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Abstract: Currently, the generation of synthetic data has become very fashionable, either due to the need 

to create data in certain specific contexts or to study unknown scenarios among other reasons. 

Additionally, synthetic data is a critical component in training machine learning models in the presence 

of little data. This work proposes a Synthetic Data Generation System (SDGS) architecture to allow 

synthetic data generation to be fully automated. SDGS is based on the Variational AutoEncoders (VAE) 

learning technique, and has three main capabilities. The first is related to the ability to extract data 

samples from multiple sources using the Linked Data (LD) paradigm. The second is linked to the ability 

to merge data sets to increase the amount of information that can be provided to the VAE-based synthetic 

data generator. The last one is related to having a Feature Engineering layer to create new features by 

generating or extracting information from the dataset and then selecting the features that provide the best 

information for the VAE model. A case study is described in detail to show the new functionalities of the 

SDGS, such as dataset extraction from different sources using LD, dataset merging using pivots, and the 

application of different feature engineering methods. Finally, two metrics are used to evaluate the quality 

of the generated datasets in different case studies. The first one is the accuracy to analyze the performance 

of the models generated with the new SDGS functionalities, obtaining results above 90%. The second 

one is the two-Sample Hotelling's T-Squared Test to determine the quality of the synthetic data generated 

by the system, obtaining synthetic datasets very similar to the original datasets.  
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I. INTRODUCCIÓN 

 

A great current technological challenge is being able to take advantage of multiple datasets to generate 

synthetic data in specific contexts. This requires identification processes of said data sources, for which 

the LD paradigm can be used, as well as subsequently merging these multiple datasets into a single 

sample dataset for each given context [22], [23], [24]. Now, this set of data samples obtained from 

multiple sources requires a process of analysis of its characteristics (feature engineering) that allows 

optimizing the quality of the data, before going to a synthetic data generation process [19], [25], [26]. 

 

In this work, an architecture is proposed, called SDGS, which allows the generation of synthetic data 

considering those three aspects mentioned above, which uses the VAE learning technique to generate 

synthetic data. Specifically, SDGS uses the LD paradigm to identify data sources (used as an identifier 

of datasets for a specific context) [1]. Subsequently, it performs the fusion of the different identified 

datasets and a feature engineering process to identify the relevant variables. In this way, it builds a dataset 

for a given context. Finally, SDGS uses a VAE-based model to generate new data similar to the newly 

constructed dataset. In this way, it creates larger data sets from samples of small data sets [22], [23]. 



 

A. Relate works 

 

Some similar research on dataset extraction and fusion with LD are as follows: Avazpour et al. [2] 

described an architecture that incorporates complex data aggregation from multiple sources, mapping 

and data transformation. The architecture is made up of a set of multiple components: i. The dataset 

components collect all the datasets transformed into CSV that come from different sources (CSV, RDF, 

API, among others); ii. The aggregator components allow extracting partial information from each 

specific CSV; III. The mapping components allow the imported data to be assigned to generate the data 

model of the architecture. In the work [3], the authors defined a keyword search system on federated 

RDF datasets. The process begins when the Mediator component receives the set of keywords specified 

by the user. The Mediator component uses the storage component to find the data and metadata that 

match the keywords. The Federated Schema Component is then used to find outer joins between the 

subqueries computed by each dataset. Finally, the Mediator executes the federated SPARQL query and 

returns the dataset with the composition of the data requested by the user from the different sources of 

the federated RDF datasets. 

 

On the other hand, Rao et al. [4] presented a method for fusing linked open data from multiple sources 

for querying relationships between drugs and genetic disorders. Generally, the information about genes, 

drugs and disorders was stored in different places and in different formats such as RDF/XML, SQL and 

relational, among others. In this method, biomedical datasets are converted into RDF triples, normalizing 

the vocabulary and data URIs, and then stored as merged data. After merging, the system can be queried 

with SPARQL to understand the relationships between multiple entities from different datasets and 

extract datasets for a more specific context. Similarly, in [5], Chen proposed an LD fusion method based 

on the calculation of similarity and k-nearest neighbor (KNN), allowing to solve problems of entity 

conflicts between data sources. The LD similarity calculation effectively integrates URI nodes and blank 

nodes into linked data. On the other hand, the fusion of literal type nodes based on the KNN classification 

allows automating the fusion independently of the data sources. The KNN classifier generates a model 

that learns from common assignment strategies for resolving conflicts between literal nodes.  

 

In the context of VAE, there is some research that applies feature engineering. For example, Nishimaki 

et al. [6] described the Localized Variational-Autoencoder (Loc-VAE) that provides neuroanatomically 

interpretable low-dimensional representation from 3D brain MR images. In this research, they take 

advantage of VAE models for feature extraction (using the latent vector Z of an image where the vector 

represents the extracted features). Then, they generate perturbations to each element of the latent vector 

and pass through the decoder, obtaining new images with the result of the perturbation. On the other 

hand, a feature selection method, called AVAE (Attention of Variational Autoencoder) is proposed by 

Van Dao et al. [7], which emphasizes the importance of the attention mechanism in the selection and 

evaluation of weights in the latent space. AVAE consists of CBAM (Convolutional Block Attention 

Module) coding layers, and can learn what and where to emphasize or suppress. CBAM is a lightweight 

CNN with only two convolutional layers: Channel Attention Module (CAM) and Spatial Attention 

Module (SAM). 

 

In [8], Hadipour et al. developed a molecular embedding learning approach that combines PCA (Principal 

Component Analysis) and VAE to integrate global and local molecular features. The approach begins by 

collecting the molecule data, extracting the global (molecular descriptors) and local (atomic and bond) 

features for each molecule. The PCA method is used to reduce the atomic feature matrix and the bond 

feature matrix to a PCA-based feature vector, respectively. Then, it concatenates the global and local 

features and it filters out the columns with zero variance. Finally, VAE is used to incorporate the global 



chemical properties and the local atom and bond features. Also, Akkem et al. [21] proposed the use of 

VAE and Generative Adversarial Networks (GAN) to generate synthetic data for crop recommendation. 

This research focuses on exploring the effectiveness of VAE and GAN in producing high-quality 

synthetic data, facilitating improved training and evaluation of recommender systems. In addition, they 

performed extensive qualitative analysis on the reliability of synthetic data in various experiments, 

including visual comparisons such as heatmaps, scatter plots, cumulative sum per feature plots, and 

distribution per feature plots. The work of Marco et al. [27] explored the use of conditional variational 

autoencoder (CVAE) and inverse normalization transformation for data augmentation and synthetic data 

generation in software engineering. Eleven datasets from sources like PROMISE and ISBSG were used. 

The CVAE-INT model created synthetic data, showing significant results with a mean p-value above 

0.90 in the Mann-Whitney test. The model achieved lower mean absolute error and root mean squared 

error across various datasets.  

 

Panfilo et al. [28] introduced a data synthesis technique for both supervised and unsupervised learning 

on single-table and relational datasets. Utilizing generative deep learning models, the technique includes 

three variants: standard VAE, β-VAEs, and Introspective VAEs. The effectiveness of these variants is 

experimentally evaluated to determine how well they meet the quality requirements for generated data. 

Various performance indexes are used to capture different aspects of data quality, demonstrating the 

applicability of these models to relevant business cases. Kuo et al. [29] proposed enhancing the classic 

GAN framework with a VAE and an external memory mechanism to generate synthetic datasets that 

accurately reflect imbalanced class distributions in clinical variables. The method was tested on data 

related to antiretroviral therapy for HIV. Results show the method effectively prevents mode collapse, 

ensures low patient disclosure risk (0.095%), and maintains high utility for machine learning applications 

in healthcare. Eigenschink  et al. [30] introduced a data-driven evaluation framework for generative 

models that produce synthetic sequential data. The framework assesses models based on five criteria: 

representativeness, novelty, realism, diversity, and coherence, independent of the models' internal 

structures. These criteria address various domain-specific requirements, allowing users to evaluate 

synthetic data quality across models. A review of generative models for sequential data shows that 

realism and coherence are crucial for natural language, speech, and audio processing, while novelty and 

representativeness are vital for healthcare and mobility data. Representativeness is typically measured 

using statistical metrics, realism through human judgment, and novelty with privacy tests. Finally, an 

initial SDGS has been proposed in [1], which only carries out an extraction of data from only one source 

to generate new data. A summary of the literature review with the articles closest to ours is presented in 

Table 1, showing the advantages and limitations with respect to our approach. 

 

 

 

 

 

 

 

 

 

 

 

TABLE 1: LITERATURE REVIEW RELATED TO OUR RESEARCH. 

Work Advantages Limitations 

[1] Propose a synthetic data generator that uses the Data extraction is performed from a single source and does not 



advantages of the LD paradigm for automatic 

detection and extraction of data samples for 

smart grids, and the learning capability of VAE 

algorithms. 

perform a feature engineering process to improve the generation of 

synthetic data. 

[2] 
It describes an architecture that incorporates 

complex data aggregation from multiple 

sources. 

All sources must be transformed to CSV before being used by the 

architecture, and it does not have the ability to extract datasets 

scattered on the web as Linked Open Data. 

[3] 
It presents a system for searching federated 

RDF datasets using SPARQL queries. 

It needs to manually create UNION clauses to combine the results 

of queries  

[4] 
It presents a method of merging linked open 

data from multiple sources converting them into 

RDF triples. 

It is quite difficult to build datasets with this granularity and still 

maintain the relationship between the features of different datasets. 

[5] 

It proposes a fusion method based on similarity 

calculation and KNN, which allows solving 

problems of entity conflicts between data 

sources. 

The difficulty in queries remains due to the granularity of the 

information. 

[6] 
VAE models are used to extract features from 

brain images, observing the effect generated by 

perturbations to the latent Z vector. 

The data generated by the VAE model are used to find the 

explainability of the extracted features. 

[7] 
It proposes a feature selection method that helps 

to acquire important features in the latent space 

of the VAE model. 

It emphasizes the importance of the weight selection and evaluation 

mechanism for the VAE. 

[8] 
VAE is used to incorporate the global chemical 

properties and the local atom and bond features. 

VAE is not used to generate synthetic data but as a feature fusion 

component. 

[21] 
It proposes the use of VAE and GAN to generate 

synthetic data for crop recommendation. 

It’s not defined methods that allow the datasets to be obtained 

automatically, no feature engineering has been applied to improve 

the original data. 

 

The main difference between our approach with previous works is that we define an entire architecture 

for the generation of synthetic data, where aspects such as the acquisition, preparation and optimization 

of the dataset are covered to improve the generation of synthetic data. 

 

B. Contributions 

 

The main difference between the works described above with this research is that our work, before 

generating data, seeks to build a robust dataset with the extraction and fusion of all data from different 

sources. In our case, the datasets already constructed in the study area are identified using the LD 

paradigm. The selected datasets are then merged based on the relationships that exist between them. 

Subsequently, a Feature Engineering process is carried out to build a robust dataset before passing it on 

to the VAE, this allows us to offer new and more information from the data. Finally, our VAE is used to 

generate synthetic data from the created dataset. In general, the main contributions of this research are: 

 

• It defines an SDGS architecture for the automatic generation of synthetic data.  

• It specifies an automatic mechanism for dataset identification from multi-sources based on the LD 

paradigm. 

• It specifies an automatic mechanism for the creation of a robust dataset based on multi-datasets. 

• It defines a Feature Engineering module that merges, extracts and selects features. 

 



This article is organized as follows: Section 2 shows the theoretical framework around SDGS; Section 3 

describes the SDGS components for the multi-sources and multi-datasets management processes, and 

the feature engineering module; Section 4 describes a case study where the SDGS is tested; Section 5 

presents the experiments with the SDGS in different case studies and a comparison with other 

architectures. Finally, Section 6 presents the conclusions of this research. 

 

 

II. SDGS 

 

The SDGS architecture generates synthetic data using the LD paradigm to identify and extract data from 

the Internet and the VAE technique to train a model with this sample so that this model can later be used 

to generate synthetic data. This architecture is composed of the following modules (see Fig. 1) [1]: 

• DataSet Acquisition (DSA): The objective of this module is to find data samples through LD-

based search mechanisms, taking advantage of Open Data Sources (ODS) or endpoints. 

• Data Preparation (DP): The objective of this module is to optimize the data sample. It 

normalizes numerical attributes with high variance, and processes textual or numerical data 

representing a specific finite set of categories or classes. 

• Synthetic Data Generation (SDG): The objective of this module is to generate synthetic data 

by training a VAE-based knowledge model, which automatically extracts and learns the features 

of the optimized data sample for a given context. 

 

 

Fig. 1: SYNTHETIC DATA GENERATION ARCHITECTURE [1]. 
 

In this work, SDGS is extended with new components in order to implement its Synthetic Data 

Generation functionality. 

 

 

III. EXTENSIONS TO THE SDGS 

 

A. Architecture 

 

This research extends the approach proposed in [1] (see Fig. 2). Firstly, by adding two processes to the 

DSA module, a first process focused on the use of multiple data sources and a second process focused 

on the fusion of multiple datasets. In addition, a new module, called Feature Engineering (FE), is added 

to analyze the characteristics of the sample datasets to be used by the SDG, allowing Feature Fusion, 

Feature Extraction and Feature Selection. Finally, the SDG is implemented using the VAE technique as 

the data generator. 

 

 



Fig. 2: EXPANSION OF SDGS 
 

 

B. DSA Module 

 

The objective of this module is to find data samples for a given context using the LD paradigm. Table 2 

shows the macro-algorithm of the DSA module. This module begins by analyzing the context of the 

required data samples, obtaining the keywords to search the data samples (Step 1). Then, the Multi-

sources process is invoked to search the datasets using the keywords obtained in the previous step (Step 

2). Finally, if it is decided to merge the obtained datasets with another dataset from an associated context 

(Step 3), then the multiple dataset process is invoked (Step 3.1). 

 
TABLE 2: MACRO-ALGORITHM OF THE DSA MODULE. 

Input: Specific Context 

Procedure: 

1. The context of the required data is analyzed in order to obtain the search keywords. 

2. Invoke the Multi-sources process to find a Data Sample using the search keywords 

3. If merging the Data Sample: 

3.1 Invoke the Multi-dataset process to merge the Data Sample with the dataset from the associated 

context. 

Output: New Dataset 

 

 

B.1. Multi-sources Process in DSA 

 

The objective of this process is to find data samples from different dataset sources. Specifically, the data 

samples are obtained using search mechanisms based on LD, taking advantage of Open Data Sources 

(ODS), searching each dataset source registered in the SDGS and selecting sample datasets that best 

match the specific context required. These dataset sources are officially provided by countries/regions 

such as Europe (https://data.europa.eu), Spain (https://datos.gob.es/), Canada (https://open.canada.ca), 

United States (https://www.data.gov/), among others. The metadata published by these sources follows 

the CKAN standard (https://ckan.org/), which allows queries using the SPARQL language. Table 3 shows 

the macro-algorithm of the Multi-sources Process in DSA. This process begins by preparing the search 

queries for each dataset source (Step 1). Then, each query is executed in each dataset source, and the list 

of possible datasets is obtained (Step 2). Finally, the list is ordered according to the degree of coincidence 

with the required context (Step 3). 

 

 
TABLE 3: MACRO-ALGORITHM OF MULTISOURCES PROCESS TO SEARCH SAMPLES OF DATA. 

Input: Search Keywords 

https://www.data.gov/


Procedure: 

1. Prepare the search queries with the search keywords for each dataset source based on the LD 

paradigm. 

2. The search is executed for each dataset source and added to the list of possible data samples. 

3. The data samples that best fit the search are sorted and selected. 

Output: Data Sample 

 

 

B.2. Multi-datasets Process in DSA 

 

The objective of this process is to build a data sample that combines information from different datasets. 

Specifically, having a dataset from the main context required, another dataset belonging to a context 

associated with the main context is searched. Then, it searches for relations between the features of the 

datasets; the matches are used as pivots for the merging of both datasets. Table 4 shows the macro-

algorithm of the Multi-datasets process in DSA. This process begins by invoking the Multi-sources 

process to find a Data Sample from the Associated Context (Step 1). Step 2 searches for the similarities 

of both Data Samples; this similarity is based on the name and type of each feature of the Main Data 

Sample and the Associated Context Data Sample. Finally, it merges the Main Data Sample and the 

Associated Context Data Sample using the similarities as a pivot (Step 3), generating a Merged Data 

Sample. 

 
TABLE 4: MACRO-ALGORITHM OF MULTIDATASETS PROCESS TO FUSION SAMPLES OF DATA. 

Input: Main Data Sample, Associated Context Search Keywords 

Procedure: 

1. Invoke the Multi-sources process to find a Data Sample using Associated Context Search Keywords. 

2. Search for possible similarities between the characteristics of the Main Data Sample and the 

Associated Context Data Sample. 

3. Merge both Data Samples using the similarities as a pivot. 

Output: Merged Data Sample 

 

 

C. DP Module 

 

The objective of this module is to transform the sample dataset into an optimal representation for the 

VAE model, knowing that this type of model works optimally with data ranging between [0 and 1] or [-

1 and 1], either binary (digital) or continuous (analog) data. Some of the tasks this module does is convert 

textual or numerical data into a specific finite set of categories (categorical data), or normalize numerical 

data with high variance, among other things. Table 5 shows the DP macro-algorithm, which begins by 

analyzing the dataset to determine the processes that will be required for each column of the data sample 

(Step 1). For columns with numeric data with many different values, it proceeds to normalize them (Step 

2). For columns with textual or numeric data that can be represented in categories, it proceeds to 

categorize them (Step 3). 

 

 

 

 

 
TABLE 5: MACRO-ALGORITHM OF THE DP MODULE TO OPTIMIZE THE SAMPLE OF DATA. 

Input: Sample Dataset 



Procedure: 

1. The sample of data is analyzed. 

2. The attributes with numeric data and high variance are normalized. 

3. The attributes with textual and numeric data with finite values are categorized. 

Output: Preprocessed Data Sample 

 

D. FE Module 

 

The objective of this module is to analyze the characteristics of the sample dataset. It specifically analyses 

the Preprocessed Data Sample generated by the DP module, obtaining new information from the dataset 

features and selecting the features that offer more information for the SDG module. Table 6 shows the 

macro-algorithm of the FE module. This process begins with the analysis of the dataset (Step 1). Then, 

in step 1.1, information is aggregated by applying Feature Generation techniques such as Interaction 

Feature, Polynomial Feature, Trigonometry Feature, Create Clusters, or Combine Rare Levels. In Step 

1.2, information is added by applying Feature Extraction techniques such as Media-Based Feature, 

Median-based Feature and Quartiles-Based Feature. Finally, in step 1.3, it selects the features that offer 

the most information, applying Feature Selection techniques such as Permutation Feature Importance, 

Remove Multicollinearity, Ignore Low Variance, and Genetic Algorithm. In the next section, we will 

explain in detail the Feature Generation, Feature Extraction and Feature Selection techniques used in the 

case study to evaluate the behavior of our SDGS. 

 
TABLE 6: MACRO-ALGORITHM OF FE TO ENHANCE THE SAMPLE OF DATA. 

Input: Preprocessed Data Sample 

Procedure: 

1. Analyses the Preprocessed Data Sample: 

1.1. Add new information generated from its characteristics. 

1.2. Add new information extracted from its characteristics. 

1.3. Select the features that provide the most information. 

Output: Enhanced Data Sample 

 

E. SDG Module 

 

The objective of this module is to generate the synthetic data from the data sample optimized in the 

previous module. In this process, a knowledge model is built and trained that automatically extracts and 

learns the characteristics of the sample of data using VAE. This knowledge model is then used to generate 

the synthetic data. Table 7 shows the SDG macro-algorithm, the process begins by configuring and 

building the knowledge model that will learn the latent characteristics in the sample of data (Step 1). Step 

2 consists of training the knowledge model using VAE and the data sample. Finally, the synthetic dataset 

is generated using the previously created and trained knowledge model (Step 3). 

 
TABLE 7: MACRO-ALGORITHM OF SDG FOR THE GENERATION OF SYNTHETIC DATA. 

Input: Enhanced Data Sample 

Procedure: 

1. The knowledge model with the desired configuration is built. 

2. The knowledge model representing the sample of data is trained. 

3. The synthetic dataset is generated with the knowledge model. 

Output: Synthetic Dataset 

 

 



IV. DESCRIPTION OF SDGS IN A CASE STUDY 

 

This section presents a case study, which shows the new capabilities of the architecture. 

 

A. Experimental Context 

 

The objective of this case study is to show a functional version of the modules of the proposed system 

for a smart grid context, allowing the automated extraction of a data sample and the optimization of the 

information provided by the dataset. In general, this architecture can be deployed in any context for 

automatic synthetic data generation. Specifically, the modules will be deployed to search for datasets in 

the context of Energy Management, with an associated context on Territorial Indicators that will allow 

us to show the fusion of datasets. Additionally, in order to show the ability to identify and extract data 

from multiple sources, it will use three sources of datasets:  

- Canada Open Government (https://open.canada.ca): it offers more than 40,000 datasets with 

information from Canadian provinces, territories and municipalities on government activities such as 

health, science and technology, economy and industry, and education, among many others.  

- European Open Data (https://data.europa.eu): it offers more than 1.5 million datasets about 33 

European countries with information on energy, agriculture, transport, regions and cities, etc., and  

- Open Data of the Government of Spain (http://datos.gob.es): it offers more than 66 thousand datasets 

with information on demography, urban planning and infrastructure, rural environment, and 

employment, among others. 

 

On the other hand, in this case study, different techniques were chosen for each type of feature 

engineering that the system has, with the intention of showing how the FE module works. Each one of 

the selected techniques is described below: 

 

Regarding the Feature Generation technique, the following technique was used: 

- Trigonometric features generate new features by applying the trigonometric functions tangent, sine 

and cosine. This process generates three features for each numerical feature in the dataset. 

 

Also, the next Feature Extraction techniques were used [11], [13]: 

- Media-Based Feature, it extracts the mean of the feature and constructs a new feature with the 

distance of each value of the feature with respect to its mean. This process is repeated for each 

numerical feature in the dataset. 

- Median-Based Feature, it extracts the median of the feature and constructs a new feature with the 

distance of each value of the feature related to its median. This process is repeated for each numerical 

feature in the dataset. 

- Quartiles-Based Feature extracts the quartiles of the feature (25%, 50%, 75%, 100%), where the first 

quartile is all values that are less than 25% of the data for that feature, the second quartile is all values 

greater than 25% and less than 50% of the data, the third quartile is all values greater than 50% and 

less than 75%, the fourth quartile is all values greater than 75% and less than 100%. With this 

information, it builds a new feature that indicates the quartile of each value of that feature. This 

process is repeated for each numerical feature in the dataset. 

 

Finally, the next Feature Selection technique was used [13], [14]: 

- Genetic Algorithm, it selects the features that provide the most information using the fitness 

individual's chromosome. A chromosome of an individual is represented by all the features in the 

dataset and it is coded in binary, 1 if present and 0 if not present in that individual. To calculate the 

quality of an individual, a classification model is used as the fitness function. Particularly, to build 



the classification model, the Logistic Regression technique was used. The fitness of an individual is 

obtained based on the quality of the results of the classifier using the dataset only with the features 

presented in this individual. This dataset is divided into two parts, the first part is used to train the 

classifier and the other part is used to measure its performance. In addition, in each generation, it 

creates a new population, which will serve to obtain the parents for the new individuals. At this point, 

it applies two genetic operations: crossovers and mutations. In crossover, it copies all the features 

from one parent up to the crossover point, and the rest of the features are copied from a second parent, 

the default probability for crossover is 60%. In mutation, it selects the features to which mutation 

will be applied, based on a probability; the default value is 10%. At the end of this process, it 

calculates the fitness of the population of individuals. All these processes are repeated until the 

maximum number of generations is reached, the default values are 50 generations. In the last 

generation, it selects the individual fittest. This individual indicates which features provide the most 

important information. 

 

 

B. Multi-sources Process 

 

The responsibility of this process is to search for a data sample from the various data sources registered 

in the system. This process begins when it receives the keywords of the problem context that requires a 

dataset. For our case study, this information would be: 

 
 Keywords: “energy| electricity| consumption| Spain”. 
 Endpoints registered in the system: 
  * EU: https://data.europa.eu/sparql 
  * ES: http://datos.gob.es/virtuoso/sparql 
  * CA: https://open.canada.ca/sparql 
 

It prepares queries for each endpoint. For each endpoint, the queries are similar and are specified in 

SPARQL language: 

 
 PREFIX dct: <http://purl.org/dc/terms/> 
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
 PREFIX dcat: <http://www.w3.org/ns/dcat#> 
 SELECT DISTINCT ?id ?idtype ?type ?url ?title  
 WHERE{ 
  ?id a dcat:Distribution. 
  ?id dct:title ?title. 
  FILTER regex(lang(?title), “en”, "i"). 
  FILTER regex(?title, Keywords, "i"). 
  ?id dct:format ?idtype. 
  ?idtype rdfs:label ?type. 
  ?id dcat:accessURL ?url. 
 } LIMIT 100 
 

Once the keywords and queries are available, they are executed on their respective endpoints. The 

information obtained is structured with the following data: id, idtype, type, url, title, endpoint, and 

similarity ratio. To calculate this ratio, we use the Levenshtein distance metric to compare the differences 

between our keywords and the description or title of the datasets [12]. Table 8 shows the search results 

and similarity ratios. Finally, the selected dataset is the one with the highest similarity ratio. 

 

TABLE 8: RESULT OF THE SEARCH OF SAMPLES OF DATA. 

Title Endpoint Ratio 



Electricity consumption in municipalities and sectors of Catalonia EU 79.75 

Electricity consumption in municipalities and sectors of Catalonia ES 79.75 

Weekly electricity consumption in Castilla y León EU 74.6 

Hourly electricity consumption in the hospitals of Castile-Leon EU 73.6 

Electricity generation by type of energy EU 72.8 

Electricity Generation CA 72.4 

Installation of electrical energy production. Individualized data ES 72.25 

Electricity Interchange 2016 Update CA 71.8 

net-zero-electricity-provincial-generation-2021 CA 71.4 

Hourly electricity demand in Catalonia per MWh ES 71.0 

 

 

C. Multi-Datasets Process 

 

The responsibility of this process is to merge datasets to generate a better sample dataset. This process 

begins when it receives the main dataset selected in the previous phase, and the keywords of the 

associated context that requires a merged dataset. For our case study, this information would be: 

 
 Keywords: “Territorial| Indicators| Spain”. 
 Dataset: MainDataSample.csv 
 Similarity Threshold: 85% 
 

Then, it requests a dataset for the Multi-sources process using the keywords of the context associated 

(see section IV.B). The AssociatedDataSample.csv file obtained will be merged with the 

MainDataSample.csv file. 

 

To merge both datasets is necessary to identify the columns that relate them. To do that, the first step is 

to extract and verify the similarity of the titles and data types of the columns (variables) between both 

datasets. The similarity ratio of the titles is calculated and those that exceed the Similarity Threshold are 

selected as possible pivot columns. Then, it verifies if the possible pivot columns are of the same data 

type, and if they match, it selects them as pivots. Table 9 shows the pivots automatically selected by the 

system for this case study. 

 

TABLE 9: SELECTED PIVOTS. 

Nº 
Main Data Sample Associated Data Sample 

Ratio 
Title Datatype Title Datatype 

1 Any integer Any integer 100 

2 Comarca string Comarca string 100 

3 Cod Municipi integer Codi Municipi Ine integer 87 

 

Finally, it merges the datasets using the pivots as a relationship mechanism between the datasets, 

obtaining the FusionatedDataSample.csv file. 

 

D. FE Module 

 



The responsibility of this module is to generate new features by analyzing the new dataset and selecting 

the features that provide the most information. This process starts by generating new features. For this 

case, Table 10 shows the Feature Generation obtained with Trigonometric Features. E.g., tangent, sine 

and cosine of Consumption kWh. These new features with trigonometric behaviors provide the VAE 

model with additional information at the time of the construction of the knowledge model. 

 

TABLE 10: GENERATION OF NEW VARIABLES USING TRIGONOMETRY FEATURES 

Consumption kWh 
Trigonometric Feature 

tan(Consumption kWh) sin(Consumption kWh) cos(Consumption kWh) 

0.0000009695 0.0000009695 0.0000009695 1 

0.0169895240 0.0169911588 0.0169887066 0.9998556815 

0.3876446800 0.4083042838 0.3780089057 0.9258019589 

0.8060319000 1.0421430222 0.7215454805 0.6923670409 

0.9999999400 1.5574075191 0.8414709523 0.5403023563 

 

Then, new features are extracted. Table 11 shows these new features, the Mean-Based Feature, the 

Median-Based Feature and the Quartiles-Based Feature. In this specific case, the Mean-Based Feature 

and Median-Based Feature calculate the distance of "Consumption kWh" with respect to its Mean 

(0.002746) and Median (0.000151). These two features provide the model with information on the 

dispersion of values in terms of the central value, either with respect to the mean and the median. The 

mean is usually better when the values follow a symmetric distribution and the median is better when the 

values are outliers, as these values distort the mean. The Quartiles-Based Feature determines the quartile 

to which "Consumption kWh" belongs by dividing the dataset into four equal parts; the first quartile is 

25%, ranging from 0 to 0.0000341155. The second quartile is 50%, ranging from 0.0000341155 to 

0.0001509117. The third quartile is 75%, ranging from 0.0001509117 to 0.0008732833. The fourth 

quartile is all values greater than 0.0008732833. This new feature provides information to the model on 

the behavior of the variables by classifying it into four groups. 

 

TABLE 11: FEATURE EXTRACTION USING MEAN-BASED, MEDIAN-BASED AND 

QUARTILE-BASED FEATURES  

Consumption kWh 
Mean-Based Feature Median-Based Feature Quartiles-Based Feature 

mean(Consumption kWh) median(Consumption kWh) quartiles(Consumption kWh) 

0.0000009695 0.0027454629 0.0001499422 1 

0.0169895240 -0.0142430915 -0.0168386122 4 

0.3876446800 -0.3848982475 -0.3874937682 4 

0.8060319000 -0.8032854675 -0.8058809882 4 

0.9999999400 -0.9972535075 -0.9998490282 4 

 

Finally, Table 12 shows a summary of the resulting dataset, with some of the features selected using the 

Genetic Algorithm. At the beginning of the process, there were 864 features in the data set, and when this 

method was run, 422 features were selected. Furthermore, it can be observed that most of the selected 

features are binary, which is an advantage for the VAE model as it works very well with this type of 

value. Another interesting fact is that in the feature selection for this dataset, the method selected only 

the features that represent the year 2018 (Any_2018), since there is a lot of information around this date. 

 



TABLE 12: PARTIAL FEATURES SELECTED USING GENETIC ALGORITHM 

 
Codi 

Municipi 
Any_2018 Provincia_BARCELONA 

Codi 

Sector_5 
Codi 

Sector_6 
DescripcionSector_CONSTRUC

CIO I OBRES PUBLIQUES 

0 0.0 0.0 1.0 0.0 0.0 0.0 

1 0.0 0.0 1.0 0.0 0.0 0.0 

2 0.0 0.0 1.0 0.0 0.0 1.0 

4 0.0 0.0 1.0 0.0 1.0 0.0 

5 0.0 0.0 1.0 0.0 0.0 0.0 

… …. … … … … … 

35975 1.0 0.0 0.0 0.0 0.0 0.0 

35976 1.0 0.0 0.0 0.0 0.0 0.0 

35977 1.0 0.0 0.0 0.0 0.0 1.0 

35978 1.0 0.0 0.0 0.0 1.0 0.0 

35979 1.0 0.0 0.0 0.0 0.0 0.0 

 

V. ANALYSIS OF RESULTS 

 

This section is composed of two parts, the first part focuses on the development of experiments with our 

system in different case studies, and the second part focuses on comparing our work with other 

approaches. 

 

A. Analysis of SDGS 

 

The aim of this section is to analyze the performance of the SDGS in different case studies that require 

the generation of synthetic data. In particular, it will generate synthetic data using data samples from 

Energy, COVID-19, and Industry 4.0 contexts.  

 

A.1. Context of analysis 

 

We considered 3 contexts where an initial dataset exists. The contexts are the following: 

• Energy: The original dataset is composed of information on electricity consumption in the 

different municipalities and sectors of Catalonia. In addition, it was merged with other territorial 

indicators such as population density, economic level, among others. This dataset was obtained 

thanks to the DSA Module using the LD sources that our system has (more information in III.B, 

IV.B and IV.C). 

• COVID-19: The original dataset in this context is composed of information on COVID-19: 

confirmed cases, deaths, hospitalizations, tests, among many other variables [14]. This dataset 

was extracted from https://github.com/owid/covid-19-data/tree/master/public/data. 

• Industry 4.0: This case study corresponds to a production process for the manufacturing of 

sandwich bread, where the client can customize the wrapper (logo, name, etc.), the quantity, the 

type of bread (grain bread, white bread, with sesame, with raisins, etc.), among other things. The 

production process involves devices like the smart conveyor belt that routes the bread to the least 

busy device wrapping machine to pack the bread using the correct wrapper, smart slicers that 

slice the bread, the smart printers, and the rest of the devices. The original dataset was composed 

of information on the status of each process of a production line.  

 



In each context, 4 experiments/cases were realized,  

• Two experiments without using the new FE module: One case was using a small data sample 

(case A) and the other case with a large data sample (case B). 

• Two experiments used the new FE module: One case was using Feature Generation and Feature 

Extraction (case C), and the other used, additionally, Feature Selection (case D). 

 

Regarding the metrics, we used two metrics to analyze the quality of our SDGS. The first metric was the 

Accuracy of the VAE model built in the different experiments (Section V.A.2). The accuracy measures 

the performance of the built model based on the total percentage of elements classified correctly. 

Specifically, the accuracy of VAE is measured by comparing each input with respect to its output, 

verifying how similar they are, since the learning process of this model is based on passing that input 

through an Encoder and Decoder, to see if the model is able to reconstruct the input. The second metric 

was the Two-Sample Hotelling's T-Squared Test, which allows comparing the multivariate means of 

different populations (datasets with multiple variables). This test allowed performing a hypothesis test to 

verify the existence of significant differences between two datasets. In our case, it verifies the differences 

between the training dataset of the VAE model and the synthetic dataset generated by the VAE model in 

the different experiments (Section V.A.3). 

 

A.2. Performance of the generated VAE models 

 

Table 13 shows the results achieved by the VAE models built with the different datasets. The accuracy 

obtained using the new FE module offers better results than the models built without using FE. It should 

also be noted that using the three types of Function Engineering the results are better, as seen in the 

Energy dataset with a precision of 0.953, in COVID-19 with 0.963, and in Industry 4.0 with 0.961. 

 

TABLE 13: RESULT OF THE ACCURACY OF VAE MODELS 

Dataset Case Sample Features Accuracy 

Energy 

A 500 95 0.903 

B 29508 95 0.912 

C 29508 864 0.947 

D 29508 422 0.953 

COVID19 

A 356 26 0.925 

B 10000 26 0.935 

C 10000 67 0.957 

D 10000 59 0.963 

Industry 4.0 

A 250 3 0.918 

B 10000 3 0.946 

C 10000 14 0.952 

D 10000 10 0.961 

 

 

A.3. Quality of the Datasets generated 

 



The Two-Sample Hotelling's T-Squared Test checks for significant differences between the dataset used 

in the training of the VAE model and the dataset with synthetic data generated by the VAE model. This 

test proposes the following hypotheses, 

• Null hypothesis (H0): the two datasets come from populations with the same features. 

• Alternative hypothesis (H1): the two datasets come from populations with different features. 

 

In addition, the significance level was normally 5% (alpha = 0.05), knowing that the inverse distribution 

function of F is (1 - alpha) = 0.95. This value allowed determining when H0 was rejected, i.e. when the 

probability of H0< 0.05 or when the calculated value of F was greater than the critical value of the F 

distribution table when transforming Hotelling's T2 statistic into an F statistic. Rejecting H0 indicated 

that at least one of the variables, or a combination of one or more variables working together were 

significantly different between the datasets. 

 

Finally, we compared the two datasets (training and generated) using the Two-Samples T-Squared Test 

that has the Python library pingouin1. This library executes all the calculations associated with the test 

and returns the following information: 

• T2: Hotelling's T-squared value. 

• df1: First degree of freedom. 

• df2: Second degree of freedom. 

• F: F-distribution value with df1 and df22. 

• P-value: Probability of the null hypothesis (H0). 

 

Table 14 shows the results obtained in the different experiments. In this case, we are going to detail the 

test analysis process for the first experiment since the other experiments are similar. The value 110.02386 

in T2 was the result obtained in the different matrix operations of the test with both datasets. This value 

when is transformed the Hotelling T2 statistic into an F statistic, we obtained the value 1.04906202. 

Having the F value, we had two methods to determine if there were significant differences between the 

datasets: 

• The first method required finding the critical value in the F distribution table with the degrees of 

freedom df1 = 95 and df2 = 904 and the default value of alpha 0.05. In this case, we used the 

calculator offered at https://datatab.net/tutorial/f-distribution, where it gave an F-critical of 1.268. 

Now, if F > F-critical then the H0 is rejected. In this case, it was not rejected; therefore, there were 

no significant differences between the datasets. 

• The second method required calculating the P-value. In this case, the library gave us this value 

(0.36056018). Now, if P-value < 0.05 then the H0 was rejected. In this case, it was not rejected, 

so there were no significant differences between the datasets. 

 

 

 

 

 

 

 

TABLE 14: TWO-SAMPLE HOTELLING'S T-SQUARED TEST RESULT 

Dataset Case Features Two-Sample Hotelling's T-Squared Test 

 

1 https://pingouin-stats.org/build/html/generated/pingouin.multivariate_ttest.html 
2 https://datatab.net/tutorial/f-distribution 



T2 F df1 df2 P-value Hypothesis 

Energy 

A 95 110.02386 1.04906202 95 904 0.36056018 H0 

B 95 101.02386 1.06171521 95 58920 0.32111891 H0 

C 864 895.56456 1.02137516 864 58151 0.32508918 H0 

D 422 425.45645 1.00099831 422 58593 0.48518434 H0 

COVID-19 

A 26 22.367299 0,82998916 26 685 0.70947055 H0 

B 26 24.9877204 0.95986472 26 19973 0.52147351 H0 

C 67 68.346573 1.01673144 67 19932 0.43904006 H0 

D 59 57.346573 0.96915681 59 19940 0.54289117 H0 

Industry 

4.0 

A 3 1.3564567 0.45033636 3 496 0.71717036 H0 

B 3 1.8544546 0.61808971 3 19996 0.60320568 H0 

C 14 10.425738 0.74421147 14 19995 0.73092497 H0 

D 10 6.725738 0.67227112 10 19989 0.75131788 H0 

 

When analyzing the experiments knowing that when P-values are less than 0.05 (tend to zero), H0 is 

rejected, it is observed that the results using the FE module with the three Feature Engineering methods 

tend to obtain P-values closer to 1. For example, Energy with 0.48518434, COVID-19 with 0.54289117 

and Industry 4.0 with 0.75131788. Only in COVID-19, the first experiment of this dataset with fewer 

samples performed better (0.70947055). In general, the P-value results indicated that the FE module 

contributes to improve the quality of the synthetic data, since SDGS was able to generate synthetic data 

very close to the data used to train the VAE model of the system, allowing the training of knowledge 

models in cases where there was a problem of insufficient data. 

 

On the other hand, another test was carried out to evaluate the quality of the synthetic data generated. In 

particular, its use in the construction of classification models is verified. This test consisted of training 

and validating a Random Forest-based Classification model using the synthetic data, and then testing the 

quality of the model using the original data, to verify if it is capable of classifying them correctly. Table 

15 shows the results achieved in this test using different datasets. In general, all models obtain excellent 

Accuracy and F1 score, both in training with the synthetic data and in the tests carried out with the 

original dataset. It is consistently observed that the models created with the synthetic data generated 

through the different processes of Feature Engineering (cases C and D) obtain better results, as seen for 

Energy with values of 0.936 and 0.883, in COVID-19 with 0.952 and 0.923, and in Industry 4.0 with 

0.959 and 0.928, respectively. Thus, it is observed that the models with the synthetic data generated by 

the FE module offer better results than the models that do not use FE. 

 

 

 

 

 

 

 

 

 

TABLE 15: RESULT OF THE ACCURACY OF CLASSIFICATION MODELS 

Dataset Case Sample Features Training  Testing 



Accuracy F1 Accuracy F1 

Energy 

A 500 95 0.894 0.869 0.833 0.795 

B 29508 95 0.902 0.885 0.856 0.803 

C 29508 864 0.923 0.893 0.877 0.827 

D 29508 422 0.936 0.912 0.883 0.831 

COVID19 

A 356 26 0.905 0.888 0.872 0.844 

B 10000 26 0.924 0.901 0.895 0.858 

C 10000 67 0.941 0.914 0.908 0.869 

D 10000 59 0.952 0.932 0.923 0.881 

Industry 4.0 

A 250 3 0.903 0.892 0.864 0.815 

B 10000 3 0.927 0.903 0.889 0.862 

C 10000 14 0.944 0.927 0.916 0.878 

D 10000 10 0.959 0.940 0.928 0.890 

 

 

B. Comparative analysis 

 

This section carries out a comparison with other similar works in the literature. For that, two types of 

comparisons were carried out.  

 

B.1. Qualitative comparison 

 

In this paper are identified the following four evaluation criteria for a qualitative comparison with other 

works (Table 16): 

• C1: Sample data acquisition mechanism. 

• C2: Sample data preparation methods. 

• C3: Feature engineering techniques. 

• C4: Metrics used to measure the quality of synthetic dataset generation. 

 

 

 

 

 

 

 

 

TABLE 16: QUALITATIVE ANALYSIS WITH PREVIOUS WORKS 

Work C1 C2 C3 C4 

[9] Dataset Not indicated Not indicated Mean and Standard Deviation of 



Minutiae, False Acceptance Rate 

(FAR) and True Acceptance Rate 

(TAR) 

[10] Dataset Not indicated Not indicated 
K‐mean clustering algorithm and 

Area Under the Curve (AUC) 

[15] Dataset 
Data Normalization 

and Data Scaling 
Not indicated 

Dice loss, IoU score, F-score, 

Accuracy, Recall, and Precision 

[16] Ontology Not indicated Not indicated 
Recall, Precision, F-score, 

Average Precision and IuO score 

[17] Dataset Not indicated Not indicated Accuracy 

[18] Dataset Not indicated Not indicated 
Validity, Novelty, Uniqueness,  

Reconstruction and Score 

[20] Dataset Not indicated Not indicated 
Discriminative score and 

Predictive scores 

[21] Dataset 
Data Normalization 

and Categorical Data 
Not applied 

Data heatmap, Correlation, Charts 

by features and Accuracy 

Our 

approach 

Automatic 

extraction of 

datasets using LD 

and REST API 

Data Normalization 

and Categorical Data 

Feature Generation (5 

techniques), Feature Extraction 

(3 techniques) and Feature 

Selection (4 techniques) 

Two-Sample Hotelling's T-

Squared, F1, and Accuracy 

 

Regarding criterion C1, most of them used datasets with data samples prepared for a specific study. 

However, in [16], the authors used an ontology that stores all the knowledge and from there, the sample 

dataset was extracted for the generation of synthetic data. In our work, the datasets were automatically 

extracted from external sources using LD. In addition, our dataset extraction mechanism allows the 

fusion of several datasets for a single data sample, allowing extending the features of the synthetic 

dataset. With respect to C2, most of the works do not indicate what preprocessing is done with the dataset, 

although, due to the generation model they use, all of them should perform a normalization of the data. 

Additionally, in [15] was carried out a pyramidal rescaling of the input data, obtaining information from 

different levels of precision. In [21] and our work, several transformations were carried out.  

 

Regarding criterion C3, in [21], they do not apply feature engineering techniques to improve the 

generation of synthetic data, and in the rest of the works, they do not indicate if they use any technique. 

In our case, the system has several methods for feature extraction, generation and selection (see sections 

III.D and IV.D). Concerning criterion C4, the works [9], [10], [18] and [21] used specific metrics for the 

type of problem to be solved. In our case, we used the two-sample Hotelling T-squared to determine in 

general terms the degree of similarity of the synthetic dataset with respect to the sample dataset used to 

train the VAE model, and the accuracy to evaluate the quality of the knowledge model. Some papers used 

the same metrics (e.g., [15], [17], [21]), and [15] and [16] use Recall, Precision and F-score.  

 

 

 

 

B.2. Quantitative comparison 

 

This section focuses on a quantitative comparison with other works that used the same metric as ours. 

We have used the same context of study in each case to carry out this test. Table 17 presents the metrics 

obtained in these works. 



 

TABLE 17: QUANTITATIVE ANALYSIS WITH PREVIOUS WORKS 

Work Accuracy 

[15] 96% 

[17] 95% 

[21] No indicate 

Our 

approach 
92% for dataset from [15] 
96% for dataset from [17] 

 

Regarding the works [15], the results were a little lower, and that difference perhaps came from the 

generation model used in each case (in [15], a generative adversarial network, and in our case, a VAE 

technique). In [17] and our work, the values of the accuracy metric were higher than 95%, i.e., they 

presented very good results. In general, in our work, the results were presented in a range of values 

ranging from 92% to 96%, these results depended on the characteristics of each dataset used to train our 

synthetic data generator. Although [21] uses the same metric, the value achieved is not presented in the 

paper. 

 

 

VI. CONCLUSIONS 

 

The extended SDGS provides an automated architecture for the generation of synthetic data using the 

LD paradigm as an identifier and extract of data source, and VAE as a generator. In this work, three 

extensions were implemented. The multisource extension allows extracting sample data automatically 

from different data sources. In the case of our architecture, it has implemented an extraction mechanism 

based on LD queries, where queries were built using semantic tags that allow extracting datasets with 

the features of the context of the problem. In addition, this architecture integrates a mechanism that allows 

datasets to be merged, which favors the expansion of the features of a dataset. This multi-dataset 

extension was based on the automatic search for pivots that serve as a common point for the union of the 

datasets. Finally, the third extension adds to the SDGS architecture a new module with Feature 

Engineering processes that allowed generating and extracting of new features by applying different 

techniques to the dataset. Also, it allows selecting the features that offer more information to the VAE 

model. This module included five feature generation techniques, three feature extraction techniques and 

four feature selection techniques.  

 

A case study was described in detail to show the new capabilities of the SDGS architecture using the 

three expansions specified in this research. Finally, two metrics were used, the first one was the accuracy 

for analyzing the performance of the models generated with the new SDGS functionalities, obtaining 

results above 90%. The second one was the Two-Sample Hotelling's T-Squared Test to determine the 

quality of the synthetic data generated by the system, obtaining synthetic datasets very similar to the 

datasets used to train the VAE models. Also, a comparative analysis was carried out with related works 

of generation of synthetic data, detailing the different characteristics present in each of them. 

 

SDGS has some limitations, for example, it only feeds on datasets from repositories obtained using the 

LD paradigm. The second limitation is in its pivot selection mechanism for merging datasets. In addition 

to checking that the columns were of the same data type, only the column names were compared using 

the syntactic similarity of the two strings. The third limitation is that the architecture only uses default 

values in its different configuration parameters (e.g., for the VAE technique). 

 



Future works will test other types of data sources for the multi-source process of the SDGS architecture, 

allowing the construction of sample data from databases, and knowledge graphs, among other current 

technologies associated with dataset repositories. For the multi-dataset process, it will test other pivot 

selection mechanisms with innovative techniques in text interpretation to allow semantic analysis of text 

strings, use of synonyms, translations, among others. Likewise, it will use the LD paradigm for the 

construction of a new intelligent layer, called Meta learning, which will allow the automatic adjustment 

of the architecture's parameters to optimize the generation of synthetic datasets according to the desired 

context and the knowledge model to be built. Finally, other future work should evaluate the quality of 

synthetic data obtained in contexts other than classification tasks, such as, for example, to build predictive 

or prescriptive models (in this particular area, there is very little data). 
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