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Abstract—Growing network complexity has rendered human-
in-the-loop network management approaches obsolete. The ad-
vent of Software-Defined Networking (SDN) has enabled network
automation, with Machine Learning (ML) models running in
the control plane. However, such control plane models do not
run at line rate and would not satisfy the stringent latency
requirements of time-sensitive next-generation applications. In
this PhD project, we exploit recent advances in programmable
switches and associated languages like P4 to enable data-driven
management of networks by running ML models for inference
in programmable switches at line rate, with high throughput
and low latency. Resulting contributions include solutions for
in-switch classification at packet level, flow level, or both, with
use cases in network security, service identification, and device
fingerprinting in commercial off-the-shelf switches.

Index Terms—In-switch inference, machine learning, P4

I. INTRODUCTION

Machine Learning (ML) algorithms have become key play-
ers for the automatic planning, deployment and management
of modern high-speed mobile and computer networks [1].
Such automation is required to meet up with the growing
complexity of these networks which has made human-in-the-
loop solutions to network issues impractical. In the context of
Software-Defined Networking (SDN), ML models for network
automation are traditionally run in the control plane or in
offline ML servers [2]. However, such control plane models
require communication with the user plane to run inference
in real-time on live network traffic, thereby inducing tens or
hundreds of milliseconds of latency [3]. Hence, these models
fall short of meeting the strict latency requirements of complex
applications with extremely low latency requirements such as
augmented and virtual reality (AR/VR) [4].

In recent years, SDN user planes have become pro-
grammable with commercial off-the-shelf products like Intel
Tofino ASICs [5] and NVIDIA BlueField data processing
units (DPU) [6] becoming available on the market, along-
side domain-specific network programming languages such as
P4 [7]. This has sparked a strong interest in offloading ML
models to the user plane in order to achieve line rate inference
that can potentially reduce latency to sub-microsecond levels.
Yet, porting models to user planes is a daunting task owing
to three inherent constraints of such equipment [8]. First,
user planes like switches have limited memory, typically in
the order of tens of megabytes of SRAM and hundreds of
kilobytes of TCAM. This limits the amount of data that can
be stored on them. Second, in order to support high-speed

packet processing, most operations can only be performed
once per packet. Last, there is limited support for mathematical
operations, with only addition, subtraction, bit shifts and
logical operations supported. In addition, the P4 language also
has its own constraints like the absence of loops and the
inability to inspect packet payloads which further complicate
the deployment of ML in the user plane.

The constraints above rule out the possibility of training ML
models fully in the switch with P4, and limit user plane ML
applications to the deployment of pre-trained ML models into
the user plane for line rate inference [8]. This gives rise to a
key question: how can machine learning models be deployed in
programmable user plane equipment for high-speed inference,
while accounting for the constraints of these equipment?

The main objective of this PhD project is to answer the
above question and contribute to the global vision of self-
driving networks [9], through the design of solutions for
embedding data-driven models into the user plane for the
acceleration of offloadable network management tasks. To
that effect, the research question is split into three related
sub-questions; (i) what user plane components should be
targeted for model deployments? (ii) what ML models are
most appropriate for user plane inference? and (iii) how can
the constraints of user plane equipment be accommodated?

Over the past three years, we have sought answers to the
above questions by exploring the literature (§II), designing
and adopting suitable methodologies (§III), developing infer-
ence solutions and techniques for accommodating hardware
constraints in model training and deployment (§IV-A−§IV-C),
and demonstrating our solutions in realistic use cases (§IV-D).

II. RELATED WORK

User plane inference with ML is a relatively new area of
research, with most existing works carried out over less than
five years ago as recently surveyed [10], [11]. Majority of prior
work focuses on classification, which is used for a variety of
tasks like attack detection, device identification, and service
fingerprinting. We also focus our attention on solutions for
classification that run fully in the user plane, leaving out those
that split the task between planes e.g., Flowlens [12], or those
focusing on other tasks like clustering e.g., Clustreams [13].
User plane solutions differ in terms of the target user plane
equipment e.g., switches, FPGAs or SmartNICs; the nature of
the ML model e.g., decision tree or neural network; and the
inference target i.e., packets or flows. We discuss these next.
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FPGAs. One of the earliest proposals for user plane in-
ference is IISy [14] which implemented a DT model in a
NetFPGA-SUME [15] hardware and in a the BMv2 software
switch. However, NetFPGA-SUME has since reached its end-
of-life and development in BMv2 is oblivious of hardware
constraints. Taurus [16] proposes to use FPGA hardware to
enhance the capabilities of switches and run complex Deep
Neural Network (DNN) models. By offloading the model exe-
cution from switches to the external FPGA, the constraints of
switches are eliminated, and more possibilities are unleashed.
Yet, adopting Taurus in networks will entail significant added
costs to purchase and deploy additional equipment alongside
already expensive switches and NICs.

Switches. Most of the work on in-network inference has
focused on programmable switches, with different kinds of
models deployed. One of the earliest works is N2Net [17],
which is a patented technology [18] for in-switch deployment
of Binarized Neural Networks (BNNs), which are Neural Net-
works (NNs) with +1/− 1 weights and sign activations [19].
While BNNs are simpler than full NNs, deploying them into
commodity switches is not practical, as a basic BNN with two
layers of 64 and 32 neurons completely exhausts the resources
of a Tofino ASIC [17].

The vast majority of works have focused on in-switch infer-
ence with Decision Tree (DT) and Random Forest (RF) ML
models, which are multiple DTs in parallel. Major proposals
include IIsy [14], pForest [20], SwitchTree [21], Planter [22],
Xavier et al. [23], Mousika [24], Henna [25], Soter [26],
Bütün et al. [27], Flowrest [28], NetBeacon [29], Akem et
al. [30], and Jewel [31]. Given the relatively low complexity
of DTs and RFs, these solutions all opt to deploy these trained
models in a an off-the-shelf programmable switch to process
packets at line rate with use cases in security and traffic
classification on individual packets or flows1.

We remark that Ilsy and Planter also discuss implementing
other models in switches e.g., SVM, XGBoost, Naive Bayes,
K-Means, or Isolation Forest but DTs and RFs are reported to
offer higher scalability and better performance. Programmable
switches also emerge as the favourite target due to their ability
to enable ubiquitous inference in the network with multiple
high-speed ports. As such, this PhD project also focuses on
deploying DTs and RFs into switches for in-network inference.

SmartNICs. The inherent constraints of switches which
make NN deployment in them not practical have led to
the exploration of alternative user plane hardware which
are more adpted to such models. In that light, N3IC [32]
presents a comprehensive approach for integrating of BNNs
on SmartNICs, using both the micro-C language (for Net-
ronome system-on-chip NICs) and P4 (for NetFPGAs NICs
configured with a PISA architecture). SmartNICs mitigate the
constraints of programmable switches, since they offer much
more computational resources and increased memory size.
Using them, N3IC implements a 3-layer BNN that runs at

1A flow is a group of packets with the same 5-tuple of source and
destination IP addresses, source and destination ports, and transport protocol.
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Figure 1: Overview of the user plane inference workflow.

line-rate inference while consuming a relatively small amount
of the available resources. However, SmartNICs are almost
as costly as switches, while offering much fewer ports. In
addition, they are located within appliances in the network and
can only enable inference at those locations, unlike switches
which instead are everywhere in the network. This further
reinforces the choice of switches as target for inference tasks.

III. METHODOLOGY

We recall from §II that we focus on the deployment of DT
and RF models in programmable switches due to the simplicity
of these models that make them more adapted to in-switch
operation, and the potential of switches to enable ubiquitous
high-speed inference in the network. In fact, DTs and RFs
only require logical comparisons of feature values to the
thresholds at tree nodes. They are therefore the most suitable
for highly constrained environments like the switch. Next we
describe the workflow adopted for our methodology (§III-A),
the software tools and frameworks we employ (§III-B), and
lastly the experimental hardware tested we setup (§III-C).

A. In-switch inference workflow

Figure 1 shows the adopted workflow for deploying models
into the user plane. It is divided into three parts based on
where the processes are running.

ML Server. As in all ML tasks, the ML model preparation
starts with the acquisition of the target dataset typically as
packet captures in .pcap format. We employ Tshark [33] to
extract packet header fields which are used as features in
packet-level (PL) inference or to compute features in the case
of flow-level (FL) inference. With the computed features now
saved in .csv files, the dataset is used to train the models using
Scikit-Learn [34] Python-based libraries. The final model is
then transformed into Match & Action (M/A) table entries
that will be sent to the controller as shown in Figure 1.

Controller. The trained model is injected into the switch P4
program by the controller via a control plane specification e.g.,
the P4Runtime API [35]. The controller does not take part
in the inference process which instead happens fully in the
switch. However, it receives information from the switch via
packet digests which bring statistics or results from the switch,



based on which it can modify table entries to change the
behaviour of the switch program.

User Plane. The entire inference process takes place in the
switch i.e., in the user plane which is portrayed at the bottom
of Figure 1 as a Protocol Independent Switch Architecture
(PISA) pipeline which is adopted by most user plane targets.
A P4 program is written based on the model that is to be
deployed. The parser is programmed to extract all header fields
that serve as model features. In the first part of the M/A
pipeline which is the ingress pipeline, M/A tables are defined
for the model and any logic required is implemented too.
The nature of tables and/or computations depends on which
inference solution is being deployed, as we will show in §IV.
Upon deployment, packets arriving the switch are parsed and
features are extracted. In the ingress, the model is applied and
a decision is reached. The packet is then forwarded or dropped
based on the result. Additional processing could be applied in
the egress pipeline if needed.

B. Software tools employed
As seen in §III-A, we use TShark [33], to extract features

from .pcap files. We then use Python for the data analysis,
feature selection, model hyper-parameter tuning, model train-
ing (using Scikit-Learn [34]) and model translation into M/A
table entries. For writing programs that implement the models
in the switch, we use P4. At the early stages of the PhD
when we had no hardware components, we used BMv2 as
a software target to debug and test our P4 code. This switch
was deployed within Mininet [36] alongside a few hosts for
sending traffic through the switch via Tcpreplay [37] from one
host and capturing it on another using Tcpdump. To generate
background traffic and increase the heterogeneity of our test
environments, we used the Moongen [38] traffic generator to
produce and inject Gbps traffic. Background traffic is however
not inferred upon and only serves to generate a traffic mix that
better resembles real-world scenarios.

C. Hardware testbed setup
After a year of learning and experimenting on BMv2

switches, we built a hardware testbed comprising two off-the-
shelf servers and three programmable switches. The servers
have Intel 8-core Xeon processors at 2GHz clock frequency,
with 48GB of RAM, and 100Gbps QSFP28 interfaces. The
switches are the Edgecore Wedge 100BF-QS model, with
Intel Tofino BFN-T10-032Q chipsets and 32 100-GbE QSFP28
ports each. They run the Open Network Linux (ONL) oper-
ating system, and Intel’s Software Development Environment
(SDE) that we use for compiling P4 programs for the Tofino
Native Architechture (TNA) [5]. During experiments, we im-
plement the model in the switch as a P4 program and then
run a controller instance as well as a traffic sink in one of the
servers. We then employ another server as a traffic source to
inject the test traffic to the switch via Tcpreplay.

IV. PROPOSED SOLUTIONS

Recent surveys [10], [11] reveal that the bulk of user plane
ML inference solutions were developed between 2022−2024.

Henna [25]
NativeNI 2022

Flowrest [28]
IEEE INFOCOM 2023

Butun et al. [27]
IEEE MetaCom 2023

Jewel [31]
IEEE INFOCOM 2024

Akem et al. [30]
IEEE/IFIP NOMS 2024

Figure 2: Publication timeline of proposed solutions.

Thus, at beginning of the PhD in March 2021, the only
available solutions were N2Net [17], IIsy [14], pForest [20],
and SwitchTree [21]. Soon after that, Planter [22] was released
as an extension of IISy [14], followed by Xavier et al. [23],
pHeavy [39] and Mousika [24]. These solutions made contri-
butions that advanced the state-of-the-art but left many gaps
which we proposed several solutions to fill over the past years
as shown in Figure 2. Next, we detail these proposed solutions.

A. Hierarchical packet-level inference

Most of the above solutions were designed for PL infer-
ence i.e., to infer on individual packets. As these models
employ only simple header fields as features, they often fail to
achieve high accuracy in complex classification tasks, or lead
to models that are too resource-hungry to be deployed in the
switch. To remedy the situation, we proposed Henna [25], a
framework for two-stage hierarchical ML inference in switches
with DT and RF models. We tackle difficult tasks by splitting
them into smaller tasks which individually are easier to solve
with simpler models that are easier to deploy in the switch.
Results from experiments on our testbed showed that in a
device identification task, Henna outperformed a fully grown
single-stage classify by up to 21% in terms of F1 score, while
consuming less than 10% on average of switch resources,
thereby setting a new standard for solving complex problems
with inherent hierarchical relationships between the classes.

B. Practical flow-level inference

Despite the advancements brought about by Henna and
other pre-2023 solutions, it was still subject to the accuracy
barriers suffered by PL solutions, and it also did not employ
any FL features. As such, there was still no practical solution
for running inference at FL in hardware switches with RFs.
Prior FL works were either not fully tested in hardware
(pForest [20] and SwitchTree [21]), or where use-case spe-
cific (pHeavy [39]). In response, we proposed Flowrest [28],
the first comprehensive framework for deploying FL models
into hardware switches, accounting for the constraints of the
switches right from the design phase of the models. We imple-
mented Flowrest in the P4 language in our hardware testbed
and conducted multiple experiments to evaluate it against a PL
benchmark which was representative of previous PL solutions
like Planter [22] or Mousika [24]. Results demonstrated the
superiority of Flowrest over PL solutions in all use cases,
achieving F1-scores of up to 99% in some cases.

C. Joint packet- and flow-level inference

While PL solutions hit performance barriers in complex
tasks, FL solutions perform better but leave the first few pack-
ets of flows unclassified during the FL feature computation



stage. These missed packets could have diverse effects depend-
ing on the use case, including a possible malware infection
in security applications. To bridge this gap, NetBeacon [29]
was proposed as a hybrid solution for simultaneous PL+FL
inference, using multiple PL and FL models deployed in the
switch. However, deploying multiple models greatly increased
switch resource consumption. Instead, we proposed Jewel [31]
to tackle joint PL+FL inference using a single RF model
trained to infer on early packets at PL and then switch to FL
once FL statistics are good enough. We conducted experiments
and evaluated Jewel against Mousika, Planter, Flowrest and
NetBeacon, which were all outperformed on 4 different tasks,
while consuming just about the same resources as Flowrest.

D. Use case-specific solutions

In our first use case paper [27], we explored how our
user-plane inference solutions could can be leveraged to
identify malicious IoT traffic in the Metaverse at line rate
at at PL, ensuring a faster reaction than existing approaches
where attack detection happens in the control plane. Building
on Henna [25], we implemented and validated the solution
through experiments with an IoT-based cyberattack dataset.
Results showed how our solution achieved up to 99% accuracy.

Building on Flowrest [28], we proposed a second use case
paper [30] in which we describe an in-switch encrypted traffic
classification solution, that uses only features based on packet
size and packet interarrival times. This ensures that the models
remain robust in the face of encryption since the derived
features are typically unaffected by encryption. We evaluated
the solution over 3 use cases, including an encrypted instant
messaging application classification use case with 6 classes,
where it achieves up to 90% F1-score.

V. CONCLUSIONS AND FUTURE WORK

The goal of this PhD project is to develop data-driven
solutions for network management, which run at line rate
in the data plane. We situated the project within the context
of the low latency requirements of next-generation network
applications, and presented its progress through the results
that have been published to date. The results demonstrate the
potential of in-switch machine learning to contribute towards
automatic network management, and take us closer to the
ultimate goal of self-driving mobile and computer networks.

Future research will address the following questions: (i) can
other data plane targets and model types be exploited to enable
inference in heterogeneous and/or decentralized scenarios with
a mix of targets? (ii) can we identify other use cases of in-
switch inference that are still unexplored? (iii) what will it take
for the developed solutions to be practical for deployment in
production mobile networks?
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