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Abstract

Background: The development of computational methodologies to support clinical decision-making

is of vital importance to reduce morbidity and mortality rates. Specifically, prescriptive analytic is

a promising area to support decision-making in the monitoring, treatment and prevention of dis-

eases. These aspects remain a challenge for medical professionals and health authorities.

Materials and Methods: In this study, we propose a methodology for the development of pre-

scriptive models to support decision-making in clinical settings. The prescriptive model requires a

predictive model to build the prescriptions. The predictive model is developed using fuzzy cogni-

tive maps and the particle swarm optimization algorithm, while the prescriptive model is developed

with an extension of fuzzy cognitive maps that combines them with genetic algorithms. We evalu-

ated the proposed approach in three case studies related to monitoring (warfarin dose estimation),

treatment (severe dengue) and prevention (geohelminthiasis) of diseases.

Results: The performance of the developed prescriptive models demonstrated the ability to esti-

mate warfarin doses in coagulated patients, prescribe treatment for severe dengue and generate

actions aimed at the prevention of geohelminthiasis. Additionally, the predictive models can pre-

dict coagulation indices, severe dengue mortality and soil-transmitted helminth infections.

Conclusions: The developed models performed well to prescribe actions aimed to monitor, treat

and prevent diseases. This type of strategy allows supporting decision-making in clinical settings.

However, validations in health institutions are required for their implementation.
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1. Introduction1

Prescriptive analytic is an area of data analytic that is concerned with generating actions that2

lead to desired outcomes in modeled systems [1]. In healthcare, prescriptive modeling has estab-3

lished itself as a promising area for the improvement of healthcare systems. With the development4

and implementation of prescriptive modeling, it is expected to achieve greater speed and accuracy5

in the monitoring, treatment and prevention of disease, as well as an improvement in the quality6

of health care.7

In this work, we are interested in developing methodologies to generate prescriptive mod-8

els to support decision-making focused on treatment, follow-up and prevention of diseases. The9

development of methodologies for clinical decision-making has generated much interest in recent10

years. Machine learning (ML), computational intelligence and clinical decision analysis have been11

widely used for this purpose. However, there are some limitations or disadvantages associated with12

the use of such approaches. The complexity of the models for medical professionals to understand13

is a disadvantage, because they consider ML and computational intelligence models as a “black14

box”[2]. With respect to clinical decision models, specifically, decision trees do not take into ac-15

count recurrent events and require individuals with similar characteristics. Markov models have16

been developed to overcome the problems presented by decision trees. However, Markov mod-17

els ignore the interaction between individuals and consider few health states. Another important18

problem is the computational complexity; probability evaluations in Markov decision processes19

can increase with the complexity of the problem or system to be modeled [3, 4]. Finally, an-20

other limitation is that clinical decision analysis requires more data than other stochastic modeling21

techniques due to variations in transition probabilities at each decision stage [5]. Based on these22

problems, it is necessary to develop methodologies that generate prescriptive models that are ex-23

plainable to medical professionals, that are computationally efficient regardless of the complexity24

of the problem, and that have a minimally acceptable performance with small datasets.25

In this study, we propose an approach to generate prescriptive models to support decision-26

making in clinical settings. Our approach is capable of generating prescriptive models that sug-27
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gest prescribing actions for treatment, follow-up and prevention of diseases. The combination of28

fuzzy cognitive maps (FCMs) –explainable method– and genetic algorithms (GAs) allowed the29

development of a methodology for the generation of prescriptive models. The ease of construction30

and interpretation of FCMs brings an added value different from the models reported in the liter-31

ature. Our approach starts with FCM creation and subsequent characterization of the FCM using32

the nature of the concepts. Each concept is discriminated in two layers: system and action. In the33

first case, they are all those variables measurable in patients such as demographic variables, signs,34

symptoms and laboratory tests. While the action variables are all those related to actions aimed at35

the treatment, follow-up and prevention of diseases. The second stage of our approach consists of36

the initial instantiation of the system, where the medical user sets the desired state for the system37

variables. Finally, an optimization algorithm (GAs) is used to find the optimal action values that38

through the FCM inference system leads to the desired state of the variables related to the system.39

The proposed approach is tested on three case studies with specific datasets that were collected in40

previous research. The constructed models are used to make specific prescriptions for each patient41

according to their sociodemographic, clinical, genetic and laboratory characteristics. The results42

obtained in this research demonstrate the ability of the prescriptive models designed to generate43

prescriptions with high accuracy and low error.44

The remainder of this paper is organized as follows: Section 2 shows a literature review about45

the last trends in prescriptive modeling in medical settings. Section 3 describes the methodology46

used to generate the prescriptive models. The next section presents three case studies with the47

datasets for each case study, and the configuration of experiments. Section 5 shows the results48

based on case studies. Section 6 discusses the results and shows a comparison with previous49

works. Finally, Section 7 concludes the paper.50

2. Related work51

Prescriptive analytic is responsible for the generation of prescriptive models that support decision-52

making [1]. In this context, the prescription is a set of actions that the decision-maker executes53

to achieve a given outcome [6]. Prescriptive models can be categorized into three main areas: i)54

prescriptive modeling using ML, ii) prescriptive modeling using computational intelligence, and55
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iii) prescriptive modeling using clinical decision analytics. Below, we show some studies related56

to each of these categories.57

2.1. Prescriptive modeling using ML58

Prescriptive analytic has attracted much interest due to its potential application in medical en-59

vironments. The use of ML has been widely extended for the development of prescriptive models60

to support decision-making in clinical or medical settings [7–10]. For example, Bertsimas et al61

[7] proposed and implemented two ML methods (prescriptive optimal tree and prescriptive support62

vector machines) to generate prescriptive models that generate recommendations to reduce the risk63

of readmission after surgery. The authors used red blood cell transfusion as an actionable feature.64

The models developed by Bertsitmas et al. have the ability to reduce the risk of readmission by65

12% and the results are interpretable because the models allow the identification of variables that66

influence the prescription made. Harikumar et al. [8] developed a prescriptive analytic solution67

that uses ML approaches to recommend actions in diabetes, heart attack, and stroke. The goal68

was to find the smallest change within the actionable characteristics to achieve the change from69

an undesirable to a desirable class. The capability of the developed models was tested on Center70

for Disease Control and Prevention (CDC) datasets using logistic regression, k-nearest-neighbor71

(KNN) and random forest (RF). The most favorable results were for KNN on the stroke dataset72

(88% accuracy), and for the other datasets the results are very similar. Hosseini et al [9] proposed73

an algorithm to optimize decision variables with respect to a variable of interest. The developed74

algorithm used Bayesian networks to reduce diabetes mortality rates, by prescribing the optimal75

combination of drugs for disease control. The algorithm was tested on a dataset of patients with76

diabetes and had the particularity of generating interpretable prescriptive models because the vari-77

ables influencing the prescription could be identified. The models generated by Hosseini et al,78

obtained an accuracy of 88.75% and an area under the curve of 71.15%.79

2.2. Prescriptive modeling using computational intelligence80

Computational intelligence is a subarea of artificial intelligence where fuzzy logic, artificial81

neural networks and evolutionary algorithms are combined. Such approaches have been used for82
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the development of prescriptive models in clinical settings [11, 12]. For example, Hoyos et al.83

[11] implemented an autonomous cycle of data analysis tasks where they combined artificial neu-84

ral networks and GAs to optimize decision-making in the clinical management of dengue. Dengue85

is a disease that has no cure and its treatment is based on alleviating symptoms and avoiding com-86

plications. The models created had the ability to classify dengue and follow the recommendations87

given by the WHO for the treatment of each type of dengue. Chalmers et al. [12] proposed a pre-88

scription approach to optimize the treatment of adolescent idiopathic scoliosis. The goal was to89

identify optimal orthotic corrections that would reduce disease progression using fuzzy logic. The90

developed model had the ability to recommend actions that adjust the orthosis and reduce disease91

progression by 26%.92

2.3. Prescriptive modeling using clinical decision analysis93

Clinical decision analysis is a quantitative approach widely used to optimize decision-making94

in healthcare settings [13]. This approach has been extensively implemented to establish or de-95

termine the optimal expected utility of treatments or interventions as healthcare strategies to re-96

duce costs, morbidity, or mortality rates [14, 15]. The main techniques within decision analysis97

comprise decision trees, Markov decision processes and partially observable Markov decision pro-98

cesses.99

Clinical decision trees allow the optimization of strategies aimed at screening and treatment100

of diseases. This approach has been used to quantify the utility of treatments or strategies based101

on transition probabilities. For example, Kurisu et al. [14] developed a clinical decision analysis102

with decision trees to quantify the utility of various antipsychotic treatment options (risperidone,103

haloperidol, olanzapine, amisulpride, ziprasidone and quetiapine) in patients with delirium. Sen-104

sitivity analysis showed that quetiapine is the best antipsychotic treatment option for patients with105

delirium. Keikes et al [15] implemented decision trees to convert colorectal cancer diagnosis and106

treatment recommendation guidelines into a computational tool for clinical decision support. The107

decision trees developed and implemented generated recommendations for the diagnosis, follow-108

up and treatment of colorectal cancer with a concordance of 81% when compared to recommen-109

dations suggested by an interdisciplinary team of experts.110
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Markov chains are a stochastic approach that allows sequential processes to be modeled [16].111

Due to the complexity present in clinical decision-making, Markov models are a useful tool to112

compare the effectiveness and utility of available treatment combinations, optimize screening poli-113

cies, and prevent disease-related complications [17–21]. For example, Habu [17] conducted a clin-114

ical decision analysis using Markov modeling to evaluate the efficacy of two treatment strategies115

(proton pump inhibitor vs. potassium-competitive acid blocker) for gastroesophageal reflux. The116

results of the analysis yielded a superiority of the competitive acid blocker with respect to cost-117

effectiveness and the number of days required to treat the disease. These findings were confirmed118

by the sensitivity analysis implemented in the study. Similarly, Shen et al [18] compared the ef-119

ficacy of various combinations of interventions for stroke patients in the convalescent stage. The120

main strategies used for modeling were rehabilitation therapy, use of traditional Chinese medicine,121

and acupuncture treatment. The Markov decision model had the ability to recommend the best pos-122

sible combination of treatments for stroke patients in different stages of recovery. Eghbali-Zarch123

et al [19] modeled the drug treatment of type 2 diabetes to determine the optimal treatment policy124

to decrease adverse medication reactions that increase the economic burden of the disease and125

decrease quality-adjusted life years. The Markov model could recommend treatment options that126

involve a minimum amount of medication with acceptable expected quality of life.127

Dumlu et al [20] proposed a partially observable Markov decision model to establish the op-128

timal screening policy in the preclinical stages of Alzheimer’s disease. The model aims to maxi-129

mize the quality-adjusted life years and recommends the time when the patient should be screened.130

The results of the cost-effectiveness analysis show that implementing the optimal policies recom-131

mended by the model reduced costs. Prayogo et al [21] formulated models based on partially132

observable Markov sequential processes for the evaluation of screening policies for early diagno-133

sis of lung cancer. Early detection of this type of disease through screening is crucial to decrease134

mortality rates. The research results demonstrated the ability of the proposed model to recommend135

an optimal screening policy that guarantees higher quality-adjusted life years.136
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3. Methodology137

In this section, we present the methodology to generate prescriptive models. First, we briefly138

explain the approach used to generate the prescriptive model, which includes the construction of a139

predictive model. Then, we present three case studies with their datasets and their preprocessing140

prior to model creation. Fig. 1 shows a schematic representation of the general methodology to141

achieve the objective of this study. According to the methodology, the first step is data preparation142

and analysis (cleaning, normalization and balancing). Next, a classical FCM is built to predict143

using particle swarm optimization (PSO), which is then used by our prescriptive-FCM to assess144

the actions it could prescribe, in such a way as to find the most appropriate ones.145

Case study
dataset

Yes

No
Clean dataset?

Preprocessing 
Normalization 

SMOTE

Classical FCM

Splitting 
80% training 
20% testing

Descriptive 
statistics 

PRV-FCM

Predictive model

Prescriptive model

Evaluation 
Accuracy 
Sensitivity
Specificity

Evaluation 
Accuracy 
Sensitivity
Specificity

MAE, MSE, RMSE, R2 

Fig. 1. General methodology used in this study.
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3.1. Descriptive analysis146

The descriptive analysis consists of examining data to interpret past behavior and learn about147

data distribution, such that we can describe things like, for example, that the classes of a label148

are unbalanced, and if there are variables with a lot of noise. In this case, we use descriptive149

statistics to extract information from the datasets in each case study. We used measures of central150

tendency and dispersion to understand the behavior of quantitative data. For qualitative data, we151

used frequency distribution.152

3.2. Generation of the predictive models153

The predictive models were generated using a data-driven PSO-FCM approach. The predictive154

model is used by the prescriptive-FCM to propose several sets of actions (each one is a different155

prescription), and requires a model/function that determines the quality of the proposed prescrip-156

tions. The predictive model was used for these tasks.157

3.2.1. Data-driven PSO-FCM158

FCM is a technique of computational intelligence that allows modeling systems using concepts159

and relationships. The concepts correspond to the variables of the system to be modeled and the160

relationships correspond to the influence that exists between them [22–26]. FCMs are composed of161

a 5-element tuple (Ψ) where n is the number of concepts or variables to be modeled, v is an initial162

or activation vector, W is the weight matrix, and f () is an activation function to keep the concept163

values in a desired range r. Eq. 1 shows the main elements of an FCM. The most commonly used164

activation functions for FCMs are shown in Table 1.165

Ψ = ⟨n, v,W, f ()⟩ (1)

FCMs can be built by experts using their knowledge and experience. They can also be built166

with algorithms that extract the relationships from historical data. The relationships are stored in167

square matrices to be used in the inference process. Eq. 2 shows an example of an extracted matrix168

and Fig. 2 shows the FCM constructed with this matrix. In this study, FCMs were constructed169

using the PSO algorithm due to its superior performance when extracting relationships from the170
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Table 1

Most commonly used activation functions in FCMs.

Activation function Equation Range

Sigmoid f (x) = 1
1+e−λ×x f (x) ∈ [0, 1]

Hyperbolic tangent f (x) = ex−e−x

ex+e−x f (x) ∈ [ − 1, 1]

data [27–29]. In addition, the lack of experts in each domain limited the creation of FCMs using171

expert knowledge and experience.172

C1

C5 C4

C3

C2

W15

W25

W32

W45

W35

Fig. 2. Example of FCM with five concepts and five relationships.

W =

C1 C2 C3 C4 C5



C1 0 0 0 0 w15

C2 0 0 0 0 w25

C3 0 w32 0 0 w35

C4 0 0 0 0 w45

C5 0 0 0 0 0

(2)

PSO is an optimization technique that simulates the behavior of particles in nature [30]. This173

technique can be used for the construction of FCMs and optimization of their weight matrices174

9



Table 2

Inference functions used for inference in FCMs.

Inference function Equation Main characteristics

Kosko [22] v j(t + 1) = f
(∑n

i=1,i¬ j Wi jvi(t)
) The FCM has no memory capacity because

it does not take into account the previous
iteration (v j(t)) during inference.

Modified Kosko [31] v j(t + 1) = f
(∑n

i=1,i¬ j v j(t) +Wi jvi(t)
) The FCM has memory capacity because it

takes into account the previous iteration (v j(t))
during inference.

Rescaled [32] v j(t + 1) = f
(∑n

i=1,i¬ j(2 × v j(t) − 1) +Wi j(2 × vi(t) − 1)
)

It disables null initial values (v j = 0) that are
activated when passed by the activation function.

(PSO-FCM) [29]. In this way, an optimized FCM is obtained that can be used to predict a re-175

sponse variable. In this case, each FCM is a particle i and the weight matrix (Wi) is its position.176

The algorithm first updates the particle velocity and then its position. Eq. 3 and Eq. 4 show the177

optimization process with PSO.178

vi(t + 1) = vi(t) + r1 · (Wbest
i –Wi(t)) + r2 · (W

gbest
i –Wi(t)) (3)

Wi(t + 1) = Wi(t) + vi(t) (4)

where vi is the particle velocity, r1 and r2 are random values with uniform distribution; Wbest
i is179

the best position obtained by a specific particle, while Wgbest
i is the best position obtained by any180

particle in the swarm.181

After the construction of the FCM and the optimization of its weight matrix, the FCM was182

ready to make predictions using inference rules or functions. To date, several inference functions183

have been reported in the literature, which are used depending on the problem to be solved. Table 2184

shows the most commonly used inference functions reported in the literature.185

3.3. Generation of the prescriptive models186

To generate prescriptive models, we developed a methodology, called prescriptive-FCM. This187

methodology is an extension of FCMs for prescriptive modeling. In the following, we will explain188

the proposed approach. Prescriptive-FCM is a prescriptive modeling approach that uses FCMs189
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and GA to generate prescriptions or optimal actions that achieve a desired outcome in the modeled190

system. Before explaining our approach, we will explain the elements that compose Prescriptive-191

FCM. FCMs were briefly explained in the previous subsection, and a brief explanation of GAs192

follows.193

3.3.1. GA194

A GA is an optimization technique inspired by the general theory of biological evolution.195

This technique reflects natural selection where the fittest individuals are selected to reproduce and196

generate new offspring [33]. Fig. 3 shows the methodological framework for a GA. The first steps197

in the development of GAs are problem definition and fitness functions. GAs start with a random198

initial population, whose fitness is calculated using functions that depend on the proposed objective199

(minimization or maximization). Subsequently, this initial population is subjected to selection,200

crossover and mutation processes. These procedures are carried out to vary the composition of201

each of the individuals of the initial population. The individuals with the best fitness are selected202

and the process is repeated until a certain stop condition is reached.203

No

Meet stop criteria?

Definition of fitness
functions Initialization the population

Evaluation

Selection
Generation of new

population with genetic
operators

Optimal individuals

Definition of the problem

Yes

Fig. 3. Methodological framework for a GA.
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3.3.2. Prescriptive-FCM204

In this study, we propose a methodology called Prescriptive-FCM to generate prescriptive205

models. Prescriptive-FCM uses three stages for the generation of prescriptive models (see its ar-206

chitecture in Fig. 4). The first stage consists of the characterization of the concepts of the problem207

to be solved. With these concepts is built the FCM with two layers, according to the nature of208

the concepts. Thus, these two layers constitute the system concepts and the action concepts. The209

former is related to the system to be modeled. For example, in a disease, the concepts related to the210

system could be the symptoms present in the patients. The action concepts, also called prescriptive211

concepts, are actions that, when executed, modify the system concepts. For example, in a medical212

problem, an analgesic could be an action concept. Changes in this variable will generate changes213

in the system variables, in this case, the patient’s symptoms. Particularly, the first layer is defined214

by the previously built predictive model.215

C1

C2 C3

C6

C4

C7

C5w3

w7 w4

w5 w2

w6

w1

C1

C2 C3

C6

C4

C7

C5w3

w7 w4

w5 w2

w6

w1

Action layer

System layer

1. FCM characterization

C1

C2

C3

C4

C5

2. Definition of desired states of
system-concepts

C6 C7
Initialization of action concepts 

C1

C2

C3

C4

C5

C6

C7

C1

C2

C3

C4

C5

C6

C7

Initial vector (vi) Final vector (vf)

FCM building

Genetic operations

Evaluation

3. Optimization of action concepts with GA

Fig. 4. Architecture of Prescriptive-FCM approach.
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The second stage of Prescriptive-FCM consists of the definition of the desired state. In this216

stage, the decision maker defines the desired values of the system concepts. For example, if the217

physician wants to lower the fever, then she/he will set this concept to a value of 0 because the218

goal is to minimize the fever as much as possible. The final stage consists of the optimization of219

the action concepts such that using the inference process of the FCMs leads to the desired system220

concepts. For this last stage, a GA is used that selects, crosses and mutates the values of the action221

concepts. The FCM inference process generates a vector corresponding to system concepts and222

action concepts. The former is used for evaluation with a fitness function (see Eq. 5), while the223

latter are the prescribed variables. The latter is the ones generated by our proposed methodology.224

F =

∣∣∣∣∣∣ f
( n∑

i=1,i¬ j

vs
j +Wi jvs

i

)
− f

( n∑
i=1,i¬ j

vŝ
j +Wi jvŝ

i

)∣∣∣∣∣∣ (5)

where vs is the vector representing the value of the desired concepts, vŝ is the vector represent-225

ing the values generated by Prescriptive-FCM, Wi j is the weight matrix of the characterized FCM.226

Finally, f is a function that holds the values in the desired range.227

4. Experiments228

4.1. Data preparation229

For the validation of our approach, we used three case studies related to the monitoring, treat-230

ment and prevention of diseases in public health. These datasets were chosen from public repos-231

itories since they contained variables (action concepts) that could be used in medical prescrip-232

tion/recommendation tasks. When analyzing these datasets, we realized that they do not contain233

information on concomitant diseases or the different stages of disease development. However, we234

did not find any dataset that could be used in prescription tasks (with action variables), and that, in235

addition, would incorporate these other variables or all the stages of the development of a disease.236

Specifically, they correspond to the estimation of Warfarin dose in anticoagulated patients,237

treatment of severe dengue (SD) and prevention of soil-transmitted helminth infections. Each case238

study contained a dataset, which was preprocessed using data cleaning technique. First, rows239

with missing data were removed to decrease bias. The normalization process of the variables240
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was performed to scale the variables within the same range and thus improve the speed of model241

training. In electronic health records, it is very common to find class imbalance in the objective242

variables. For this reason, we used synthetic minority oversampling technique (SMOTE) to bal-243

ance the classes before feeding the predictive and prescriptive algorithms. The characteristics of244

the variables in each of the datasets are described in each case study. For the internal validation245

process of the models, each dataset was divided into 80% for training and validation and 20%246

for testing. We used 10-replicate cross-validation to find the optimal hyperparameters of the best247

model.248

4.2. Configuration of hyperparameters249

In the development of ML models, it is common to use a combination of hyperparameters, and250

thus find the optimal values that represent the best model to be used in the test set. We used a251

10-fold cross-validation technique to find the best hyperparameters in each model. For this study,252

we used different hyperparameter values from similar studies reported in the literature depending253

on the nature of the data in each case study.254

For the optimization of FCM matrices with PSO, we use a grid of random values for initial255

population and iteration steps. For the first case, we use values between 10 and 200, for the second256

hyperparameter, values between 10 and 800. The inference process of FCMs involves activation257

functions and their slope, and inference functions. We established a combination of these hyperpa-258

rameters to find the best model. We implemented the activation functions and inference algorithms259

described in Table 1 and Table 2, respectively. Finally, the slope of the activation functions was260

established with a grid of random values between 0.1 and 1000.261

The search method used in Prescriptive-FCM was a GA. For this case, we used different com-262

binations of initial population size, crossover and mutation probabilities. The hyperparameter263

grid for the initial population contained random values between 10 and 400 individuals. For the264

probabilities, we used a grid of random values between 0 and 1.265

4.3. Evaluation metrics266

We evaluated the quality of the developed models using several metrics. We use accuracy,267

sensibility and specificity to measure the quality of classification-type predictive models. We268
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also use classification metrics to assess the quality of prescriptive models when the prescriptive269

variables are qualitative in nature. When the prescriptive variables are quantitative in nature, we270

use mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE)271

and R2 metrics. The following is a brief description of each of the metrics used to evaluate the272

performance of the models developed.273

• Accuracy: percentage of correctly classified examples among the total number of classified274

examples. Greater accuracy means a greater performance of the model.275

Accuracy =
T P + T N

T P + FN + FP + T N
(6)

where T P are the true positives, T N are true negatives, FN are false negatives, and T N are276

true negatives.277

• Sensitivity: measures the ability of the classifier to predict positive cases to those actually278

positive.279

S ensitivity :
T P

T P + FN
(7)

• Specificity: measures the ability of the classifier to predict negative cases to those actually280

negative.281

S peci f icity :
T N

T N + FP
(8)

• MAE: calculated as an average of absolute differences between the correct prescriptive con-282

cepts values and prescriptions.283

MAE =
1
m

m∑
i=1

∣∣∣va
i − v̂a

i

∣∣∣ (9)

where m is the number of records in testing set, va
i is the actual prescriptive value and v̂a

i is284

the prescribed value.285

286
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• MSE: measures the average square error of our prescriptions. For each point, it calculates287

the square difference between the prescriptions and the prescriptive concepts, and then, av-288

erages those values.289

MS E =
1
m

m∑
i=1

(va
i − v̂a

i )2 (10)

• RMSE: is the squared root of the error described above.290

RMS E =

√√
1
m

m∑
i=1

(va
i − v̂a

i )2 =
√

MS E (11)

• R2: Coefficient of determination.291

R2 =

∑m
i=1(v̂a

i − v̄a
i )2∑m

i=1(va
i − v̄a

i )2 (12)

where v̄a
i is the mean of actual prescriptive values.292

4.4. Case study 1: warfarin dose estimation293

Warfarin is the most frequently used anticoagulant worldwide to prevent thromboembolism294

and thrombosis. Establishing the dose of Warfarin is important because a higher dose than neces-295

sary may increase the risk of bleeding and a lower dose may decrease protection against thrombotic296

processes [34]. For coagulation monitoring, physicians use a laboratory test known as the interna-297

tional normalized ratio (INR). The INR value in normal patients is usually 1; however, in patients298

on anticoagulant therapy, INR levels may be between 2 and 3, a range that generally indicates ap-299

propriate anticoagulation for most cases. For patients with values above 3, they present a high risk300

of bleeding or hemorrhage, while values below 2 represent a risk of thrombosis or thromboem-301

bolism [35]. To test our proposed approach, we used a dataset published by The International302

Warfarin Pharmacogenetics Consortium (2009) [36]. Table 3 and Table 4 show the variables used303

in this dataset. For this case, we used sociodemographic variables such as age and race; anthro-304

pometric variables such as height and weight; and the next genetic variables: cytochrome P450,305

family 2, subfamily C, polypeptide 9 (CYP2C9), and vitamin K epoxide reductase complex, sub-306

unit 1 (VKORC1). Additionally, we used INR as a target variable and Warfarin dose as an action307
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variable. The INR variable was categorized due to the importance of establishing Warfarin doses308

that maintain INR values between 2 and 3. For this reason, INR was established as controlled309

INR (between 2 and 3) and altered INR (lower than 2 or higher than 3). After the data preprocess-310

ing described in subsection 4.1, the dataset had 3385 records corresponding to 2085 patients with311

controlled INR and 1800 patients with altered INR.312

Table 3

Descriptive statistics of numerical variables of case study 1.

Concept Concept type Variable name Median (Interquartile range)
C1 System Age (years) 65.0[55.0-75.0]
C2 System Height (m) 1.70[1.61-1.78]
C3 System Weight (Kg) 78[65.30-92.30]
C8 Prescriptive Warfarin 31.25[22.50-42.0]

4.5. Case study 2: Treatment of SD313

Dengue is a disease caused by a virus and transmitted by the bite of a mosquito of the genus314

Aedes spp. The most severe phase of the disease is known as severe dengue, and represents the315

main cause of death from dengue [37]. Studies have reported a mortality rate of over 20% when316

treatment is inadequate or delayed [38]. Currently, dengue has no definitive cure and its treatment317

is based on the relief of signs and symptoms. In addition, treatment is aimed at considerably reduc-318

ing the complications that the virus causes during its stay in the patient’s body [39]. Establishing319

the optimal treatment policy for severe dengue is important to avoid complications and reduce320

mortality rates associated with the disease. To test the proposed methodology, we used a dataset321

of mortality data from patients with dengue. The data correspond to 398 patients from Córdoba,322

Colombia. The variables used for the generation of the models are shown in Table 5. In this case,323

we used 4 variables related to severe dengue such as, extravasation, shock, hemorrhage and or-324

gan failure. While 4 treatment related variables were used to find the optimal values to minimize325

mortality. In this dataset, all variables used had values of 0 for absence and 1 for presence. For326

the target variable, surviving patients were coded to 0 while deceased patients were coded to 1.327
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Table 4

Descriptive statistics of categorical variables of case study 1.

Concept Concept type Variable name Category N Percentage (%) CI 95%
C4 System Race

White 1207 49.37 47.39-51.35
Asian 424 17.34 15.84-18.84
Black 328 13.42 12.07-14.77
Other 486 19.87 18.29-21.45

C5 System Amiodarone
No 2286 93.50 92.52-94.48
Yes 159 6.50 5.52-7.48

C6 System Vkorc1
A/A 587 24.01 22.32-25.70
A/G 937 38.32 36.39-40.25
G/G 921 37.67 35.75-39.59

C7 System Cyp2c9
*1/*1 1780 72.80 71.04-74.56
*1/*2 379 15.50 14.07-16.93
*1/*3 215 8.79 7.67-9.91
Other 71 2.90 2.23-3.57

C9 Target INR
Controlled INR 2085 53.70 52.12-55.26
Altered INR 1800 46.30 44.73-47.86

After preprocessing of the data, defined in subsection 4.1, there were 210 surviving patients and328

188 deceased patients.329

4.6. Case study 3: Prevention of geohelminthiasis330

Soil-transmitted helminth infection or geohelminthiasis is a disease characterized by the inges-331

tion of embryonated eggs of parasites or by penetration through the skin of their infective larvae332

present in humid and warm soils [40]. These infections are facilitated by poverty, illiteracy, lack333

of drinking water and hygienic habits [41]. Prevention of this type of infection is important due to334

the high morbidity that impacts human health leading to stunting, vitamin deficiencies and poor335

cognitive function [42]. It is necessary to establish prevention strategies to reduce the morbidity336

rates associated with these types of infections. Based on these issues, we tested our prescriptive337
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Table 5

Descriptive statistics of variables in case study 2.

Concept Concept type Variable name Category N Percentage (%) CI 95%
C1 System Extravasation 0 277 69.60 65.08-74.12

1 121 30.40 25.88-34.92
C2 System Shock 0 276 69.35 64.82-73.88

1 122 30.65 26.12-35.18
C3 System Bleeding 0 161 40.45 35.63-45.27

1 237 59.55 54.73-64.37
C4 System Organ failure 0 268 67.34 62.73-71.95

1 130 32.66 28.05-37.27
C5 Prescriptive Transfusion 0 276 69.35 64.82-73.88

1 122 30.65 26.12-35.18
C6 Prescriptive Cristalloid solutions 0 277 69.60 65.08-74.12

1 121 30.40 25.88-34.92
C7 Prescriptive Colloid solutions 0 161 40.45 35.63-45.27

1 237 59.55 54.73-64.37
C8 Prescriptive ICU 0 107 26.88 22.52-31.24

1 291 73.12 68.76-77.48
C9 Target mortality Survivor 210 52.76 51.19-54.33

Dead 188 47.24 45.67-48.81

approach to generate a model with optimal recommendations that will lead to disease prevention338

and thus minimize the occurrence of parasite infections. The dataset used to test the prescriptive339

approach corresponded to demographic and epidemiological data of 130 school-aged children in340

a rural area of the department of Córdoba, Colombia. The variables used for model generation are341

shown in Table 6. Seven variables are classified as variables directly related to the disease, while342

two variables related to prevention were considered action variables. The target variable indicated343

the clinical condition of the children with respect to the presence or absence of geohelminths.344

After preprocessing of the data, the cleaned and sorted dataset contains 64 healthy or uninfected345

children and 66 infected children.346
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Table 6

Descriptive statistics of variables in case study 3.

Concept Concept type Variable name Category N Percentage (%) CI 95%
C1 System Sex

F 397 52.1 48.55-55.65
M 365 47.9 44.35-51.45

C2 System Weight
<20 71 9.32 7.26-11.38
20-40 552 72.44 69.27-75.61
40-60 137 17.98 15.25-20.71
>60 2 0.26 -0.1-0.62

C3 System Indigenous
No 576 75.59 72.54-78.64
Yes 186 24.41 21.36-27.46

C4 System Source of drinking water
1 22 2.89 1.7-4.08
2 4 0.52 0.01-1.03
4 185 24.28 21.24-27.32
5 514 67.45 64.12-70.78
6 37 4.86 3.33-6.39

C5 System Floor of the house
1 675 88.58 86.32-90.84
2 26 3.41 2.12-4.7
3 60 7.87 5.96-9.78
5 1 0.13 -0.13-0.39

C6 System Disposal of human excreta
1 280 36.75 33.33-40.17
2 187 24.54 21.48-27.6
3 295 38.71 35.25-42.17

C7 Prescriptive Child wears closed shoes
1 203 26.64 23.5-29.78
2 240 31.5 28.2-34.8
3 319 41.86 38.36-45.36

C8 System Child washes his hands after defecating
1 234 30.71 27.43-33.99
2 209 27.43 24.26-30.6
3 319 41.86 38.36-45.36

C9 Prescriptive Child washes his hands before eating
1 317 41.6 38.1-45.1
2 191 25.07 21.99-28.15
3 254 33.33 29.98-36.68

C10 Target Geohelminthiasis
Negative 429 56.29 54.73-57.85
Positive 333 43.71 42.15-45.27
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5. Results347

In this section, we show the results of the models generated. Each subsection describes the348

results of the descriptive statistics, prescriptive model (and its underlying predictive model) for349

each case study.350

5.1. Case study 1: warfarin dose estimation351

5.1.1. Descriptive statistics352

Descriptive statistics for this case study are summarized in Table 3 and Table 4. For the sta-353

tistical description of the data, measures of central tendency such as median with interquartile354

ranges were used for variables C1, C2 and C3, which had median with interquartile ranges of355

65.0[55.0-75.0], 1.70[1.61-1.78] and 78[65.30-92.30], respectively. For categorical variables, the356

relative frequency with 95% confidence intervals (95% CI) was used. In this study, the majority357

of individuals were white, with a relative frequency of 49.37% (95% CI = 39-51.35), and 93%358

(95% CI = 92.52-94.48) of patients reported not taking the antiarrhythmic agent amiodarone. The359

variables related to the genotypic conditions of the patients, such as C6 - Vkorc1 with category360

A/G was the most frequent with 38.32% (95% CI = 36.39-40.25) and C7 - Cyp2C9 in category361

*1/*1 showed higher relative frequency than the other categories 72.8% (95% CI = 71.04-74.56).362

5.1.2. Predictive model363

We developed a predictive model using INR as the target variable. This model based on FCM364

has the ability to predict INR, and is built by adjusting the weights of the FCM using PSO (initial365

population = 80 individuals, iterations = 120). This FCM is used by Prescriptive-FCM to evaluate366

the quality of a prescription.367

Table 7 shows the performance of the developed predictive models and the optimal hyperpa-368

rameters of the best model for each case study. Regarding the case study of the warfarin dose369

estimation, the performance of the model developed with the classical FCM approach obtained370

values of 0.65, 0.51 and 0.77 for accuracy, sensitivity and specificity, respectively.371
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Table 7

Performance and optimal hyperparameters of the predictive models developed in this work for all case

studies.

Case study Optimal hyperparameters Accuracy Sensitivity Specificity
Warfarin dose Activation function = sigmoid

Slope = 10
Inference function =Modified Kosko

0.65 0.51 0.77
Treatment of SD 0.74 0.79 0.68
Prevention of geohelmintiasis 0.74 0.76 0.73

5.1.3. Prescriptive model372

We developed a prescriptive model that formulated the dose of warfarin for anti-coagulated373

patients. The GA using Prescriptive-FCM optimized the action concept, which in this case is the374

warfarin dose. Because warfarin dose was a numerical variable, the performance of the model375

generated with Prescriptive-FCM was evaluated using MAE, MSE, RMSE, obtaining values of376

2.76, 14.8 and 3.8, respectively. We used R2 as a measure of agreement between the actual data and377

that prescribed by the generated model. Fig. 5 shows a plot with the corresponding R2 value and378

the significance value of the analysis. For this case study, the R2 value expressed as a percentage379

was 96%.The optimal hyperparameters for this model were initial population of 50 individuals,380

crossover and mutation probabilities of 0.1 and 0.3, respectively.381

R2 = 0.96 − p < 0.001
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Fig. 5. Relationship between the warfarin values prescribed in the dataset and the warfarin values

prescribed by our approach.
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5.2. Case study 2: treatment of SD382

5.2.1. Descriptive statistics383

Descriptive statistics for this case study are summarized in Table 5. In this dataset, all variables384

were qualitative. The frequency distribution shows that variable C8 was the most frequent variable385

in the group of patients who presented SD. The least frequent variables in this category were C1386

- extravasation and C6 - use of crystalloid solutions, both with frequencies of 30.40% (95% CI =387

25.88-34.9). The opposite case occurred in the group of patients who did not present SD, these two388

variables C1 and C6 were the most frequent with respect to the others, in both cases the relative389

frequency was 69.60% (95% CI = 65.08- 74.12). ICU stays within this group only occurred in390

26.88% (95% CI = 22.52 - 31.24).391

5.2.2. Predictive model392

The mortality rate for SD can reach 20% if the clinical management of the disease is not done393

in an ideal way [38]. For this case study, we developed a model to predict mortality by SD. As394

in the previous case study, this procedure was performed by adjusting the weights of the FCM395

constructed by PSO (initial population = 70 individuals, iterations = 140). Table 7 shows the396

performance of the model developed to predict mortality by SD. The developed model had the397

ability to predict whether the patient dies or not with an accuracy of 0.74, sensitivity of 0.79 and398

specificity of 0.68.399

5.2.3. Prescriptive model400

Prescribing treatment in SD is of vital importance to prevent patient death. We developed a401

model for prescribing treatment actions aimed at preventing patient death by SD. Four treatment402

options were used to generate the prescriptive model (see Table 5). Due to the binary nature of403

these actions, we used accuracy as a metric to evaluate the performance of the developed model.404

Table 8 shows that the prescriptive model generated with Prescriptive-FCM for the formulation of405

treatment actions for SD has an accuracy greater than 0.81. The best performance of this model406

was for the prescription of colloid solutions with an accuracy, sensitivity and specificity of 1. The407

optimal hyperparameters for this model were initial population of 100 individuals, and crossover408

and mutation probabilities of 0.5 and 0.5, respectively.409
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Table 8

Performance of the prescriptive model for the treatment of SD.

Case study Prescriptive concept Variable name Accuracy Sensitivity Specificity

Treatment of SD

C5 Red blood cells transfusion 0.81 0.64 1.00
C6 Crystalloid solutions 0.87 0.80 0.93
C7 Colloid solutions 1.00 1.00 1.00
C8 Intensive care unit 0.84 0.87 0.83

5.3. Case study 3: Prevention of geohelminthiasis410

5.3.1. Descriptive statistics411

The results of the nine categorical variables that make up this dataset allowed describing it412

statistically using relative frequencies with 95% CI. 52.1% (95% CI = 48.55-55.65) of the individ-413

uals in the dataset were women with weights between 20-40 kg in 72.4% (95% CI = 69.27-75.61)414

and between 40-60 kg in 17.9% (95% CI = 15.25-20.71). Only 24.4% (95% CI = 21.6-27.46)415

of the participants reported belonging to an indigenous ethnicity. Variables C4, C5, C6 and C8,416

all of them from the system and related to epidemiological aspects, showed that the origin of the417

water for cooking is mainly from wells in 67.4% (95% CI = 64.12-70.78) or from a river or stream418

in 24.2% (95% CI = 21.24-27.32). Dirt floors predominate in 88.5% (95% CI = 86.32-90.84)419

of the dwellings of these subjects, and excreta disposal is done in toilets without connection in420

38.7% (95% CI = 35.25-42.17) or connected to a septic tank in 36.7% (95% CI = 33.33-40.17)421

mainly. After defecation few participating subjects washed their hands, 30.7% (95% CI = 27.43-422

33.99) said they always washed their hands, while 41.8% (95% CI = 38.36-45.36) said they never423

washed their hands. The two prescriptive variables of the dataset (C7 and C9) showed as results424

that the use of closed footwear is not a common practice among the study subjects, 41.8% (95%425

CI = 38.36-45.36) reported never using this type of footwear, likewise, a similar percentage of426

subjects, 41.6% (95% CI = 38.1-45.1) stated that they washed food before consumption.427

5.3.2. Predictive model428

We developed a predictive model with PSO-FCM (initial population = 50 individuals, itera-429

tions = 150) to predict the presence of geohelminths infections using demographic and epidemio-430

logical variables. The performance of this model can be seen in Table 7. The model predicted the431
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Table 9

Performance of the prescriptive model for the prevention of geohelminthiasis.

Case study Prescriptive concept Variable name Accuracy Sensitivity Specificity
Prevention of
geohelminthiasis

C12 Child wears closed shoes 0.74 0.80 0.74
C14 Child washes hands before eating 0.67 0.78 0.55

parasitosis with an accuracy of 0.74, sensitivity of 0.76 and specificity of 0.73.432

5.3.3. Prescriptive model433

The prevention of geohelminthiasis is important to avoid the spread of parasites in communi-434

ties. We developed a model to prescribe two crucial actions in the prevention of geohelminthiasis.435

The results show the model’s ability to prescribe these actions with accuracies between 0.67 and436

0.74. The developed model had greater sensitivity than specificity for the two prescriptive vari-437

ables used (see Table 9). The optimal hyperparameters for this model were initial population of438

50 individuals, and crossover and mutation probabilities of 0.5 and 0.5, respectively.439

6. Discussion440

In this study, we developed prescriptive models (and its underlying predictive model) to sup-441

port decision-making in clinical settings. We used three case studies: the first, related to the442

estimation of warfarin doses for anticoagulated patients. The second case study related to the443

treatment of dengue fever to reduce mortality rates. Finally, the third case was focused on the444

prevention of soil-transmitted parasitic infections.445

6.1. Warfarin dosing446

The estimation of the warfarin dose is crucial to avoid both bleeding and the presence of clots447

in patients with coagulation disorders. The developed predictive model used demographic and448

genetic variables to obtain an acceptable performance (see Table 7). The results are expected due449

to the lack of clinical and laboratory variables necessary for careful monitoring since there is a450

wide variation in dose response explained by baseline clinical conditions, lifestyles and food con-451

sumption. Including variables such as comorbidities (diabetes and arterial hypertension), would be452

25



useful because these types of diseases have been reported as risk factors for hemorrhagic compli-453

cations in patients receiving warfarin. Aggregation of these types of variables will possibly allow454

better prediction of the INR. Another variable to take into account when considering the dose of455

warfarin is the intake of vitamin K, since it actively participates in the blood coagulation process.456

To prescribe the appropriate dose of warfarin to maintain a well-controlled INR, it is necessary457

to consider the measurement of vitamin K in the meals eaten by anticoagulated patients, since458

any variation in this may change the amount of warfarin to be taken. [43]. Other variables such459

as lifestyle changes, discontinuation of warfarin, falls or serious injuries, consumption of two or460

more alcoholic beverages per day, becoming pregnant or breastfeeding may affect the INR [35].461

Therefore, it is important to consider some of these changes as variables within the predictive462

models developed.463

Regarding the prescriptive model for estimation of warfarin dose, the results were satisfac-464

tory due to very low error values such as MAE below 2.8, exceeding the performance of previous465

works. Table 10 shows a comparison of the models developed to estimate warfarin dose with the466

dataset used in the present work. The International warfarin Pharmacogenetics Consortium devel-467

oped two models using a clinical and pharmacogenetic algorithm, obtaining values of MAE 9.9468

and 8.5, respectively [36]. Considering the R2 that measures the degree of agreement between the469

actual warfarin values in the dataset and the value prescribed in the developed model, our model470

had a superior performance with values of 0.96. The models developed by this consortium ob-471

tained maximum values of 0.43. Another work developed by Chen et al [44], proposed a weighted472

learning method to estimate warfarin dose on the same dataset used in this study. The results of473

the model generated with the methodology proposed by Chen obtained an R2 of 0.36. Our model474

performed better than the models developed and reported in the literature.475

6.2. SD treatment476

In the second case study, the results demonstrated a good capacity both to predict mortality by477

SD and prescribe treatment options to prevent the patient’s death. The predictive model performed478

well with accuracy values above 74%. The variables defining SD have functional dependencies479

with mortality. Several studies have demonstrated the influence of shock, extravasation, bleeding480
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Table 10

Comparison of models developed to estimate warfarin doses.

Reference Model MAE R2

[36] Clinical 9.9 0.26
[36] Pharmacogenetic 8.5 0.43
[44] Predictive - 0.36
Our work Prescriptive 2.7 0.96

and multiorgan failure on dengue death [45–47]. However, other variables considered as warning481

signs of dengue may be more influential in the prediction. Among these variables are abdominal482

pain, hepatomegaly, which consists of an increase in liver size due to fluid accumulation in the483

abdominal region; small mucosal hemorrhages and edema, which consists of fluid accumulation484

in the tissues underlying organs.485

The prescriptive model for the treatment of SD consisted of prescribing treatment options486

according to WHO indications. The results showed a good performance of the developed models487

reaching values between 81% and 100% accuracy. Our model has the capacity to prescribe actions488

aimed at reducing the dengue mortality rate. The scarcity of works on prescriptive modeling makes489

it difficult to compare our work with previous studies. To date, there is no prescriptive model for490

the treatment of SD. An important work to highlight in the palliative treatment of dengue is the one491

performed by Hoyos et al [11] In this work, a prescriptive model was developed using autonomous492

cycles of data analysis tasks based in GAs; however, the work was focused on the three types of493

dengue. In addition, the model developed was validated in specific scenarios and not in a complete494

dataset.495

6.3. Geohelminthiasis prevention496

The prevention of soil-transmitted helminth infections is of public health importance. The497

predictive model generated performed well only using demographic and epidemiological data.498

However, other epidemiological, clinical and laboratory variables could improve the prediction499

performance. These variables could be, for example, maternal or caregiver schooling. In the pre-500

vention of geohelminthiasis, it is important that those responsible for the care of children have501
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adequate levels of education since it is possible that people with more schooling are more aware502

of the importance of adopting healthy practices, such as boiling water or washing hands before503

handling food; in addition, these people are more capable of transmitting this knowledge to their504

families. Clinically, geohelminthiases are polymorphic and do not present pathognomonic signs505

and symptoms, many of them are asymptomatic, so the measurement of clinical variables is re-506

lated to the presence of a particular parasitic agent; however, among the general symptoms and/or507

signs are anemia, weight loss and growth retardation. When these symptoms become evident,508

the parasitic infection is in progress, being useful these clinical variables in the prevention of the509

course of the intensity of the infection towards severity [41]. In endemic areas for these parasitic510

infections, the necessary diagnostic tools are often not available and the local epidemiology is un-511

known, overlooking the performance of laboratory tests that yield diagnostics. Often the results of512

a blood count, which shows laboratory variables such as hemoglobin and eosinophil count useful513

in the prediction of geohelminthiasis, are available. These parasites affect nutritional status by514

various mechanisms by feeding on host tissues, particularly blood, which causes a loss of iron and515

protein. Likewise, by activating TH2 lymphocytes (T helper type 2), they stimulate the secretion516

of IgE, producing an increase in the levels of eosinophils in blood, becoming the main cause of517

eosinophilia in pediatric age [48].518

The prescriptive model generated to prescribe geohelminthiasis prevention actions performed519

acceptably with average accuracy values of 70.5%, perhaps for the reasons mentioned above.520

Additionally, a small sample size in categorical variables does not allow finding functional depen-521

dencies between these variables and the target variable. Despite having used SMOTE to generate522

new training examples of prescriptive variables, the variability of the data is very low and does523

not allow finding the necessary patterns to make a prescription with greater accuracy. According524

to our literature review, to date, no predictive models have been proposed to detect at individual-525

level geohelminthiasis. Previous work has focused mainly on estimating prevalence over a 5-year526

period during a disease control program [49]. Another work has been developed to determine the527

status and distribution of geohelminths in specific regions [50]. In addition, several studies have528

focused on determining the factors that most influence the disease to develop control strategies529

[51, 52]. To the best of our knowledge, this is the first work to report a predictive model to detect530
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geohelminthiasis using only demographic and epidemiological variables.531

6.4. Comparison with previous approaches532

To situate the proposed methodology within the existing body of research, we conducted a533

comparative analysis using qualitative criteria to understand the novelty and advantages of our534

approach over other techniques and frameworks. Table 11 shows the qualitative criteria used for535

the comparison of approaches proposed in the literature versus our approach. The criteria are:536

1. The approach generates and evaluates recommendations to achieve a desired outcome,537

2. The approach is simple and easy to understand by medical professionals,538

3. The approach was tested in several case studies to demonstrate its generalizability, and539

4. The approach uses an explainable or interpretable technique.540

The work of Bertsimas et al. [7] only meets criterion 1 because, although it generates rec-541

ommendations with excellent performance, it is an approach that uses support vector machines,542

which are complex techniques for medical professionals to understand. In addition, the approach543

was not evaluated in several case studies to assess its generalizability. The work by Kovalchuk et544

al. [53] meets criteria 1, 2, and 4 because this approach was based on a three-step process using545

reference guidelines combined with explainable techniques to improve prediction results and sug-546

gested recommendations. The work by Zoubi et al. [54] meets criteria 2 and 4 because, although547

it is an approach that uses interpretable techniques and is easy to understand by medical profes-548

sionals, the study does not evaluate the recommendations suggested by the proposed approach and549

the approach was not evaluated on different datasets to assess its generalizability. The work of550

Dumlu et al. [20] only meets criterion 1 because it generates recommendations or prescriptions551

with good performance; however, the mathematical complexity of the Markov decision models is552

a limitation for interpretability and ease of use by the medical professionals.553

This is made possible by FCMs, a highly interpretable technique that simplifies understanding554

by medical professionals due to its accessible nature in both construction and interpretation pro-555

cess. In addition, our approach demonstrates a solid performance in the generation and evaluation556
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Table 11

Qualitative comparison between previous prescriptive approaches and our proposed approach.

Criteria
Study
Bertsimas et al [7] Kovalchuk et al [53] Zoubi et al [54] Dumlu et al [20] Our study

1
2
3
4

of recommendations and prescriptions, excelling in crucial areas such as treatment, monitoring557

and prevention of diseases of public health relevance. Finally, the validation of our approach en-558

compasses a diverse range of datasets addressing multiple contexts in clinical settings. This evalu-559

ation process not only highlights its strong generalizability, but also demonstrates the remarkable560

achievements in various aspects, including disease treatment, monitoring and prevention.561

7. Conclusions562

7.1. General considerations563

In recent years, the development of computer-aided strategies to support decision-making in564

clinical settings has increased. The objective of this work was to develop prescriptive models to565

support decision-making in scenarios related to the treatment, follow-up and prevention of dis-566

eases of public health interest. We used the Prescriptive-FCM methodology which consists of567

characterizing a problem into concepts defined as system concepts and action concepts, by us-568

ing predictive and prescriptive models. The goal was to optimize the action concepts leading to569

desired outcomes of the system concepts. To train and test the models, we used datasets that in-570

cluded specific variables for each case study, whose data were collected in previous studies. The571

results demonstrated the ability of the developed models to predict INR values and estimate war-572

farin dosage in patients on anticoagulation therapy. In addition, we proved the ability to generate573

models that predict mortality from SD and prescribe treatment actions to avoid fatalities. Finally,574

we were able to demonstrate that prescriptive models generate actions aimed at the prevention of575

geohelminth infection.576
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In summary, our study demonstrated the ability of our Prescriptive-FCM methodology to gen-577

erate prescriptive models that can be applied to any medical problem, whether for treatment,578

follow-up or prevention of public health events.579

Table 12

Concomitant diseases that could influence the follow-up and treatment process of the diseases represented

in the case studies [55–57].

Concomitant disease SD treatment Follow-up with warfarin Prevention of geohelminthiasis

Liver disease
Impaired liver function can
compromise the body’s ability
to handle dengue infection.

Impaired liver function may influence
warfarin metabolism and require dose
adjustments to avoid bleeding or clotting

Impaired liver function may affect
immune response to parasitic infections

Chronic kidney disease

Renal insufficiency may hinder
the elimination of dengue virus
breakdown products and increase
the risk of renal complications.

Compromised renal function may
influence warfarin excretion and
require close monitoring to prevent
side effects.

Impaired renal function may influence
the excretion of parasites and their
eggs in the feces.

Autoimmune diseases

Autoimmune disorders can affect
the immune response to dengue
and complicate the course
of the disease.

Immunosuppressive drugs used to treat
autoimmune diseases can interact with
warfarin and increase the risk of bleeding

Immunosuppressive drugs may influence
the immune response to parasitic infections

Type 2 diabetes

Changes in blood glucose levels
may influence metabolic response
to dengue and complicate disease
management

Changes in blood glucose levels may
affect response to warfarin and require
dosage adjustments to avoid complications

Type 2 diabetes can affect susceptibility
to parasitic infections and immune response

7.2. Limitations and future work580

This work is not without limitations. Below, we show each of the limitations encountered and581

future opportunities for research. First, for the construction of the predictive models, we did the582

characterization of the FCM concepts manually; however, the characterization of these variables583

could be done automatically, speeding up the creation and training of the models. Second, for584

the generation of the prescriptive models, we only used one algorithm (GA) that optimized the585

action concepts for each case study. Other optimization algorithms could improve the quality of586

the developed models. Third, learning the FCMs (for prediction and prescription) with PSO was587

performed in a single stage, using system concepts and action concepts together. In this case,588

using two-stage learning could be more beneficial, because the influence of system variables is589

different from action variables. Fourth, the present research is a retrospective study where the data590

were previously collected and the researchers could not choose which variables to add to build591

the prescriptive models. Data availability is a common limitation when building predictive and592
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prescriptive models, mainly in the health field due to the sensitivity of the data used. For the593

validation of our methodology, we used the data available in the datasets with specific variables in594

each case study. It is important to clarify that the data used belonged to specific populations and595

that the models developed are not applicable to other populations with different characteristics. If596

data from other populations are available, our methodology can generate new models that fit the597

data of interest. Fifth, there are some factors that can positively or negatively affect the efficacy of598

the treatment and follow-up process at particular stages of disease development. Within this group,599

we find concomitant diseases, genetic factors, and environmental factors, among others, which600

unfortunately were not found in all the datasets used for training and testing of the predictive and601

prescriptive models. Table 12 shows some examples of concomitant diseases that could affect or602

influence the treatment or follow-up process of the diseases represented in each case study. Sixth,603

the datasets only had information on two disease states (healthy vs sick or sick vs dead). However,604

in reality, there are different disease states (see Table 13), which due to the available data we were605

unable to assess. The addition of important information to the datasets such as the presence of606

concomitant diseases and the different disease states would allow the development of more robust607

models that allow a more complete analysis on the process of prevention, treatment and follow-608

up of diseases of public health interest. Finally, another limitation of our study is the size of the609

datasets of some case studies for training and testing the models. Currently, the availability of610

data with prescriptive variables is a major limitation due to the low availability of data related to611

patient treatment and follow-up in repositories for free use. Collecting more patient records could612

improve the quality of the models. It has been widely demonstrated that increasing the number of613

data could improve the quality of predictions and prescriptions using ML.614

Despite the limitations present in our study, our proposed methodology is a starting point for615

the development of models that support decision-making with respect to the prevention, follow-616

up and treatment of diseases of public health interest. The combination of FCMs with GA is a617

valuable approach for the development of models to support decision-making in clinical settings.618

Validation of these models with larger datasets supplemented with important factors, such as con-619

comitant diseases and different disease states, is necessary for their applicability in real clinical620

settings. In general, our approach is scalable to the incorporation of more variables (such as con-621
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Table 13

Main stages of a disease [58].

Stage of disease Description

Underlying
This stage refers to genetic predisposition or risk factors that increase the likelihood
of developing a disease in the future. In this stage, there are no symptoms or signs
of the disease, but underlying factors may be present.

Susceptible
At this stage, a person is exposed to causative agents (such as viruses, bacteria or
toxins) that could cause disease. Susceptibility may be influenced by genetic,
environmental and lifestyle factors.

Subclinical
During this stage, the disease is present but no overt clinical symptoms are evident.
However, changes in biomedical parameters or medical test results may occur that
indicate the presence of the disease.

Clinical
At this stage, the characteristic symptoms and signs of the disease become evident.
Clinical diagnosis is possible and medical measures can be taken to treat the disease
and alleviate the symptoms.

Recovery/disability/death
This stage marks the outcome of the disease. There may be complete recovery,
long-term disability or death of the individual, depending on the severity of the
disease and the effectiveness of treatment.

comitant diseases), or more disease states (classes).622
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