AICHRONOLENS: Advancing Explainability for Time Series AI Forecasting in Mobile Networks

Claudio Fiandrino, Eloy Pérez Gómez, Pablo Fernández Pérez, Hossein Mohammadalizadeh, Marco Fiore and Joerg Widmer
IMDEA Networks Institute, Madrid, Spain
Email: {name.surname}@imdea.org

Abstract—Next-generation mobile networks will increasingly rely on the ability to forecast traffic patterns for resource management. Usually, this translates into forecasting diverse objectives like traffic load, bandwidth, or channel spectrum utilization, measured over time. Among the other techniques, Long-Short Term Memory (LSTM) proved very successful for this task. Unfortunately, the inherent complexity of these models makes them hard to interpret and, thus, hampers their deployment in production networks. To make the problem worsen, EXplainable Artificial Intelligence (XAI) techniques, which are primarily conceived for computer vision and natural language processing, fail to provide useful insights: they are blind to the temporal characteristics of the input and only work well with highly rich semantic data like images or text. In this paper, we take the research on XAI for time series forecasting one step further proposing AICHRONOLENS, a new tool that links legacy XAI explanations with the temporal properties of the input. In such a way, AICHRONOLENS makes it possible to dive deep into the model behavior and spot, among other aspects, the hidden cause of errors. Extensive evaluations with real-world mobile traffic traces pinpoint model behaviors that would not be possible to spot otherwise and model performance can increase by 32%.

I. INTRODUCTION

The advent of fifth-generation (5G) mobile networks has considerably changed the landscape of the mobile network ecosystem. The growing availability for higher and faster access to mobile services has contributed to increase the demand for mobile traffic which is growing at a staggering pace and is expected to reach 329 EB/month in 2028 [1]. By the end of 2023, the worldwide average monthly smartphone usage is expected to surpass 20 GB/month.

The capability to analyze and forecast mobile traffic volumes at the individual level of single Base Station (BS) or at the city scale has become key for operators to properly perform resource management. Traffic forecasting makes diverse optimizations possible, such as network deployment planning [2], routing [3], and mobility management [4], resource allocation [5] and network slicing [6], and to reduce the energy consumption footprint [7]. In the context of individual BSs, forecasting traffic volumes has found applicability in anomaly event detection [8], scalable scheduling of pilot signals to improve the quality of channel estimation [9], uplink single-user throughput [10], grant scheduling [11] or buffer status reports [12], and to infer Physical Resource Block (PRB) utilization [13]. Although several techniques have been utilized for forecasting like Deep Reinforcement Learning (DRL) [14] or simply Gaussian Processes [13], LSTM are by far the most popular technique for individual time series forecasting [8], [9], [10], [12], often outperforming other methods [15].

The logic governing LSTM is not easily understandable by humans, which creates an inherent lack of explainability of the models and hampers their use in production networks. Indeed, without a proper understanding of the logic governing LSTM models, network managers are understandably reluctant to blindly trust their output. Moreover, network engineers remain skeptical of the opaque internal operation of LSTMs that make tasks like troubleshooting daunting and that create new surfaces for adversarial attacks [16]: indeed, it has been shown how perturbations to the original input (e.g., added load or jamming) can be crafted to be imperceptible to humans, but sufficient to worsen the accuracy of a predictor [17]. These examples show how LSTM explainability is mandatory if those models are to be deployed in production-grade networks. As an interesting counterexample, decision trees [18] have been used in practical scenarios by AT&T for automatic parameter configuration of newly deployed BSs [19]: as explained by the authors of that study, a key element that allowed those models to gain the trust of the operator was their inherent interpretability. Unfortunately, decision trees operate on discrete output variables and are thus very cumbersome to use for mobile traffic forecasting.

In this context, the fundamental objective of EXplainable Artificial Intelligence (XAI) is precisely to provide logical and human-understandable explanations for the black-box behavior of neural networks like LSTMs. Historically, XAI techniques have been conceived and tailored for computer vision and Natural Language Processing (NLP), and not for time series [20]. This is mainly attributed to data characteristics (high-dimensional data like images and video are more intuitive to be explained than time series for which pattern identification is more complex) and the surge of interest for computer vision-based applications (medical imagining or security built on object detection and recognition, and are very popular which has drawn the attention for embedding interpretations; in contrast, mobile traffic forecasting is not as popular). Prominent XAI techniques like LayerR-wise backPropagation (LRP) [21], SHapely Additive exPlanations (SHAP) [22], Local Interpretable Model-agnostic Explanations (LIME) [23], DeepLIFT [24] have been adapted for time series. However, as we show in Section II, they fail to provide useful explanations from a fundamental perspective that goes beyond the simple understanding of input relevance. For example, they are not capable to reveal the hidden causes of model errors that are
specific to both (i) the model’s inner logic, and (ii) the currently observed input.

In this paper, we tackle precisely the problem of enhancing the quality of explanations in the context of time series forecasting for mobile networks. Our far-reaching objective is to lower the barrier for LSTM adoption in production networks. For this, we propose and design AICRONOLENS, a new tool that addresses the main shortcomings of legacy XAI techniques and provide means to better comprehend LSTM models in action. In essence, AICRONOLENS resolves the ambiguity of legacy XAI techniques in assigning the same relevance scores to highly diverse input sequences by exploring the Pearson correlation between relevance scores and an enriched expressiveness of the input sequence. We do so by applying an imaging technique called Gramian Angular Field (GAF) [25] that turns an input time series sequence into a 2D representation, making it possible to capture pairwise relationships like local maxima/minima within the input sequence and their spatial distance. Positive or negative correlations between relevance scores and the GAF imply that higher or lower importance is given to relevant samples like local maxima or minima. AICRONOLENS exploits such added expressiveness to characterize the model behavior. AICRONOLENS should be used offline for model inspection to synthesize tailored explanations on model behavior that can be next used at online inference times for monitoring purposes.

We perform an extensive evaluation of the strengths of AICRONOLENS with real-world mobile traffic data for two relevant use cases, i.e., forecasting of traffic load and the number of connected users to a BS. For the former, we use a measurement dataset collected in a production 4G network serving a major metropolitan region in Europe with minute-level traffic information. For the latter, we use a measurement dataset collected at production BSs with millisecond-level traffic information. We demonstrate that AICRONOLENS spots model behaviors that cannot be identified otherwise.

The key contributions (“C”) and findings (“F”) of our study are summarized as follows:

C1. We design AICRONOLENS, a new tool that addresses the inherent shortcomings of prominent XAI tools when applied to Artificial Intelligence (AI) models for time series forecasting by harnessing liner relationship between relevance scores of XAI tools and temporal characteristics of the input sequences.

C2. We perform an extensive evaluation of AICRONOLENS with real-world datasets and several LSTM models to demonstrate that it provides highly detailed explanations regarding model behavior that are useful at the time of verifying model robustness and monitoring.

C3. For the sake of reproducibility and to further stimulate the research in the field, we release the artifacts of our study (the trained LSTM models and the code of AICRONOLENS) at: https://git2.networks.imdea.org/wng/aichronolens.

F1. We find that, unlike legacy XAI tools, AICRONOLENS is capable to pinpoint differences in hyperparameter settings at training times of different models applied to the same test data. For example, higher learning rates translate into stronger correlations between the relevance scores and the time series inputs while lower learning rates exhibit weak or non-linear correlation.

F2. We find that the correlation coefficients obtained as outcomes of AICRONOLENS show geometrical properties that can be related with the model errors. Further, we show the root causes of this issue, i.e., poor model design or data inherently hard to predict.

F3. We find that AICRONOLENS can be used to refine the training and thereby improve model performance.

II. BACKGROUND AND MOTIVATION

A. Background

Time Series Forecasting: Problem Formulation. The objective of Machine Learning (ML) models that tackle the problem of time series traffic forecasting like LSTM is to predict the future value at time \(t+1 \), having observed a sequence of past values. Values can be traffic volumes, number of users or PRBs measured over time. Formally, let \(X^t = \{ x_1, x_2, \ldots, x_T \} \) be the whole sequence of values at time \(t = \{1, 2, \ldots, T \} \). Let \(X_t \) be the set of historical \(n \) past values at time \(t \): \(X_t = \{ x_{t-n+1}, x_{t-n+2}, \ldots, x_t \} \). \(n \) is known as history or input sequence, with \(n \ll T \). Then, the forecast \(\hat{x}_{t+1} \) at time \(t+1 \) is:

\[
\hat{x}_{t+1} = F(X_t).
\]

\(F \) is a generic prediction function and the ML model design phase is all about defining a proper \(F \) for the problem under analysis. \(F \) is trained by evaluating at each iteration a loss function \(Z_\theta(x_{t+1}, \hat{x}_{t+1}) \) and updating the parameters \(\theta \) (e.g., the weights) to fulfill a specific objective, e.g., minimizing the Mean Absolute Error (MAE) or Mean Square Error (MSE).

Primer on XAI. Promoting trustworthiness in AI has experienced a surge of interest over the last few years [26], [27], also in the context of mobile networks [28], [29]. While interpretability focuses on contextualizing the model outputs about its design, explainability goes beyond and provides customized knowledge that describes how and why a model comes to achieve a given output [30]. Intrinsic or transparent XAI techniques foster interpretability, while post-hoc XAI techniques apply after training and concern explainability [31]. AICRONOLENS synthesizes post-hoc explanations.

XAI for Time Series. Although XAI was conceived and tailored for computer vision and NLP, there exists some applicability to time series [20], especially in the context of time series classification [32], [33]. The techniques that apply to forecasting are often tailored to multi-variate time series [34]. Many mobile network problems instead require tools for univariate time series, which we present next.

XAI Techniques. There exists model-agnostic and model-specific techniques. SHAP [22], LIME [23] and Eli5 [35] belong to the first category and provide explanations by perturbing the inputs of the models to determine how relevant the features are for the prediction. These techniques differ in the
way they compute the relevance scores. Conversely, LRP [21] is model-specific. LRP provides explanations by evaluating which neurons are relevant to a prediction given the input data, making it thus possible to highlight which part of the input data influences the prediction the most.

We now provide the reader with the necessary background on the XAI techniques used in the rest of the paper:

- LRP assigns a score to all the inputs of a predictor and this score indicates the extent of their contribution to the predictor. The relevance scores are computed by tracking back from the output the individual activation of each neuron and its weight in subsequent layers of the model. LRP follows a conservation principle for which the total amount of relevance distributed in layer p remains unaltered in layer q. When the backpropagation reaches the input layer, the relevance score is distributed to the input sequence.

- SHAP provides feature-based explanations by approximating the Shapley values of a prediction. These are obtained by examining the effect of removing one feature at a time under the combination of the presence/absence of all other features. SHAP generates global and local explanations in the form of log-odds, which can be turned into a probability distribution with the softmax operation.

LRP appears to be more suitable for the specific case of time series prediction, as it provides high quality fidelity in the explanations vis-a-vis the SHAP and LIME counterparts [36]. Nevertheless, for the sake of completeness, we will use both LRP and SHAP.

B. Motivation

We now elaborate on the need for AICHRONOSENS by showing the limitations of LRP and SHAP techniques. For the specific problem of time series classification, a recent work [37] shows that different methods lead to different post-hoc explanations for the same model on the same dataset. In this work, we go further and show that when applied to univariate time series the same XAI method provides ambiguous explanations with no relation to the input sequence.

For this purpose, we train a model composed of an LSTM layer with 200 neurons followed by a fully connected output layer with a single hidden unit. The model applies to a dataset that contains traffic volumes from a production network with a 3 minute granularity where 28541 samples are used for training and 7121 for testing. §IV-A provides more details on the datasets and all the other models trained for validation purposes from which we derived the model currently under consideration. We apply both LRP and SHAP on the test set. Fig. 1 portrays an example of an input sequence of 20 samples, the forecast and the LRP scores. Next, we perform an extensive clustering analysis utilizing Dynamic Time Warping (DTW) Barycenter Averaging (DBA) [38] and Soft-DTW [39] k-means. For each technique, we run DBA and Soft-DTW for several cluster sizes ($i.e., \kappa = [3 : 10]$) and compute the silhouette score to identify the optimal number of clusters [40]. Fig. 2 portrays an example of the obtained results for LRP where the optimal number of clusters is $\kappa = 4$ for both DBA and Soft-DTW. It takes nearly 16 hours to execute on an Intel® Core™ i9-11900K processor operating at 3.5 GHz and equipped with an Nvidia RTX 3090 GPU. On the top of the figure, we show the LRP scores and, on the bottom, the corresponding input sequence that produced a prediction explained by the generated scores. From Fig. 2 we observe that, for each cluster, there is no unique relationship that bonds the LRP scores with input sequences. We verify that the same behavior holds for SHAP too. The lack of such a relationship suggests that the XAI techniques are either not effectively capturing the salient characteristic of the model or that the model itself is not adequate for the job.

III. AICHRONOSENS

In light of the motivation presented in Section II-B, this Section presents AICHRONOSENS, a new technique that enhances the depth of explanations of legacy explainability tools. We first delve into its design principles (Section III-A) and next present its architectural design (Section III-B).

A. Overview and Design Principles

Fig. 3 outlines the high-level design of AICHRONOSENS. In a nutshell, AICHRONOSENS extracts through XAI techniques like SHAP or LRP relevance score (L_n) that defines the contribution of each element of the input sequence X_t to the forecast \hat{x}_{t+1} (module \bullet in the figure). To resolve the ambiguity highlighted in §II-B, AICHRONOSENS uses an imaging technique, the GAF, on X_t to reveal patterns within the input sequence (module \circ). Next, AICHRONOSENS probes for linear correlation between with the Pearson’s coefficient between the relevance scores L_n and the GAF representation $G_{n \times n}$ (模块\bullet in the figure). We specifically probe for linear correlation to understand whether the model provides higher or lower importance to relevant samples in the input sequence like local maxima or minima. Finally, the “Analyzer” module monitors when this relation holds true (alignment between relevance scores and input sequences as series of correlation vectors R_n) or not and exploits transitions between the two cases as base information to synthesize more profound explanations (模块\bullet in the figure).

We design AICHRONOSENS with the following design principles (DP) in mind:

- **DP$_1$: XAI Generality.** We allow for any of the existing XAI tools to be plugged into AICHRONOSENS, which makes AICHRONOSENS highly general. At the same time, this allows to compare the explanations that the different XAI tools provide when applied to the same trained LSTM model on the same dataset.

- **DP$_2$: LSTM Specificity.** While being general regarding to the pluggable XAI techniques, in this paper we restrain the
scope of action to LSTM models. We leave to future work the adaptation of AICHRONOLENS for models dealing with spatio-temporal inputs.

B. AICHRONOLENS Design

As introduced above, AICHRONOLENS consists of four main modules: module ❶ exploits an XAI technique for each prediction, module ❷ applies the GAF operation, module ❸ computes the Pearson’s correlation coefficient on both relevance scores and GAF matrix, and module ❹ synthesizes explanations from the obtained correlation coefficients.

Relevance Scores from XAI (❶). In computer vision, XAI techniques indicate the relevance of each pixel of an image at each point in time \(t \). In analogy, by taking into account that each prediction \(\hat{x}_{t+1} \) depends on the past, or input sequence \(X_t \), then XAI techniques provide relevance scores \(L_n \) to each element of the the input sequence \(x_i \in X_t, \forall i = 1, 2, \ldots, n \).

According to DP1, we now show how to obtain the relevance scores \(L_n \) by considering the two most prominent XAI techniques for each category of methods, i.e., LRP (backpropagation) and SHAP (perturbation).

- LRP computes the relevance scores \(L_n \) by tracking back from the output the individual activation \(a_i \) of each neuron \(i \) and its contribution to neuron \(j \) with weight \(w_{i,j} \) in subsequent layers of the Neural Networks (NN) \(p \) and \(q \). Formally:

\[
L_{t+1}^{(q)} = L_{j}^{(p)} \sum_{i,j} a_{i} \cdot w_{i,j} \sum_{k} a_{k} \cdot w_{k,j}.
\]

(2)

Following a conservation principle for which the total amount of relevance distributed in layer \(p \) remains unaltered in layer \(q \), when the backpropagation reaches the input layer, LRP distributes the total relevance to the input, i.e., \(X_t \) in our case.

- SHAP computes relevance scores by determining the average contribution of each element of the input sequence across all possible permutations of the elements’ values. To do so, SHAP relies on Shapely values. Formally \(\forall i = 1, 2, \ldots, n \), \(l_i \in L_n \) is computed as:

\[
l_i(f) = \frac{1}{(n-1)!} \sum_{k=1}^{n-1} \sum_{X_s \subseteq X_t, \mid s \mid = k} \left[\binom{n-1}{k} \right]^{-1} \cdot (f(X_t) - f(X_s)),
\]

(3)

where \(s = n - 1 \) is a subset of the \(n \) features of the input sequence \(X_t \), \(f(X_s) \) is the model prediction with \(X_s \), where \(X_s = X_t \ setminus \{i\} \), and \(f(X_t) \) is the prediction with all the features, i.e., \(\hat{x}_{t+1} \).

Imaging via GAF (❷). Given the inherent ability of ML in dealing with images, there exists several attempts of transforming time series into images [41]. Recurrence Plots (RP), GAF, and Markov Transition Field (MTF) are popular imaging techniques for time series [25]. In a nutshell, all of them turn a time series of length \(m \) into an image of \(m \times m \) pixels. The difference between these techniques lies in how they define the image. RP compute the Euclidean distance for each value \(j \in m \) of the time series. RP are not capable to deal with time series of variable length and different scales, and can not effectively represent upward and downward trends [42]. GAF represents a time series using polar rather than Cartesian coordinates by constructing a Gram matrix where each element is the cosine of the sum of 2 angles. Finally, MTF constructs a Markov matrix of quantile bins on the time series values and encodes into a quasi-Gramian matrix the dynamic transition probability of each element \(j \in m \).
Although the MTF technique preserves temporal dependencies like GAF, it does not allow reconstructing the original time series as GAF does. The difference lies in the fact that GAF operates on time series values directly, while MTF operates on transition probabilities of quantiles. Hence, we use GAF for AICRONOLENS.

To obtain a GAF, the original elements of time series \(x_i \in X_t \), with \(i = 1, \ldots, n \), undergo a set of transformations. First, we rescale them in the range \([-1, 1]\):

\[
\bar{x}_i = \frac{(x_i - \max(X_t)) + (x_i - \min(X_t))}{(\max(X_t) - \min(X_t))},
\]

Next, we represent \(\bar{X}_n \) in polar coordinates by encoding the value as the angular cosine and the time step as the radius:

\[
\begin{aligned}
\phi &= \arccos(\bar{x}_i), -1 \leq \bar{x}_i \leq 1, \bar{x}_i \in \bar{X}; \\
\rho &= i/Y, i \in N.
\end{aligned}
\]

In this equation, \(Y \) is a factor that regularizes the span of the system of polar coordinates. With time increase, the values of the time series shift between angular positions, while the radius increases at a steady rate. This method of visualizing the time series brings two important properties. First, it is bijective, as \(\cos(\phi) \) is monotonic when \(\phi \in [0, \pi] \) which makes it possible to recover the original time series. Second, it preserves absolute temporal relations, since, as opposed to Cartesian coordinates, the corresponding area from time step \(i \) to \(j \) does not only depend on \([i - j]\), but it also depends on the absolute values of the time series in the time steps \(i \) and \(j \). Armed with such representation, we can define the GAF as \(G_{n \times n} \) for each \(t \in T \):

\[
G_{n \times n} = \begin{bmatrix}
\cos(\phi_1 + \phi_1) & \cdots & \cos(\phi_1 + \phi_n) \\
\cos(\phi_2 + \phi_1) & \cdots & \cos(\phi_2 + \phi_n) \\
\vdots & \ddots & \vdots \\
\cos(\phi_n + \phi_1) & \cdots & \cos(\phi_n + \phi_n)
\end{bmatrix}.
\]

By defining the inner product as follows:

\[
(v, z) = v \cdot z - \sqrt{1 - v^2} \cdot \sqrt{1 - z^2},
\]

\(G_{n \times n} \), that is a Gram matrix [43], can be rewritten as:

\[
G_{n \times n} = \begin{bmatrix}
\langle \bar{x}_1, \bar{\bar{x}}_1 \rangle & \cdots & \langle \bar{x}_1, \bar{\bar{x}}_n \rangle \\
\langle \bar{x}_2, \bar{\bar{x}}_1 \rangle & \cdots & \langle \bar{x}_2, \bar{\bar{x}}_n \rangle \\
\vdots & \ddots & \vdots \\
\langle \bar{x}_n, \bar{\bar{x}}_1 \rangle & \cdots & \langle \bar{x}_n, \bar{\bar{x}}_n \rangle
\end{bmatrix}.
\]

A Gram matrix [43] of a set of vectors \(v_1, \ldots, v_n \) in an inner product space is the Hermitian matrix of the inner product (a matrix \(B \) is Hermitian if and only if each element fulfills \(b_{ij} = \overline{b_{ji}} \), that is, the matrix is equal to its own conjugate transpose). The GAF representation provides several features. First, it preserves temporal dependency, because as we move from top left to bottom right. It contains temporal correlations, since \(G_{i,j} = |i-j|=t \) corresponds to the relative correlations of the directions that lie in the time step \(t \). The main diagonal of \(G_{n \times n} \) is a special case containing the original time series values. In a GAF, high values (close to 1) are those where local maxima or minima in the original time series correlates either with themselves or other maxima or minima respectively. The values close to 0 are the result of a correlation between local maxima or minima with points of intermediate values in the original time series. Finally, negative values (close to -1) originate from the correlation between a point with local maxima or minima with another point in the original time series with a local minima or maxima respectively.

Defining Correlations (9). Armed with relevance scores \(L_n \) and \(G_{n \times n} \), we seek correlation between these two quantities. In essence, we aim to understand if there is a linear relation between the relevance scores (i.e., \(L_n \)) and elements of the input time series (i.e., \(G_{n \times n} \)). Specifically, by construction, each row of \(G_{n \times n} \) characterizes inner relationships between samples of the input time series. Denote the \(i \)th row of this matrix as \(G_i \), a \(1 \times n \) vector defined in (8). Given that also \(L_n \) is a \(1 \times n \) vector, we can compute the Pearson’s correlation coefficient between these two quantities. Specifically:

\[
R_n = \frac{\text{cov}(G_i, L)}{\sigma_G \sigma_L} = \begin{bmatrix} \rho_0 \\ \rho_1 \\ \vdots \end{bmatrix}.
\]

where \(\sigma \) is the standard deviation and \(\text{cov}(\cdot, \cdot) \) is the covariance. To simplify the notation, call \(\rho_i \) the correlation vector between \(G_i \) and \(L_n \). By repeating the process for each timestep \(t = 1, \ldots, T \), we obtain a correlation matrix \(C \) with dimensions \(n \times T \) where \(R_n \) is only one column:

\[
C = \begin{bmatrix}
\rho_{1,1} & \rho_{1,2} & \cdots & \rho_{1,T} \\
\rho_{2,1} & \rho_{2,2} & \cdots & \rho_{2,T} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{n,1} & \rho_{n,2} & \cdots & \rho_{n,T}
\end{bmatrix}_{n \times T}.
\]

Analyzing Correlations (9). At the heart of AICRONOLENS, the “Analyzer” module exploits \(C \) to synthesize explanations. For the sake of illustration, let us consider the case of observing \(W = 3 \) timesteps (i.e., \(t, t+1, \) and \(t+2 \)) of correlation vectors with a history of \(n = 6 \) samples. With the increase in time, a correlation coefficient ages and vanishes once the presence in the history of the sample of the time series that contributed to its generation is over. To observe the evolution of the Pearson’s coefficients of each sample over time, we create a new matrix \(S \) by storing all the secondary diagonals of length \(T \) in rows:

\[
C_{6 \times 3} = \begin{bmatrix}
\rho_{1,1} & \rho_{1,2} & \rho_{1,3} \\
\rho_{2,1} & \rho_{2,2} & \rho_{2,3} \\
\rho_{3,1} & \rho_{3,2} & \rho_{3,3} \\
\rho_{4,1} & \rho_{4,2} & \rho_{4,3} \\
\rho_{5,1} & \rho_{5,2} & \rho_{5,3} \\
\rho_{6,1} & \rho_{6,2} & \rho_{6,3}
\end{bmatrix}, S_{4 \times 3} = \begin{bmatrix}
\begin{bmatrix} \rho_{3,1} & \rho_{3,2} & \rho_{3,3} \\ \rho_{4,1} & \rho_{4,2} & \rho_{4,3} \\ \rho_{5,1} & \rho_{5,2} & \rho_{5,3} \\ \rho_{6,1} & \rho_{6,2} & \rho_{6,3}
\end{bmatrix} & \begin{bmatrix} \rho_{3,1} & \rho_{3,2} & \rho_{3,3} \\ \rho_{4,1} & \rho_{4,2} & \rho_{4,3} \\ \rho_{5,1} & \rho_{5,2} & \rho_{5,3} \\ \rho_{6,1} & \rho_{6,2} & \rho_{6,3}
\end{bmatrix} \\
\end{bmatrix}_{4 \times 3}.
\]

For practical use, \(S^T \) is more convenient than \(S \).

All the explanations of AICRONOLENS rely on the analysis of \(C \) or \(S^T \) over windows \(w \leq T \). In \(w \), depending on their value, either positive or negative, the correlation values generate triangle shapes. For instance, from left to right, bottom to top: \(\rho_{6,1}, \rho_{6,2}, \rho_{6,3}, \rho_{5,2}, \rho_{5,3}, \) and \(\rho_{4,3} \) would form a triangle of negative correlation if all the coefficients are in the range.
A triangle represents the trend of the prediction given the time series input. We are interested in how these triangles transition one to another: smooth and non-smooth transitions indicate respectively that the model catches well changes or not the trend. Errors usually occur in the presence of non-smooth transitions.

To summarize, AICRONOLENS links relevance scores with temporal characteristics of the input sequences in a unique manner. The output of the tool are correlation coefficients that, if observed over time, generate patterns (series of triangles of positive or negative values) that can be geometrically interpreted and spot different causes of errors. In §IV we will show two techniques for pattern recognition that uniquely identifies different causes of errors.

IV. DISTILLING EXPLANATIONS WITH AICRONOLENS

In this Section, we first describe the datasets and models used to validate AICRONOLENS (§IV-A). Next, we empirically evaluate AICRONOLENS’s explanations, showing the cause of model errors and to optimize model performance (§IV-B).

A. Dataset and Models

Datasets. For our validation, we rely on two different datasets:

• D_1: The first dataset contains measurements of traffic volumes recorded in a production 4G network that serves a large metropolitan region in Europe. The dataset provides fine-grained information at 3 minute granularity about the traffic volumes at each BS. The dataset covers 3 months.

• D_2: The second dataset contains the estimated number of active users currently connected to a production BS [44]. The dataset has been recorded using a popular LTE passive monitoring tool that decodes unencrypted information that the BSs exchange with the associated users. The dataset contains information at millisecond level about the temporary user ID currently associated with the user, i.e., the Radio Network Temporary Identifier (RNTI), and scheduling information. We use the methodology proposed in [45] to estimate the number of active users every 6 minutes.

LSTM Models. Our objective is to highlight the benefits of AICRONOLENS under different perspectives. Hence, we train different LSTM models for the two datasets. The two models share the same LSTM architectural design, with one unidirectional LSTM layer followed by an output layer configured with one neuron and a linear activation function for one-step prediction. Both use a sequence of past 20 samples to predict the next one, and are trained with Adam optimizer using MAE as loss function. Specifically, for D_1, we train 6 different models by intentionally varying the number of neurons in the LSTM and the learning rate; we also introduce regularization by randomly discarding some neurons at each iteration using a dropout layer before the output. Table I summarizes the details of the D_1 models. They allow analyzing how AICRONOLENS captures variations in the hyperparameters. In contrast, for D_2, we train a single optimized model based on extensive prior testing. The LSTM layer features 25 neurons with a \tanh activation function. Finally, we use standard 80:20 train-test split ratios.

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration of the models trained for D_1</td>
</tr>
<tr>
<td>MODEL ID</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>A_A</td>
</tr>
<tr>
<td>B_B</td>
</tr>
<tr>
<td>C_C</td>
</tr>
</tbody>
</table>

B. Explanations and Optimizing Model Development

In this subsection, we showcase the breadth of the explanations generated by AICRONOLENS, across all the models trained for D_1 and D_2. Our main results are explanations that go beyond the simple attribution of relevance scores to the input sequence. In summary, our results, derived from the quantitative analysis performed on the test set of both datasets are the following:

• R_1: In cases where LRP and SHAP produce relevance scores that are very similar over time and thus not informative, the correlation vectors that are the output of AICRONOLENS clearly pinpoint the temporal characteristics that stimulate the model. These are samples entering or leaving in the input sequence whose values are either local maxima and local minima or very close to the local maxima or minima. The absence of such samples entering or leaving the input sequence turns strong positive or negative correlation values into weak correlation values. The observed behavior holds true in general (i.e., in the analyzed test sets of both datasets).

• R_2: AICRONOLENS can spot errors that are due to poor model design and errors that are specific to data inherently hard to predict. The different types of errors can be spotted by analyzing the shape of the correlation matrix C.

• R_3: Higher learning rates (i.e., models A_A, B_B, and C_C) produce weaker correlations with respect to models featuring smaller learning rates (i.e., A, B, C). This behavior occurs regardless of the number of neurons.

Finding R_1. Fig. 4 demonstrates qualitatively R_1. In the figure, we show in a combined fashion from top to bottom the input sequence (e.g., timesteps), the output of the XAI techniques (SHAP in this case), the GAF of the corresponding input sequence, and, finally, the correlation vectors. While the SHAP scores are highly similar, the correlation vectors vary considerably. Specifically, we can appreciate in window 20 (used to predict timestep 21) almost no correlation at all. This is due to the fact that SHAP assigns high relevance to samples in the input sequence closest in time to the next prediction (see history 15 – 19 in the bottom) while these samples are not particularly relevant from the input sequence perspective (the GAF highlights the corresponding values with dark colors). In contrast, in timestep 22 a new local minimum enters: the alignment between SHAP and GAF triggers a significant modification to the correlation vector if compared with the correlation vector of the previous timesteps. In contrast, if left alone, SHAP would not capture such a change. We will...
see next why being blind to such changes is detrimental to model performance.

Finding R2. We prove quantitatively that AICHRONOLENS can detect different categories “E” of errors:
- **E1:** is attributed to poor model design (shown for D1).
- **E2:** is specific to the dataset when using an optimized model (shown for D2).

Analysis of E1. Next, we will show that by tracing the root cause of the errors, it is possible to identify weaknesses due to poor model design that are not captured by coarse evaluation metrics like MAE or MSE. Finally, we will show that using an informed model re-design can address such a shortcoming.

We perform a complete analysis over the AICHRONOLENS output C computed on the test set for all the trained models with both SHAP and LRP techniques. We observe that in the presence of trend changes in the time series, correlation vectors exhibit triangles with negative correlation followed by triangles with positive correlation. We find that the shape of the triangles varies. Well-formed, sharply outlined triangles like those in Fig. 5(a) (top) indicate that in the corresponding part of the time series, the model does not make significant mistakes (see Fig. 5(a) (bottom)). We define these triangles as **sharp**. In contrast, noisy **non-sharp** triangles like that of Fig. 5(b) (top) lead to high errors (see Fig. 5(b) (bottom)) in the presence of abrupt falls where the model is not able to accurately predict when the decrease stops in the actual data. This behavior is systematically observed throughout all the decreasing slopes present in the test set.

We now show a pattern recognition technique that identifies sharp and non-sharp triangles. Numerically, we identify the transition between triangles by computing the difference of the median correlation scores between two consecutive correlation vectors G_t and G_{t+1} in timesteps t and $t+1$. Upon finding the column that interrupts the triangle, we set a window w of observation centered in such column. For example, $W = 6$ indicates that we observe 3 preceding and succeeding columns forming a matrix $C_{n \times w}$. To spot sharpness, we perform the following operation on each element $c_{i,j}$ the matrix:

$$
\overline{c}_{i,j} = \begin{cases}
-1 & \text{if } -0.9 \leq c_{i,j} \leq 0 \\
1 & \text{if } 0 \leq c_{i,j} \leq 0.9.
\end{cases}
$$

(12)

On the resulting $\overline{c}_{n \times w}$, we compute the number h of positive and negative values per each secondary diagonal of length w and store it into an array. By construction values of h are in the range $[-w : w]$. Next, we compute a sharpness score σ on the resulting array as follows:

$$
\sigma = 1 - \frac{\sum_{i=1}^{n} h_i}{|h| \cdot (w + 1)}.
$$

(13)

For $0 < \sigma < 1$, the higher the value of σ, the higher the degree of non-sharpness. For $-1 < \sigma < 0$, the lower the value of σ, the higher the degree of sharpness. By relating the sharpness score and the error only in the presence of severe load decrease, we observe that as the sharpness score increases, the error does too (see Fig. 6(a)). By taking a close look to the errors in the entire test set (see Fig. 6(b)), we observe that the highest absolute errors (5-8 GB/min) occur in the correspondence of moderate to low loads that are all connected with abrupt falls. Fig. 6(c) reveals that the model underestimates significantly the ground truth in the presence of severe load decrease (bottom-left in the plot). A careful analysis of the train set reveals a lack of training samples exactly in the proximity of traffic volumes for which the model is often mistaken (see Fig. 6(d)).

Ultimately, AICHRONOLENS allows appreciating that the model does not generalize in the presence of abrupt load decrease, as it has not observed such trends in the training set. In this way, our tool points to the solution to the model shortcoming, i.e., data augmentation. Specifically, we copy from the train set a number of samples that represent 3 days (overall the train set was about 8 weeks) and append it to the end of the train set. Next, in the presence of falls, we carefully remove samples with the objective of including those abrupt load decrease that were missing. We then train a new model, starting from model A_A settings, with the augmented training dataset. The new model differentiates from A_A only by the presence of a sigmoid activation function before the output layer. Fig. 7 outlines that the new optimized model outperforms the baseline model A_A by reducing not only the tails (errors of high magnitude - errors are computed as $x_{t+1} - \hat{x}_{t+1}$, which is especially clear on the right inside of the plot for underestimation errors), but also the frequency of errors with small magnitude and that the error bell is centered around zero. These are all indicators of the poor training process of model A_A vis-a-vis the optimized counterpart. Overall, by only considering windows around the abrupt load decrease, model A_A would lead to a MAE $= 0.921$ (which is higher than the overall MAE computed over the entire test set, see Table I)
while the optimized model would lead to MAE $= 0.619$ which is an improvement of 32%. When applied to the entire test set, the optimized model achieved MAE $= 0.69$, only a 2% decrease in accuracy with respect to model A_A.

Analysis of E_2. Unfortunately, even after addressing the category of errors E_1, there may be model errors due to the characteristics of the data itself. We now show that AICHRONOSENS can identify those too by analyzing the output S for D_2.

Fig. 8 shows qualitatively that there exists consecutive errors with high magnitude that change of sign (e.g., first positive then negative or vice versa). AICHRONOSENS identifies this behavior with triangles of positive or negative correlations over time that are interrupted by a full column with weak correlation. Call G_t and G_{t+1} the correlation vectors in the timesteps t and $t+1$: their similarity can be assessed via the euclidean distance $d(G_t, G_{t+1}) = \sqrt{\sum_{i=1}^{n} (G^i_t - G^i_{t+1})^2}$. We compute the euclidean distance d between each two subsequent correlation vectors in the test set and normalize it in the range $[0:1]$. When $d > 0.6$, in 65% of the cases, we find a change of error sign with a corresponding MAE $= 0.46$, much higher than the MAE computed over the entire dataset (i.e., MAE $= 0.13$).

Finding R_3. To demonstrate qualitatively R_3, we portray in
LSTM-based Forecasting Applications. The recent years have witnessed a surge of interest in applying Deep Neural Networks for forecasting as they entail higher quality predictions than other approaches like statistical models [54]. The prediction of future traffic volumes forms the cornerstone of several applications that include anomaly event detection [8], scheduling of pilot signals for channel estimation [9], user throughput [10], buffer status reports [12], and to infer PRB utilization [13]. While all the above works rely on simple LSTM models, the works [55], [56], [57] are more complex ML architectures proposed with the unifying theme of better exploiting temporal characteristics of the inputs.

VI. CONCLUSIONS

In this paper, we have investigated the timely and challenging problem of improving the understanding of AI models like LSTM for time series forecasting. We perform a quantitative and qualitative study that reveals the shortcoming of existing XAI techniques and propose AIC, a first-of-its-kind tool in the area of XAI. By linking the temporal characteristics of the input with relevance scores produced by existing XAI techniques, AIC can dive deep into the analysis of models’ behavior. Via extensive evaluations with real-world mobile traffic traces, we show that AIC makes it possible to spot different categories of model errors, trace back the root causes, and possibly improve the poor model design. To this end, a combined targeted data augmentation, and minor changes to the hyperparameters can improve performance by 32%.

The authors have provided public access to their code and/or data at: https://git2.networks.imdea.org/wng/aichronolens.

ACKNOWLEDGMENTS

This work is partially supported by Juan de la Cierva grant IJC2019-039885-I MCIN/AEI /10.13039/501100011033; by bRAIN project PID2021-128250NB-I00 funded by MCIN/AEI /10.13039/501100011033; and the European Union ERDF “A way of making Europe”; by Spanish Ministry of Economic Affairs and Digital Transformation, European Union NextGenerationEU projects MAP-6G TSI-063000-2021-63, RISC-6G TSI-063000-2021-59 and AEON-ZERO TSI-063000-2021-52; and P.Fernández received funding from “Programa Investigo” (grant 2022-C23.101.P03.S0020-0000038) funded by EU-NextGenerationEU and SEPE/PRTR.

REFERENCES
