
Evaluating the Impact of Flow Length on the
Performance of In-Switch Inference Solutions

Michele Gucciardo∗‡, Beyza Bütün∗†‡, Aristide Tanyi-Jong Akem∗† and Marco Fiore∗
∗IMDEA Networks Institute, Spain, †Universidad Carlos III de Madrid, Spain

{michele.gucciardo, beyza.butun, aristide.akem, marco.fiore}@imdea.org
‡Equal contributors

This is the author’s accepted version of the article. The final version published by IEEE is M. Gucciardo, B. Bütün, A.T-J. Akem and M. Fiore, “Evaluating
the Impact of Flow Length on the Performance of In-Switch Inference Solutions,“IEEE INFOCOM 2024 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pp. 1-6, doi: 10.1109/INFOCOMWKSHPS61880.2024.10620832.

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—As modern networks evolve into complex systems to
support next-generation applications with strict latency require-
ments, in-switch machine learning (ML) has emerged as a can-
didate technology for minimizing ML inference latency. Multiple
solutions, mostly based on Decision Tree (DT) and Random Forest
(RF) models, have been proposed in that regard for inference at
packet level (PL) or flow level (FL) or simultaneously at PL
and FL. Such heterogeneity in the inference target leads to the
use of varying performance metrics for evaluating the solutions,
rendering a fair comparison between them difficult. In this paper,
we perform a comprehensive evaluation of 5 leading solutions
for DT/RF-based in-switch inference. We replicate and deploy
the solutions into a real-world testbed with Intel Tofino switches,
and run experiments with measurement data from 4 datasets.
We then evaluate their performance using (i) the original metric
used in the solution’s paper, and (ii) a novel FL metric which
evaluates every solution at FL. This FL metric enables us to delve
into an extensive analysis of how the solutions perform on flows
of different lengths in diverse use cases. Results show that while
some solutions perform similarly across use cases and flow sizes,
others show inconsistent behaviours that we discuss.

I. INTRODUCTION

Next-generation mobile and computer networks are evolving
into complex systems that can support modern applications
like self-driving cars, the digital twin and remote mobile health
care, which all have very stringent latency requirements [1].
Guaranteeing low latency is thus a key requirement for modern
network operation and management, and for the applications
they support. In SDN networks, latency is minimized by
implementing several applications within the network like
anomaly detection and routing optimization in the control
plane using ML [2]. However, these models do not run at
line rate and would not support applications requiring sub-
millisecond latency [3].

Over the past decade, off-the-shelf programmable data
planes like Intel Tofino ASICs [4] have become available,
alongside dedicated domain-specific programming languages
like P4 [5]. This has led to a proliferation of in-network
intelligent applications running entirely in the data plane [6],
which can achieve sub-microsecond latency, several orders
of magnitude less than that of control plane applications.
In the case of ML, the strict constraints of programmable
switches in terms of low available memory, limited support
for mathematical operations, and limited number of allowed
per-packet operations have made model training not feasible,
and restricted applications to the deployment of trained models
into programmable hardware [7].

After FL
classification

Before FL
classification

FL
classification

Joint inference

PL inference

FL inference

PL feats: length, flags, ports, TCP/UDP headers

FL feats: min/max/avg (iat, 
length), counts, duration

Figure 1: Exemplification of packet-level (PL), flow-level (FL)
and joint inference performed by in-switch ML models.

In the face of the constraints highlighted above, Decision
Tree (DT) and Random Rorest (RF) models are commonly
used for in-switch ML applications due to their simplicity
in terms of the operations and logic they involve [8]–[16].
A major dichotomy exists between these solutions, based on
whether they infer at packet level (PL) i.e., on individual pack-
ets [8]–[11], or at flow level (FL) i.e., on traffic flows [12]–
[14]. Recently, a third approach has also emerged, where the
deployed model [15], [16] can infer on both packets and flows.

These approaches are illustrated in Figure 1. In PL inference
solutions, the features used for model training and inference
are packet header fields like the packet length, which are ex-
tracted from individual packets. The resulting models are very
simple and do not always attain high accuracy in classification
tasks, leading to errors on some packets, as exemplified by the
6th and 7th packets in PL inference row of Figure 1, counting
from right (first packet) to left (last packet).

On the other hand, FL solutions employ techniques to com-
pute, store and use stateful features (e.g., inter-arrival times
in Figure 1), which are computed over multiple packets of a
flow. These features capture better the relationships between
packets, and the resulting models grant higher accuracy, albeit
at the cost of added complexity and resource usage for state
management. Despite this improved accuracy, FL solutions
delay classification until they have received enough packets
to compute reliable FL features, as shown in Figure 1 where
FL inference is delayed until the 4th packet. This means that

https://doi.org/10.1109/INFOCOMWKSHPS61880.2024.10620832


FL solutions leave early packets unclassified: in the case of
short flows consisting of only a few packets, the entire flow
might be missed, unlike with PL solutions that would classify
the individual packets of such short flows.

To remedy the low accuracy limitation of PL solutions
and the missed early packets issue with FL solutions, hybrid
solutions like NetBeacon [15] deploy multiple PL and FL
models in the switch to classify either packets or flows. Yet,
deploying separate models impacts the overall performance
since the PL model is generally less performant than its
FL counterpart and will bring down the overall score if
many packets are classified at PL. Also, such multiple model
deployment leads to substantial increases in the consumption
of critical switch resources. Jewel [16] alleviates the resource
consumption issue by training and deploying a single model
that performs joint flow and packet classification as depicted
at the bottom of Figure 1.

While all these in-switch solutions based on DTs and RFs
have been evaluated on several use cases at PL or FL, the FL
classification is more relevant in networking scenarios. This
is apparent in that network policies, like those for Quality of
Experience (QoE), are typically designed for groups of packets
and not individual packets [17]. This raises the question of
how effective PL solutions are in classifying flows, envisioning
that FL policies can be designed based on the classification
of individual packets. Under these premises, the length or size
of the flow, i.e., the number of packets it contains, could be a
critical factor to consider when assessing the performances of
these models.

Yet, the comparison of PL solutions to FL or hybrid and
joint solutions in existing works is still biased by at least three
factors: (i) while the accuracy of PL solutions is naturally
evaluated over packets, that of FL solutions is assessed by
considering entire flows as the atomic unit; (ii) FL solutions
evaluations generally overlook the fact that early packets
and flows with fewer packets than the minimum required
to compute FL features are missed; (iii) hybrid and joint
solutions are evaluated over packets to take into account the
performance of the PL part of the solution. As such, no existing
work considers an equitable evaluation of the existing models,
using consistent metrics and also exploring the existence of
dependencies of the accuracy on the length of the flow.

In this paper, we evaluate five representative recent works
that implement RF models into programmable switch hard-
ware for inference on packets (Planter [9] and Mousika [18]),
flows (Flowrest [14]), or both packets and flows (Net-
beacon [15] and Jewel [16]). We exploit the artifacts provided
by the various authors to reproduce each solution and run
experiments in a real-world testbed with commercial Intel
Tofino switches, where we compare their performances on
various classification tasks, using two different metrics to
shed light on their strengths and limitations in various use
cases. Our results shed light on the differences between these
solutions, exposing their strengths and weaknesses in different
scenarios, and revealing under what conditions they are best
suited for tackling in-switch inference tasks.

II. OVERVIEW OF EXISTING SOLUTIONS

There is a wide variety of existing works that implement
DT and RF models in programmable switches for line rate
inference as detailed in recent surveys [7], [19]. As we cannot
evaluate all existing works, we focus on five works that we
carefully selected to represent the state-of-the-art across PL,
FL, and hybrid or joint inference solutions. Our selection
criteria are (i) feasibility in hardware and not just software
or emulated environments, (ii) availability of source code,
and (iii) generalizability, i.e., the possibility to apply the
solution to any classification task. The five selected solutions
are detailed next.

Planter [9] builds upon IISy [8] by extending its DT
implementation to include support for RFs. It was originally
proposed as a general-purpose PL inference solution with a
mapping scheme that encodes features into feature tables that
assign codes that, when concatenated, map paths to tree leaves.
These paths are summarized in code tables, one per tree,
that assign a classification result to each packet. This scheme
decouples the number of features or depth of the trees from
the number of Match and Action (M/A) stages in the switch
and is thus scalable in switch hardware. It is thus adopted by
several other solutions like Henna [10] and in modified forms
by NetBeacon [15]. We pick Planter to represent PL solutions
and use the public source code [20] to replicate the solution.

Mousika [18] introduces a general-purpose PL classifier
based on knowledge distillation. A teacher RF, neural network
or DT is trained and then distilled into a single binary
DT (BDT). While the BDT is mostly compact and memory
efficient, the distillation can lead to a loss of classification
accuracy. Other times, the BDT could grow too large that it be-
comes memory-hungry. The distillation is what differentiates
Mousika from other PL solutions like Planter. We employ the
source code [21] made available by the authors to reproduce
the solution for all the use cases we consider for evaluation.

Flowrest [14] proposes a complete framework for deploying
RF models in programmable switches for FL inference. It
introduces a comprehensive flow management strategy for
tracking and classifying flows fully in the data plane. While
it brings substantial advances in the area of in-switch infer-
ence, it leaves several packets unclassified during the feature
collection and computation phase. As such, it fails to assign
a classification result to very short flows with insufficient
packets to have an FL classification. To shed light on the
impact of such missed packets, we pick Flowrest to represent
FL solutions in our evaluation and use the available code [22]
for replication.

NetBeacon [15] is the first hybrid solution to classify
individual packets and flows by deploying multiple tree-based
models fully into the switch. It deploys three sets of models.
The first is an XGBoost model based on a DT, that serves as
a PL flow-size predictor. Such a predictor identifies packets
that belong to short flows for which no FL features will be
computed or long flows for which memory is allocated and FL
features are computed. The second is a PL classifier, which



classifies all the packets of short flows, those that suffer a
hash collision, and those that arrive before an inference point,
which is the number of packets at which an FL decision is
made. Several inference points are used to classify a flow at
different stages in its life. At each point, a DT is deployed
to classify flows of that length. We replicate NetBeacon using
the public code [23] provided by the authors.

Jewel [16] is the most recent RF-based in-switch inference
solution. It enables joint PL-FL inference using a single
model, unlike NetBeacon which uses multiple models. If FL
classification occurs after the first n packets are observed, then
the model is trained on the first n packets, with stateless
PL features for the first n-1 packets and FL features for
the nth packet. During inference, the first n-1 packets are
classified using PL features and with constant values assigned
to the FL features. At the nth packet, where FL features are
deemed reliable, the model switches to FL inference, and an
FL decision is made, which then applies to all subsequent
packets of the flow. We use the released source code [24] for
our evaluation.

III. EXPERIMENTAL EVALUATION

We perform our evaluation on a real-world experimental re-
search platform with state-of-the-art equipment. We implement
the five solutions described in Section II in the testbed and run
tests with four use cases, collecting performance metrics that
enable us to perform a comprehensive evaluation.

A. Testbed setup

Our experimental testbed comprises 3 Edgecore Wedge
100BF-QS programmable switches, with Intel Tofino BFN-
T10-032Q chipsets and 32 100GbE QSFP28 ports, and 2 off-
the-shelf servers with Intel 8-core Xeon processors at 2GHz,
48GB of RAM, and QSFP28 interfaces. All components are
connected via optical fiber links at 100 Gbps. The switches
run the Open Network Linux (ONL) operating system, and
the Intel Software Development Environment (SDE) version
9.7.0, for compiling P4 programs. The SDE is also equipped
with the Intel P4 Insight tool, which provides details about
compiled P4 programs, including their consumption of switch
resources and the expected latency they will induce. We
implement the control plane component of our setup in one
of the servers alongside a traffic sink that captures traffic
via Tcpdump for analysis after classification. The controller
sets up each experiment by loading the corresponding model
and its table entries into the switch, setting up forwarding
ports and receiving packet digests containing classification
results from the switch. The other server is a traffic source
that injects traffic into the switch using Tcpreplay. On the
other hand, it employs the MoonGen packet generator to inject
background traffic at 100 Gbps, simultaneously to the use case
traffic. This background traffic is not a target for inference,
but it is leveraged to demonstrate that the tested models can
achieve line-rate inference even in the presence of substantial
concurrent non-target traffic.

Very short flows
Dataset #Flows #Packets Flow Length

Max.
% Short
flows 1

% Packets
in long flows Flowrest /

NetBeacon Jewel

ToN-IoT 60200 1576856 999 92.82% 70.31% 9.97% 6.64%
UNSW 61170 1522271 158574 92.60% 81.96% 40.19% 40.19%
UNIBS 19657 1693245 345817 79.09% 91.26% 0.11% 0.81%
IoT-23 60010 652529 239484 97.13% 58.44% 0.67% 0.67%

Table I: The statistics of the datasets and the proportion of
very short flows, unclassifiable at FL because having less than
n packets. For Flowrest/NetBeacon, n is 4 in ToN-IoT, 3 in
UNIBS and UNSW, and 2 in IoT23. For Jewel, n is 4 in
UNIBS, 3 in ToN-IoT and UNSW, and 2 in IoT23.

B. Use cases and datasets

We select a variety of classification tasks based on measure-
ment data that are available as public datasets, and which are
employed in most of the solutions under evaluation. For each
dataset, we use the same train and test data for all the solutions,
following the model training process outlined in each paper.

ToN-IoT [25] is used to build a 10-class classification task
to differentiate benign traffic and 9 cyberattacks. It is collected
from a medium-scale testbed based on several virtual machines
with different operating systems such as Windows, Linux,
and Kali Linux. The measurements were obtained from seven
IoT and industrial IoT (IIoT) devices including a thermostat,
weather and Modbus sensors, a motion light, a GPS tracker,
a fridge, a garage door, and some non-IoT devices such as a
Smart TV and two iPhone 7. We use a ratio of 75−25 to split
the data into train and test sets.

UNSW-IoT [26] is made up of traffic flows generated
by a wide variety of IoT and non-IoT devices e.g., Drop-
cam, Amazon Echo, Netatmo Welcome, iHome, Laptop, HP
Printer, etc. The data is provided as pcap files captured
within a living lab at UNSW Sydney that emulates a smart
environment. We design a 26-class device identification use
case based on this data, and we use 15 days of data to train
the RF models and test them on 1 day.

UNIBS [27] provides Internet traffic traces as pcap files.
The dataset contains mail e.g., POP3, IMAP4, and SMTP;
web e.g., HTTP and HTTPS; peer-to-peer applications e.g.,
BitTorrent and Edonkey, and other protocols e.g., FTP, SSH,
and MSN. The traces comprise traffic generated by 20 work-
stations, which go through an edge router on the University of
Brescia’s campus network and are captured over 3 consecutive
days. We design a service fingerprinting task with 8 different
traffic classes. We then train RF models with the first day of
traffic and test them with the second day.

IoT-23 [28] makes available an extensive malicious traffic
dataset comprising real and labeled IoT malware infections
and also benign IoT traffic. The dataset comprises 20 malicious
and 3 benign captures, collected between 2018 and 2019.
From these scenarios, 10 malicious bots generate benign and
malicious traffic, while regular real IoT devices, i.e., a Philips
HUE smart LED lamp, an Amazon Echo, and a Somfy smart
doorlock generate benign traffic. We build a bot classification
use case with 14 classes, 4 benign and 10 malicious. We

1We consider flows with less than 20 packets as short; similar percentages
can be obtained with flows of tens of packets.



extract a representative portion of the dataset and use a 75-25
ratio for the train-test split.

C. Classification performance metrics

We evaluate the classification accuracy of the five solutions
using the widely adopted F1 score (F1) metric. This metric can
be computed out of three principal measures of a classification
problem, i.e., true positives (TP), false positives (FP), and false
negatives (FN), as F1=2TP/(2TP+FP+FN). We average F1 in
three different ways: (i) a micro average that is computed by
summing up the TP, FP, and FN from all classes and then
calculating the metric; (ii) a macro average that is the mean
of individual class scores; and, (iii) a weighted average which
weights individual class scores by the number of samples
present in the dataset. Each average has a different meaning:
micro, macro and weighted values quantify how accurate a
model is in classifying individual packets, whole classes, and
classes weighted by their support, respectively.

The measures TP, FP and FN are naturally calculated on
a per-packet basis for Planter and Mousika. In Jewel and
NetBeacon, the scores are calculated over packets as well.
Indeed, the PL classification is used for the first n-1 packets
and the FL classification of the nth is extended to the following
packets. The process is repeated in NetBeacon, as multiple FL
classifications occur. Flowrest, has been evaluated at FL in the
original paper, not considering the first n-1 packets nor flows
with less than n packets, and at PL in [16] to be compared
with PL and hybrid or joint solutions.

Although PL evaluation ensures that all solutions are judged
on the same number of samples, it fails to assess the capability
of the solutions to classify flows. In fact, for a fixed use case,
the number of test samples considerably changes from PL to
FL, with the number of packets being at least one order of
magnitude higher than that of flows, as shown in Table I.
Besides, while short flows are the vast majority, long flows
carry most of the packets. Indeed, Table I shows that, as
an example, while the percentage of flows with less than 20
packets (say short flows) ranges from 79% to 97%, the portion
of packets in flows with at least 20 packets (say long flows)
ranges from 58% to 91%.

These statistics show that the overall performance at PL
may be biased by the classification results of long flows only,
making a PL score inappropriate to evaluate the capability of
the solutions of classifying flows. We thus design a metric
that operates on packets but removes that bias, by applying a
normalization to the per-packet TP, FP, and FN. Specifically,
we assign to each test packet a weight w = 1

l , where l is the
length of the flow the packet belongs to. We will refer to this
metric as the flow-level (or FL) metric in the following.

In addition, we also use a native metric for each solution,
which is the metric adopted in the paper where the solution
was originally introduced.

IV. EXPERIMENTAL RESULTS

Table II summarizes the native and FL F1-score of the
solutions in the four use cases. For PL solutions, i.e., Planter

Dataset Metric F1 score Planter Mousika Flowrest NetBeacon Jewel
Macro 51.304% 21.041% 60.403% 50.347% 54.571%
Micro 79.104% 27.780% 79.116% 78.172% 85.347%Native

Weighted 81.079% 33.840% 78.560% 80.725% 87.192%
Macro 43.511% 29.136% 44.940% 42.573% 49.055%
Micro 44.396% 36.590% 57.836% 45.351% 65.014%

ToN-IoT

Flow-level
Weighted 42.375% 36.293% 57.688% 42.025% 67.192%

Macro 67.844% 77.030% 68.918% 63.537% 78.584%
Micro 85.834% 84.649% 85.864% 85.744% 91.441%Native

Weighted 85.882% 84.330% 86.574% 86.502% 91.592%
Macro 49.016% 64.921% 40.100% 46.057% 65.718%
Micro 71.192% 83.568% 41.918% 58.192% 79.132%

UNSW

Flow-level
Weighted 70.639% 83.960% 40.614% 59.278% 79.776%

Macro 90.316% 87.834% 96.676% 93.196 % 98.023%
Micro 92.387% 92.565% 99.546% 95.571% 98.528%Native

Weighted 91.978% 90.653% 99.551% 94.943% 98.512%
Macro 83.760% 86.333% 88.897% 88.072% 95.978%
Micro 95.874% 98.230% 88.269% 96.912% 99.538%

UNIBS

Flow-level
Weighted 96.395% 98.452% 88.215% 97.152% 99.535%

Macro 79.300% 74.557% 93.040% 72.935% 83.045%
Micro 92.587% 92.136% 99.393% 92.512% 95.635%Native

Weighted 92.553% 91.469% 99.359% 92.780% 95.261%
Macro 82.926% 87.460% 73.560% 77.749% 86.501%
Micro 98.588% 99.243% 84.032% 98.809% 99.145%

IoT-23

Flow-level
Weighted 98.487% 99.232% 83.616% 98.742% 99.095%

Table II: Performance of packet-level and flow-level solutions
computed based on native model score and flow-level metric.
The best value on each row is shown in black bold and the
second best solution in purple bold.

ToN-IoT UNSW UNIBS IoT-23
10

0

−10

−20

−30

−40

Δ 
W

ei
gh

te
d 

F1
-S

co
re

 [%
]
Planter
Mousika
Flowrest
NetBeacon
Jewel

Figure 2: The difference in the weighted F1-score obtained
with our flow-level metric and the solution’s native metric.

and Mousika, and hybrid/joint solutions, i.e., NetBeacon and
Jewel, the native score is calculated on a per-packet basis, as
detailed in Section III-C, taking into account all the packets of
the test sets. In contrast, the native model score of Flowrest is
calculated on a per-flow basis, excluding the very short flows
that could not be classified because of an insufficient number
of packets. The portion of these flows ranges from 0.1% to
40.2% in the four use cases, as shown in Table I.

The first observation is that Jewel is either the best or the
second-best performing solution in all use cases and with
both metrics. With the native metric, Jewel outperforms the
competitors in ToN-IoT and UNSW, with the exception of the
Macro score of ToN-IoT, where Flowrest is the best. In UNIBS
and IoT23, instead, Flowrest outperforms all the competitors
in all the F1 scores, except in the Macro score of UNIBS,
where Jewel is the best.

With the FL metric, Jewel outperforms all the solutions in
ToN-IoT and UNIBS in all the scores, with gains of up to
7.08%, 7.18%, and 9.50% in terms of Macro, Micro, and
Weighted F1 score, respectively. In UNSW, Mousika is the
best-performing solution in Micro and Weighted, and Jewel is
the best in Macro. In IoT-23, Flowrest has the best scores.

Ultimately, these results validate the superiority of Jewel
over existing solutions, as it is the most consistent over use
cases, scores and metrics. Such a consistency is due to the



100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]
100 101 102 1030

20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

(a) ToN-IoT

100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]
100 101 102 1030

20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

(b) UNSW

100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 1030
20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]
100 101 102 1030

20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

(c) UNIBS

100 101 102 103

Flow Length
0

20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 103

Flow Length
0

20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 103

Flow Length
0

20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 103

Flow Length
0

20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

100 101 102 103

Flow Length
0

20
40
60
80

100

W
ei

gh
te

d 
F1

 S
co

re
 [%

]

(d) IoT-23

Figure 3: Linear interpolation curves, showing the performance of 5 different solutions on classifying flows with varying lengths
by both including and excluding short flows and the first n-1 packets of flows in terms of weighted F1 score, plotted on a
logarithmic scale and semi-transparent regions surrounding each line that illustrate the deviation in scores. The results with
exclusion are shown in gray.

fact that Jewel offers the best of both worlds, i.e., PL and
FL, achieving better performances than PL-only and FL-only
solutions. In comparison with NetBeacon, the other solution
leveraging both PL and FL approaches, we observe a very
close performance in UNIBS and IoT-23, but a clear advantage
up to 19.66%, 20.94%, and 25.17% in Micro, Macro and
Weighted F1 in UNSW and ToN-IoT. One possible explanation
for such a gap is that NetBeacon employs DTs, which hardly
attain the same performance as Jewel’s RF models.

Figure 2 shows how the unifying perspective provided by
the FL metric changes the performance of the solutions with
respect to using their native score. A negative or a positive
value express a drop or an increase over the native score,
respectively. We show the change in the weighted F1 score,

but the results are similar under the other two scores.
In ToN-IoT, all the solutions experience an absolute loss in

the ranges of 20.00%−38.70%, except Mousika, which shows
an absolute gain of 2.45%. All the solutions show a lower
performance when the weights are introduced in UNSW, with
the difference in the range of 0.37%−45.96%. In UNIBS and
IoT-23, all the solutions experience a score improvement in
the range of 1.02%−7.80% and 3.83%−7.76%, respectively,
except Flowrest that drops by 11.34% and 15.74%.

To explain why the score drops in the FL metric, it is
important to consider that packets belonging to short flows
have more weight because of the normalization with the flow
length. At FL, a misclassification of one packet in flows of
length 2 will count way more than that in flows of length



100. In the former case, it will correspond to missing half
of the flow, in the latter to missing just 1% of the flow.
Not only is this intuitive but it is also corroborated by the
fact that short flows are the vast majority, as described in
Section III-C. We conclude that the score drops when short
flows are poorly classified. Such an effect could be especially
severe for Flowrest, as the very short flows are oblivious to
the solution and are considered wrong classification (same as
the first n-1 packets of each flow).

Figure 3 shows how the FL metric performance varies with
the length of the flow. For simplicity, instead of the real
maximum flow lengths (shown in Table I), we considered
1, 000 as the maximum flow length, which accounts for 99%
of the flows in all the datasets. Since the majority of the flows
have less than 20 packets in all the use cases, the curve is
plotted mostly depending on the scores of these flows, which
causes a trend where we see values greater than 100%. The
colored lines show the trend considering the full dataset; the
curves in gray, instead, exclude flows shorter than n and the
first n-1 packets of all other flows.

In ToN-IoT and UNSW, shown in Figures 3a and 3b, the
lines grow from left to right, meaning that in all cases the
solutions are performing worse over short than over long flows.
Such a behavior automatically translates into a score drop, as
shown in Table II. The only exception is Mousika in ToN-
IoT, which does not loose score but yet shows a poor general
performance in this use case. Especially pronounced is the
drop of Flowrest, confirmed by the fact that in ToN-IoT and
UNSW the very short flows, completely oblivious, account for
9% and 40%, respectively.

In UNIBS and IoT-23, shown in Figures 3c and 3d, almost
all the solutions are doing well with the short flows and we can
see in Table II that their scores increase. The only exception
is Flowrest, which shows a slight drop because of the penalty
due to the very short flows, which cannot be classified.

The gray lines, which show the trends when excluding the
very short flows, generally improve the performance at FL
when considering all the flows. In particular, Flowrest stands
up in this case as virtually the best solution. Such a result is
unsurprising as we think that the FL metric without the very
short flows is also Flowrest’s native metric.

V. CONCLUSIONS

We performed an extensive evaluation of leading state-
of-the-art in-switch ML solutions based on DT and RF
models, running at flow level and/or packet level. We con-
ducted multiple experiments on a real-world testbed com-
prising production-grade hardware, using measurement data
from various use cases. We then derived a new metric that
enables an equitable assessment of all solutions in terms
of their performance when their results are used to derive
scores at the flow level, which is typically used to derive
network policies. Results shed light on the peculiarities of
each solution, showing that Jewel is the most consistent of all
the solutions, taking the best out of PL and FL classification.

Flowrest, instead, stands up as virtually the best-performing
solution when excluding the impact of the very short flows.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement no. 101017109 “DAEMON”, the CHIST-ERA
grant no. CHIST-ERA-20-SICT-001 “ECOMOME”, via grant
PCI2022-133013 of Agencia Estatal de Investigación, from
the Spanish Ministry of Science and Innovation through grant
no. PID2021-128250NB-I00 “bRAIN”, and from the Spanish
Ministry of Economic Affairs and Digital Transformation and
the European Union-NextGenerationEU through the UNICO
5G I+D project no.TSI-063000-2021-52 “AEON-ZERO”.

REFERENCES

[1] R. Bai et al. Next generation mobile wireless networks: 5G cellular
infrastructure. J. Technol. Manag. Appl. Eng., 36, 7 2020.

[2] J. Xie et al. A survey of machine learning techniques applied to
software defined networking (SDN): Research issues and challenges.
IEEE Commun. Surv. Tutor., 21(1):393–430, 2019.

[3] K. He et al. Measuring control plane latency in sdn-enabled switches.
SOSR ’15, NY, USA, 2015. ACM.

[4] Tofino Programmable Ethernet Switch ASIC. https://shorturl.at/bqs47.
[5] P. Bosshart et al. P4: Programming protocol-independent packet pro-

cessors. SIGCOMM Comput. Commun. Rev., 44(3):87–95, jul 2014.
[6] E. F. Kfoury et al. An exhaustive survey on p4 programmable data plane

switches: Taxonomy, applications, challenges, and future trends. IEEE
Access, 9:87094–87155, 2021.

[7] R. Parizotto et al. Offloading machine learning to programmable data
planes: A systematic survey. ACM Comput. Surv., jun 2023.

[8] Z. Xiong and N. Zilberman. Do switches dream of machine learning?
toward in-network classification. In HotNets 2019. ACM, 2019.

[9] C. Zheng and N. Zilberman. Planter: Seeding trees within switches. In
SIGCOMM ’21, pp. 12–14, NY, USA, 2021. ACM.

[10] A. T.-J. Akem et al. Henna: Hierarchical machine learning inference in
programmable switches. In NativeNI 22, pp. 1–7. ACM, 2022.

[11] B. Bütün et al. Fast detection of cyberattacks on the metaverse through
user-plane inference. In IEEE MetaCom, pp. 350–354, 2023.

[12] C. Busse-Grawitz et al. pForest: In-network inference with random
forests. CoRR, abs/1909.05680, 2019.

[13] B. Coelho et al. BACKORDERS: Using random forests to detect DDoS
attacks in programmable data planes. In EuroP4 ’22, 2022.

[14] A. T.-J. Akem et al. Flowrest: Practical flow-level inference in program-
mable switches with random forests. In IEEE INFOCOM, 2023.

[15] G. Zhou et al. An efficient design of intelligent network data plane. In
32nd USENIX symposium on security, 2023.

[16] A. T.-J. Akem et al. Jewel: Resource-efficient joint packet and flow
level inference in programmable switches. In IEEE INFOCOM, 2024.

[17] S. C. Madanapalli et al. Reclive: Real-time classification and QoE
inference of live video streaming services. In IEEE/ACM IWQOS, 2021.

[18] G. Xie et al. Mousika: Enable general in-network intelligence in
programmable switches by knowledge distillation. In INFOCOM, 2022.

[19] C. Zheng et al. In-network machine learning using programmable
network devices: A survey. IEEE Commun. Surv. Tutor., pp. 1–1, 2023.

[20] A.T-J. Akem et al. Henna. https://github.com/nds-group/Henna.
[21] G. Xie et al. Mousika. https://github.com/xgr19/Mousika.
[22] A.T-J. Akem et al. Flowrest. https://github.com/nds-group/Flowrest.
[23] G. Zhou et al. Netbeacon. https://github.com/IDP-code/NetBeacon.
[24] A.T-J. Akem et al. Jewel. https://github.com/nds-group/Jewel.
[25] A. Alsaedi et al. TON IoT telemetry dataset: A new generation dataset

of IoT and IIoT for data-driven intrusion detection systems. IEEE
Access, 8, 2020.

[26] A. Sivanathan et al. Classifying IoT devices in smart environments using
network traffic characteristics. IEEE Trans Mob Comput, 18(8), 2019.

[27] M. Dusi et al. Detection of encrypted tunnels across network boundaries.
2008 IEEE ICC, pp. 1738–1744, 2008.

[28] S. Garcia et al. IoT-23: A labeled dataset with malicious and benign
IoT network traffic. Zenodo, 2020.

https://shorturl.at/bqs47
https://github.com/nds-group/Henna
https://github.com/xgr19/Mousika
https://github.com/nds-group/Flowrest
https://github.com/IDP-code/NetBeacon
https://github.com/nds-group/Jewel

	Introduction
	Overview of Existing Solutions
	Experimental Evaluation
	Testbed setup
	Use cases and datasets
	Classification performance metrics

	Experimental Results
	Conclusions
	References

