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Abstract 
 

In tutoring systems, a pedagogical policy, which decides the next action for the tutor to take, is 

important because it determines how well students will learn. An effective pedagogical policy must 

adapt its actions according to the student’s features, such as knowledge, error patterns, and 

emotions. For adapting difficulty, it is common to consider student knowledge but not the other 

features as emotions. Reinforcement learning (RL), which is a machine learning framework, fits 

well for adapting to difficulty; however, the known ways of considering emotions into RL like 

through states or reward-shaping functions are not enough. Then, to find the pedagogical policy 

that maximizes the student learning gain, we propose considering emotions as implicit feedback 

through both the reward and the exploration-exploitation strategy, using the circumplex model to 

represent emotions and the flow theory to select the appropriate difficulty level. Our approach 

follows three design considerations: pursuing positive emotions, managing unwanted (anxiety and 

boredom) emotions, and anticipating unwanted emotions. We simulate interactions with users 

based on real data from publicly available datasets to quantitatively compare our approach with 

others that adapt difficulty. Also, we qualitatively compare our approach with others that consider 

emotions in different contexts. Quantitative results show that our approach is better than the others 

that adapt difficulty to foster learning gain in students because it allows getting higher values all 

the studied time (200 tasks). Qualitative comparisons show that although other approaches pursue 

positive emotions or manage unwanted emotions, our approach does so as well and additionally 

anticipates unwanted emotions. We conclude that our approach is useful in tutoring systems for 

adapting difficulty because it allows high learning gains in students in a few interactions.  
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1. Introduction 
 

In domains like math, probability, and logic, solving a problem often requires producing an 

argument, proof, or derivation consisting of one or more inference “steps” (Zhou et al., 2022). In 

such domains, tutoring can be described as a two-loop procedure (Vanlehn, 2006). The outer loop 

governs problem-level pedagogical decisions such as selecting the next problem or task for the 

student to work on. The inner loop controls step-level pedagogical decisions such as whether to 

give feedback or to prompt the student with an example. In this context, a pedagogical policy is 

used to decide the next action for the tutor to take among a set of alternatives (Shen, 2018). This 

process is challenging because, on the one hand, how instruction is sequenced can make a 



difference in how well students will learn (Ritter et al., 2007); on the other hand, each decision of 

the pedagogical policy affects the student’s subsequent actions and performance, which also has 

an impact on the tutoring system’s next decision (Ausin, 2019). An effective tutoring system would 

craft and adapt its actions to the student's needs (Chi et al., 2010). In general, a tutoring system 

tends to adapt its behavior considering one of five features (Alaven et al., 2017): knowledge, error 

patterns, self-regulation of learning, learning styles, and emotions. 

 

Adapting difficulty, which is the interest of this paper, is relevant in different contexts like adaptive 

training (Fraulini et al., 2023), cognitive training (Zini et al., 2022), video games (Sepulveda et al., 

2019), serious games (Seyderhelm & Blackmore, 2021), among other domains. Particularly, in 

tutoring systems, a challenge is to suit the difficulty level of tasks to the current student's skills 

because the system should not provide those too easy and leave the student bored or too hard to the 

point that they discourage the student. Reinforcement learning (RL) is a machine learning 

technique in which an agent learns what to do through trial-and-error interactions with an 

environment to achieve a goal, making it a very useful approach for adapting a system to new 

contexts. Azoulay et al. (2014) present a comparison of available algorithms to adapt difficulty in 

tutoring systems, where most of them are based on RL, such as Q-learning, Virtual Learning, and 

Deviated Virtual Reinforcement Learning (DVRL). For that purpose, the Q-learning algorithm 

assumes that only one state exists, where the actions indicate the different difficulty levels, the 

reward is related to the success in answering, and only one Q value is updated from an interaction. 

Virtual Learning and DVRL are variations in which more than one Q value is updated from an 

interaction. All those algorithms were compared in simulations according to the agent learning 

point of view and all of them adapt difficulty only from the student knowledge. In this paper, we 

focus on covering the lack of comparisons according to the student learning point of view and we 

explore another feature of adaptation, which is to consider student emotions as well rather than 

only knowledge.  

 

Emotions can be useful to know if the student is discouraged by the material or disengages from 

the tutoring system (Gordon et al., 2016). Particularly, tutoring systems have shown learning gains 

in students when they consider students' emotions by applying hand-coded rules to determine their 

actions (D’Mello et al., 2010; D’Mello et al., 2012; Salazar et al., 2021). However, given the 

continuously evolving interactions where user needs and preferences change over time, hand-coded 

rules are labor-intensive (Akalin & Loutfi, 2021), which makes it difficult to create rules in real 

time. That challenge is addressed by RL-induced pedagogical policies (Zhou et al., 2022), which 

are policies automatically learned from interactions according to the RL framework. RL-induced 

pedagogical policies that consider the student's emotions are based on SARSA (Gordon et al., 

2016), Q-learning (Park et al., 2019; Pérez et al., 2023), or MAXQ (Chan & Nejat, 2012). Gordon 

et al. (2016) consider student emotions as three discrete states (neg, med, and pos) that represent 

negative, medium, and positive values of emotional valence, to determine what emotion must be 

expressed in a tutoring system. Park et al. (2019) also define emotions as discrete states (q1, q2, 

q3, and q4) that represent quartiles of emotional valence to adapt sentences for storytelling. Pérez 

et al. (2023) use continuous values, gotten from emotional valence and arousal, as a reward-shaping 

function to adapt the topic in sessions of training math word problems. Chan & Nejat (2012) 

consider emotions as states of four categories (stressed, neutral, excited, and pleased) to adapt 

behaviors of a social robot in a memory game. To our knowledge, there is not an approach that 

includes students’ emotions to adapt difficulty.  

 



Although students’ emotions are incorporated as states (Chan & Nejat, 2012; Gordon et al., 2016; 

Park et al., 2019), or as a reward-shaping function (Pérez et al., 2023), it is necessary to explore 

another way because our case study does not fit well in any of them. On the one hand, incorporating 

emotions as states means either transforming dimensional values into categories like Gordon et al. 

(2016) or directly using categories like Chan & Nejat (2012), which is wasting useful information, 

for example, how far the current emotion of target emotions is. On the other hand, incorporating 

emotions as a reward-shaping function does not allow managing unwanted emotions such as 

selecting a lower difficulty level when the student is frustrated. Then, in this paper, we propose 

including emotions as implicit feedback for adapting difficulty by using an algorithm based on RL 

as well but considering emotions in both the reward and the exploration-exploitation strategy, 

which is a balance between trying new actions (exploration) and using the best policy that the agent 

has identified so far (exploitation). Specifically, the goal of our approach is to find the pedagogical 

policy that maximizes student learning by selecting tasks with 5 skills with different levels of 

difficulty, according to the student's response and emotional expression while solving the tasks.  

 

Particularly, we propose an approach that represents emotions using the circumplex model of 

emotions, and relates them to students' abilities and difficulty levels using flow theory. 

Subsequently, it uses an RL algorithm to define the human feedback process in the tutoring system, 

to adapt the difficulty. Our main contributions are: 

 

1) An algorithm based on RL for personalized pedagogical policies based on adapting 

difficulty. 

2) A novel approach of incorporating user emotion in emotion-aware RL-based algorithms. 

3) A quantitative comparison of available algorithms to adapt difficulty in tutoring systems. 

4) A qualitative comparison of available emotion-aware reinforcement learning-based 

algorithms.  

 

This paper is organized as follows: in Section 2, we present the main concepts related to our 

approach; Section 3 describes our approach; in Section 4, we describe the experimental protocols; 

in Section 5, we present quantitative results; in Section 6, we qualitatively compare our approach 

with related works. Finally, in Section 7, we present the conclusions and future works. 

 

2. Theoretical framework 
 

Our approach is based on the implicit human feedback from the student's emotional expression to 

select the appropriate level of difficulty using a reinforcement learning algorithm. Section 2.1 

presents how emotions are represented, and particularly, why we select the circumplex model of 

emotions, and, Section 2.2 describes a framework, called flow theory, which relates emotions, 

student skills, and levels of difficulty. Later, Section 2.3 points out the fundamentals of 

reinforcement learning through human feedback, and subsequently, we describe the algorithms 

used in tutoring systems to adapt to difficulty in Section 2.4.  

 

 

 

 



2.1. Emotions in tutoring systems 

 

Human emotions, among other things, are part of human communication (Pérez et al., 2018), so, it 

is necessary to interpret emotions to understand better what a person is trying to communicate. In 

academic contexts, students’ learning is related to four groups of emotions (Johri, 2023): 

achievement, epistemic, topic, and social emotions. Achievement emotions are related to success 

and failure resulting from achievement activities, such as happiness for finishing an activity. 

Epistemic emotions are triggered by cognitive problems, such as surprise about a new task; topic 

emotions are related to the theme presented in lessons, where both positive and negative emotions 

can trigger students’ interest in learning material. Social emotions are triggered by interacting with 

teachers and peers. Although it is difficult to exactly determine what is the trigger of emotions in 

the academic domain, we argue that emotions are there and can be measured while solving a task. 

 

In tutoring systems, which are a kind of Human-Computer Interaction (HCI), the emotional states 

of a user are incorporated into the decision cycle of the interface to develop more influential, 

friendly, and natural applications, which is known as Affective Computing (Wang et al., 2022). 

Emotions are so important for humans that, for example, machines expressing emotions improve 

the HCI (Pérez et al., 2020). According to Landowska (2018), an analysis reveals that there is no 

one commonly accepted standard model for emotion representation, but it can be categorized at 

least into three types: discrete, dimensional, and componential. Discrete models distinguish a set 

of basic emotions, such as Ekman’s six basic emotions model that includes joy, anger, disgust, 

surprise, sadness, and fear (Ekman & Friesen, 1971), or simple models of three categories as joy, 

neutral, and sad (Pérez & Castro, 2018). Dimensional models represent an emotional state as a 

point in a multi-dimensional space (Salazar et al., 2021), such as the circumplex model that 

represents emotions as a point in a space of two continuous dimensions of valence and arousal 

(Russell, 1980). Finally, componential models consider several factors that influence the resulting 

emotional state, such as the OCC model that defines a hierarchy of 22 emotion types (Ortony et 

al., 1988).  

 

For our approach, we select the circumplex model because it allows us to pursue a pedagogical 

policy based on emotions by optimizing the valence and interpreting both valence and arousal. Fig. 

1 shows a representation of the circumplex model of emotions, in which valence represents the 

horizontal axis and arousal represents the vertical axis. The model divides emotions into four 

quadrants: the top right quadrant contains emotions that are high in valences and high in arousal, 

such as excited and happy; the bottom right quadrant contains emotions that are high in valence 

but low in arousal, such as calm and relaxed; bottom left quadrant contains emotions that are low 

in valence and low in arousal, such as sad and bored; top left quadrant contains emotions that are 

low in valence but high in arousal, such as angry and distressed. Each emotion in the circumplex 

model has a degree value, for example, excited, frustrated, and bored, are located at 48.6, 141, and 

242 degrees, respectively. 

 



 
Fig. 1. Circumplex model (Russell, 1980) 

 

User emotions can be obtained manually by asking the user or an observer, and automatically by 

extracting those from user expressions in different modes (Wang et al., 2022): language, voice, 

face, body posture, physiological signals, among others. Considering that facial expression is 

always available, in our approach, we propose to use it to capture emotions from spontaneous 

reactionsSeveral tools like Affdex (McDuff et al., 2016) allow getting the emotion from the facial 

expression. That is, given a picture with the facial expression, the tool returns an emotional value. 

In our case, in which we wanted to relate emotions with solving a task, we propose to get the 

emotional value each second and calculate the average value from the beginning to the end of the 

task.  

 

2.2. Flow theory 

 

The flow theory is a symbiotic relationship between challenges and skills needed to meet those 

challenges, where the flow is believed to occur when one’s skills are neither overmatched nor 

underutilized to meet a given challenge (Shernoff et al., 2003). Flow is a state of deep absorption 

in an activity that is intrinsically enjoyable, as when artists or athletes are focused on their play or 

performance (Csikszentmihalyi, 1990). In the context of videogames, a related to our case study 

and well-known application of the flow theory is to adapt the game’s features, behaviors, and 

scenarios in real-time, depending on the player’s skill, so that the player does not feel bored when 

the game is very simple or frustrated when it is very difficult (Zohaib & Nakanishi, 2018). To be 

more illustrative, Fig. 2 represents the flow model in the context of videogames, which relates the 

player's skill and the game challenge: when the difficulty of the game is higher than the player's 

skill, the activity becomes frustrating, pushing the player into a state of anxiety; when the player 

skill is higher than the difficulty, then the game is too easy, pushing the player into a state of 

boredom; when neither of those happens, then the user is faced by a challenge whose difficulty 

level matches the player’s skill, enabling him to enter the flow channel. The main idea is that 

providing an appropriate series of personalized challenges allows the player to stay in the flow 

channel for longer periods. For example, the experience of anxiety may prompt the game to 

decrease the level of the game challenge. 

 



 
Fig 2. Flow theory in the context of videogames (Zohaib & Nakanishi, 2018) 

 

Similarly, in tutoring systems, problems are often assigned adaptively according to the student’s 

skill levels, and the student is generally expected to flow when learning through problems, which 

is useful to identify students at risk, or modalities of interaction that lead to optimal and suboptimal 

learning (Kang et. al, 2024). Then, in our approach, we use the flow theory to guide decision-

making. That is, if the user is frustrated or bored, then we try to drastically change his emotion by 

selecting the simplest or hardest task, respectively. Otherwise, we try to select the task that keeps 

positive emotions.  

 

2.3. Reinforcement learning and human feedback 

 

Reinforcement learning can be formalized as a Markov Decision Process (MDP) (Van Otterlo & 

Wiering, 2012), where the agent perceives the states of its environment, takes actions that change 

the states, and receives rewards according to the states achieved. Formally, an MDP is a tuple <
𝑆, 𝐴, 𝑇, 𝑅 >, in which 𝑆 is a finite set of states, 𝐴 is a finite set of actions, 𝑇 is a transition function 

defined as 𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1], and 𝑅 is a reward function defined as 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ. The 

typical goal is to learn the optimal policy 𝜋∗, or nearly optimal policy, which maximizes the 

expected cumulative reward. A policy can be deterministic or stochastic. A deterministic policy 𝜋 

is a function defined as 𝜋: 𝑆 → 𝐴. A stochastic policy is defined as 𝜋: 𝑆 × 𝐴 → [0, 1], such that for 

each state 𝑠 ∈ 𝑆 (except terminal states), it holds that 𝜋(𝑠, 𝑎) ≥ 0 and ∑ π (s, a)a∈A = 1. 

 

To learn the optimal policy, the agent must find a balance in the exploration-exploitation trade-off. 

Exploration refers to trying new actions to gather data from less known areas of the state-action 

space, while exploitation refers to using the best policy that the agent has identified so far. It means 

that the agent must explore the environment by performing actions and perceiving their 

consequences through rewards, and then, it can exploit this knowledge. According to Sutton & 

Barto (2018), a common strategy is to apply the 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 function that performs a random 

action with probability 𝜀, or an action based on the policy 𝜋(𝑠) with probability 1 − 𝜀. If 𝜀 = 0, 

then the action always is based on the policy, which is called 𝑔𝑟𝑒𝑒𝑑𝑦. A common algorithm to 

learn the optimal policy is Q-learning (Watkins & Dayan, 1992), which focuses on estimating 

incrementally Q-values, which are values that relate to a pair state-action. To estimate the Q-values, 

Q-learning applies an equation that depends on four values and two hyperparameters (see Equation 



1). The four values are: state 𝑠, action 𝑎, next state 𝑠′, and reward value 𝑅(𝑠′). The two 

hyperparameters are the learning rate 𝛼 ∈ [0,1] that determines the update rate, and the discount 

factor 𝛾 ∈ [0,1] that determines the value of future rewards. After training, the optimal policy 

𝜋∗(s) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎Q
∗(s, a) is obtained through the argument of the maxima Q-value, which is the 

action at that the value is maximized. 

 

𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠′) + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′)] (1) 

 

On the other hand, in RL, learning from human feedback is known as Interactive Reinforcement 

Learning (IRL), which treats human feedback as a reinforcement signal after the executed action 

(Tsiakas et al., 2018). IRL usually is applied to improve the convergence speed because an external 

trainer usually provides guidance in specific states during the learning process. According to Cruz 

et al. (2016), there are two main approaches based on how feedback is integrated into the RL 

framework (Cuartas et al, 2023): reward shaping and policy shaping. In reward shaping, usually, 

an external trainer evaluates how well or badly performed actions by the agent are. In policy 

shaping, the action proposed by the agent can be replaced by a more suitable action chosen by the 

external trainer before it is executed. For adapting difficulty according to human emotions, like in 

our case, we are interested in incorporating human feedback in the exploration-exploitation 

strategy. 

 

In general, human feedback can be classified into two groups (Akalin & Loutfi, 2021): explicit 

feedback, when the feedback is direct, provided through an interface such as ratings and labels; 

and implicit feedback, if the human feedback is spontaneous behavior or reactions such as non-

verbal cues and social signals. The reward strategies are categorized into four groups (Akalin & 

Loutfi, 2021): reward-focused strategy (positive reward for correct actions and no feedback for 

incorrect actions), punishment-focused strategy (no feedback for correct actions and punishment 

for incorrect actions), balanced strategy (positive reward for correct actions and punishment for 

incorrect actions), and inactive strategy (the human teacher rarely provides feedback). In our case, 

we use implicit feedback and a balanced strategy. On the one hand, it is implicit feedback because 

we propose to get emotions from spontaneous facial expressions while the student solves a task. 

On the other hand, the balanced strategy fits better than the other strategies because the values in 

the circumplex model of emotions are negatives and positives, and we want to avoid the negatives 

and pursue the positives.  

 

2.4. Algorithms to adapt difficulty in tutoring systems 

 

In tutoring systems, RL has been used for estimating student proficiency (Pérez et al., 2022) but 

the more common is for inducing pedagogical policies. Azoulay et al. (2014) present algorithms 

for selecting the appropriate difficulty level, three based on RL (Q-learning, Virtual learning, 

DVRL), and Bayesian learning. The next sections explain each one. 

 

2.4.1. Q-learning 

 

It is a derived version of Q-learning in which only one state exists, and the updates of Q values are 

based on Equation 2 where each level is associated with an action. The idea is that the reward 



indicates the success or failure in answering a question at that level. It means that 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑎) 
will return the action that maximizes the answer success. 

 

𝑄(𝑎) = 𝑄(𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑎
′) − 𝑄(𝑎)] (2) 

 

2.4.2. Virtual learning 

 

It is also like Q-learning but instead of learning only from actions and payoffs experienced, the 

algorithm can also learn by reasoning from the chosen action for other actions. That is, once a 

student succeeds in answering a question, the Q value of the current level, as well as the Q value 

of the lower levels, are increased because it assumes that if a student masters a level, then he/she 

masters the lower levels as well. Similarly, if a student fails to answer a question, then the Q value 

of the level of the current question as well as the Q value of the higher levels are reduced. It assumes 

that a student failing in a specific level will fail in the higher levels.  

 

2.4.3. DVRL 

 

It is like Virtual Learning, but once a reward is received for the student's answer, the updating 

phase of the Q values relates not only to the given question's level but also to the level of the 

neighboring questions assuming that the closer levels are very related about mastering them. That 

is, once a student answers a question correctly, the Q value of the nearest higher level also 

increases, and when a student fails to answer a question, then the Q value of the nearest lower level 

also decreases.  

 

2.4.4. Bayesian learning 

 

This algorithm assumes a normal distribution of the student's level. Initially, the algorithm 

associates a constant probability for each set of parameters 𝜇 and 𝜎. In each step, the algorithm 

considers all possible distributions of the student, and for each question's level, the algorithm 

calculates the expected utility of this level given all possible distributions of students, and then it 

chooses the level with the highest expected utility. Once a question is chosen and the student's 

response is observed, the probability of each distribution of the student is updated using the 

Bayesian rule shown in Equation 3. Then, Equation 4 determines the next level, where 

𝑝𝑊𝑖𝑛𝑠(𝑙 | 𝜇, 𝜎) is the probability of a question from level 𝑙 to be chosen, 𝑢𝑡𝑖𝑙(𝑙) is the utility of a 

successful answer to a question from this level, and 𝑢𝑡𝑖𝑙𝐹𝑎𝑖𝑙 is the utility of failure to answer a 

question from this level. 

 

𝑃(𝜇, 𝜎) =
𝑃(𝜇, 𝜎) ∗ 𝑝𝑊𝑖𝑛𝑠(𝑙 | 𝜇, 𝜎)

𝑠𝑢𝑚𝑃𝑟𝑜𝑏(𝑙)
 (3) 

 

𝑛𝑒𝑥𝑡 𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙∑𝑃(𝜇, 𝜎) ∗ 𝑝𝑊𝑖𝑛𝑠(𝑙 | 𝜇, 𝜎) ∗ 𝑢𝑡𝑖𝑙(𝑙) + (1 − 𝑝𝑊𝑖𝑛𝑠(𝑙 | 𝜇, 𝜎) ∗ 𝑢𝑡𝑖𝑙𝐹𝑎𝑖𝑙)

𝜇,𝜎

 (4) 

 

As our approach’s goal is to select the appropriate difficulty level, we use those algorithms (Q-

learning, Virtual learning, DVRL, and Bayesian learning) to compare quantitatively the 

performance of our approach. 

 



3. Our approach 
 

In the context of tutoring systems, we propose to include emotions according to the circumplex 

model and flow theory in the RL framework to adapt difficulty. To formalize the problem, let us 

define 5 skills graded in different difficulty levels (i.e. from 1 to 5) and interactions between a 

student and the system, where an interaction is represented as a tuple (skill, outcome, emotion), 

being skill the category of the task that the system selects, outcome the answer of the student, and 

emotion the expression of the student while solving the task. The objective is to find the policy that 

maximizes the student learning gain. 

 

Our approach focuses on three design considerations: first, keeping the flow channel that is related 

to pursuing positive emotions; second, managing anxiety or boredom by reducing or augmenting 

the difficulty (i.e., when being in any of them); and third, anticipating anxiety or boredom by 

managing them before being achieved (i.e., when being closed to any of them). The general 

framework is presented in Fig. 3, in which a tutoring system provides a task (also called action), 

the user responds deliberately with the solution, and the tutoring system selects the next task 

according to the spontaneous user's emotions. As emotions can be interpreted as points, for 

detecting anxiety or boredom (which are discrete emotions), we work with circular areas where 

any point inside means belonging to it. For example, the circular area of anxiety includes points 

with negative valence and positive arousal (see A1 in Fig. 4). 

 

 
Fig. 3. General framework  

 

The general idea of our method is to adapt an RL algorithm to learn two Q-tables (one that allows 

relating skills and difficulty levels and the other that relates skills and emotions) such that the first 

Q-table provides the skill when it is necessary to manage unwanted emotions, and the second one 

provides the skill that promotes the more positive emotions. Managing unwanted emotions means 

selecting a skill to drastically change the user’s current emotion according to the flow theory (i.e. 

if it detects anxiety or boredom then the next action will be the easiest or hardest task, respectively). 

On the other hand, promoting more positive emotions tries to increase the time the learner is in a 

state of flow. 

 

Specifically, we design an algorithm based on Q-learning inspired by the version presented by 

Azoulay et al. (2014), where they assume no changes in the state by applying Equation 2 as an 

update. Our algorithm incorporates three changes that correspond with our three design 

considerations. First, in the main loop (see Algorithm 1), although we learn the usual 𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 



(a Q table to learn the appropriate task difficulty for the user), we learn another 𝑄𝑓𝑙𝑜𝑤 (a Q table to 

identify the task that better matches the flow channel). Second, in case of exploitation (see 

Algorithm 2), rather than using always 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒), we use 𝑎𝑟𝑔𝑚𝑖𝑛(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) 

as well when necessary to get the easiest and hardest tasks from the same Q table. Third, in case of 

exploration for a 𝜀-𝑔𝑟𝑒𝑒𝑑𝑦 based strategy (see Algorithm 3), the epsilon value depends on the area 

that results from intercepting the circular area generated by the current user emotion and the defined 

circular areas of anxiety or boredom to favor emotion management when the user emotion is closer 

to them and favor exploration otherwise. Fig. 3 shows how the three algorithms interact with the 

other components of the framework: Algorithm 1 is the main loop that interacts with the student, 

Algorithm 2 calculates the action to manage unwanted emotions and pursue positive emotions, and 

Algorithm 3 calculates the action to anticipate unwanted emotions.  

 

Algorithm 1 shows that we initialize the values of 𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 and 𝑄𝑓𝑙𝑜𝑤 in zero, and 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 

randomly. On the one hand, the Q values are zero because our algorithm does not consider any 

information about the user before starting. On the other hand, emotion is a random value because 

it will allow getting a random action at the start. Considering that an action is the skill of a task in 

our context, the loop consists of getting an action according to the current user emotion, performing 

that action, observing the new user emotion and answer, and updating the Q values. Observing the 

emotion means calculating the average valence and arousal after getting the values each second 

from the beginning to the end of the task through facial expressions by using a tool like Affdex 

(McDuff et al., 2016). Observing the answer means to determine whether the solution is correct or 

not. For updating 𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒, the reward is 1 when the answer is correct but 0 otherwise. It 

allows knowing the easiest and hardest tasks by applying 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) and 

𝑎𝑟𝑔𝑚𝑖𝑛(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒), respectively. For updating 𝑄𝑓𝑙𝑜𝑤, the reward is the valence of the current 

user emotion to allow us to look for the more positive emotions by using 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑓𝑙𝑜𝑤). 

 

Algorithm 1. Main loop 

1. Initialize 𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 0 

2. Initialize 𝑄𝑓𝑙𝑜𝑤 = 0 

3. Initialize 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 randomly 

4. Loop: 

5.  Get 𝑎𝑐𝑡𝑖𝑜𝑛 from 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 using Algorithm 2 

6.  Perform 𝑎𝑐𝑡𝑖𝑜𝑛 

7.  Observe 𝑒𝑚𝑜𝑡𝑖𝑜𝑛, 𝑟𝑒𝑤𝑎𝑟𝑑 

8.  Update 𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 using Equation 2 

9.  Update 𝑄𝑓𝑙𝑜𝑤 using Equation 2 

 

Algorithm 2 shows the decision-making process when anxiety or boredom. From lines 1 to 5, we 

manage anxiety and boredom by evaluating if the 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡 is inside of 𝑎𝑛𝑥𝑖𝑒𝑡𝑦_𝑎𝑟𝑒𝑎 or 

𝑏𝑜𝑟𝑒𝑑𝑜𝑚_𝑎𝑟𝑒𝑎 (see example in the second quadrant in Fig. 4 where a point is inside of A1). If it 

detects anxiety or boredom then the next action will be the 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) or 

𝑎𝑟𝑔𝑚𝑖𝑛(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒), which are the easiest and hardest tasks, respectively. It tries to drastically 

change the user’s current emotion according to the flow theory. From lines 7 to 9, we anticipate 

anxiety or boredom by evaluating if the 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑎𝑟𝑒𝑎 intercepts the 𝑎𝑛𝑥𝑖𝑒𝑡𝑦_𝑎𝑟𝑒𝑎 or 

𝑏𝑜𝑟𝑒𝑑𝑜𝑚_𝑎𝑟𝑒𝑎 (see example in the third quadrant in Fig. 4 where a point is inside of B2). We call 



it anticipate because the current emotion is not inside anxiety (A1) or boredom (B1) areas, but it is 

close to any of them (see A2 and B2 areas in Fig. 4). Then, if the 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑎𝑟𝑒𝑎 intercepts any of 

the others (see how to calculate the intercepted area in the next paragraph), then the next task will 

be like managing anxiety or boredom but using an 𝜀-𝑔𝑟𝑒𝑒𝑑𝑦 strategy to promote exploration. 

Finally, in line 11, for other cases where anxiety or boredom are not detected or anticipated, we try 

to keep the flow channel by selecting the task that promotes more positive emotions through 

𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑓𝑙𝑜𝑤). 

 
Fig. 4. Example of emotions 

 

Algorithm 2. Manage and pursue emotions 

Input: valance, arousal 

1.   Create 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡 from 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 and 𝑎𝑟𝑜𝑢𝑠𝑎𝑙 
2.   If 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡 in 𝑎𝑛𝑥𝑖𝑒𝑡𝑦_𝑎𝑟𝑒𝑎: 

3.       return 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) 

4.   Else if 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡 in 𝑏𝑜𝑟𝑒𝑑𝑜𝑚_𝑎𝑟𝑒𝑎: 

5.       return 𝑎𝑟𝑔𝑚𝑖𝑛(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) 

6. 

7.   Create 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑎𝑟𝑒𝑎 from 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡 and 𝑟𝑎𝑑𝑖𝑢𝑠 

8.   If 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑎𝑟𝑒𝑎 intercepts 𝑎𝑛𝑥𝑖𝑒𝑡𝑦_𝑎𝑟𝑒𝑎 or 𝑏𝑜𝑟𝑒𝑑𝑜𝑚_𝑎𝑟𝑒𝑎 

9.       𝑟𝑒𝑡𝑢𝑟𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑢sing Algorithm 3 

10. 

11. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑓𝑙𝑜𝑤) 

Output: action 

 

Algorithm 3 shows the 𝜀-𝑔𝑟𝑒𝑒𝑑𝑦 strategy to promote exploration while anticipating anxiety or 

boredom. Having evaluated that the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑎𝑟𝑒𝑎 intercepts another area, which is called 

𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑎𝑟𝑒𝑎 (i.e., the current emotion is inside either A2 or B2, so 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑎𝑟𝑒𝑎 could be 

anxiety or boredom), we calculate the intercepted area because it will allow us to calculate 𝜀 

according to that proportion intercepted. Equation 5 calculates de intercepted area, where r is the 

segment between the current emotion point and the interception point of the circles, R is the 

segment between the nearest area center and the interception point of the circles, L is the segment 

between the current emotion point and the nearest area center, 𝛼 is the angle between r and L, and 

𝛽 is the angle between R and L (see an example in Fig. 5 that presents the interception of boredom 



and current point, showing the meaning of the parameters). Having the 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑_𝑎𝑟𝑒𝑎, we 

proceed to calculate the 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 by dividing 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑_𝑎𝑟𝑒𝑎 and 

𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑎𝑟𝑒𝑎 (see line 2 in Algorithm 3). Because 𝜀 represents the probability of exploration, we 

want it to be low when the emotion is closer to the area (to favor exploitation that means managing 

emotions) but high otherwise (to favor exploration). We achieve that behavior with 𝜀 = 1 −
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛. Finally, if the case is not exploration (determined by lines 4 and 5 in 

Algorithm 3), according to the intercepted area (anxiety or boredom) will be returned 

𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) or 𝑎𝑟𝑔𝑚𝑖𝑛(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒), respectively.  

 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑_𝑎𝑟𝑒𝑎 = 𝛼𝑟2 + 𝛽𝑅2 −
1

2
𝑟2 sin 2𝛼 −

1

2
𝑅2 sin 2𝛽 (5) 

 

Algorithm 3. Anticipate emotions 

Input: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑎𝑟𝑒𝑎, 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑎𝑟𝑒𝑎 

1. Calculate 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑_𝑎𝑟𝑒𝑎 using Equation 5 

2. 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =  𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑_𝑎𝑟𝑒𝑎 / 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑎𝑟𝑒𝑎 

3. 𝜀 = 1 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 

4. With probability 𝜀: 

5.     return random action 

6. If 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑎𝑟𝑒𝑎 ==  𝑎𝑛𝑥𝑖𝑒𝑡𝑦_𝑎𝑟𝑒𝑎: 

7.     return  𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) 

8. If 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑎𝑟𝑒𝑎 ==  𝑏𝑜𝑟𝑒𝑑𝑜𝑚_𝑎𝑟𝑒𝑎: 

9.     return  𝑎𝑟𝑔𝑚𝑖𝑛(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) 

Output: action 

 

 
Fig. 5. Interception of boredom (purple) and current (green) areas 

 

4. Experimental protocol 
 

The experimental goal is to quantitively compare our approach with other approaches. We select 

running simulations because simulated users are appropriate to evaluate RL algorithms under 

defined human constraints (Bignold et al., 2021), which is our case. In addition, simulations allow 

objective comparisons and repeatability of experiments. Then, firstly, we set the problem by 

grading the skills of a real dataset publicly available to choose 5 of them from different levels of 

difficulty (see subsection 4.1). Second, we define data-driven users based on real data (see 

subsection 4.2). Third, we select the performance metrics (see subsection 4.3). Finally, we simulate 

1000 runs and present mean values as results (see section 5).  

 



4.1. Setting the problem 

 

We selected the Cognitive Tutor 2006-2007 Bridge to Algebra dataset (Stamper & Pardos, 2016) 

because it is composed of enough records for our study (16.858 records from 587 students of 13-

14 years old, during the 8th grade school year, performing 12 skills). Based on Minn et al. (2022), 

we apply Equation 6 to estimate the difficulty 𝐷 for each skill belonging to the dataset by mapping 

the initial average success rate of a skill into 5 levels (from 1 to 5). In Equation 6, 𝑛 represents the 

number of students who attempted the skill 𝑠𝑖, and 𝑂𝑗 (1 if successful, 0 otherwise) is the outcome 

of the first attempt from student 𝑗 to skill 𝑠𝑖. After applying the equation, to get the 5 skills graded 

that are required by the problem formulation (see paragraph 1 in section 3), we select one skill for 

each difficulty level (see Table 1): Plot whole number (difficulty 1), Calculate part in proportion 

with fractions (difficulty 2), Calculate unit rate (difficulty 3), Finding the intersection mixed 

(difficulty 4), and Plot imperfect radical (difficulty 5). 

 

𝐷(𝑠𝑖) = (𝑛 + 1) − 𝑟𝑜𝑢𝑛𝑑 (
∑ 𝑂𝑗
𝑛
𝑗=0

𝑛
× 5) (6) 

4.2. Data-driven users 

 

Our approach requires a user capable of solving tasks in which they must apply one of five skills 

and express emotions while doing so. For each task given, the data-driven user will provide a binary 

answer (1 if the solution is correct, 0 otherwise) and a dimensional emotion (valence and arousal 

to represent the mean emotion). For generating the answers, we select the Bayesian Knowledge 

Tracing model (see subsection 4.2.1), and for generating the emotions we use the AFEW-VA 

dataset (Kossaifi et al., 2017), composed of 600 videos displaying various facial expressions 

annotated per frame with levels of valence and arousal intensities in the range of −10 to 10 (see 

subsection 4.2.2). Finally, we integrate both models based on the user knowledge (see subsection 

4.2.3).  

 

4.2.1. Knowledge Tracing model 

 

The Bayesian Knowledge Tracing model (Corbett & Anderson, 1994) is based on a Hidden Markov 

Model where the observable states are students’ binary responses, and the hidden states are 

students’ latent knowledge at a particular time step t. We apply expectation maximization (Pardos 

& Heffernan, 2010) to the Cognitive Tutor 2006-2007 Bridge to Algebra dataset to fit its four 

parameters prior, learn, guess, and slip, which are 𝑃(𝐿0), 𝑃(𝑇), 𝑃(𝐺), and 𝑃(𝑆), respectively. From 

Yudelson et al. (2013), Equation 7 calculates the probability that a student correctly applies a skill, 

where 𝑃(𝐿𝑡+1) is the probability of knowing the skill (also called the probability of skill mastery 

or skill proficiency) calculated in Equation 8, and 𝑃(𝐿𝑡|𝑜𝑏𝑠𝑡) is gotten in Equation 9 when the 𝑜𝑏𝑠 
is correct or Equation 10 when incorrect. 

 

𝑃(𝐶𝑡+1) =  𝑃(𝐿𝑡+1)(1 − 𝑃(𝑆)) + (1 − 𝑃(𝐿𝑡+1))𝑃(𝐺) (7) 

 

𝑃(𝐿𝑡+1) =  𝑃(𝐿𝑡|𝑜𝑏𝑠𝑡) + (1 − 𝑃(𝐿𝑡|𝑜𝑏𝑠𝑡))𝑃(𝑇) (8) 

 



𝑃(𝐿𝑡|𝑜𝑏𝑠𝑡 = 1) =  
𝑃(𝐿𝑡)(1 − 𝑃(𝑆))

𝑃(𝐿𝑡)(1 − 𝑃(𝑆)) + (1 − 𝑃(𝐿𝑡))𝑃(𝐺)
 

(9) 

 

𝑃(𝐿𝑡|𝑜𝑏𝑠𝑡 = 0) =  
𝑃(𝐿𝑡)𝑃(𝑆)

𝑃(𝐿𝑡)𝑃(𝑆) + (1 − 𝑃(𝐿𝑡))(1 − 𝑃(𝐺))
 

(10) 

 

Table 1 shows the initial probability of the answer being correct according to the difficulty for the 

skills selected with different difficulty levels (see subsection 4.1). Initial probabilities are consistent 

with the difficulty level, being the lower and the higher difficulties who have higher and lower 

probabilities of answering correctly as expected, respectively. 

 

Table 1. Initial probabilities of answering correctly for each skill 

Skill Difficulty 𝑷(𝑪𝟎) 
Plot whole number 1 0.89 

Calculate part in proportion with fractions 2 0.66 

Calculate unit rate 3 0.50 

Finding the intersection, Mixed 4 0.48 

Plot imperfect radical 5 0.26 

 

4.2.2. Emotional model 

 

To generate emotions according to the flow theory, we define anxiety, boredom, and excitement 

areas according to the circumplex model of emotions (141, 242, and 48.6 degrees for anxiety, 

boredom, and excitement, respectively). In addition, we define two areas of transition between 

those emotional areas: anxiety to excitement, and excitement to boredom. Fig. 6 shows the mean 

emotions of 600 videos from the AFEW-VA dataset with the defined areas highlighted. Anxiety, 

boredom, excitement, anxiety to excitement, and excitement to boredom are composed of 59, 18, 

68, 196, and 125 samples, respectively. The rest 134 samples were discarded (see yellow points in 

Fig. 6). For simulations, we chose a random point belonging to the wanted cluster. For example, if 

we want to simulate an expression of anxiety, then we randomly (uniform distribution) select one 

from the 59 samples that belong to anxiety. 

 
Fig. 6. Emotions in Anxiety and Boredom Areas. 

 



4.2.3. Joining Knowledge Tracing and Emotions 

 

A user that behaves according to the flow theory must follow three considerations. First, the user 

must express anxiety when his/her skill is low, and the challenge is high. Second, he/she must 

express boredom when his/her skill is high, but the challenge is low. Third, he/she expresses 

excitement about being in the flow. To know the user’s skill, we can consider the probability of 

answering correct P(C) given by the BKT model, where a low probability means low skill and a 

high probability means high skill.  

 

In addition, we can associate the challenge with the difficulty of the skill (see Table 1). It means 

that a low difficulty is a low challenge as well. Then, for connecting both knowledge and emotion 

models, we define Equation 11, where emotions are related to initial probabilities (gotten from 

fitting BKT models) of answering correct 𝑃(𝐶0) for each difficulty level. For example, if the 

probability is lower or equal to 0.26 (initial probability of answering correct the skill Plot whole 

number considered as difficulty 1, as shown in Table 1), then the emotion will be anxiety.  

 

𝑒𝑚𝑜𝑡𝑖𝑜𝑛(𝑝) =

{
 
 

 
 

𝑎𝑛𝑥𝑖𝑒𝑡𝑦
𝑎𝑛𝑥𝑖𝑒𝑡𝑦 𝑡𝑜 𝑒𝑥𝑐𝑖𝑡𝑒𝑚𝑒𝑡

𝑒𝑥𝑐𝑖𝑡𝑒𝑚𝑒𝑛𝑡
𝑒𝑥𝑐𝑖𝑡𝑒𝑚𝑒𝑛𝑡 𝑡𝑜 𝑏𝑜𝑟𝑒𝑑𝑜𝑚

𝑏𝑜𝑟𝑒𝑑𝑜𝑚

0 < 𝑝 ≤ 0.26
0.26 < 𝑝 ≤ 0.48
0.48 < 𝑝 ≤ 0.66
0.66 < 𝑝 < 0.89
0.89 < 𝑝 ≤ 1

 (11) 

 

4.3. Performance metric 

 

According to our target of measuring impact on users, we select learning gain as the main metric. 

For comparison with the other approaches where the target was measuring the agent performance, 

we select the utility because it is the metric that they use, and, to understand better the differences, 

we choose the skill selection rate. Finally, to show that our approach follows the three design 

considerations, we calculate the percentage of emotions by skill. 

 

4.3.1. Learning gain. It is a useful metric for knowing how an intervention affects the student’s 

knowledge (Hutchins et al., 2020). It requires two equivalent tests for comparing their scores: a 

pretest applied before the intervention and a posttest after it. Equation 12 shows how to calculate 

the learning gain, which is a real value in the range [0, 1], where max score is the total number of 

tasks in a test, pretest score is the number of tasks correctly solved in a test applied at the beginning, 

and posttest score is the number of tasks correctly solved in a test applied at the end. For our case, 

each test is composed of 15 tasks (3 tasks for each skill), being the max score equal to 15. 

 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑔𝑎𝑖𝑛 =  
𝑝𝑜𝑠𝑡𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 − 𝑝𝑟𝑒𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒

max 𝑠𝑐𝑜𝑟𝑒 − 𝑝𝑟𝑒𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒
 

(12) 

 

4.3.2. Utility. It is the metric used by Azoulay et al. (2014) for comparing the learning performance 

of agents. Although we do not pursue to maximize this utility, it will be useful to compare our 

approach with the others because their results are strongly dependent on this metric. Equation 13 

shows that utility is the summation of difficulty 𝐷𝑖 in which the tasks 𝑄𝑖 was correctly solved for 

all solved tasks n.  



 

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 =  ∑𝐷𝑖| 𝑄𝑖 𝑤𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑜𝑙𝑣𝑒𝑑

𝑛

𝑖=1

 (13) 

 

4.3.3. Skill selection rate. It is useful for understanding better how the agents behave because it 

allows knowing tendencies for each one such as what skill favors each approach, allowing us to 

explain why each approach got its values of learning gain and utility. In addition, this metric is 

useful to identify unwanted behaviors. For example, we do not want a tendency to the easiest skill, 

which means a high probability of success but low values of learning gain. For each skill 𝑠, the 

selection rate is calculated with Equation 14, where the summation of the times that the skill s was 

selected is divided by the total of tasks 𝑛 and multiplied by 100%. 

 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑠 = 
∑ 1 | 𝑠 𝑤𝑎𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑛
𝑖=1

𝑛
× 100% 

(14) 

 

4.3.4. Percentage of emotions by skill. This metric allows us to confirm our three design 

considerations because we can get what skills tend to be selected when emotions are positives 

(consideration 1), anxiety or boredom (consideration 2), and close to anxiety or boredom 

(consideration 3). This percentage is calculated by dividing the emotional space into 400 hexagonal 

bins. Then, for each skill it is counted the number of emotions that are included in each bin 𝑏, 

divided by the total number of emotions 𝑛 that precede the skill, and multiplied by 100% (see 

Equation 15). With this metric, we expect that medium difficulties tend to be selected when 

emotions are positives (consideration 1), and simplest or hardest difficulties be selected when 

anxiety or boredom (consideration 2) or when anticipating them (consideration 3). 

 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑏 = 
∑ 1 | 𝑖 ∈𝑛
𝑖=1  𝑏 

𝑛
× 100% 

(15) 

 

5. Results 
 

The results are presented according to each of the performance metrics defined in section 4.3. Each 

of them allows us to analyze a different aspect, such as the impact on users, or the performance of 

the agent. 

 

5.1. Learning gain 

 

From the user side, Fig. 7 presents the comparison of approaches according to the learning gain for 

200 tasks. In general, our approach achieves better values of learning gain than those achieved by 

the other approaches. In the beginning (10 tasks), our approach achieves 0.09 of learning gain, 

followed by DVRL with 0.07, and Q-learning and Virtual Learning with 0.065. The Bayesian 

approach achieves a lower value of around 0.03. Later, until the end, our approach keeps increasing 

the learning gain until around 0.49 at task 200. Considering that the maximum learning gain is 1 

(it happens when the pretest is 0 and the posttest is equal to the max score, meaning that a student 

does not know at all in the pretest and learns all in the posttest), a value of 0.49 means significant 

progress. Virtual Learning, DVRL, and Q-learning also increase until the end but achieve lower 



values (0.32, 0.29, and 0.28, respectively). In contrast, the Bayesian approach keeps around 0.1 

rather than increasing, achieving the worst results. Then, using our approach allows more benefits 

to students than the other approaches. In addition, Fig. 7 shows how many tasks a student must 

solve to achieve a wanted learning gain. For example, if a student wants to gain around 0.3, he 

must solve around 50 and 60 tasks. 

 
Fig. 7. Comparison of approaches according to the learning gain 

 

5.2. Utility 

 

From the agent side, Fig. 8 shows the comparison of approaches according to the utility metric, 

where the Bayesian approach achieves better values than the others. Although it is not a fair 

comparison for our approach because our algorithm does not pursue to optimize the utility, this 

metric is useful because it can give us information about the performance of our approach in the 

context of the related works, having as a reference that the maximum possible value is 1000 (it 

happens when all the tasks belong to the maximum difficulty). The other approaches focus on 

maximizing this metric because they want an agent that learns the skill with a high difficulty level 

in which users frequently respond correctly, assuming that it is the best case for the students’ 

learning. We find that our algorithm behaves better than Virtual Learning and is close to the other 

approaches (520, 500, 490, and 450 for Bayesian, DVRL, Q-learning, and our approach, 

respectively). It is interesting because our algorithm pursues to adjust difficulty based on student 

emotions rather than utility. It means that emotions as feedback guide indirectly in the same 

direction that the utility as a guide, being possible because a user that behaves according to the 

flow theory tends to pursue positive emotions that are related to medium difficulties (around 

difficulty 3) which, in this case, is close to the higher difficulty level in which users frequently 

respond correctly (difficulty 4 according to the Bayesian approach). 



 
Fig. 8. Comparison of approaches according to the utility 

 

5.3. Skill selection rate 

 

To understand better the differences between approaches, we analyze the distribution of skill 

selection (see Fig. 9). We find that our approach tends to select skills of intermediate difficulty 

(25%, 40%, and 30%, for difficulties 2, 3 and 4, respectively), avoiding the easiest and hardest but 

trying those a little bit (around 2% and 7% for difficulties 1 and 5, respectively). Those results are 

consistent with the flow theory because it is wanted to avoid boredom and anxiety, which are 

related to the easiest and hardest difficulties. In contrast, the Bayesian approach tends to select skill 

4 (almost 100% of the time), which is consistent with its target of finding one skill that maximizes 

the utility, as shown in Fig. 8. On the other hand, the Virtual Learning approach tends to select skill 

2 around 50% of the time and favors skills 1 and 3 in comparison with skills 4 and 5 (see Fig. 9). 

Finally, Q-learning has a similar tendency to DVRL because it moderately tries all the skills and 

favors the skill 4 as well, but as shown in Fig. 9, Q-learning tries a little bit less skills 4 and 5, 

getting lower utility values (see Fig. 8.). That result was expected because DVRL is an enhanced 

version of Q-learning where the updating phase of the Q values is applied to the neighboring 

difficulties levels as well. 

 
Fig. 9. Comparison of approaches according to the skill selection rate 

 



5.4. Percentage of emotions by skill 

 

Fig. 10 presents the percentage of emotions that precede each skill to show how our approach 

follows the three design considerations. First, about keeping the flow channel that is related to 

positive emotions, skill 3 (which is the skill with higher selection rate in our approach according 

to Fig. 9) tends to be selected from positive emotions, as shown in the first quadrant of plot c in 

Fig.10. In contrast, skill 1 is selected very few from positives emotions, and skills 2, 4, and 5 

moderately (in Fig. 10, see plots a, b, d, and e, respectively). Because the skill with a higher 

selection rate is the most selected from positive emotions, we argue that our approach tends to keep 

the flow channel (that is consistent with a review of the literature (Peifer et al., 2022) that concludes 

that, in general, studies show that flow channel is associated with higher positive emotional states). 

Second, about managing anxiety or boredom by looking at the easiest or hardest skills, we see in 

the second quadrant of plot a of Fig. 10 that effectively the most emotions of anxiety precede skill 

1, which is consistent with our algorithm that looks for the easiest skill when anxiety. Similarly, 

we see in the third quadrant of plot e that the most emotions that precede skill 5 are around boredom 

indicating that it is looking for the higher difficulty when the user is bored. Third, about anticipating 

anxiety or boredom, which is related to emotions in regions A2 and B2, we see in all plots of Fig. 

10 that A2 is a low-frequented area for emotions, which can be explained by the approach of our 

algorithm that pursues increase learning gains, then, it is expected that B2 be the most frequented 

area because a user who tends to learn also tends to be bored. For that reason, our results show 

more activity in B2, which means that our approach tends to keep the users learning but avoids 

boredom. 

  

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 

Fig. 10. Skill selection according to the emotions 

 

 

 



6. Comparison with related works  
 

We found six related works (Chan & Nejat, 2012; D’Mello et al., 2010; D’Mello et al., 2012; 

Gordon et al., 2016; Park et al., 2019; Pérez et al., 2023) that consider student emotions to 

determine the pedagogical policy as our approach does. All of them have different objectives, but 

all are associated with Intelligent Tutoring Systems (ITSs). Naturally, objectives are different 

because ITSs focus on different strategies. For example, they focus on memory games (Chan & 

Nejat, 2012), dialogues (D’Mello et al., 2010), storytelling (Park et al., 2019), and problem-solving 

(Pérez et al., 2023). Our approach focuses on problem-solving but rather than adapting the topic 

like Pérez et al. (2023), we adapt the skill that is related to the problem's difficulty. Those 

differences do not allow for comparing those approaches numerically. We compare five 

characteristics related to emotions: emotion representation, emotion incorporation, pursuing 

positive emotions, managing anxiety or boredom, and anticipating anxiety or boredom (see Table 

2). Emotion representation is related to how emotions are numerically represented; emotion 

incorporation is how the emotional value is considered in the algorithm to make the decision. The 

rest of the characteristics verify whether the approaches follow our three design considerations: 

pursue positive emotions, manage anxiety and boredom, and anticipate anxiety or boredom. 

 

Table 2. Comparison of related works. 
Approach Emotion representation Emotion 

incorporation 

Pursue 

positive 

emotions 

Manage 

anxiety or 

boredom 

Anticipate 

anxiety or 

boredom 

Q-learning  

(Park et al., 2019) 

A discrete model of four 

categories: q1, q2, q3, and q4. 

State No No No 

SARSA  

(Gordon et al., 2016) 

A discrete model of three 

categories: neg, med, and pos. 

State and 

reward 

Yes No No 

MAXQ  

(Chan & Nejat, 2012) 

A discrete model of four 

categories: stressed, neutral, 

excited, and pleased. 

State No No No 

Q-learning  

(Pérez at al., 2023) 

Dimensional model of emotional 

valence. 

Reward 

shaping 

Yes No No 

Hand-coded rules  

(D’Mello et al., 2010) 

boredom, confusion, frustration, 

and neutral 

Rules Yes Yes No 

Hand-coded rules 

(D’Mello et al., 2012) 

Dimensional model of two 

dimensions: pleasure-displeasure 

and arousal-sleepiness. 

Rules Yes Yes No 

Our approach based 

on Q-learning 

Dimensional model of valence 

and arousal 

Exploration-

exploitation 

strategy and 

reward 

Yes Yes Yes 

 

About the approaches, we argue that hand-coded methods (D’Mello et al., 2010; D’Mello et al., 

2012) are limited because students’ knowledge is different and changes over time. In contrast, the 

rest of the approaches, which are based on RL, fit better for adjusting parameters because it learns 

automatically from experiences. We note that emotion representation is related to emotion 

incorporation. Particularly, for tabular algorithms like SARSA (Gordon et al., 2016), Q-learning 

(Park et al., 2019; Pérez et al., 2023), and MAXQ (Chan & Nejat, 2012), incorporating emotions 

as states is limited to discrete emotions; however, rather than using discrete emotions, the methods 

use a continuous space to represent emotions, being mandatory to convert the continuous value to 

discrete categories like quartiles (Park et al., 2019) or three categories (Gordon et al., 2016). On 

the other hand, incorporating emotions as a reward shaping function allows using a continuous 



space, like is used by Pérez at al. (2023). Nonetheless, our approach proposes incorporating 

emotional values in the exploration-exploitation strategy for managing and anticipating boredom 

and anxiety. So, according to the circumplex model, we use the circular area around the point 

created from the valence and arousal values for detecting anxiety and boredom.  

 

About our three design considerations, several related works pursue positive emotions (D’Mello et 

al., 2010; D’Mello et al., 2012; Gordon et al., 2016; Pérez et al., 2023). Approaches based on hand-

coded rules (D’Mello et al., 2010;D’Mello et al., 2012) do it indirectly because they focus on 

detecting some negative emotions to be managed to get positive emotions. In contrast, approaches 

based on RL (Gordon et al., 2016; Pérez et al., 2023) pursue positive emotions directly because 

they try to optimize the task by maximizing positive emotional states. Specifically, Gordon et al. 

(2016) incorporate the emotional valence in the reward and Pérez et al. (2023) uses both valence 

and arousal to feed a reward-shaping function. Like Gordon et al. (2016) do, our approach 

incorporates emotion valence as a reward to be maximized but, it also incorporates both valence 

and arousal in the exploration-exploitation strategy to manage negative unwanted emotions as well. 

That is, our approach pursues positive emotions directly and indirectly.  

 

Only the related works with hand-coded approaches manage unwanted emotions. Specifically, 

D’Mello et al. (2010) detect learners’ boredom, confusion, and frustration, and then, it applies rules 

for managing those. For example, if the current state is classified as boredom and the previous state 

was classified as frustration, it shows a random message to the user like this: “Maybe this topic is 

getting old. I'll help you finish so we can try something new”. On the other hand, D’Mello et al. 

(2012) identify when the student is bored, disengaged, or zoning out, to attempt to reengage the 

student with dialog moves that direct the student to reorient his attentional patterns. For example, 

if it identifies boredom, then the message could be ‘‘Please pay attention’’ or ‘‘I’m over here you 

know’’. Our approach manages unwanted emotions by adjusting the difficulty of the task, that is, 

if it detects boredom the task will be the hardest but if it identifies anxiety the task will be the 

easiest because we try to get out the student from unwanted emotions as fast as possible. 

 

None of the related works anticipate unwanted emotions. Our approach does anticipate those by 

detecting emotions that are close to the unwanted emotions and later manages those with a strategy 

based on 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 to assure exploration. It means that if we detect an emotion close to an 

unwanted emotion, then we manage it either by selecting the hardest or easiest task (according to 

the case) or choosing a random difficulty. We claim the other approaches that manage unwanted 

emotions (D’Mello et al., 2010; D’Mello et al., 2012) could anticipate emotions as well by 

detecting close emotions to the unwanted emotions.  

 

7. Conclusions 
 

An approach based on flow theory for considering emotions as implicit feedback in the RL 

framework was proposed to adapt difficulty in the context of tutoring systems. Our proposal 

includes the students' emotions in the exploration-exploitation strategy and the reward of the RL 

framework. On the one hand, it uses both valence and arousal for localizing a point in the space 

according to the circumplex model of emotions, but creating a circle so that points into the area are 

considered as a group. Then, if the student's emotion belongs to the anxiety area, then anxiety is 



detected to be managed, but if its area intercepts the anxiety area, then anxiety is anticipated. On 

the other hand, it uses valence as a reward to learn what action maximizes positive values. 

 

Results show that our proposal covers the three design considerations. First, it pursues positive 

emotions because the skill with the highest selection rate (see skill 3 in Fig. 9) is the most selected 

from positive emotions (see Fig. 10). It knows what skills are related to positive emotions because 

of the valence as a reward that we apply to learn 𝑄𝑓𝑙𝑜𝑤. Second, it manages anxiety and boredom 

as shown in Fig. 10 because emotions in the anxiety area are followed by the easiest skill, and 

emotions in the boredom area are followed by the hardest skill. It is possible because our approach 

gets from 𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 what is the easiest through 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) and the hardest 

through 𝑎𝑟𝑔𝑚𝑖𝑛(𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒). Third, it anticipates anxiety and boredom as presented in Fig. 10 

where emotions in the B2 area are the more frequent avoiding boredom. Anticipation is possible 

because we detect if the current emotion area intercepts the unwanted area to consider applying the 

easiest or hardest skill according to the case. 

  

Results also show that our approach is better than the others in fostering student learning gains in 

the context of adapting difficulty for tutoring systems. Other approaches tend to foster learning 

gains slowly as Virtual Learning while others converge to low values as the Bayesian (see Fig. 7). 

The reason is that our approach tends to select intermediate difficulty (skill 3), Virtual Learning an 

easier (skill 2), and Bayesian the penultimate level of difficulty (see skill 4 in Fig. 9). That is, 

Bayesian focuses on almost the more difficult skill that is expected to have lower probability of 

success than the majority but receives a high reward when success. Virtual Learning focuses on 

skill 2 that is the second level of difficulty, so the probability of success is expected to be higher 

than the majority. In contrast, our approach focuses on skill 3 that is expected to be a balance 

between the probability of success and the value of the reward in comparison with the other skills. 

In other words, enhancing mastery in intermediate levels allows getting higher learning gains than 

focusing on higher or lower levels.  

 

A limitation was found in this research because there is no available dataset where students’ 

dimensional emotions as in the circumplex model are collected while students solve different tasks. 

We addressed that issue by joining two datasets, however, according to the task, students could 

have different emotional behaviors, being necessary to study other contexts. In addition, we 

identify two useful future works. On the one hand, we studied how to incorporate emotions in the 

RL framework to foster student learning gain, but a similar study is needed to know how to 

incorporate emotions in the context of transfer learning, which implies that students can transfer 

their acquired skills to new situations as problems that require several skills at the same time or 

problems of new skills. On the other hand, considering that adapting feedback that students receive 

during training has shown promise (Zahabi & Abdul, 2020), we could include in our approach 

feedback support and manage it by adapting its parameters (timing, content, and modality) to 

enhance even more the student learning gains.  

 

Data availability 
 

The Cognitive Tutor 2006-2007 Bridge to Algebra dataset is available at 

https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp. The AFEW-VA dataset is available at 

https://ibug.doc.ic.ac.uk/resources/afew-va-database/.  

https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
https://ibug.doc.ic.ac.uk/resources/afew-va-database/
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