per second (fps) at least for the
whole duration of one time slot (in the order of seconds, which fits the standard time scale for
network function reconfiguration [435]). At the beginning of the next time slot, based on the
current network state, the VNF in charge of allocating the jobs may decide to migrate them. Since
a job consists of computing video frames, there is no need for heavy data transmission between
the servers: it suffices with providing the user metadata. While the new server is initiating the
processes to handle the job, the initial server continues to serve the user. Once the second server
is ready, the migration is effectively applied, which provides a seamless experience for the user.

4.3. Optimization problems

We consider two different utilities: pure economic profit and a proportional fairness-inspired eval-
uation compromising between profit and consumption of non-renewable energy. We remark that
our objective is not finding the optimal allocation for a specific realization of the problem, but
finding the allocation policy that allows the operator to maximize its long-term utility. This is
important because the operator is not aware of the future job arrivals nor the future energy avail-
ability, and because of that it has to follow a policy that is based on the expected utility from
current decisions. Next, we present the two corresponding optimization problems.

4.3.1. Profit maximization

The first problem aims at maximizing the operator’s profit. For the sake of readability, we intro-
duce the notations [X] = {1, . . . , X}, for any positive integer X, and X ≜ {x(t)

jn} j∈[J],n∈[N],t∈[T ]. We
aim at finding the optimal job allocation (and migration), i.e.,

max
X

EΛ,Φ,Ξ[R − δP] (P1)

s.t. x(t)
jn ∈ {0, 1} ∀ n, j, t ∈ [N], [J], [T ] (4.6)∑︂N

n=1
x(t)

jn = a j ∀ j ∈ [J], t ∈ [t∗j : t∗j + ℓ j] (4.7)∑︂J

j=1
c(t)

j x(t)
jn ≤ C̃n ∀ n, t ∈ [N], [T ] (4.8)

where (4.7) states that, if a job is accepted, it can only be allocated to one node at each time slot,
and (4.8) is the node computation constraint, which ensures that the sum of processing resources
allocated at a node n is at most equal to its processing capacity.

We also define the profit margin B̄ as the ratio between the profit R− δP and the total potential
revenue Rmax, such that B̄ ≜ R−δP

Rmax
.

4.3.2. Joint optimization of revenue and carbon footprint

To be able to jointly optimize such disparate metrics as power consumption and revenue, we define
a normalized version of the two metrics, such that both are enclosed in the range between 0 and 1.
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First, for revenue, we consider its normalized expression defined in (4.2), given by R̄ ≜ R
Rmax

,
R̄ ∈ [0, 1]. For the power metric, we define the normalized power saving, which takes the form:

P̄ρp ≜ 1 − ρp
P

Pmax
, (4.9)

where Pmax is defined as the maximum possible non-renewable power consumption, i.e., as Pmax ≜∑︁T
t=1
∑︁N

n=1(P(max)
n − g(t)

n ), and where ρp ∈ [0, 1) is a weight to prevent degenerate cases (since
P̄ρp ≥ 1 − ρb > 0) and to balance the importance of power in the objective function. P̄ρp can be
seen as the percentage of non-renewable energy that we can save to the worst-case scenario. Note
that P̄ρp ∈ (0, 1] is maximized when the non-renewable power consumption P is minimized.

Furthermore, we introduce a weight ρr ∈ [0, 1) for the revenue term, which aims at tuning the
contribution of the revenue to the objective function, such that the final revenue metric is

R̄ρr = ρrR̄ + (1 − ρr), (4.10)

which is a linear mapping from [0, 1] onto (1 − ρr, 1]. The closer the value of ρr to 1, the bigger
the range of the metric is and thus the more importance it has for the operator.

The two coefficients ρr, ρp allow us to masquerade or emphasize the contribution of each
of the metrics and to avoid that they take value 0, which would cause instability problems due
to the logarithmic shape of the function defined next. Their values will depend on the relative
importance that each of the two metrics has for the operator. We make use of the proportional-fair
rule to jointly optimize both metrics because it ensures that the best solution is such that the sum
of relative improvements for each term achieved by any other solution is below zero [433], which
leads to maximizing log(P̄ρp · R̄ρr ). Hence, our optimization problem is

max
X

EΛ,Φ,Ξ[log(P̄ρp · R̄ρr )] (P2)

s.t. (4.6), (4.7), (4.8) (4.11)

4.3.3. Complexity Analysis

We analyze the complexity of both (P1) and (P2), proving that they are NP-hard. For that, we
prove that the well-known 0-1 Knapsack Problem (KP) can be reduced to our problem, i.e., that
every instance of the KP can be transformed into an instance of our problem. We first recall the
definition of the KP.

Definition 1 (0-1 Knapsack Problem[425]). Consider a knapsack with capacity C̃n and J jobs,
where job j has profit p j and weight w j. Let x j ∈ {0, 1} denote the variable representing whether
job j is introduced in the knapsack (x j = 1). Then, the KP is defined as

maximize
X

∑︂J

j=1
p jx j (4.12)

s.t. x j ∈ {0, 1} ∀ j ∈ [J] (4.13)∑︂J

j=1
w jx j ≤ C̃n (4.14)

Theorem 3. The problems (P1) and (P2) are NP-hard.
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Table 4.1: Notation used in Chapter 4

Notation Description

a j a j = 1⇔ job j is accepted, a j = 0 otherwise

c(t)
j Required processing for job j at time t

C̃n CPU capabilities at node n

J Number of jobs

N Number of nodes

p(t)
n Non-renewable used power at node n, time t

g(t)
n Available green power at node n at time t

P Total non-renewable power consumption

P(max)
n Total available power at node n

P̄ρp Normalized non-renewable power savings

R Total revenue

Rmax Maximum revenue (if all jobs are accepted)

R̄ Normalized revenue R̄ ≜ R
Rmax

R̄ρr Normalized revenue metric

t⋆j Arrival time slot of job j

y(t)
jn Indicates if job j arrived to node n at time t

Λ Distribution of job’s arrival time

Φ Distribution of job’s size

Ξ Distribution of green power availability

α, γ, β Constant power–computation factors

x(t)
jn Placement variable of j at node n at time t

111



Proof. Since (P1) and (P2) only differ in the objective function, we can simultaneously prove both.
We start by considering a specific case of our problem, which takes the following assumptions:

1. We consider a single time instant (T = 1).

2. We consider a single node (N = 1).

3. We consider that c j ≤ C̃1 for all j.

4. We consider that g(t)
n ≥ P(max)

n , for any t.

5. Λ,Φ,Ξ are deterministic and known constants.

6. All jobs last a single time slot (ℓ j = 1).

We can remove the expectation over Λ,Φ,Ξ in the objective functions because from 5 we know
the number and size of all jobs. From 1-2, we can omit the sub-index n and the super-index (t).

Furthermore, 4 implies that p(t)
n = 0, and thus P = 0 and P̄ρp = 1. Hence, the objective function

of (P1) becomes maxX R and that of (P2) becomes maxX log(R̄ρr ). Due to the monotonicity of the
log function, the values that maximize log(R̄ρr ) are the same ones that maximize R̄; since we are
interested in the argument that maximizes the function rather than the maximum value itself, we
can consider maxX R̄ as our objective function for (P2) in this specific case. Since Rmax does
not depend on the decision variables, we can substitute the objective function in (P2) by maxX R,
which matches that of (P1). Hence, in this particular setting given by 1–6, both (P1) and (P2) are
equivalent. Since (4.1) and the assumption N = T = 1 imply that R =

∑︁J
j=1 η jx j, our problem is

equivalent to

max
X

∑︂J

j=1
η jx j (4.15)

s.t. x j ∈ {0, 1} ∀ j ∈ [J] (4.16)∑︂J

j=1
c jx j ≤ C̃n (4.17)

By assigning p j ← η j, w j ← c j in (4.12), the KP can be reduced to this specific case of our
problem. Hence, we can argue that (P1) and (P2) are as complex as KP, which is NP-hard. Since
this reduction can be built in polynomial time, both problems are NP-hard. □

4.4. Algorithms

The previous optimization problem is the formal definition of the objective of the operator. In
real network deployments, the operator cannot know how many jobs are going to arrive in the
incoming time slots. Because of that, it has to rely on probabilistic policies, which determine the
best decision to take at the current moment based on the expected behavior of the system. Fur-
thermore, even if the operator had access to future samples, the NP-hardness of the optimization
problem would discourage any attempt to directly solve it, as the complexity and required time for
iteratively solving such a problem would not be acceptable in a real-time system.

Thus, we need to derive practical algorithms to provide a solution for the problem above.
As previously stated approaches based on RL are usually considered for these decision-making
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problems, where we cannot obtain an optimal solution and the objective depends on the previous
and future decisions. For the application of RL, the problem is typically modeled as a MDP, and,
consequently, we reformulate the problem as an MDP.

4.4.1. Reformulation of the Problem as a Markov Decision Process

The scenario presented in Section 4.3 can be stated as a MDP through the 4-tuple (S , A, Pa, Ra)
governing any MDP: The state space (S), action space (A), the probability distribution of the next
state given the current state and action a (Pa(s′|s)), and the immediate reward from arriving to
state s′ from state s due to action a (Ra(s, s′)).

Agent

The agent corresponds to the edge orchestrator controlling the N edge nodes. At every time slot,
it must take Jt decisions, where Jt is the number of jobs that are present at the beginning of time
slot t, including the jobs already being served and the new requests arrived since the last time slot.

State space

The state space is comprised of all the information obtained by the agent from the environment
that influences the action of the agent. In a given time slot, the state S t (also called observation)
indicates the current value of each one of the variables of interest. Our state space is composed of
three different parts: the load of each of the edge nodes, the green energy availability at each edge
node, and, finally, an indicator stating whether the next job to be managed is a new arrival request
or is already being served by one of the edge nodes. Thus, it contains 2N + 1 dimensions.

To facilitate the learning convergence, and because RL performs better when dealing with
discrete variables, we consider a quantized status of both load and green energy availability. Next,
we describe the possible state values and how we discretize the variables.

For the green energy availability, we consider a three-step quantization: state 0 means that
there is enough renewable energy to fit more jobs, state 1 that in the current state, all energy
consumed is renewable but there is not enough to serve a new job and state 2 that the node is
already taking energy from non-renewable sources.

Regarding the nodes’ load, we quantize the amount of processing cycles required by the node
to compute the allocated jobs in a non-linear way. Specifically, we consider that the quantization
step follows a logarithmic progression, such that the steps become smaller as the node is more
loaded. This follows from the intuitive idea that the exact load is not so important when the
node is handling a low computation load, but it becomes more important when it is approaching
maximum capacity and thus consuming more energy. The quantization is done to enforce that
the last step represents the case where the node cannot accept more jobs and the previous step
indicates that there is space for at least one job.

Finally, the last state dimension is a discrete variable that can take N + 1 values, from 0 to N,
where 0 represents that the job is newly arrived (and thus it can be rejected or allocated), whereas
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Algorithm 4.1 GreenRL: Admission control and resource (re)allocation at each time slot

Input: state S t, set of jobs in the system (J(m)), set of new arrived jobs (J(+)), green
energy g(t)

n ,
Output: Allocation decisions for time slot t
for j ∈ J(m) do { Migration decisions}

Agent selects action a = π(S t).
Check constraints violation ((4.8) or job’s interruption (4.7)).
If positive, agent receives a penalty, episode is stopped.
Evaluate reward and update next state.

end for
for j ∈ J(+) do { Acceptance decisions}

Agent selects action a = π(S t).
Check constraint violation (4.8).
If positive, agent receives a penalty, episode is stopped.
Evaluate reward and update next state.

end for

a value V from 1 to N indicates that the job is already being served and it is currently placed at
node V (such that it can be migrated to other node but cannot be interrupted).

Action space

The action space is the description of the agent’s decision. In our scenario, the agent decides
whether to accept, reject, or migrate each job, which translates in our model to an action space
composed of a single discrete variable that can take the values {0, 1, . . . ,N}. A value a ∈ {1, 2, . . . ,N}
indicates that the job is allocated on node a for the next time slot. This value can represent either
an allocation of a new job or a migration to a different node in the case of already served jobs if
a ≠ S t(2N + 1). Finally, a = 0 represents that the job is rejected; consequently, a = 0 is only
allowed for new jobs as active sessions must not be interrupted.

4.4.2. Deep Reinforcement Learning-Based Solution: GreenRL

We present next the proposed DRL-based solution, denoted as GreenRL, and whose high-level
description is presented in Algorithm 4.1.

As described above, at the beginning of each time slot t the operator decides for each job
present in the network. The operator first handles the jobs that are currently being served in the
system. Those jobs must be served until they finish, but they can be migrated from one node to
another, which would incur a migration cost as described in Section 4.3. The agent evaluates job-
by-job the possibility of migrating, and once they have been managed, it starts deciding whether
the newly arrived jobs are accepted or not, and where to allocate them. If accepted, the job provides
revenue to the operator (unless it is later interrupted).

We note that it is not trivial to correctly define an adequate reward function since the state de-
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pends on decisions taken several time slots in advance due to the shorter time scale of the resource
re-allocation time slot (few seconds) to the duration of the jobs (many minutes). Because of that,
we consider that the reward is a normalized sliding-window version of the objective functions
defined in Section 4.3, as is detailed in the following.

• Profit: To compute the reward, we first calculate the profit obtained in the last Tr time slots,
computed as the difference between the revenue provided by the jobs accepted in those Tr

time slots and the energy cost generated by all the jobs in the system during such interval.
Then, we normalize this profit by the total revenue of all the jobs that arrived during the Tr

time slots, i.e., the reward corresponds to the value of B̄ for the last Tr time slots and lies in
the range [0, 1].

• Fairness: Similarly, the reward depends on the revenue and cost during the last Tr time
slots. Since reward normalization is known to help to achieve better performance for DRL
algorithms, instead of computing log(P̄ρp · R̄ρr ) as indicated in (P2), with lies in the range
[log((1 − ρr)(1 − ρp)), 0], the reward is given by log(P̄ρp · R̄ρr + 1)/log(2), such that it only
takes values in the [0, 1] interval.

Training is split into episodes, each one including up to a maximum number of time slots, and
up until the agent takes a decision that violates any of the physical constraints (i.e., it interrupts a
job that has been accepted or it allocates to a node more computing resources than its maximum
capacity). When an episode is terminated due to a constraint violation, the last reward is set to
−1 to prevent the agent from repeating the mistake. Once trained, the agent is modeled through a
probabilistic policy π(S t).

In our work, we leverage an algorithm called Asynchronous Advantage Actor Critic (A2C) [436]
and, in particular, we use the implementation provided by Stable Baselines3 library19. A2C is
based on Actor-Critic policy gradient methods, and its main idea is the use of an asynchronous
updating scheme that operates on fixed-length segments of experience, executing asynchronously
multiple agents in parallel. We refer to the original paper for further details [436].

GreenRL may take actions that lead to QoE disruptions: It could (i) reject jobs when there
was green energy available for them, (ii) allocate jobs to a node that is already full, (iii) interrupt
an ongoing job. The training process must learn to avoid all these cases.

4.4.3. Heuristic Algorithm: GreenH

We also propose a heuristic algorithm to compare it with the performance of the DRL-based ap-
proach. The goal is to understand the benefits that DRL can bring over designed algorithms that do
not suffer from the low performance that the system can face during (possibly long) training peri-
ods. This heuristic algorithm, to which we refer as GreenH, also handles in-system job migrations
and is aware of the green energy distribution across nodes.

The algorithm acts similarly for both in-system jobs and new jobs: It computes the unused
green energy at each node, i.e., the available green energy at the node minus the current node

19https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html

115



consumption due to the jobs processing. Then, it allocates the job to the node with more unused
green energy. When all nodes are consuming polluting energy, the decision is random. A job can
be forcibly rejected or interrupted if the selected node runs out of computing resources.

4.4.4. Baselines

We also evaluate the performance of two simple baselines. These algorithms do not implement
migration of in-system jobs across nodes, and they do not take into account the distribution of
green energy, i.e., they focus on maximizing only the operator’s revenue. Consequently, the two
algorithms accept all the incoming jobs, and if the node does not have enough computing power,
the job is forcibly interrupted with the subsequent loss of user QoE. These two baseline algorithms
are defined as follows.

• Random: This algorithm selects randomly the node to which each job is sent. The decision
is drawn from a uniform discrete distribution of range {1, 2, . . . ,N}.

• Emptier: sends the job to the node that has the lowest load among the N nodes. If there
are several nodes with the lowest load, the choice is uniformly random among such nodes.

4.5. Numerical Evaluation

We evaluate numerically the four previously described algorithms on a set of network scenarios
and varying parameters. Besides these four solutions, we also provide the optimal solution ob-
tained by solving the optimization problem (P1) or (P2). We remark that this last result, to which
we refer as Solver, is an ideal solution that is not feasible since to solve the optimization, we
must consider that we know in advance the state of the system in the future time slots (number
of arrivals, energy availability, etc.). Solver is also impractical due to the complexity of the
problem, since its computation takes a time that is several orders of magnitude bigger than the
actual operation time. We built a Python simulator, where the DRL framework is built on Stable-
Baselines3 library and the optimal solution for Solver is built using Python’s SciPy library. We
performed our experiments in a Dell T640 server with 128 GB of RAM and 40 logical cores.

4.5.1. Simulation scenario

We evaluate a MEC system as the one presented in Fig. 4.1, where all edge nodes are intercon-
nected in a full-mesh topology and have the same computing capacity and maximum power con-
sumption. We consider that each edge node offers a computing capacity of C̃n = 2 TeraFLOPS,
which is in line with first MEC deployments in metropolitan areas [3]. Time slots last 5 seconds,
which is thus the longest a user would wait to start a session. The value of the factors to transform
computation to energy consumption are α = 0.9, β = 0.1 and γ = 0.1, such that the additional cost
of migrating a job is approximately a 10% of the cost of computation per time slot.

We consider MAR jobs as a sequence of video frames. The edge nodes process video frames
with resolution 800 × 800, which is the same order of magnitude usually considered in the litera-
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ture [32], [34], [45]. According to [32], this video frame size requires 20% of the total computing
resources of a 2-TeraFLOPS edge server.

We assume that a job requires a constant computation per frame. Considering dynamic video
frame sizes, which would vary the computation requirements, could be investigated in future work.
We assume a static session length of several minutes,20 much longer than the slot length, and that
jobs’ arrivals follow a Poisson process.

We assume a set of default values for all the parameters that are valid for all the experiments
unless stated otherwise, and which are provided in Table 4.2. In some cases, we consider that the
revenue unit η̄ is smaller than the cost unit δ (of energy coming from the power grid) due to several
reasons: (i) operators’ profit margin per unit of service is known to be very small, (ii) the final cost
of the service is smaller due to the (relatively) free use of local green energy, and (iii) naturally if
the revenue of a job is always bigger than its cost, the decision will be simpler because all jobs
will be accepted, and the only aspect that will matter is where to allocate them. The experiments
are evaluated by averaging at least 20 different realizations with different renewable energy real-
izations. Each energy realization is independent of each other to obtain a comprehensive analysis
covering all the possible energy distributions.

Training of DRL solution GreenRL

The DRL solution is built upon the well-known A2C algorithm. We evaluated also other state-
or-the-art DRL approaches, such as Proximal Policy Optimization (PPO) or Deep Q-Learning
(DQN), but they were underperforming for all the experiments, and hence we do not include them
in the results. As training parameters, we consider a total training duration of 10 million decisions
(although it is enough to train for 1 million steps for simple cases, e.g., when N = 3), a maximum
length per episode of 1024, a learning rate of 0.0007, and a batch size of 8. Learning rate and batch
size are selected after a careful evaluation, and they lie within their typical range. Both policy and
value neural networks have the same architecture: each one is defined as a MLP network composed
of two hidden layers of 64 neurons each.

4.5.2. Results

We provide the results of the described experiments. In the figures, all the vertical bars represent
the 95% confidence interval. We also omit the transient phase from all the experiments.

Trade-off of fairness function

As previously mentioned, the operators may be interested in optimizing different Key Perfor-
mance Indicators (KPIs) besides the pure economic benefit, KPIs that are more aligned with high-
level goals of the company such as satisfying certain environmental objectives, e.g., the flexi-
ble utility introduced in (P2). Yet, the optimal decisions for (P2) will strongly differ depending

20For longer sessions, we can assume that, once the session has reached a certain duration, a new offload-
ing request is made to renew the service.
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Table 4.2: Simulation parameters in Chapter 4

Job length (time slots) 7

Arrival Rate (Per time slot) 3

Job computation resources 20% of server capacity C̃n

η̄ (Revenue/time slot/flop) 10

δ (Cost/time slot/flop) 15

Renewable Energy Random Uniform µ = 0.5P(max)
n

Fairness weights ρr = 0.4, ρp = 0.95

on the weights ρr, ρp that are best suited for the operator’s objective. To understand the im-
pact of these parameters, we evaluate the performance of the algorithms for different values of
ρr ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for a fixed value of ρp = 0.95. We evaluate a scenario with 3 edge
nodes, serving a set of users whose requests amount to an average load of 50% of the total ca-
pacity of the nodes. In this experiment, we consider that the revenue per job is 20% higher than
the cost of computing such job without local green energy, i.e., η̄ = 1.2δ. Yet, due to the varying
weight of the revenue term in (P2), it is not always better to accept all the jobs.

The results are shown in Figure 4.2. Figure 4.2a represents the main objective function (that
of (P2)) for which both Solver and GreenRL are optimized. We observe how GreenRL per-
forms close to the (ideal) Solver, outperforming the other algorithms by more than 20% except
for ρr ≥ 0.7. For ρr ≥ 0.7, GreenRL performs as well as the best of the other algorithms because,
with the considered level of green energy, accepting all the jobs is almost optimal. Figure 4.2b
represents the resulting normalized profit margin B̄, which is the ratio between the profit R−δP and
the total potential revenue Rmax, such that B̄ ≜ R−δP

Rmax
. We recall that the algorithms are optimized

to maximize the fairness-like expression (P2), and not the profit (P1). GreenRL and Solver
perform worse than the baselines for this metric, but that is expected since they aim to optimize
the other metric. Indeed, the relative result with respect to the baselines worsens as the weight of
the profit (ρr) decreases.

Impact of revenue/cost ratio

The cost of non-renewable energy, which may vary greatly, also impacts the performance of the
edge network. Figure 4.2c shows how changing the relation between revenue and cost could
affect the performance of all algorithms, for the case where Solver and GreenRL are optimized
for (P2) (log(P̄ρpR̄ρr )). GreenRL is able to perform really close to the solver’s performance for any
cost, and with an important gap w.r.t. to the baselines. The good result of all the algorithms when
η̄
δ = 1 is due to the fact that, with that value, accepting a job that consumes only non-renewable
energy has the same profit as rejecting the job, and thus different decisions can lead to similar
performances.
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Figure 4.2: Evaluation of the performance of the algorithms as function of several system
parameters for problem (P2). We present in (a) the value of the objective function of (P2)
for different values of the weight of the revenue metric ρr, and in (b) the corresponding
value of normalized profit margin obtained in this case (when we do not directly optimize
the profit). In (c), we show the impact of varying the ratio between revenue (η̄) and cost
(δ) again when solving (P2).
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Baseline network topology with 7 nodes

Figure 4.3 shows the results for a network topology of 7 edge nodes that abides by the parameters
of Table 4.2, except for the jobs arrival rate, which is set to λ = 4, such that the average system
load is 65%. We provide a detailed analysis, whose results are summarized in Fig. 4.3, by pre-
senting four metrics of interest: (i) the cost of energy (Fig. 4.3a), (ii) the normalized profit margin
B̄ (Fig. 4.3b), (ii) the portion of users accepted, rejected and interrupted (Fig. 4.3c), and (iv) the
use (and excess) of green and polluting energy (Fig. 4.3d), and for the two considered problems:
The bars labeled as “Fairness” correspond to the case where the algorithms are designed to opti-
mize (P2), whereas the cases labeled as “Profit” when we optimize for (P1). Fig. 4.3a-4.3b show
how, in the “Fairness” case, GreenRL attains the same profit as when it is optimized to maximize
the profit, while also greatly reducing the power cost, which endorses the consideration of (P2).
In fact, GreenRL for (P2) reduces the energy cost by more than 80% w.r.t. GreenH and the same
GreenRL optimized for profit, 95% w.r.t. the baselines, and matches that of Solver.

Fig. 4.3c indicates that GreenRL is the most conservative algorithm, since it accepts the small-
est number of jobs, but it does so to ensure that no job is interrupted. We remark that, in our model,
not accepting a job is not critical, as it is then computed at the user device (with the only drawback
of draining its battery), whereas interrupting a job that was offloaded has a huge impact in the end-
user QoE, since due to the nature of the MAR sessions it is highly probable that the user is unable
to continue the session. The explanation of this conservative behavior is also complemented with
Fig. 4.3d: Random is shown in Fig. 4.3c to be the most aggressive, and Fig. 4.3d shows that such
approach is detrimental because it incurs high consumption of non-renewable energy. Similar ra-
tionale can be applied, to a lesser extent, to Emptier, and while both Random and Emptier
accept more jobs, they also incur more jobs interruptions and power consumption. Moreover,
GreenRL performs quite close to Solver, which is also quite conservative, although it is able to
accept more jobs. In terms of underuse of green energy, the algorithms perform similarly, except
for Solver; yet, GreenRL is the only one that does not use non-renewable energy in place of
green energy. The patterns in energy sources usage are also maintained for the case with N = 10
edge nodes, represented in Fig. 4.4.

GreenRL and GreenH enjoy a great performance because they allow migration to nodes
with more available green energy. Specifically, throughout all the experiments here presented,
GreenRL migrates an average of 10% of the jobs in the system, while GreenH migrates 25% of
the jobs. The amount of migrations adds a monetary cost for the network operator, thus giving an
additional reasons why GreenRL migrate less.

Performance as function of the number of edge nodes

We evaluate the performance obtained by the algorithms when optimizing (P1) (Fig. 4.5) and (P2)
(Fig.4.6) as function of the number of edge nodes. Due to its intractable complexity, Solver
is evaluated only up to 10 nodes. For (P1), all algorithms have similar performance except for
Random since, to maximize profit under the considered parameters, especially the low-to-medium
load, the optimal choice is almost always accepting the job.

Instead, in Fig. 4.6, differences are more pronounced as GreenRL and GreenH outplay the
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Figure 4.3: Performance for the scenario with N = 7 nodes. We represent the results
obtained when solving both the problem (P1) (labeled “Profit”) and (P2) (labeled “Fair-
ness”). 121
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Figure 4.6: Performance as function of the number of nodes for (P2). Computing load is
65% of the total capacity.

baselines, with GreenRL being the best algorithm, tied with GreenH for N = 20. This is another
evidence of how having a DRL-approach adapting its decisions based on different factors could
lead to more robust and scalable solutions in MEC settings.

Impact of higher loads with low green energy

Finally, we also evaluate the performance of GreenRL in the case where the edge network pro-
cesses a higher load while sustaining low availability of green energy. For all experiments, we
consider the 5-edge-node scenario with an average load of 96% of the maximum capacity of the
system and a green energy distribution being uniformly random between 10% and 40% of the
maximum required energy. For this scenario, we considered two values of δ for a fixed revenue
η̄ = 10.

We report the results in Table 4.3. Again, GreenRL greatly outperforms the other algorithms
for problem (P2), achieving a performance which is within the confidence interval of the Solver’s
one. Instead, for (P1) with cost δ = η̄, the simplest baseline performs as good as Solver. As
previously mentioned, this is due to the fact that the operator obtains the same profit by accepting
jobs that only consume non-renewable energy as it does by rejecting them. However, when costs
increase, GreenRL stands out again.

4.6. Summary of the Chapter

In this chapter, we have analyzed the offloading of MAR tasks in an edge scenario where the
edge nodes have variable availability of renewable energy sources, and we have proposed a DRL-
based algorithm that can adapt the decisions to the current energy availability and energy costs,
as well as to different business utilities. We have proposed a flexible utility that offers a trade-off
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Table 4.3: Result with high load and low green energy level
Objective→ Fairness (P2) Fairness (P2) Profit (P1) Profit (P1)

Cost (δ)→ 10 ( η̄δ = 1) 15 ( η̄δ =
2
3 ) 10 ( η̄δ = 1) 15 ( η̄δ =

2
3 )

GreenRL -0.410 ± 0.128 -0.396 ± 0.019 0.332 ± 0.032 0.180 ± 0.035

GreenH -0.803 ± 0.044 -0.689 ± 0.035 0.194 ± 0.041 0.095 ± 0.041

Random -0.934 ± 0.096 -0.777 ± 0.041 0.313 ± 0.026 0.126 ± 0.036

Emptier -1.285 ± 0.144 -1.012 ± 0.080 0.341 ± 0.035 0.103 ± 0.043

Solver -0.378 ± 0.102 -0.331 ± 0.018 0.348 ± 0.102 0.280 ± 0.034

between pure net economic profit and the minimization of non-renewable energy consumption
(and, consequently, carbon footprint). The proposed approach can adapt the admission control,
resource allocation and migration depending on the state of the network, and we have proven
through simulations that the model achieves performances close to an ideal optimal solution. We
have also shown how job migrations between edge nodes can help to sustain the MAR business
model at the edge, which motivates further analysis to understand if migrations also benefit when
considering, e.g., the latency of the wireless link or a comprehensive energy model that includes
the end devices and the energy consumption due to the data transport.
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5. CONCLUSIONS

5.1. Summary and Conclusions

In this thesis, we have investigated novel solutions to support the allocation and migration of
tasks in an edge computing (i.e., MEC) scenario, where constrained edge servers partially or
completely depend on the presence of intermittent renewable energies. Indeed, the presence of
edge computing will be pivotal in sustaining demanding use cases such as AR or VR in future
cellular networks (e.g., 6G networks). However, providing computing resources at the edge of a
cellular network infrastructure brings novel challenges for network operators, and therefore novel
techniques and frameworks should be addressed by the research community.

In Chapter 2 we overviewed the state-of-the-art on the MEC deployment in an edge-cellular
ecosystem. We concentrated on mainly two aspects: We first overviewed standards and in par-
ticular, the ETSI-MEC standardization. Leveraging standardization brings several benefits: for
instance, using only standardized interfaces removes the complexity of connecting different in-
terfaces from different vendors, upgrading general performance. We discussed the general ETSI
MEC framework and how it will be implemented in 5G networks. Secondly, we focused on several
techniques or novel scenarios that the edge computing paradigm will enable: we explored the com-
putation offloading paradigm, one of the main use cases enabled by edge computing, migration
techniques (or virtual machines/containers migration) to follow users’ mobility, and how to (flex-
ibly) deploy MEC resources at the edge. We also addressed how important verticals (Automotive,
Smart City, Media, Smart Factories, and eHealthcare) are leveraging the presence of computing
resources at the edge. Finally, we studied a high-level scenario on how different verticals could be
supported at the same time by an edge computing infrastructure in a smart metropolitan scenario.
The findings of this study enabled us to discover or give important insights for the directions of
this thesis. In particular, we highlighted how difficult it is (for an edge infrastructure) to sustain
many users using computing-intensive verticals such as AR/VR and how the costs of deployment
and maintenance of the whole edge computing infrastructure are big, even for a small one.

Motivated by these issues, we proposed and studied intelligent algorithms that could allocate
and migrate tasks within close-edge servers to maximize the revenues of edge operators (i.e.,
maximizing the admittance of users but also decreasing eventual costs). One way to decrease
costs is to leverage renewable energies, which however are intermittent and not always present in
day-to-day life. In the following two chapters of the thesis, we studied those scenarios applied to
different verticals.

In particular, in Chapter 3 we studied the scenario of green edge gaming, where cloud gaming
sessions are moved to edge computing infrastructure with the benefit of decreased latency but also
with the drawback of intelligently allocating tasks due to the scarcity of edge computing resources.
Furthermore, those computing capabilities depend on the presence of renewable sources (the more
green energy there is, the more powerful are these servers), and therefore tasks should be allocated
and migrated according to that volatile presence. We propose GREENING a smart heuristic that can
move and allocate jobs according to the presence of green energy, maximizing the revenue stream
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for edge operators while decreasing the use of brown (i.e., costly) energy.

Along the same lines, we studied the green offloading problem for augmented reality appli-
cations. Indeed, in Chapter 4 we studied the offloading, allocation, and migration of MAR tasks
at the edge, where servers again depend on green energy. In this problem, we leveraged a pro-
portional fairness structure for our optimization problem to find a compromise between revenues
(e.g., admitting as much as tasks as possible) and carbon footprint (i.e., decreasing as much as
possible the usage of brown energy) and we proposed a DRL-based solution, showing how ML
approaches can help solve complex problems and can find a sweet spot in a proportional fairness
structure compared to heuristics or simple baselines.

5.2. Future work

From this thesis, several lines could be considered interesting for future work:

• In our works, we considered the presence of energy only on the edge servers-side, since
we were interested in targeting the performance from a network operator point of view.
However, it could be interesting to study an end-to-end system, considering, therefore, the
energy consumption of devices, base stations, and edge servers. This end-to-end approach
has still not been evaluated in the literature.

• In this thesis, we considered different verticals separately. However, as also started in Chap-
ter 2, it would be interesting to extend our problems to a Green Multi-Vertical optimization
scenario, where several verticals at the same time need to leverage edge servers partially
dependant on renewable sources. Verticals have distinct requirements, therefore needing
different optimization time-scales and computing resource requirements, among other chal-
lenges. This could for instance involve developing multi-objective optimization problems
to balance the needs of different verticals while maximizing overall system efficiency and
revenue generation.

• It would be interesting to design experiments with our solutions, using a real-world archi-
tecture. This would help in gathering novel insights.
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