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ABSTRACT

Federated Learning (FL) permits different parties to collaboratively train a global model without
disclosing their respective local labels. A crucial step of FL, that of aggregating local models to
produce the global one, shares many similarities with public decision-making, and elections in
particular. In that context, a major weakness of FL, namely its vulnerability to poisoning attacks, can
be interpreted as a consequence of the one person one vote (henceforth 1p1v) principle that underpins
most contemporary aggregation rules.
In this paper, we introduce FEDQV, a novel aggregation algorithm built upon the quadratic voting
scheme, recently proposed as a better alternative to 1p1v-based elections. Our theoretical analysis
establishes that FEDQV is a truthful mechanism in which bidding according to one’s true valuation is
a dominant strategy that achieves a convergence rate matching that of state-of-the-art methods. Fur-
thermore, our empirical analysis using multiple real-world datasets validates the superior performance
of FEDQV against poisoning attacks. It also shows that combining FEDQV with unequal voting
“budgets” according to a reputation score increases its performance benefits even further. Finally, we
show that FEDQV can be easily combined with Byzantine-robust privacy-preserving mechanisms to
enhance its robustness against both poisoning and privacy attacks.

1 Introduction

Federated Learning (FL) has emerged as a promising privacy-preserving paradigm for conducting distributed collabora-
tive model training across parties unwilling to disclose their local data. Parties collaborate to train a global model by
submitting their local models to a server, which applies a specific aggregation rule to generate a new version of the
global model to be sent back to parties. The process of agreeing on a common global model in Federated Learning
shares many similarities with public decision-making and elections in particular. Indeed, the weights of local model
updates from each party can be seen as votes of preference that affect the global model resulting from an aggregation
rule applied at the centralised server of an FL group.

FEDAVG [1] has been the “de facto” aggregation rule used in FL tasks such as Google’s emoji and next-word prediction
for mobile device keyboards [2, 3]. In FEDAVG the global model is produced from a simple weighted averaging of
local updates with weights that represent the amount of data that each party has used for its training.

The problem. Recent work [4] has shown that FEDAVG is vulnerable to poisoning attacks, as even a single attacker
can degrade the global model by sharing faulty local updates of sufficiently large weight. Such attacks become possible
because FEDAVG treats all local data points equally. In essence, the aggregation rule, when seen at the granularity of
individual training data, resembles the one person one vote (1p1v) election rule of modern democratic elections. In this
context, the server distributes votes (weights) to a party in accordance with the amount of its training data, which may
be regarded as its population. This, however, may confer an unjust advantage to malicious parties who may have, or
falsely claim to have, large training datasets.

Our approach. To address this issue, we propose a robust aggregation rule inspired by elections based on Quadratic
Voting [5] (henceforth QV). In QV, each party is given a voting budget that can be spent on different rounds of voting
for proposals. Within a particular vote, an individual has to decide the number of "credit voices" to commit, whose
square root is what impacts the corresponding outcome of the vote, hence the name quadratic voting. The number of
"credit voices" is determined by the individual’s voting preference for the proposal. QV has been proposed as a means
to break out from the tyranny-of-the-majority vs. subsidising-the-minority dilemma of election systems [6]. Its formal
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analysis [7] under a game theoretic price-taking model, has shown that QV outperforms 1p1v in terms of efficiency and
robustness. Importantly, it has the unique capacity to deter collusion attacks by effectively taxing extreme behaviours.

Our contributions. In this paper, we propose FEDQV, a novel FL aggregation scheme that draws inspiration from QV.
Our objective is to mitigate the ability of malicious peers to impose disproportional damage on the global model – a
vulnerability inherent in FEDAVG that applies the 1p1v principle at the granularity of individual votes. By addressing this
issue, FEDQV serves as a superior alternative to FEDAVG, offering increased robustness against poisoning attacks while
retaining compatibility with privacy-guaranteed mechanisms to defend against privacy attacks, as will be demonstrated
later.

Our primary contribution involves integrating QV principles into FL, augmented by the implementation of multiple
defensive layers, to establish the truthful mechanism, FEDQV. We begin with the incorporation of quadratic computation
from QV into the FL setting. This incorporation restricts the ability of malicious peers to inflict high damages by taxing
their aggregation weights more than linear. However, this direct incorporation alone falls short of capturing each party’s
voting preference, a crucial aspect of QV. To capture this preference, we require parties to submit the similarity of
their local model with the previous round’s global model, which serves as a measure of the parties’ preference. This
modification enables the integration of QV principles into the FL system. Then in response to potential malicious
attempts from peers, we introduce FEDQV, a truthfulness mechanism alongside our application of QV to FL. This
mechanism employs a masked voting rule on the server side to conceal the voting calculation process from parties.
Additionally, it incorporates outlier detection and a limited voting budget, information that is exclusive to the server.
These defence measures collectively act as a deterrent against potential poisoning attacks and untruthful strategic
behaviour, ensuring the overall robustness of the FEDQV system in the face of adversarial threats.

To further enhance resilience against poisoning attacks, we extend FEDQV to use adaptive voting budgets. In election-
related applications, QV allocates equal budgets to all voters, reflecting the democratic principle of equal rights.
However, in our adaptation of QV for FL, it makes sense to allocate more votes to benign peers and limit the influence
of malicious ones by assigning them smaller voting budgets. We achieve this by employing unequal budgets, which are
tied to a reputation score for each peer, as discussed in Section 5.7.

Our next contribution is the implementation of various state-of-the-art Byzantine fault tolerance techniques on top
of FEDQV and demonstrating that FEDQV serves as a complementary defence that further boosts the robustness of
existing defence techniques.

Put differently, FEDQV is an enhancer of existing byzantine fault tolerance techniques, not a competitor – implementing
these defences atop FEDQV consistently yields superior results compared to implementing them atop FEDAVG.

To also defend against privacy attacks, we design FEDQV such that it can be easily combined with existing privacy-
guaranteeing mechanisms to thwart inference and reconstruction attacks [8, 9, 10]. Specifically, we showcase the
compatibility of FEDQV by implementing SECAGG[11] on top of the FEDQV framework. We then demonstrate
experimentally the effectiveness of SECAGG within the FEDQV framework, focusing on its ability to withstand
powerful privacy attacks.

Our final contribution comprises an extensive theoretical analysis in order to: 1) establish convergence guarantees, and
2) prove the truthfulness of our method.

Our findings. Using a combined theoretical and experimental evaluation, we show that:

• FEDQV is a truthful mechanism and is theoretically and empirically compatible with FEDAVG in terms of
accuracy and convergence under attack and no-attack scenarios.

• FEDQV consistently outperforms FEDAVG under various state-of-the-art poisoning attacks, especially for
local model poisoning attacks improving the robustness to such attacks by a factor of at least 4×.

• The combination of FEDQV with a reputation model to assign unequal credit voice budgets to parties according
to their respective reputations, improves robustness against poisoning attacks by at least 26% compared to the
baseline FEDQV that uses equal budgets.

• We show that integrating FEDQV with established Byzantine-robust FL defences, including Multi-Krum [4],
Trimmed-Mean [12], and Reputation [13], results in substantial enhancements in accuracy and reductions in
the attack success rate (ASR) under state-of-the-art attacks when compared to the original defence methods.
Specifically, integrating FEDQV into Multi-Krum results in a twofold improvement in accuracy under two
untargeted attack scenarios, along with an average enhancement of 26.72% in accuracy and a notable average
reduction of 70% in ASR under two targeted attack scenarios.
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• We demonstrate the compatibility of FEDQV with SECAGG, and our empirical evaluation confirms that this
integration enhances resistance against two privacy attacks.

2 Background

2.1 Election Mechanisms in FL

Election mechanisms are widely used in distributed systems for choosing a coordinator from a collection of processes [14,
15]. Likewise, there exist works that explore the value of the election mechanism for the aggregation step of FL. Plurality
voting is employed in FedVote [16] for weighting the local updates, and FedVoting [17] for treating the validation results
as votes to decide the optimal model. Also in [18], the authors propose two forms of election coding, random Bernoulli
codes and deterministic algebraic codes, for discovering majority opinions for the aggregation step. DETOX [19]
proposes a hierarchical aggregation step based on majority votes upon groups of updates. Finally, DRACO [20] and
ByzShield [21] also employ majority voting to fend off attacks against the aggregation step. All the aforementioned
election mechanisms suffer from the tyranny of the majority problem in election systems [22]. In FL, this means that if
attackers manage to control the majority of votes, then via poisoning their tyranny will manifest itself as a degradation
of the accuracy of the FL model used by the minority.

To address these limitations, QV is proposed as a solution that combines simplicity, practicality, and efficiency under
relatively broad conditions. QV considers a quadratic vote pricing rule, inspired by economic theory, under which
voters can purchase votes at ever-increasing prices within a predetermined voting budget. The advantages of QV over
1p1v have a rigorous theoretical basis, which of course applies also to the use of QV in FL. For any type of symmetric
Bayes-Nash equilibrium, the price-taking assumption approximately holds for all voters, as a result, the expected
inefficiency of QV is bounded by constant [23]. This theoretical analysis [24, 25] combined with strong empirical
validation, both at the laboratory [26] and on the field [27], suggest that QV is near-perfectly efficient and more robust
than 1p1v which, as already explained, forms the basis of contemporary FL aggregation mechanisms. The advantages
of QV can also be observed from the viewpoint of collusion, which is generally deterred either by unilateral deviation
incentives or by the reactions of non-participants [7].

2.2 FL Aggregation Against Poisoning and Privacy Attacks

There exist several Byzantine-robust FL aggregation methods for mitigating poisoning attacks either by leveraging
statistic-based outlier detection techniques [4, 12, 28, 13] or by utilising auxiliary labelled data collected by the
aggregation server in order to verify the correctness of the received gradients [29, 30]. Both approaches, though, require
examining the properties of the updates of individual parties, which can jeopardise their privacy due to inference [10]
and reconstruction attacks [8, 9] mounted by an honest but curious aggregation server.

To fight against privacy attacks, Secure aggregation (SA) protocols have been proposed as potential countermeasures [31].
Secure aggregation can be achieved using four main privacy-enhancing technologies: differential privacy [32], trusted-
execution environment (TEE) [33], secure shuffling under anonymity assumptions [34], and cryptography. Among
those, secure aggregation based on cryptography is the most widely studied [11, 35, 36]. Although crypto-based
secure aggregation provides strong security guarantees compared to alternatives, i.e., differential privacy, it also suffers
from high computational and communication overhead. Consequently, these crypto-based secure aggregations are
primarily established in the FEDAVG framework due to the impracticality of integrating them into Byzantine-robust FL
aggregation methods, owing to the computational complexity in these aggregations.

In response to this limitation, FEDQV emerges as a promising solution, offering enhanced resilience against poisoning
attacks while inheriting the simplicity of FEDAVG. Notably, this simplicity facilitates FEDQV’s integration with
crypto-based secure aggregations, thereby bolstering defences against privacy attacks while also exhibiting superior
resilience against poisoning attacks compared to FEDAVG. Although a few FL aggregation approaches [37, 38, 39] can
be adapted to incorporate secure aggregation, they still rely on majority voting as the aggregation scheme, which can be
integrated with FEDQV to enhance its robustness against poisoning attack.

3 FEDQV: Quadratic Voting in FL

3.1 Federated Learning Setting

Consider an FL system involving N parties and a central server. During training round t, a subset of parties St is
selected to participate in the training task. Each party i has the local dataset Di with |Di| samples (voters), drawn from
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non-independent and non-identically (Non-IID) distribution Xi(µi, σ
2
i ). The goal of using FL is to learn a global model

for the server. Given the loss function ℓ(w;D), the objective function of FL can be described as

L(w) = ED∼X [ℓ(w;D)]

Therefore, the task becomes:
w∗ = argmin

w∈Rd

L(w)

To find the optimal w∗, Stochastic Gradient Descent (SGD) is employed to optimise the objective function. Let T be
the total number of every part’s SGD, E be the local iterations between two communication rounds, and thus T

E is the
number of communication rounds.

The FL model training process entails several rounds of communication between the parties and the server, including
broadcasting, local training, and aggregation, as demonstrated in Algorithm 1. The global model is first initialised at a
random state by the server and, then, in round t the following steps are taken:

Broadcast: The server first randomly selects a subset of parties St (|St| = C ≥ 1) and then distributes the latest global
model as the global proposal to all chosen parties. Local Training: The selected party i performs local computation
based on the global proposal and its local dataset Di, and sends the update wt

i back to the server:

wt
i ← wt−1

i − rt−1
∂ℓi(w

t−1
i ;Di)

∂w

where rt−1 is the learning rate.

Aggregation: The server receives the model updates from all participating parties and aggregates them to update the
global model.

For aggregation rule, FEDAVG uses the fraction of the local training sample size of each party over the total training
samples as the weight of a party:

wt+1 =
1⋃

i∈St |Di|
∑
i∈St

|Di| ·wt
i

Similar to 1p1v, each sample here represents a single voter, and since party i possesses |Di| samples, it is able to cast
|Di| votes for its local model during the aggregation. Hence, the global proposal is a combination of all parties’ local
proposals weighted by their votes.

3.2 Preliminary Results

To show the rationale behind the algorithm design, we consider a toy use case involving two benign parties and
one malicious party in FL. These parties claim possession of training datasets with the dataset sizes set to {1, 1, 2},
respectively. Importantly, the malicious party asserts a larger training dataset than the benign ones. These claims are
reported to the central server, which lacks access to the raw data of the participating parties for verification purposes.

First, we introduce quadratic computation from QV into the FL. The quadratic computation involves taxing the
aggregation weights with the square root. Consequently, while the aggregation weights in FEDAVG remain {1, 1, 2},
the corresponding weights in QV are adjusted to

{
1, 1,
√
2
}

. We conduct a 10-round training of a multi-layer CNN on
the MNIST dataset, during which the malicious party executes a backdoor attack under the same settings as discussed
in Section 5. The test accuracy is colour-coded and presented in Figure 1a, where the vertices of the triangle correspond
to different parties, and their positions inside the triangle reflect their respective aggregation weights. As expected,
the compromised accuracy in FEDAVG arises from the presence of a malicious party that possesses or falsely claims
to possess a larger dataset. Compared to FEDAVG, QV, with the adjusted weights, exhibits superior accuracy. This
suggests that the quadratic computation in QV can enhance performance by restraining the influence of attackers within
FEDAVG by taxing their aggregation weights more than linear.

However, the direct incorporation of quadratic computation alone proves insufficient in capturing the voting preferences
of each party, a critical aspect of QV. In QV, parties with pronounced disagreements with a proposal express their
dissent by casting more votes to reject it. To capture each party’s voting preference into the FL system, we refine the
integration by requiring parties to submit the similarity of their local model with the previous round’s global model.
The similarity score serves as a measure of agreement, where higher scores indicate stronger alignment between the
local model (proposal) and the global model (proposal). Consequently, parties with higher similarity scores will cast
fewer votes in this round, reflecting their reduced need for adjustment to the existing global model. Conversely, parties
showing greater dissimilarity (1− sti) between their local proposal and the global one cast more votes. This strategic
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global model. This scenario is observed during 10 communication rounds in the
MNIST dataset under a Backdoor attack.

allocation empowers parties with substantial disagreements to wield more significant influence over the impending
global proposal wt, thereby making it a closer alignment with their local proposal wt

i .

Based on these similarity scores, the voting calculation is conducted to determine the votes, serving as the aggregation
weights. Rather than having parties directly calculate their votes, which could lead to malicious attempts, we introduce
the FEDQV mechanism. This approach adopts a more secure approach by delegating the vote allocation task to the
server. It employs a masked voting rule to obscure the vote calculation process from the parties, thereby preventing
them from knowing the exact votes they have cast for aggregation. This confidentiality measure is crucial to maintaining
the integrity and impartiality of the voting process. Built upon the lack of awareness regarding the voting calculation
process among parties, the FEDQV system incorporates two additional defensive mechanisms: a limited voting budget
and outlier detection, which are known only by the server. Given that parties are unaware of their budget and the
possibility of their updates being detected as abnormal, attempts by malicious parties to manipulate their updates and
overcast their votes entail a dual risk. There is a potential for exclusion from the aggregation process through outlier
detection or unknowingly reaching their voting budget limit, resulting in the assignment of no votes. These protections
serve as a deterrent against potential poisoning attacks, ensuring the overall robustness of the FEDQV system in the
face of adversarial threats. Details of the design of FEDQV are presented in the next subsection.

Returning to our previous toy example, the implementation of FEDQV leads to the allocation of weights {1, 1, 0}, as
depicted in Figure 1a. This weight distribution effectively excludes the malicious party from the aggregation process.
Consequently, this exclusion contributes to the improved accuracy of the resulting global model. To further illustrate
how FEDQV assigns aggregation weights to different parties during training, consider another toy case with 10 parties
in the FL system, where 4 of them are attackers. The settings remain the same as the first toy case, and the results are
presented in Figure 1b. In the left of Figure 1b, the first six parties are benign, and the rest are malicious. Notably,
during the 10 communication rounds, only two attackers (parties 7 and 8) successfully participated in the aggregation,
with party 7 participating twice and party 8 once, while most others did not contribute, resulting in an aggregation
weight of 0 for them. This outcome demonstrates FEDQV’s effectiveness in expelling malicious parties. Even when
a round includes two malicious parties, the decrease in test accuracy is limited, and the Attack Success Rate (ASR)
remains low (<2%) as shown in the right of Figure 1b. This demonstration underscores FEDQV’s capability to mitigate
the influence of malicious parties, thus preventing significant damage to the global model.

3.3 FEDQV Design

We use QV in FL to overcome the drawback of 1p1v, which improves the robustness of aggregation in comparison to
FEDAVG without compromising any efficiency. Figure 2 provides an overview of FEDQV algorithm, which comprises
two key components: similarity computation executed on the party side to capture the voting preference of each party
and voting scheme managed on the server side to deter potential poisoning attacks and untruthful strategic behaviour of
parties. We detail each component in the following subsections.

Similarity Computation: In round t, based on the server instructions, party i (i ∈ St) trains its local model wt
i , which

can be regarded as its local proposal. Following the local training phase, party i computes a similarity score sti utilising
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Figure 2: Overview of FEDQV algorithm.

cosine similarity, quantifying the alignment between its locally trained model wt
i and the previous global model wt−1.

sti = Scos

(
wt

i ,w
t−1
)
=

〈
wt

i ,w
t−1
〉

∥wt
i∥ · ∥wt−1∥

Notably, the cosine similarity function can be adapted to different similarity metrics, such as L2 distance, to better
suit specific tasks. In this context, a higher sti value indicates a stronger agreement with the previous global model
(proposal). Once selected parties finish training, they send their updates wt

i to the server, with the message ⟨sti⟩.
It’s noteworthy that similarity calculation can also be launched on the server side. However, this approach presents
certain risks: (i) it exposes the system to privacy attacks initiated by the server, and (ii) it may produce distorted
similarity scores due to the utilisation of regularisation and privacy-preservation methods [40] at the party side. Given
our primary objective of comparing FEDQV with FEDAVG, where weights are also computed at the party side, we
choose to conduct the calculation on the party side within FEDQV. Additionally, to counteract potential malicious
attempts launched from the party side, we have the option to introduce defence mechanisms on the server side, such as
other Byzantine-robust aggregations, as detailed in Section 5.8. This approach makes it more challenging for attackers
to mount successful attacks compared to FEDAVG.

Voting Scheme (Server Side): Upon receiving the updates and messages from selected parties, the server proceeds
with the following steps:

• The server normalises the similarity scores using Min-Max scaling to obtain s̄ti as:

s̄ti = norm
(
sti, {sti}i∈[St]

)
(1)

Following normalisation, parties no longer being aware of their exact similarity scores s̄ti.
• The server employs a penalty mechanism for abnormal similarity scores, specifically when s̄ti falls below
θ or exceeds 1 − θ. Here, θ represents the similarity threshold and is established to capture scores that are
excessively small or large, indicating potential anomalies. In response to such abnormality, the server enforces
a penalty by reducing the budgets Bi allocated to the respective party as:

Bi = max
(
0, Bi + ln s̄ti − 1

)
(2)

• The server calculates the voice credit cti for party i utilising the masked voting ruleH as:

cti = H(s̄ti) =
(
− ln s̄ti + 1

)
1θ<s̄ti<1−θ (3)

Here, the voice credits signify the price party i is required to pay in round t for its local proposal. Parties
with higher similarity scores, indicating stronger agreement with the global proposal, are allocated fewer
credit votes from the server. Conversely, parties showing greater dissimilarity (1 − sti) between their local
proposal and the global one receive an increased allocation of cti. This mechanism empowers parties with
substantial disagreements to exert greater influence over the forthcoming global proposal wt. Notably, parties
with abnormal similarity scores are excluded from participating in the aggregation, with receiving zero voice
credits.

• The server checks the budget Bi for each party and computes their final votes vti as:

vti =
√

min (cti,max (0, Bi)) (4)
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Algorithm 1: FEDQV
Input : w0← random initialisation; B, θ← FEDQV parameters

Server :
1 for Iteration t← 1 to T

E do
2 Broadcast wt−1 to randomly selected set of parties St (|St| = C ≥ 1);
3 Receive the local updates (wt

i , s
t
i) from selected parties (i ∈ St);

4 Normalisation: s̄ti ← Eq.(1), i ∈ St;
5 for i← 1 to N do in parallel
6 if s̄ti ≤ θ or s̄ti ≥ 1− θ then
7 Update Bi← max (0, Bi + ln s̄ti − 1)
8 Credit voice cti ← Equation 3, Vote vti ← Equation 4;

9 Budget Bi← max
(
0, Bi − (vti)

2
)
// Update the budget

10 end forpar
11 return wt

n ←
∑N

i=1
vt
i∑M

i=1 vt
i

wt
i,n

12 end for
Party :

1 for Party i ∈ St do in parallel
2 Receive the global model wt−1 ;
3 for local epoch e← 1 to E do
4 wt

i ← wt−1
i − rt−1

∂ℓi(w
t−1
i ;Di)

∂w // Local training
5 end for

6 Calculate the similarity score: sti ←
⟨wt

i ,w
t−1⟩

∥wt
i∥·∥wt−1∥

;

7 Send (wt
i , s

t
i)

8 end forpar

• The server updates the budget as:
Bi = max(0, Bi −

(
vti
)2
) (5)

Thus, the server determines the weight (vti ) of party i for aggregation and generates the updated global model wt,
reflecting the collective opinion of all selected parties (voters). Algorithm 1 summarises all these steps of FEDQV.

Malicious Party: In cases where malicious parties attempt to manipulate the similarity scores, their capabilities are
restricted by:

(a)No knowledge of the voting process. Only the server possesses knowledge of each party’s remaining budget and
the number of actual votes cast in the current round. The lack of knowledge about the voting calculation process that
contains outlier detection, coupled with the parties’ unawareness of their limited voting budget, exposes malicious
parties to the risk of exclusion from the aggregation process.

(b)Punitive Measures: FEDQV, with its masked voting rule that contains outlier detection and limited budget, empower
the system to penalise and potentially remove malicious parties who attempt to conduct poisoning attacks;

(c)Limited Influence: Even if a manipulated similarity score is accepted by the server, the influence the malicious party
can exert is inherently constrained due to the nature of QV and the limited budgets, minimising the potential damage.

Benefits of FEDQV:

• Truthful Mechanism. FEDQV is a truthful mechanism [41] as we prove in Theorem 4.17. This means that
this mechanism compels the parties, even malicious ones, to tell the truth about their votes (weights) for
aggregation, rather than any possible lie. This truthfulness is reinforced by the aforementioned several defence
layers.

• Ease of Integration and Compatibility. FEDQV is highly adaptable and can be seamlessly integrated into
Byzantine-robust FL defence schemes with minimal adjustments, specifically by modifying the aggregation
weight calculation while leaving other algorithm components unchanged. This integration is demonstrated
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Algorithm 2: FEDQV with Adaptive Budget
Input :wt

i , c
t
i, B

t
i ← FEDQV; κ,a,W ,M ,λ,δ← Reputation model parameters

1 for i ∈ St do
2 for j ← 1 to M do
3 Subjective Observations (P t

i , Q
t
i) := IRLS (wt

i,j , δ);
4 end for
5 Reputation Score Rt

i := Rep (P t
i , Q

t
i, κ, a,W )

6 Budget Bt
i ← Rt

i1λ≤Rt
i
+Bt

i , Credit voice cti ← (Rt
i + cti)1λ≤Rt

i

7 end for

in Section 5.8. Furthermore, similar to FEDAVG, FEDQV boasts efficient communication and simplicity,
rendering it compatible with various mechanisms employed in FL. It can effortlessly incorporate the reg-
ularisation, sparsification, and privacy modules, encompassing techniques such as clipping [40], gradient
compression [42], differential privacy [43], and secure aggregation [11].

3.4 FEDQV with Adaptive Budgets

In democratic elections, all individuals are typically granted equal voting rights, entailing an equal voting budget. In FL,
however, it often makes sense to give malicious parties fewer votes than honest ones. Thus to improve the robustness of
standard FEDQV, we combine it with the reputation model in [13] to assign an unequal budget based on the reputation
score of parties in each round t. Specifically, if a party’s reputation score Rt surpasses a predefined threshold λ, we
increase their budget, and vice versa. We present a summary of this combination in Algorithm 2, with a detailed
explanation, expanding on the well-established components from the original paper. We provide empirical evidence
in Section 5.7 showcasing the substantial performance improvements achieved by the enhanced version of FEDQV
featuring an adaptive budget.

Here we present a concise elucidation of key components of the Algorithm 2 as followings:

• IRLS (Iteratively Reweighted Least Squares): IRLS serves as an optimisation technique employed to solve
specific regression problems. Within [13], IRLS is utilised to compute the Subjective Observations of
participating clients based on their parameter’s confidence score, which is calculated using the repeated-
median regression technique.

• Subjective Observations: Positive observations denoted by P t
i signify acceptance of an update, while

negative observations denoted by Qt
i indicate rejection. Consequently, positive observations enhance a party’s

reputation, and negative ones have the opposite effect.

• Reputation Score Calculation: The reputation score of a party is determined using a subjective logic model,
formulated as follows:

Rt
i =

κP t
i +Wa

κP t
i + ηQt

i +W

Regarding the integration of the reputation model, our objective is to demonstrate how combining FEDQV with the
reputation model enables the allocation of unequal budgets, thereby enhancing the robustness of standard FEDQV. This
integration’s adaptability extends beyond a single reputation model, allowing customisation to suit various needs. The
example presented in the paper serves to showcase the concept’s viability.

4 Theoretical Analysis

In this section, we establish the convergence guarantees and truthfulness properties of FEDQV. Our first result is
Theorem 4.9 that states FEDQV converges to the global optimal solution at a rate of O( 1

T ), comparable to the
convergence rate exhibited by FEDAVG. Theorem 4.10 extends this statement, affirming that FEDQV converges to
a near-optimal solution in the presence of malicious parties, with the resulting performance gap determined by the
percentage of malicious parties. The empirical convergence performance of our algorithm, as gauged by metric test
accuracy and training loss, is consistent with our theoretical analysis, as elaborated in the following section. Our final
result, Theorem 4.17, establishes that FEDQV is a truthful mechanism, wherein honesty emerges as the dominant
strategy within this framework. Fully detailed proofs are in Appendix A.
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4.1 Convergence

We start by stating our assumptions, which are standard and common for such types of analysis and per recent works
such as [12, 28, 44, 30, 13, 45].

Assumption 4.1. The loss functions are L-smooth, which means they are continuously differentiable and their gradients
are Lipschitz-continuous with Lipschitz constant L > 0, whereas:

∀i ∈ N, ∀w1,w2 ∈ Rd, ∥∇L(w1))−∇L(w2))∥2 ≤ L ∥w1 −w2∥2
∥∇ℓ(w1;D)−∇ℓ(w2;D)∥2 ≤ L∥w1 −w2∥2

Assumption 4.2. The loss function ℓ(wi, D) are µ-strongly convex:

∃µ > 0,∀w1,w2 ∈ Rd,∇ℓ(w∗;D) = 0,∇L(w∗) = 0

2 (L(w1)− L(w2)) ≥ 2 ⟨∇L(w2),w1 −w2⟩+ µ ∥w1 −w2∥22
2 (ℓ(w1;D)− l(w2;D)) ≥ 2 ⟨∇ℓ(w2;D),w1 −w2⟩+ µ ∥w1 −w2∥22

Assumption 4.3. The expected square norm of gradients w is bounded:

∀w ∈ Rd,∃Gw <∞,E ∥∇ℓ(w;D)∥22 ≤ G
2
w

Assumption 4.4. The variance of gradients w is bounded:

∀w ∈ Rd,∃Vw <∞,E ∥∇ℓ(w;D)− E(∇ℓ(w;D)∥22 ≤ Vw

The lemmas we utilise in the proof of Theorem 4.9 and Theorem 4.10, are presented below.

Lemma 4.5. From Assumption 4.1 and 4.2, L(w) is L-smooth and µ-strongly convex. Then ∀w1,w2 ∈ Rd, one has

⟨∇ℓ(w1)−∇ℓ(w2),w1 −w2⟩ ≥
Lµ

L+ µ
∥w1 −w2∥22 +

1

L+ µ
∥∇ℓ(w1)−∇ℓ(w2)∥22

Lemma 4.6. Assume Assumption 4.1, Assumption 4.2 and Lemma 4.5 hold, Let pti =
1
C1i∈St , we have

∥∥wt−1 − r∇L(wt−1)−w∗∥∥2
2
≤

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2
+

(
r2
(
1 + L2

)
− 2rLµ+ 1

L+ µ

)∥∥wt−1 −w∗∥∥2
2

(6)

Lemma 4.7. Assume Assumption 4.3 holds, it follows that

E
N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2
≤ (E − 1)

2
r2G2w

Lemma 4.8. Assume Assumption 4.4 holds, according to our Algorithm 1, it follows that

E
∥∥F(wt−1)−∇L(wt−1)

∥∥2
2
≤ (1− 2θ) CVw

√
B

Where

F(wt−1) =
∑

i∈St−1

pt−1
i ∇ℓ(wt−1

i ;Dt−1
i )

Under these four mild and standard assumptions, along with the support of Lemmas, we have:

Theorem 4.9. (Secure Convergence Without Attack) Under Assumptions 4.1, 4.2, 4.3 and 4.4, and m = 0. Choose
α = L+µ

µL and β = 2 (L+1)(L+µ)
µL , then FEDQV satisfies

EL(wT )− L(w∗) ≤ L

2φ+ T

(
φE

∥∥w0 −w∗∥∥2
2
+

α2

2
∆

)
(7)

Where

∆ = (E − 1)
2 G2w + (1− 2θ) CVw

√
B, φ = α (L+ 1)
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Suppose the percentage of attackers in the whole parties is m, we denote

Mi(w
t
i) =

{
∗ if i ∈ malicious parties
∇ℓ(wt

i ;Dt
i) if i ∈ honest parties

Where ∗ stands for an arbitrary value from the malicious parties. Then we have:

Theorem 4.10. (Robust Convergence Under Attack) Under Assumptions 4.1, 4.2, 4.3 and 4.4, Choose α = L+µ
µL and

β = 2 (L+1)(L+µ)
µL , then FEDQV satisfies

EL(wT )− L(w∗) ≤ L+ 2LrT−1ϖ

2φ+ T

(
φE

∥∥w0 −w∗∥∥2
2
+

α2

2
∆

)
+

Lϖ2

2
(8)

Where

∆ = (E − 1)
2 G2w + (1− 2θ) CVw

√
B, φ = α (L+ 1) , ϖ = mNGwrT−1

√
4 + 6θ − θ2

Remark 4.11. According to Theorem 4.9, FEDQV obtains a secure convergence rate of O( 1
T ) in the absence of

malicious parties, which is comparable to the convergence rate of FEDAVG [46].
Remark 4.12. According to Theorem 4.10, FEDQV converge to a near-optimal solution in the presence of malicious
parties, with the resulting performance gap determined by the percentage of malicious parties.
Remark 4.13. The error rate exhibits dependence on the budget B, the similarity threshold θ, and the percentage of
malicious parties m. It is noteworthy that a larger budget allocation, a reduction in the similarity threshold, or an
augmentation in the proportion of malicious parties induce more pronounced disparities in model updates, consequently
resulting in an elevated error rate. The impact of these hyperparameters is shown in Figure 6b in Section 5.10.

4.2 Truthfulness

The FEDQV mechanism belongs to a single-parameter domain, where the real parameter votes vi play a direct role
in determining the eligibility of party i for aggregation. The mechanism is normalised according to game theory
principles [41], where for every vi and v−i such that f(vi, v−i) /∈Wi, pi(vi, v−i) = 0. Here, v−i represents votes cast
by all parties except for i, Wi is the subset of participants in aggregation, f represents the voting scheme outcome,
and pi is the payment function with pi(vi, v−i) = v2i in FEDQV. The upcoming definition of truthfulness and the
following lemmas contribute to the proof of Theorem 4.17 in alignment with monotone and critical value concepts in
game theory [41].
Definition 4.14. A mechanism (f, p1, ..., pn) is called truthfulness if for every party i, we denote a = f(vi, v−i) and
a′ = f(v

′

i, v−i) as the outcome of the voting, then vi(a)− pi(vi, v−i) ≥ vi(a
′
)− pi(v

′

i, v−i), where vi(a) denotes the
gain of party i if the outcome of the voting is a.

Here, vi(a)− pi(vi, v−i) is the utility of party i, indicating the gain from voting (vi(a)) minus its cost (pi(vi, v−i)).
Intuitively this implies that party i with vi would prefer “telling the truth” vi to the server rather than any possible “lie”
v

′

i since this gives him higher (in the weak sense) utility.

Lemma 4.15. f is monotone: : ∀v−i and ∀v′

i > vi, if f(vi, v−i) ∈Wi, then f(v
′

i, v−i) ∈Wi.
Lemma 4.16. In FEDQV, ∀i, vi, v−i that f(vi, v−i) ∈ Wi, we have that pi(vi, v−i) = Φi(v−i), where Φi is the
critical value of a monotone function f on a single parameter domain that Φi(v−i) = supvi:f(vi,v−i)/∈Wi

vi.

Based on Lemma 4.15 and Lemma 4.16, we establish the following theorem:
Theorem 4.17. FEDQV is incentive compatible (truthful).
Remark 4.18. Regarding the concept of truthfulness, it theoretically ensures that being honest is the dominant strategy
since providing manipulated similarity scores may lead to penalties and removal from the system due to the masked
voting rule H and limited budget B. This is an integral part of the nature of QV embedded within our FEDQV
framework.

5 Experiments

The objectives of our experimental evaluation are the following: (a) To assess the performance of our aggregation method
relative to FEDAVG.(b) To benchmark our method across 10 distinct state-of-the-art poisoning attack scenarios.(c) To
validate the alignment of our experimental findings with our prior theoretical analyses. (d) To demonstrate the ease
of integration and compatibility of our method within Byzantine-robust FL defence schemes and privacy-preserving
mechanisms.
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5.1 Experimental setting

Datasets and global models. We implement the typical FL setting where each party owns its local data and trans-
mits/receives information to/from the central server. To demonstrate the generality of our method, we train different
global models on different datasets. We use four popular benchmark datasets: MNIST [47], Fashion-MNIST [48],
FEMNIST [49] and CIFAR10 [50]. We consider a multi-layer CNN same as in [40], consisting of 2 convolutional
layers and 2 fully connected layers for MNIST, Fashion-MNIST and FEMNIST, and the ResNet18 [51] for CIFAR10.

Non-IID setting. In order to fulfil the setting of a heterogeneous and unbalanced dataset for FL, we sample from a
Dirichlet distribution with the concentration parameter ι = 0.9 as the Non-IID degree as in [52, 53], with the intention
of generating non-IID and unbalanced data partitions. Moreover, we have examined the performance across varying
levels of non-IID data in Section 5.9.

Parameter Settings. The server selects 10 (C) out of 100 (N ) parties to participate in each communication round and
train the global models for 100 communication rounds( TE ), where the local training epoch E equals 5. We set the model
hyper-parameters budget B and the similarity threshold θ to 30 and 0.2 respectively based on the hyper-parameter
searching. All additional settings are provided in the Appendix B.1.

5.2 Thread Model

We assume we the parties are malicious while the server is honest-but-curious. Within this context, parties may
deliberately submit false or manipulated local model updates to the central server. Their objectives could range from
injecting biases and compromising the model’s performance to extracting sensitive information from the aggregated
global model. The server correctly follows the FL protocol steps but remains curious to discover any private information.
In our case, the server has full visibility of all local models and launches privacy attacks upon receiving an update from
a target party to reconstruct users’ training data.

Furthermore, the percentage of malicious party m is an important factor in determining the success of the poisoning
attack. In our analysis, we assume that the number of malicious parties is less than the number of honest parties, a
common setting in such types of analysis and recent works [4, 12, 13].

5.3 Evaluated Poisoning Attacks

Our paper addresses three distinct attack schemes:

• Data poisoning: Attackers submit the true similarity score based on their poisoned updates, including
Labelflip Attack [54], Gaussian Attack [55], Backdoor [56], Scaling Attack [52], Neurotoxin [57].

• Model poisoning: Attackers submit the true similarity score based on their clean updates and poison their
model, including: Krum Attack [54], Trim Attack [54], and Aggregation-agnostic attacks: Min-Max and
Min-Sum [58]

• QV-tailored Attack: Attackers submit both poisoned similarity score and the local model to exploit vulner-
abilities in FEDQV. This dual-pronged attack, termed QV-Adaptive, presents a heightened challenge for
FEDQV.

Here are the details of the aforementioned attacks. We begin with data poisoning attacks:

Labelflip Attack [54]: In the Label-Flip scenario, all the labels of the training data for the malicious clients are set to
zero. This scenario simulates a directed attack, with the goal to disproportionally bias the jointly trained model towards
one specific class. This is a data poisoning attack that does not require knowledge of the training data distribution.
Under this attack, the malicious parties train with clean data but with flipped labels. Specifically, we flip a label k as
K − k − 1, where K is the total class number.

Gaussian Attack [55]: This attack forges local model updates via Gaussian distribution on the malicious parties.
malicious parties forge local model updates via Gaussian distribution.

Backdoor Attack [56] Malicious parties inject specific backdoor triggers into the training data and modify their labels
to the attacker-chosen target label. Specifically, we use the same backdoor pattern trigger and attacker-chosen target
label as in [59] as our trigger and set the attacker-chosen target label as 5. The backdoor can be introduced into a model
by an attacker who poisons the training data with specially crafted inputs. A backdoor transformation applied to any
input causes the model to mis-classify it to an attacker-chosen label The pattern must be applied by the attacker during
local training, by modifying the digital image.
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Scaling attack [52] The malicious parties generate poisoned local model updates by backdoor attack and only launch
this attack during the last communication round after scaling these updates by a factor of N .

Neurotoxin attack [57] In this attack, the adversary starts by downloading the gradient from the previous round and
employs it to approximate the benign gradient for the upcoming round. The attacker identifies the top-k% coordinates of
the benign gradient and treats them as the constraint set. Over several epochs of Projected Gradient Descent (PGD), the
attacker computes gradient updates on the manipulated dataset and projects this gradient onto the constraint set, which
consists of the bottom-k% coordinates of the observed benign gradient. PGD is employed to approach the optimal
solution within the span of the bottom-k% coordinates. We adopt the original parameter setting from the paper, where k
is set to 0.1.

Next, we move to model poisoning attacks:

Krum Attack [54]: Malicious parties craft poisoned local model updates opposite from benign ones, and enable them
to circumvent the defence of Krum [4].

Trim Attack [54] The poisoned local model updates constructed by malicious parties are optimised for evading the
Trim-mean and Median [12].

Min-Max Attack [58]In order to ensure that the malicious gradients closely align with the benign gradients within the
clique, attackers strategically compute the malicious gradient. This computation is carried out to limit the maximum
distance of the malicious gradient from any other gradient, which is constrained by the maximum distance observed
between any two benign gradients.

Min-Sum [58] The Min-Sum attack enforces an upper bound on the sum of squared distances between the malicious
gradient and all the benign gradients. This upper bound is determined by the sum of squared distances between any one
benign gradient and the rest of the benign gradients.

Finally, we introduce the QV-tailored attack:

QV-Adaptive attack Tailored for FEDQV, this attack leverages the Aggregation-agnostic optimisations [58] within the
LMP framework [54]. This attack manipulates both the similarity score and the local model, following the procedure
below:

1. The malicious party i generates benign updates wt
i using clean data Di in round t and calculates the corre-

sponding similarity score;
2. malicious parties (with counts of m) collectively normalise all the similarity scores and employ the Aggregation-

agnostic Min-Max optimisation to select the optimal similarity score. This optimisation objective aims to
increase the likelihood of the score being accepted by the server.

3. the adaptive attack focuses on local model poisoning to optimise the following problem:

max ν (9)

s.t. wt′

i∈m = FedQV(wt
1,w

t
2, . . . ,w

t
m) (10)

wt′

i∈m = wt
i − νd̂ (11)

Here, d̂ represents a column vector encompassing the estimated changing directions of all global model
parameters. The variables wt

i∈m and wt′

i∈m correspond to the local model before and after the attack. The
parameter ν denotes the extent of the attack’s impact on the model.

It is noteworthy that Labelflip, Gaussian, Krum, Trim, Min-Max, Min-Sum and QV Adaptive attacks are untargeted
attacks, whereas, Backdoor, Scaling and Neurotoxin attacks are targeted attacks. We confine our analysis to the
worst-case scenario in which the attackers submit the poisoned updates in every round of the training process for all
attack strategies with the exception of the Scaling attack.

5.4 Performance Metrics

We use the average test accuracy (ACC) of the global model to evaluate the result of the aggregation defence for
poisoning attacks, in which attackers aim to mislead the global model during the testing phase. ACC is the percentage
of testing examples with the correct predictions by the global model in the whole testing dataset, which is defined as
ACC = (# correct predictions)/(# testing samples). In addition, there are targeted attacks that aim to attack a specific
label while keeping the accuracy of classification on other labels unaltered. Therefore, besides ACC, we choose the
attack success rate (ASR) to measure how many of the samples that are attacked, are classified as the target label chosen

12



FEDQV: Leveraging Quadratic Voting in Federated Learning

0 20 40 60 80 100
Communication Rounds

0.0

1.0

2.0

3.0

4.0

Tr
ai

ni
ng

 L
os

s (
TL

)

0 20 40 60 80 100
Communication Rounds

0.1

0.3

0.5

0.7

0.9

Te
st

 A
cc

ur
ac

y 
(A

CC
)

FedQV (MNIST)
FedAvg (MNIST)

FedQV (Fashion-MNIST)
FedAvg (Fashion-MNIST)

FedQV (CIFAR10)
FedAvg (CIFAR10)

FedQV (FEMNIST)
FedAvg (FEMNIST)

(a) Without attack.
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(b) Under labelflip attack with 40% malicious parties.

Figure 3: Convergence comparison of FEDAVG and FEDQV in Training Loss (TL) and Accuracy (ACC) over 100
epochs across four benchmark datasets, both under no attack and under attack scenarios.

by malicious parties. A robust federated aggregation method would obtain a higher Avg-ACC as well as a lower ASR
under poisoning attacks. An ideal aggregation method can achieve 100% Avg-ACC and has the ASR as low as the
fraction of attacked samples from the target label.

5.5 Convergence

We evaluate the convergence of FEDAVG and FEDQV across the aforementioned four datasets under both benign
and adversarial conditions. The training loss (TL) and accuracy (ACC) of global models trained using FEDQV and
FEDAVG are depicted in Figure 3a without any attack and in Figure 3a under labelflip attacks with 40% malicious
parties. In the absence of Byzantine attacks, the convergence of the global model trained with FEDQV matches that
of FEDAVG across all datasets, consistent with Theorem 4.9. However, under attack, FEDAVG struggles to converge
due to its susceptibility to poisoning attacks, as shown in Figure 3a. While FEDQV also exhibits slower convergence
under attack, it eventually converges and outperforms FEDAVG. This outcome aligns with Theorem 4.10, indicating
that FEDQV achieves convergence to a near-optimal solution even in the presence of malicious parties, with the extent
of performance improvement determined by the percentage of malicious parties.

5.6 Defence against Poisoning Attacks

Static percentage of attackers: We present ACC and ASR of global models trained using both FEDAVG and FEDQV
under the 10 aforementioned poisoning attacks across all four datasets in Table 1. The experiments involve 30%
malicious parties, same as in previous studies such as [4, 13], which is also a common byzantine consensus threshold for
resistance to failures in a typical distributed system [60]. In data poisoning attacks, the results consistently demonstrate
that FEDQV outperforms FEDAVG, achieving the highest ACC with the smallest standard error. When considering
targeted attacks, FEDQV again stands out, displaying the highest ACC along with the lowest ASR when compared
to FEDAVG. In the context model poisoning attacks, FEDQV outperforms FEDAVG, except for the QV-Adaptive
attack, which is tailored for FEDQV. Especially for local model poisoning attacks: Trim and Krum attacks, FEDQV
outperforms FEDAVG by at least 4 times in terms of accuracy. Setting this observation as the alternative hypothesis H1

and using the Wilcoxon signed-rank test, we can reject the null hypothesis H0 at a confidence level of 1% in favour of
H1, proving the robustness of FEDQV.

Varying the percentage of attackers: Then we examine the performance of our method as the proportion of attackers
increases. Figure 4 shows the changes in performance metrics for varying percentages of attackers for both FEDQV
and FEDAVG under the backdoor attack (depicted in Figure 4a) and Neurotoxin attack (shown in Figure 4b) for both
FEDQV and FEDAVG. Across scenarios where the percentage of attackers m ranges from 10% to 50%, FEDQV
consistently outperforms FEDAVG in terms of both ACC and ASR under both attacks, even in scenarios where half the
parties are malicious. Notably, the Neurotoxin attack exhibits a more pronounced impact on ACC reduction and ASR
increase in both FEDQV and FEDAVG compared to the backdoor attack as the percentage of attackers varies.

Unlike untargeted attacks, strong targeted attacks can be mounted with just a single attacker and data poisoning [61].
To investigate the behaviour of FEDQV in scenarios with finer gradations, we also evaluate it with small, realistic
percentages of attackers, same as in [61], in Table 2 and Appendix Table A2. The results indicate that under these
small, realistic percentages of attackers, the performance of FEDQV remains consistent with its behaviour under larger
attack scenarios consistently outperforming FEDAVG. This outcome underscores the robustness of FEDQV across
varying threat levels.
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MNIST Fashion-MNIST CIFAR10 FEMNIST

FEDAVG FEDQV FEDAVG FEDQV FEDAVG FEDQV FEDAVG FEDQV

Data Poison
Labelflip 98.81±0.03 98.54±0.05 86.70±0.02 85.22±0.05 66.88±0.48 67.36±0.22 74.92±2.55 78.42±0.65
Gaussian 9.68±0.41 10.49±0.46 10.00±0.00 27.38±17.38 15.29±0.57 19.76±3.66 4.64±0.13 4.83±0.25
Backdoor

ACC 37.38±19.82 98.30±0.15 74.27±9.12 78.40±3.95 59.85±2.18 60.65±1.72 49.78±22.38 75.20±3.96
ASR 68.49±22.00 0.19±0.07 14.58±12.53 7.05±6.35 18.20±5.27 3.21±1.30 30.88±7.52 28.26±9.57

Scaling
ACC 10.33±0.05 11.16±0.88 10.22±0.09 11.27±0.99 10.00±0.00 28.55±18.55 26.30±21.55 64.80±1.38
ASR 99.94±0.06 98.96±1.04 99.74±0.10 98.21±1.45 100.00±0.00 67.66±32.34 0.47±0.08 0.56±0.06

Neurotoxin
ACC 81.17±15.39 95.73±1.45 70.00±7.85 79.58±1.60 22.40±7.16 45.40±3.22 47.29±18.07 79.99±0.70
ASR 23.19±2.25 18.11±1.67 20.65±2.21 18.12±4.16 51.63±1.03 57.42±1.91 40.42±4.35 9.00±1.29

Model Poison
Krum 10.57±0.39 97.96±0.14 10.00±0.00 79.43±0.86 10.00±0.00 53.27±1.12 5.20±0.22 51.86±3.06
Trim 10.04±0.16 98.36±0.11 10.00±0.00 84.45±0.70 10.00±0.00 57.33±2.34 5.09±0.33 52.19±4.52

Min-Max 35.00±25.38 85.32±6.45 10.00±0.00 67.25±7.44 10.00±0.00 19.07±6.97 56.37±13.67 72.58±2.11
Min-Sum 96.69±0.94 95.97±0.59 10.88±0.87 83.93±0.81 17.40±4.27 43.94±3.56 52.56±23.91 72.36±1.61

QV-Adaptive 71.43±22.67 56.94±23.95 35.92±4.60 62.13±11.25 10.00±0.00 11.14±1.14 22.08±18.72 43.78±20.72

Table 1: Comparison of FEDQV and FEDAVG on four benchmark datasets under 10 attack scenarios with 30% malicious
parties. The best results are highlighted in bold.
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Figure 4: Performance comparison of FEDQV and FEDAVG in terms of Accuracy (ACC) and Attack Success Rate
(ASR) over 100 epochs across four benchmark datasets under two targeted attacks, with varying percentages of attackers
m from 10% to 50%.

However, we notice that none of these methods yields satisfactory accuracy results for Gaussian and Scaling attacks. To
address this, we present the enhanced version of FEDQV with an adaptive budget assigned according to a reputation
model.

5.7 Adaptive Budget

To enhance the robustness of FEDQV, we integrate it with the reputation model proposed in [13] to allocate unequal
budgets based on the reputation scores of parties in each round t, as detailed in Section 3.4. The performance of FEDQV
with an adaptive budget (referred to as FEDQV+REP) is compared with FEDAVG and FEDQV during the Gaussian and
Scaling attacks, with the percentage of attackers increased to 50%. As depicted in Figure 5a, the combination of FEDQV
and the reputation model significantly enhances resistance against Gaussian and Scaling attacks by at least a factor of
26%. This observation, formulated as the alternative hypothesis H1, is supported by the Wilcoxon signed-rank test,
where the null hypothesis H0 can be rejected at a confidence level of 1% in favour of H1. This integration effectively
enhances the robustness of FEDQV, rendering it successful in defending against the two attacks that it previously failed
to counter.

5.8 Integration with Byzantine-robust Aggregation

Our objective is not to position FedQV in competition with existing defence techniques but rather to demonstrate that
FedQV can act as a complementary approach to advanced defences. Hence, FEDQV can be seamlessly integrated into
Byzantine-robust defence to enhance the overall defence performance, by adapting the weight calculation process. We
illustrate this with examples using Muilt-Krum [4], Trim-mean [12] and Reputation [13].

14



FEDQV: Leveraging Quadratic Voting in Federated Learning

MINIST FMINIST CIFAR10 FEMNIST0.0

0.2

0.4

0.6

0.8

1.0
AC

C
Gaussain Attack

MINIST FMINIST CIFAR10 FEMNIST0.0

0.2

0.4

0.6

0.8

1.0

AC
C

Scaling Attack

FedAvg FedQV FedQV+Rep

(a) Performance comparison of FEDAVG, FEDQV, and
FEDQV+REP, in terms of ACC for 100 epochs in four benchmark
datasets under 2 attack scenarios with 50% malicious parties.
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(b) Test accuracy (ACC) for 100 epochs of both Krum alone
and Multi-Krum + FEDQV on two benchmark datasets under 4
untargeted attack scenarios with 30% malicious parties.

Figure 5: Performance comparison of FEDAVG, FEDQV, and FEDQV+REP (FEDQV with adaptive budgets based on
reputation model). Performance comparison of Krum alone and Multi-Krum integrated with FEDQV.

Multi-Krum Multi-Krum + FedQV Trimmed-Mean Trimmed-Mean + FedQV Rep Rep + FedQV

Neurotoxin
1% 78.99±1.03/1.05±0.01 80.61±0.66/0.86±0.17 85.23±1.77/0.59±0.13 84.75±0.84/0.45±0.06 80.99±1.15/0.84±0.32 85.82±0.55/0.38±0.06
5% 76.21±0.73/3.29±0.92 80.32±1.07/1.34±0.34 85.15±0.38/0.87±0.17 85.09±0.97/0.73±0.05 80.48±1.17/1.62±0.11 84.12±0.38/1.35±0.40

10% 72.79±1.02/21.73±7.07 77.41±1.36/16.30±3.01 85.13±0.70/2.32±0.27 84.68±0.73/1.45±0.21 80.86±0.86/1.30±0.10 83.78±0.09/0.66±0.04
Min-Max

10% 71.62±4.48 79.48±0.82 75.41 ±0.77 78.46±0.67 72.66±1.34 76.98±1.48
30% 52.29±0.34 58.42±4.92 59.62 ±1.20 60.24±6.81 54.94±0.82 58.02±0.71
50% 10.28±0.28 22.95±9.94 9.47±0.42 10.64±0.63 11.23±1.00 13.64±2.58

QV-Adaptive
10% 52.98±1.78 73.35±3.44 83.17±1.85 85.55±0.33 12.60±2.36 41.55±19.78
30% 34.93±14.60 55.07±11.40 29.14±19.14 42.17±25.95 12.44±2.44 38.44±14.32
50% 10.20±0.20 12.24±1.12 10.00±0.00 13.35±3.37 10.00±0.00 10.55 ±0.44

Table 2: Comparison of Multi-Krum, Trimmed-Mean, Reputation, and their integration with FEDQV under three
State-of-the-Art attacks on FEMNIST dataset. The best results are in bold. The results of targeted attacks are in the
form of “ACC / ASR".

Table 2 presents a comparative analysis illustrating the performance of Multi-Krum, Trimmed-Mean, and Reputation
methods both individually and when integrated with FEDQV under three state-of-the-art attacks conducted on the
FEMNIST dataset. The results highlight that the integration of FEDQV with these defense mechanisms consistently
yields superior performance characterised by higher ACC and lower ASR compared to their standalone counterparts.

Especially, in the context of Multi-Krum, as illustrated in Figure 5b, the integration of FEDQV (referred to as Multi-
Krum + FEDQV) results in a significant enhancement in accuracy under 4 attack scenarios. Notably, under local
poisoning attacks such as the Krum attack and Trim attack, the accuracy improves by a factor of 2.5. The results
presented in Table 6a elucidate that the incorporation of FEDQV into Multi-Krum yields an average ACC enhancement
of 26.72% and a significant average reduction of 70% in the ASR under two targeted attack scenarios: backdoor and
scale attack. Setting this observation as the alternative hypothesis H1 and Employing the Wilcoxon signed-rank test, we
reject the null hypothesis H0 at a confidence level of 1% in favour of H1.

These findings underscore the potential of FEDQV as a promising complementary method to augment the performance
of existing defence mechanisms.

5.9 Non-IID Degree

To fulfil the fundamental setting of a heterogeneous and unbalanced dataset for FL, our experimental setup integrates
datasets exhibiting non-IID properties, with a non-IID degree (ι) of 0.9, consistent with the settings outlined in previous
studies such as [52, 13]. The ι represents the concentration parameter utilised in sampling from a Dirichlet distribution
[62], which governs the degree of dataset imbalance. This parameter choice aims to generate non-IID and unbalanced
data partitions conducive to our experimental objectives.

Moreover, we have examined the performance of FEDQV and FEDAVG across varying degrees of non-IID data, ranging
from 0.1 to 0.9, as depicted in Appendix Table A3. These results demonstrate that as the non-IID degree increases
among the parties, the performance of the global model declines. Notably, FEDQV consistently maintains a superior
performance compared to FEDAVG, even when confronted with different degrees of data heterogeneity under attack
conditions.
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MNIST Fashion-MNIST

Multi-Krum + FEDQV Multi-Krum + FEDQV

Backdoor
ACC 70.20±9.99 89.96±1.85 33.24±13.24 70.89±3.17
ASR 32.03±11.20 9.59±2.28 68.87±17.77 9.72±4.50

Scaling
ACC 68.35±16.76 96.55±0.41 59.43±14.22 82.48±0.24
ASR 33.65±19.15 0.41±0.06 33.64±19.08 0.91±0.18

(a) Comparison of Multi-Krum and Multi-Krum + FEDQV
under two targeted attacks with 30% malicious parties in
MNIST and Fashion-MNIST dataset. The best results are in
bold.
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(b) Impact of Hyperparameters B and θ of FEDQV on
ACC and ASR under a backdoor attack scenario with 30%
malicious parties, using the MNIST dataset.

Figure 6: Comparison of Multi-Krum and Multi-Krum + FEDQV under two targeted attacks, and examining the impact
of hyperparameters.

(a) The Deep Leakage from Gradients (DLG) Attack.

(b) The Gradient Invention (GI) Attack.

Figure 7: Visual Comparison of Images Reconstructed by Privacy Attacks (DLG and GI) on FEDQV with and without
SECAGG. The first row displays the original private training images from the targeted client. The second row illustrates
reconstructed images resulting from the privacy attacks (DLG and GI) on FEDQV without SECAGG. In the third row,
reconstructed images from the privacy attacks (DLG and GI) on FEDQV with SECAGG are presented. The use of
SECAGG is observed to contribute significantly to mitigating information leakage from the images.

5.10 Impact of Hyperparameters

As noted, Theorem 4.10 provides general guidelines for hyperparameters tuning. As shown in Remark 4.13, the error
rate is influenced by B and θ. To demonstrate the impact of these two hyper-parameters, we conduct a grid search
over B in [10, 20, 30, 40, 50] and θ in [0.1, 0.2, 0.3, 0.4, 0.5]. The setup is the same as on the MNIST dataset under the
backdoor attack with 30% malicious parties. Figure 6b illustrates the stability of the metrics ACC and ASR when
varying the hyperparameters B and θ. Specifically, as B increases, there is a discernible decline in ACC accompanied
by an increase in ASR, attributable to the augmented voting budget allotted to malicious parties. Conversely, an increase
in θ yields an elevation in ACC coupled with a reduction in ASR, as a higher threshold implies stricter acceptance
criteria for abnormal similarity scores. The optimal values of B and θ are determined to be 30 and 0.2, respectively.

We can see from Theorem 4.10, that the number of malicious devices m will affect the algorithm, and more malicious
devices can lead to increased damage. However, this does mean the server needs to know the number of malicious
devices to do the fine-tuning. We agree that determining optimal parameters can be challenging, especially in the
absence of complete knowledge about the FL system. A better tuning is possible if more information is available. For
specific tasks, more information can indeed be collected from which practical parameter sets can be extracted either
via exhaustive search or via simpler online algorithms using trial and error. We will add this to our future work and
consider it when we study particular domain-specific problems using our method.
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6 Defence against Privacy Attacks

To illustrate the compatibility of FEDQV with existing privacy-guaranteeing mechanisms, we integrate SECAGG[11]
into the FEDQV framework. Subsequently, we assess the framework’s resilience against privacy attacks, specifically the
Deep Leakage from Gradients (DLG)[8] and Gradient Inversion (GI) [9] attacks, with and without the incorporation of
SECAGG. Figure 7a provides visualisations of the reconstructed images by the DLG attack. In the absence of SECAGG,
the DLG attack can successfully recover approximately 8 out of 20 private images from the party. However, upon
integrating SECAGG, the DLG attack fails to recover any of the party’s images. Figure ?? presents visualisations of
the reconstructed images by the GI attack. Without SECAGG, the GI attack successfully recovers half of the private
images from the party. Yet, with SECAGG, the GI attack is unable to recover any party images, although it may vaguely
leak the overall shape of the image. These results highlight the efficacy of SECAGG in strengthening FEDQV against
privacy attacks, with the GI attack exhibiting a higher level of attack potency compared to the DLG attack. More details
regarding privacy attacks and implementations are provided in Appendix C.

7 Conclusion

In this paper, we have proposed FEDQV, a novel aggregation scheme for FL based on quadratic voting instead of 1p1v,
which is the underlying principle that makes the currently employed FEDAVG vulnerable to poisoning attacks. The
proposed method aggregates local models based upon the votes from a truthful mechanism employed in FEDQV. The
efficiency of the proposed method has been comprehensively analysed from both a theoretical and an experimental
point of view. Collectively, our performance evaluation has shown that FEDQV achieves superior performance than
FEDAVG in defending against various poisoning attacks. Moreover, FEDQV is a reusable module that can be integrated
with reputation models to assign unequal voting budgets, incorporate Byzantine-robust techniques, and employ privacy-
preserving mechanisms. This versatility provides robustness against both poisoning and privacy attacks, positioning
FEDQV as a promising complement to existing aggregation in FL.
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Appendix

A Proof of Theoretical Analysis

A.1 Proof of Theorem 4.9 and Theorem 4.10

A.1.1 Proof of Lemmas

Lemmas 4.5, Lemmas 4.6, Lemmas 4.7 and Lemmas 4.8 are all the lemmas we utilise during the proof of Theorem 4.9,
and we prove them in that order. Notice, Lemmas 4.5 are used in the proof Lemmas 4.6, and Theorem 4.9 is proved
using Lemmas 4.6, Lemmas 4.7 and Lemmas 4.8 in order.

Proof of Lemma 4.5

Proof. Let g(w) = ℓ(w) − ς
2 ∥w∥

2
2. Base on the Assumption 4.2, we have g(w) is (L − ς)-strongly convex. from

[63] Equation 3.6, we have

⟨∇ℓ(w1)−∇ℓ(w2),w1 −w2⟩ ≥
1

L
∥∇ℓ(w1)−∇ℓ(w2)∥22 (12)

Hence,

⟨∇g(w1)−∇g(w2),w1 −w2⟩ ≥
1

L− ς
∥∇g(w1)−∇g(w2)∥22 (13)
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Now We have

⟨∇
(
ℓ(w1)−

ς

2
∥w1∥22

)
−∇

(
ℓ(w2)−

ς

2
∥w2∥22

)
,w1 −w2⟩

≥ 1

L+ µ

∥∥∥∇(ℓ(w1)−
ς

2
∥w1∥22

)
−∇

(
ℓ(w2)−

ς

2
∥w2∥22

)∥∥∥2
2

(14)

And therefore

⟨∇ℓ(w1)−∇ℓ(w2),w1 −w2⟩ − ⟨ςw1 − ςw2,w1 −w2⟩

≥ 1

L− ς
∥(∇ℓ(w1)−∇ℓ(w2))− (ςw1 − ςw2)∥22 (15)

Refer to Assumption 4.1, we obtain

⟨∇ℓ(w1)−∇ℓ(w2),w1 −w2⟩ ≥
Lς

L− ς
∥w1 −w2∥22 −

2ς

L− ς
⟨∇ℓ(w1)−∇ℓ(w2),w1 −w2⟩

+
1

L− ς
∥∇ℓ(w1)−∇ℓ(w2)∥22

≥ − Lς

L− ς
∥w1 −w2∥22 +

1

L− ς
∥∇ℓ(w1)−∇ℓ(w2)∥22 (16)

Let ς = −µ, then we conclude the proof of Lemma 4.5.

Proof of Lemma 4.6

Proof. We have∥∥wt−1 − rt−1∇L(wt−1)−w∗∥∥2
2
=
∥∥wt−1 −w∗∥∥2

2
−2rt−1

〈
∇L(wt−1),wt−1 −w∗〉︸ ︷︷ ︸

A1

+ r2t−1

∥∥∇L(wt−1)
∥∥2
2︸ ︷︷ ︸

A2

(17)

For part A1 under the Assumption 4.2, Lemma 4.5 and Maclaurin inequality, we have

A1 = −2rt−1

N∑
i=1

pt−1
i

〈
∇ℓ(wt−1

i ),wt−1 −w∗〉
= −2rt−1

N∑
i=1

pt−1
i

(〈
∇ℓ(wt−1

i ),wt−1 −wt−1
i

〉)
− 2rt−1

N∑
i=1

pt−1
i

(〈
∇ℓ(wt−1

i ),wt−1
i −w∗〉)

≤
N∑
i=1

pt−1
i

(
r2t−1

∥∥∇ℓ(wt−1
i )

∥∥2
2
+
∥∥wt−1 −wt−1

i

∥∥2
2

)
−

2rt−1

N∑
i=1

pt−1
i

(
1

L+ µ

∥∥∇ℓ(wt−1
i )

∥∥2
2
+

Lµ

L+ µ

∥∥wt−1
i −w∗∥∥2

2

)

=

(
r2t−1 −

1

L+ µ

) N∑
i=1

pt−1
i

(∥∥∇ℓ(wt−1
i )

∥∥2
2

)
+

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2
− 2rt−1Lµ

L+ µ

∥∥wt−1 −w∗∥∥2
2
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From Assumption 4.1 and Jensen inequality, we can derive:

∥∥∇ℓ(wt−1
i )−∇ℓ(w∗)

∥∥2
2
≤ L2

∥∥wt−1
i −w∗∥∥2

2
(18)

Hence for A1, by Jensen inequality and Equation 18, we have

A1 ≤
(
r2t−1 −

1

L+ µ

) N∑
i=1

pt−1
i

(∥∥∇ℓ(wt−1
i )

∥∥2
2

)
+

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2
− 2rt−1Lµ

L+ µ

∥∥wt−1 −w∗∥∥2
2

≤
(
r2t−1 −

1

L+ µ

) N∑
i=1

pt−1
i

∥∥wt−1
i −w∗∥∥2

2

+

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2
− 2rt−1Lµ

L+ µ

∥∥wt−1 −w∗∥∥2
2

≤
(
r2t−1 −

2rt−1Lµ+ 1

L+ µ

)∥∥wt−1 −w∗∥∥2
2

+

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2

Similar for A2, we have

A2 = r2t−1

∥∥∥∥∥
N∑
i=1

pt−1
i ∇ℓ(wt−1

i )

∥∥∥∥∥
2

2

≤ r2t−1

N∑
i=1

pt−1
i

∥∥∇ℓ(wt−1
i )

∥∥2
2

≤ r2t−1L
2

N∑
i=1

pt−1
i

∥∥wt−1
i −w∗∥∥2

2
= r2t−1L

2
∥∥wt−1 −w∗∥∥2

2

Then we combine results of A1 and A2 for Equation 17, it follows that

∥∥wt−1 − rt−1∇L(wt−1)−w∗∥∥2
2
≤
(
r2t−1

(
1 + L2

)
− 2rt−1Lµ+ 1

L+ µ

)∥∥wt−1 −w∗∥∥2
2

+

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2

(19)

Proof of Lemma 4.7

Proof. For each E step FL necessitates a communication. As a result, for any t − 1 ≥ 0, ∃t∗ ≤ t − 1 that
t− t∗ ≤ E, t∗ ∈ T , accordingly ∀i, j ∈ St∗ ,wt∗

i = wt∗

j = wt∗ . Then, based on E ∥X− EX∥22 ≤ E ∥X∥22, Jensen
inequality and Assumption 4.3, we have
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E
N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2
= ESt∗

∑
i∈St∗

pt−1
i

∥∥∥(wt−1
i −wt∗

)
−
(
wt−1 −wt∗

)∥∥∥2
2

= ESt∗

[
ESt∗

∥∥∥(wt−1
i −wt∗

)
− ESt∗

[
wt−1

i −wt∗
]∥∥∥2

2

)
≤ ESt∗

[
ESt∗

∥∥∥(wt−1
i −wt∗

)∥∥∥2
2

]
= ESt∗

∑
i∈St∗

pt−1
i

∥∥∥wt−1
i −wt∗

∥∥∥2
2

= ESt∗
∑
i∈St∗

pt−1
i

∥∥∥∥∥
t−2∑
t=t∗

∇ℓ(wt−1
i , Dt−1

i )

∥∥∥∥∥
2

2

≤
∑
i∈St∗

pt−1
i ESt∗ (t− 1− t∗)

t−2∑
t=t∗

r2t−1

∥∥∇ℓ(wt−1
i , Dt−1

i )
∥∥2
2

≤
∑
i∈St∗

pt−1
i (E − 1)

t−2∑
t=t∗

r2t−1

∥∥∇ℓ(wt−1
i , Dt−1

i )
∥∥2
2

≤
∑
i∈St∗

pt−1
i (E − 1)

t−2∑
t=t∗

r2t−1G2w

≤
∑
i∈St∗

pt−1
i (E − 1)

2
r2t−1G2w

≤ (E − 1)
2
r2t−1G2w (20)

Proof of Lemma 4.8

Proof. Due to Assumption 4.4 and Algorithm 1, we have

E
∥∥F(wt−1)−∇L(wt−1)

∥∥2
2
= Var

(
F(wt−1)

)
= ESt−1

∥∥∥∥∥ ∑
i∈St−1

pt−1
i

(
∇ℓ(wt−1

i ;Dt−1
i )−∇ℓ(wt−1

i )
)∥∥∥∥∥

2

2

=
∑

i∈St−1

(
pt−1
i

)2 E∥∥∇ℓ(wt−1
i ;Dt−1

i )−∇ℓ(wt−1
i )

∥∥2
2

≤
∑

i∈St−1

(
pt−1
i

)2 Vw ≤ Vw ∑
i∈St−1

(
vt−1
i∑

i∈St−1 v
t−1
i

)2

≤ Vw
∑

i∈St−1

(
vt−1
i

)2(∑
i∈St−1 v

t−1
i

)2 ≤ Vw∑i∈St−1

(
vt−1
i

)2∑
i∈St−1 v

t−1
i

≤ Vw
∑

i∈St−1

vt−1
i ≤ (1− 2θ) qNVw

√
B (21)
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A.1.2 Proof of Theorem 4.9

Proof. In t round, due to m = 0, we have:∥∥wt −w∗∥∥2
2
=
∥∥wt−1 − rt−1M(wt−1)−w∗∥∥2

2
=
∥∥wt−1 − rt−1F(wt−1)−w∗∥∥2

2

=
∥∥wt−1 − rt−1∇L(wt−1)−w∗∥∥2

2︸ ︷︷ ︸
A

+ r2t−1

∥∥F(wt−1)−∇L(wt−1)
∥∥2
2︸ ︷︷ ︸

B

+ 2rt−1

〈
wt−1 − rt−1∇L(wt−1)−w∗,F(wt−1)−∇L(wt−1)

〉︸ ︷︷ ︸
C

(22)

Where
M(wt−1) =

∑
i∈St−1

pt−1
i Mi(w

t−1
i )

Note that EC = 0. For the expectation of A, from Lemma 4.6 and Lemma 4.7, it follows that

E[A] = E
∥∥wt−1 − rt−1∇L(wt−1)−w∗∥∥2

2

≤
(
r2t−1

(
1 + L2

)
− 2rt−1Lµ+ 1

L+ µ

)∥∥wt−1 −w∗∥∥2
2

+ (E − 1)
2
r2t−1G2w

(23)

We use Lemma 4.8 to bound B, we have
E[B] ≤ r2t−1 (1− 2θ) qNVw

√
B (24)

Hence, we have

E
∥∥wt −w∗∥∥2

2
≤ r2t−1

(
1 + L2

)
E
∥∥wt−1 −w∗∥∥2

2

− 2rt−1Lµ+ 1

L+ µ
E
∥∥wt−1 −w∗∥∥2

2
+ r2t−1∆ (25)

where
∆ = (E − 1)

2 G2w + (1− 2θ) qNVw
√
B

For the learning rate rt, ∃α > L+µ
2µL ,∃β > 0, such that rt = α

β+t ≤
1

L+1 . We use mathematical induction to prove the
following statement:
Proposition: ∀t ∈ N,E ∥wt −w∗∥22 ≤

γ
β+t , where γ = max

{
(L+µ)α2∆
2αµL−L−µ , β E

∥∥w0 −w∗
∥∥2
2

}
.

Let P (t) be the statement E ∥wt −w∗∥22 ≤
γ

β+t , we give a proof by induction on t.
Base case: The statement P (0) holds for t = 0:

E
∥∥w0 −w∗∥∥2

2
≤ γ

β

Inductive step: Assume the induction hypothesis that for a particular j, the single case t = j holds, meaning P (j) is
true:

E
∥∥wj −w∗∥∥2

2
≤ γ

β + j

It follows that:

E
∥∥wj+1 −w∗∥∥2

2
≤
(
r2t
(
1 + L2

)
− 2rtLµ+ 1

L+ µ

)
E
∥∥wj −w∗∥∥2

2
+ r2t∆

≤
(
1− 2Lµα

(L+ µ)(β + j)

)
γ

β + j
+

(
α

β + j

)2

∆

=

[
α2∆

(β + j)2
− 2αµL− L− µ

(β + j)2(L+ µ)
γ

]
+

β + j − 1

(β + j)
2 γ

≤ γ

β + j + 1
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Therefore, the statement P (j + 1) also holds true, establishing the inductive step. Since both the base case and the
inductive step have been proved as true, by mathematical induction the statement P (t) holds for ∀t ∈ N.

We choose α = L+µ
µL and β = 2 (L+1)(L+µ)

µL , and we have

γ =max

{
(L+ µ)α2∆

2αµL− L− µ
, β E

∥∥w0 −w∗∥∥2
2

}
≤ (L+ µ)α2∆

2αµL− L− µ
+ β E

∥∥w0 −w∗∥∥2
2

= α2∆+ 2(L+ 1)αE
∥∥w0 −w∗∥∥2

2

Then based on Assumption 4.1 and Taylor expansion, we have the quadratic upper-bound of L(·):

L(w1)− L(w2) ≤ (w1 −w2)
T∇L(w2) +

L

2
∥w1 −w2∥22

It follows that

EL(wT )− L(w∗) ≤ L

2
E
∥∥wT −w∗∥∥2

2
≤ γL

2(β + T )

≤ L

2α(L+ 1) + T

(
α2

2
∆ + α(L+ 1)E

∥∥w0 −w∗∥∥2
2

)
=

L

2φ+ T

(
φE

∥∥w0 −w∗∥∥2
2
+

α2

2
∆

)
Where

∆ = (E − 1)
2 G2w + (1− 2θ) CVw

√
B, φ = α (L+ 1)

A.1.3 Proof of Theorem 4.10

Proof. In the t round, we have:∥∥wt −w∗∥∥2
2
=
∥∥wt−1 − rt−1M(wt−1)−w∗∥∥2

2

=
∥∥wt−1 − rt−1F(wt−1)−w∗ + rt−1F(wt−1)− rt−1M(wt−1)

∥∥2
2

=
∥∥wt−1 − rt−1F(wt−1)−w∗∥∥2

2︸ ︷︷ ︸
A

+ r2t−1

∥∥F(wt−1)−M(wt−1)
∥∥2
2︸ ︷︷ ︸

B

+ 2rt−1

〈
wt−1 − rt−1F(wt−1)−w∗,F(wt−1)−M(wt−1)

〉︸ ︷︷ ︸
C

(26)

Where

M(wt−1) =
∑

i∈St−1

pt−1
i Mi(w

t−1
i )

For the expectation of A, from Theorem 4.9, it follows that

E[A] ≤ 1

2φ+ t

(
2φE

∥∥w0 −w∗∥∥2
2
+ α2∆

)
(27)
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For B, we have

E[B] = r2t−1

∥∥∥∥∥ ∑
i∈St−1

pt−1
i ∇ℓ(wt−1

i )−
∑

i∈St−1

pt−1
i Mi(w

t−1
i )

∥∥∥∥∥
2

2

= r2t−1

∥∥∥∥∥ ∑
i∈St−1

pt−1
i

(
∇ℓ(wt−1

i )−Mi(w
t−1
i )

)∥∥∥∥∥
2

2

≤ r2t−1

∥∥∥∥∥ ∑
i∈mN

pt−1
i

(
∇ℓ(wt−1

i )−Mi(w
t−1
i )

)∥∥∥∥∥
2

2

(28)

Where m is the percentage of the malicious parties.

Due to Equation 3, we have

θ ≤
〈
∇ℓ(wt−1

i ),Mi(w
t−1
i )

〉∥∥∇ℓ(wt−1
i

∥∥ · ∥∥Mi(w
t−1
i )

∥∥ ≤ 1− θ (29)

Thus,

θ
∥∥∇ℓ(wt−1

i )
∥∥∥∥Mi(w

t−1
i )

∥∥ ≤ 〈∇ℓ(wt−1
i ),Mi(w

t−1
i )

〉
≤ (1− θ)

∥∥∇ℓ(wt−1
i )

∥∥∥∥Mi(w
t−1
i )

∥∥ (30)

Due to this, we have ∥∥∇ℓ(wt−1
i )

∥∥2
2
− 2(1− θ)

∥∥∇ℓ(wt−1
i

∥∥∥∥Mi(w
t−1
i )

∥∥+ ∥∥Mi(w
t−1
i )

∥∥2
2

≤
∥∥∇ℓ(wt−1

i )−Mi(w
t−1
i )

∥∥2
2

≤
∥∥∇ℓ(wt−1

i )
∥∥2
2
− 2θ

∥∥∇ℓ(wt−1
i )

∥∥∥∥Mi(w
t−1
i )

∥∥+ ∥∥Mi(w
t−1
i )

∥∥2
2

(31)

Hence we have

θ(2− θ)
∥∥∇ℓ(wt−1

i )
∥∥2
2
+
∥∥(1− θ)

∥∥∇ℓ(wt−1
i )

∥∥− ∥∥Mi(w
t−1
i )

∥∥∥∥2
2

≤
∥∥∇ℓ(wt−1

i )−Mi(w
t−1
i )

∥∥2
2

≤ (1− θ2)
∥∥∇ℓ(wt−1

i )
∥∥2
2
+
∥∥θ ∥∥∇ℓ(wt−1

i )
∥∥− ∥∥Mi(w

t−1
i )

∥∥∥∥2
2

(32)

Hence,

θ(2− θ)
∥∥∇ℓ(wt−1

i )
∥∥2
2
≤
∥∥∇ℓ(wt−1

i )−Mi(w
t−1
i )

∥∥2
2

(33)

Due to the Triangle Inequality, we have√
θ(2− θ)

∥∥∇ℓ(wt−1
i )

∥∥ ≤ ∥∥∇ℓ(wt−1
i )−Mi(w

t−1
i )

∥∥ ≤ ∥∥∇ℓ(wt−1
i )

∥∥+ ∥∥Mi(w
t−1
i )

∥∥ (34)

It follows that: (√
θ(2− θ)− 1

)∥∥∇ℓ(wt−1
i )

∥∥ ≤ ∥∥Mi(w
t−1
i )

∥∥ (35)

By incorporating Equation 32 and leveraging the AM-GM inequality, we can derive the following expression∥∥∇ℓ(wt−1
i )−Mi(w

t−1
i )

∥∥2
2
≤ (1− θ2)

∥∥∇ℓ(wt−1
i )

∥∥2
2
+
∥∥θ ∥∥∇ℓ(wt−1

i )
∥∥− ∥∥Mi(w

t−1
i )

∥∥∥∥2
2

≤
(
1− θ2 +

(
1 + θ +

√
θ(2− θ)

)2)∥∥∇ℓ(wt−1
i )

∥∥2
2

≤
(
4 + 6θ − θ2

) ∥∥∇ℓ(wt−1
i )

∥∥2
2

(36)

Therefore,

E[B] ≤ r2t−1

∥∥∥∥∥ ∑
i∈mN

pt−1
i

(√
4 + 6θ − θ2

∥∥∇ℓ(wt−1
i )

∥∥)∥∥∥∥∥
2

2

≤
(
4 + 6θ − θ2

)
m2N2r2t−1G2w (37)
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Hence for C, we have

E[C] ≤
2mNGwr2t−1

√
4 + 6θ − θ2

2φ+ t

(
2φE

∥∥w0 −w∗∥∥2
2
+ α2∆

)
(38)

Then based on Assumption 4.1 and Taylor expansion, we have the quadratic upper-bound of L(·):

L(w1)− L(w2) ≤ (w1 −w2)
T∇L(w2) +

L

2
∥w1 −w2∥22

It follows that

EL(wT )− L(w∗) ≤ L

2
E
∥∥wT −w∗∥∥2

2

≤ L+ 2LrT−1ϖ

2φ+ T

(
φE

∥∥w0 −w∗∥∥2
2
+

α2

2
∆

)
+

Lϖ2

2

Where φ = α (L+ 1), ϖ = mNGwrT−1

√
4 + 6θ − θ2

A.2 Proof of Theorem 4.17

A.2.1 Lemmas

Lemma A.1. f is monotone: : ∀v−i and ∀v′

i > vi, if f(vi, v−i) ∈Wi, then f(v
′

i, v−i) ∈Wi.

Lemma A.2. In FEDQV, ∀i, vi, v−i that f(vi, v−i) ∈Wi, we have that pi(vi, v−i) = Φi(v−i), where Φi is the critical
value of a monotone function f on a single parameter domain that Φi(v−i) = supvi:f(vi,v−i)/∈Wi

vi.

A.2.2 Proof of Lemmas

Proof of Lemmas 4.15

Proof. ∀v−i and ∀v′

i > vi, based on the voting scheme, if the party i who submit si join the aggregation with vi, which
means f(vi, v−i) ∈Wi, then this party can also submit ∀s′

i < si that lead to v
′

i > vi, and still join the aggregation. In
other words, f(v

′

i, v−i) ∈Wi. Thus, f is monotone.

Proof of Lemmas 4.16

Proof. The number of parties is C in each round. In voting scheme that follows Equation 3, the parties whose si ≤ θ
and si ≥ 1− θ pay 0 credits voice. After Equation 4, the parties with 0 credit voice or 0 budget gain 0 vote. Assuming
there are the top k(k < C) parties in ranking whose payments are cj∈k (cj∈k > 0). Notice in FEDQV, the payment
function pi(vi, v−i) = ci = v2i .

∀j ∈ k, if party j pays c
′

j > pj(vj , v−j) = Φi(v−i) = supvi:f(vi,v−i)/∈Wi
vi, it will still remain in top k and join the

aggregation. On the other hand, if party j pays c
′

j < pj(vj , v−j) = Φi(v−i), then it will be replaced by the party
k + 1 in the ranking, and party j will not be able to join the aggregation regardless of whether party k + 1 joins or
not. As a result, in order to participate in the aggregation, the parties need to pay critical value, that is, ∀i, vi, v−i that
f(vi, v−i) ∈Wi, we have that pi(vi, v−i) = Φi(v−i)

A.2.3 Proof of Theorem 4.17

Proof. According to Theorem 9.36 [41]: a normalised mechanism on a single parameter domain is incentive compati-
ble(truthful) if and only if:
(i) The selection rule is monotone.
(ii) For every party i participants in the aggregation (vi > 0) pays the critical value Φi(v−i) = supvi:f(vi,v−i)/∈Wi

vi.
The first condition (i) and the second one (ii) are proofed in Lemma 4.15 and Lemma 4.16 respectively. Thus, the
proposed scheme FEDQV is incentive-compatible (truthful).
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B More Experimental Results

B.1 More Experimental Details

Platform Configurations. Our simulation experiments are implemented with Pytorch framework [64] on the cloud
computing platform Google Colaboratory Pro (Colab Pro) with access to Nvidia K80s, T4s, P4s and P100s with 25 GB
of Random Access Memory.

Table A1 shows the default setting in our experiments.

Table A1: Default experimental settings
Explanation Notation Default Setting

Budget B 25
Similarity threshold θ 0.1

The number of parties N 100
The fraction of selected parties C 10
The number of total steps T 500
The number of local epochs E 5
Learning rate r 0.01
Local batch size b 10
Loss function L(·) Cross-entropy
Repeating times 3

B.2 Extra Experimental Results Under Small Percentages of Attackers.

To investigate FEDQV’s behaviour in scenarios with finer gradations, we evaluated it with small, realistic percentages
of attackers. Specifically, we examined the performance of Trimmed-Mean and Trimmed-Mean Integrated with
FEDQV under two attacks, including Backdoor and QV-Adaptive, with 1%, 5%, and 10% attackers. The results

Trimmed-Mean Trimmed-Mean-QV

Backdoor ACC(%)/ASR(%) ACC(%)/ASR(%)
1% 84.99/0.57 85.67/0.52
5% 84.83/0.93 85.66/0.46

10% 85.45/2.27 85.06/1.79

Qv-adaptive ACC(%) ACC(%)
1% 84.13 86.38
5% 83.88 85.51

10% 79.49 85.74
30% 10.00 73.95
50% 10.00 10.00

Table A2: Comparison of Trimmed-Mean and Trimmed-Mean Integrated with FedQV Methods under Targeted Attacks
(Backdoor and QV-Adaptive) Across Varying Percentages of Malicious Parties.

in Table A2 indicate that even under these small, realistic percentages of attackers, Trimmed-Mean integrated with
FEDQV consistently outperforms Trimmed-Mean alone. The small percentage of attackers did not significantly impact
the performance of the models, with almost unaffected accuracy (ACC) and a small attack success rate (ASR). This
outcome underscores that integration with FEDQV enhances the robustness of the original defence mechanism across
varying threat levels.

B.2.1 Under Different Non-IID Degree.

we have examined the performance of FEDQV and FEDAVG across varying degrees of non-IID data, ranging from 0.1
to 0.9, as depicted in Table A3. These results demonstrate that as the non-IID degree increases among the parties, the
performance of the global model declines. Notably,FEDQV consistently maintains a superior performance compared to
FEDAVG, even when confronted with different degrees of data heterogeneity under attack conditions.
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Non-IID 0.1 0.3 0.5 0.7 0.9

FedQV ACC(%) 84.94 86.01 83.88 81.37 75.96
ASR(%) 3.39 4.55 17.64 20.59 24.18

FedAvg ACC(%) 81.27 81.1 82.44 80.77 65.68
ASR(%) 3.37 13.39 20.84 22.99 60.35

Table A3: Comparison of Accuracy (ACC) and Attack Success Rate (ASR) for FedQV and FedAvg under Backdoor
Attack over 100 epochs with varying Non-IID Degrees on Fashion-MNIST Dataset.

C More Details of Defence against privacy attacks

C.1 Privacy Attack Algorithms

We mount the Deep Leakage from Gradients (DLG) attack [8] and the Gradient Inversion (GI) attack [9] on FEDQV.
These attacks aim to generate dummy data and corresponding labels by leveraging a gradient-matching objective. The
detailed algorithms are outlined in Algorithm 3.

Algorithm 3: DLG and GI Attacks
1 Input: F (Di;w

t
i): model at round t from targeted user i; learning rate η for inverting gradient optimiser; S: max

iterations for attack; τ : regularisation term for cosine loss in inverting gradient attack; d:the model size
2 Output: reconstructed training data (Di, yi) at round t
3 Initialise D′

0 ← N (0,1), y′0 ← Randint(0,max(y))
4 for s← 0,1, ... S − 1 do
5 ∇w′

s ← ∂ℓ(F (D′
s,w

t
i), y

′
s)/∂w

t
i

6 switch Case do
7 case DLG attack do L′

s ←∥ ∇w′
s −∇wt

i ∥2
8

9 case GI attack do L′
s ← 1− ∇wt

i ·∇w′
s

∥∇wt
i∥∥∇w′

s∥
+ τ

10

11 D′
s+1 ← D′

s − η∇D′
s
L′
s, y′s+1 ← y′s − η∇y′

s
L′
s

12 return D′
S , y

′
S

C.2 Implementing SECAGG in FEDQV

Our approach is in line with other securely aggregated FL designs consisting of three main stages: 1) Setup; 2)
Generation and Protect; and 3) Aggregate. Our integration of secure aggregation to FEDQV is depicted in Figure A1.
We further discuss its details below:

Stage 0 (Setup). In this stage, the server and the partis compute SECAGG.Setup and initialise FEDQV by having the
server send values of the protocol’s parameters to each party, i.e. wt−1.

Stage 1 (Generation and Protect). After the setup and initialisation stage, each party first computes its local model
wt

i as in FEDQV and computes its sti. Later, it transmits the message ⟨|Di|, sti⟩. Upon receiving ⟨|Di|, sti⟩, the server
computes vti as in Equation 4 and transmits vti to the corresponding party. Then party i first computes wt

i · vti and
protects its input wt

i · vti by treating it an input to the SECAGG.Protect as [wt
i ] = wt

i · vti + ki + bi. Party i sends [wt
i ]

to the server.

Stage 3 (Aggregate). Upon receiving [wt
i ], the server first calls SECAGG.Aggregate as described previously which

returns the sum of all wt
i . The server requires one more step to finalise by multiplying the sum retrieved by 1∑N

i=1 vt
i

, as

it is the sole entity possessing complete knowledge of all vti .
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 Setup

Generate and Protect

Aggregate

Figure A1: Overview of implementation of the SECAGG protocol in FEDQV.
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