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Abstract—Next-generation mobile networks will rely on their
autonomous operation. Virtual Network Functions empowered
by Artificial Intelligence (AI) and Machine Learning (ML) can
adapt to varying environments that encompass both network
conditions and the cloud platform executing them. In this view, it
becomes paramount to understand why AI/ML algorithms made a
decision, to be able to reason upon those decisions and, eventually,
take further decisions related to e.g., network orchestration. In
this paper, we present ATHENA, an ML-based radio resource
scheduler for virtualized Radio Access Network (RAN) system.
Our real-software implementation shows that the proposed ML-
based approach can outperform the baseline solution. We discuss
how additional re-orchestration actions can be taken by analyzing
our scheduling decisions and learning from the past.

Index Terms—vRAN, Radio Resource Scheduling, Deep Rein-
forcement Learning, Machine Reasoning.

I. INTRODUCTION

SEveral working groups in major Standard Development
Organizations (SDO) are currently working on the au-

tonomous operation of network components. Initiatives for
including Artificial Intelligence (AI) and Machine Learning
(ML) in the Radio Access Network (RAN) [1], Core [2], and
Management [3] have been studied by the 3rd Generation
Partnership Project (3GPP), while other initiatives led by
the European Telecommunications Standards Institute (ETSI),
such as the Experiential Networked Intelligence (ENI) [4]
and Zero-touch Network and Service Management (ZSM) [5]
groups, and industrial consortia such as O-RAN [6] are
also promoting the introduction of data analytics into their
architecture [7], [8], [9].

This integration will create control loops [10] among dif-
ferent network domains (e.g., RAN / Core Management) to
seamlessly operate mobile networks, harvesting data from the
different available sources (i.e., network functions, infrastruc-
ture), and enforcing back automated decisions into it. Inte-
grating the application of data analytics tasks and intelligent
algorithms into the network architecture could benefit the
autonomous operation of the system, where components are
self-organizing and self-orchestrating because it promotes the
automation of decisions within the network. On the other hand,
it also introduces other challenges that must be addressed.
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Fig. 1. Machine Reasoning in network management and orchestration.

Among them, we can list the scalability of the algorithms,
especially for the radio components, and the explainability of
the decisions taken by the intelligent algorithms.

In this paper, we provide an ML algorithm for the au-
tonomous operation of the system which we use to discuss
the explainability of its decisions, as it introduces a com-
pletely new paradigm in the operation of mobile networks.
By introducing explainable intelligence [11], the usual black-
box behavior of the AI/ML models is opened up, allowing
operators to interpret the decisions of the deployed intelligent
algorithms [12]. This concept has been recently extended into
the Machine Reasoning (MR) [13], which tries to imitate hu-
man reasoning in an analytical way, further devising decisions
based on the decisions taken by intelligent algorithms. While
reasoning on top of an intelligent system has been proposed
more than three decades ago [14], with the advent of modern
computing systems (especially parallel ones, such as GPUs)
these techniques can effectively be used to programmatically
manage network intelligence.

We present an example of MR applied to AI / ML in the
mobile network context in Fig. 1. By interpreting the decisions
that an AI/ML module takes, an MR module located in the
network orchestrator can understand why some decisions are
taken, e.g., due to lack of resources, and then take further
actions by performing e.g., a re-orchestration of the system. In
this paper, we propose ATHENA (ArTificial intelligence-based
scHEduler for radio resources with computiNg Awareness) as
the fundamental building blocks of this view: an ML solution
for the operation of a network function and the application
of reasoning techniques stemming from the decisions of this
algorithm. More in detail, our contributions are as follows:
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• A novel ML-based radio controller for virtualized RAN
(vRAN), that optimizes the network performance by



pairing with other components in the O-RAN ecosystem,
such as the UE selection mechanism, while taking into
account the computing resource impairments that are
typical in cloud platforms [15].

• A reference implementation based on open source com-
ponents such as srsRAN [16], extended with data ship-
pers and new APIs for the integration of ML solutions
into the baseline implementation, which we release as
open source software.

• Reasoning on the decisions that are taken by the ML
solution, and the subsequent analysis of these results
towards the intelligent re-orchestration of the system.

This paper is structured as follows: we discuss the related
work, especially from a network standardization perspective in
Sec. II. We present the system model and the problem we study
in Sec. III. Then we describe ATHENA, first by introducing
the proposed ML-based radio scheduler in Sec. IV, and its
implementation in Sec. V. Then we evaluate it in Sec. VI, and
discuss the MR implications in Sec. VII, before concluding in
Sec. VIII.

II. CONTEXT

In this section, we introduce the context of this work. We
start with a discussion on automation and reasoning methods
used in the standards (especially the ones related to O-RAN)
and then discuss existing related works.

A. Automation and reasoning in the standards

1) 3GPP: There are various Working Groups (WG) within
3GPP that have currently active work items on the introduction
of AI/ML within the network functionalities in the 3GPP
framework. The RAN1 WG studies how to introduce AI/ML
for the air interface, aiming to evaluate the performance of
AI/ML-driven solutions compared to baseline solutions for
channel state information feedback, beam management, and
positioning [1]. The RAN3 WG studies AI/ML for NG-RAN,
aiming to support AI/ML-related signaling within the existing
NG-RAN architecture and for use cases such as network
energy saving, load balancing, and mobility optimization. The
SA2 WG studies how to incorporate AI/ML into the 5G
core, aiming to further enhance the Network Data Analytics
Function (NWDAF) for network automation [2] and a new 5G
service to support application-level AI/ML operations [17].
SA5 WG studies the introduction of AI/ML management
capabilities and services for 5G systems where AI/ML is
being used, e.g., Management Data Analytics Function and
NWDAF [3].

2) O-RAN: Working Group 2 has released a technical report
providing the terminology, workflow, and requirements related
to AI/ML model training and deployment in the RAN, while
also studying the enhancements needed in the architecture to
support AI/ML-related requirements for several use cases such
as QoE optimization and traffic steering [18].

3) ETSI: The ZSM ISG specifies new capabilities (i.e.,
management services) and extends the existing ones in the
ZSM architecture, to support automation of network man-
agement and orchestration operations based on AI/ML [5].

Finally, the ENI ISG is defining a cognitive network manage-
ment architecture using AI/ML and context-aware policies to
adjust offered services based on business goals by providing
automated service provision, operation, and assurance [4].

In this work, we introduce as ATHENA: (i) an ML-based
radio resource controller that takes into account the computing
resource impairments to optimize radio resource utilization
and the overall network performance, and (ii) an MR part, to
extend the ML-based radio resource controller to also take fur-
ther actions triggered by the explanation of the decisions taken
by the ML model. This work is closely aligned with various
SDOs because 3GPP and O-RAN are expected to study the
ML-based radio resource scheduling use case in later releases
while capabilities related to AI/ML explainability are already
being studied and introduced in ETSI ZSM and ETSI ENI. We
propose a reference deployment of ATHENA using the O-RAN
architecture in Fig. 4, where the ML is part of ATHENA is an
xApp in the Near-Real-Time Resource Intelligence Controller
(Near-RT RIC), which operates at millisecond scale, while the
MR module is part of the Non-Real-Time RIC (Non-RT RIC),
which operates at minute granularity.

B. Related Work

1) Deep Reinforcement Learning-based radio schedulers:
Deep Reinforcement Learning (DRL) is recently gaining at-
traction for solving problems in dynamic scenarios, as it does
not require labeling new samples and training the model ex
novo. In [19], the authors propose an actor-critic agent that
chooses the most appropriate scheduling algorithm among the
candidate scheduling algorithms to maximize the overall QoS.
The state includes the number of active users, the arrival rate,
the CQIs, and the performance measure in relation to the QoS
requirements of users. The reward function measures the actual
impact of choosing a rule on meeting the QoS objective for
users. In [20], the authors propose a lightweight multi-user
DRL algorithm to address the problem of spectrum access. For
each time slot, a user can select only one channel to transmit,
and an ACK signal (acts as an observation) is received by the
user if the transmission is successful. The state includes the
history of transmissions on the selected channel (i.e., actions)
and the observations made by the user. The reward function
measures the achievable throughput. In [21], multiple access
schemes are leveraged to divide the time frame amongst WiFi
and LTE users. The authors propose a DRL algorithm to
find the proper splitting point (i.e., action) according to the
received feedback on the channel status for earlier time frames.
The state includes idle slots and successful transmissions, and
the reward function measures the transmission time given to
the LTE users without violating the throughput requirements
of WiFi users. In [22], the authors specifically focus on the
radio resource scheduling problem in the MAC layer with the
objective of jointly optimizing the throughput and fairness.
They proposed a DRL algorithm that works agnostically for
various numerologies without any need for retraining when
numerology changes. The objective of the agent is to select
an active UE from a candidate set of UEs and allocate the
available resource block group (RBG) to the chosen UE. The



state includes eligibility of UEs, data rate, and fairness while
the reward function measures the throughput. In all these
works, the state space includes the channel conditions and
the reward considers the achieved UE throughput. Our work
considers these metrics as well and explicitly designs ATHENA
for targeting specifically vRAN systems, as we discuss in
Sec. III. However, as we discuss next, ATHENA leverages
ML to perform radio resource management in the context
of fluctuating computing capacity in virtualized environments,
such as the infrastructure that the O-RAN applications are
running on.

2) CPU-aware radio schedulers: Due to the dynamic vari-
ations in the consumption of computational resources by the
virtualized RAN in the O-RAN cloud infrastructure, there may
be under-provisioning of computational resources, severely
degrading the network performance, e.g., due to radio frames
not being decoded in time. There has been some research work
to determine the usage of computational resources by virtual
RAN functions [23]. Also, the authors in [24] analyzed the
computational resource usage of virtual RAN functions using
a real experimental testbed but without considering the impact
of SNR on the computational load. The work [25] proposes
a model to determine the computational load by considering
the impact of SNR and the applied MCS on computational
resource consumption. They illustrate that computational re-
source usage decreases when selecting more robust MCS
schemes. This is leveraged in [26], where two main functions
of the protocol stack are re-designed to avoid network per-
formance degradation in virtualized RAN by avoiding compu-
tational outages disruption in the perceived performance, by
optimizing per-frame the MCS and resource block assignment.
However, the two latter works are leveraging models to provide
their solutions. In ATHENA, we use a model-free solution
based on contextual bandit and RL techniques.

Essentially, vrAIn project is the closest to the spirit of our
work [27]: they proposed an architecture to control the CPU
quota and maximum MCS in order to maximize the quality
of service, in terms of users’ buffer occupancy, jointly with
low decoding error probability and minimum computational
resources. Similar to ATHENA, they solve a contextual bandit
problem with RL. It is leveraging the channel statistical
characteristics, while, as we explain later, ATHENA takes as
input the instantaneous channel condition and outputs the exact
MCS and PRB allocation to increase the user’s throughput,
receiving direct feedback from an internal module of the
vRAN (LDPC decoder). While vrAIn operates at coarse time
scales (in the order of seconds) and fits in the Non-RT RIC of
the O-RAN architecture, ATHENA is forming a millisecond-
order loop at the MAC layer and, thus, is placed in the O-DU
and/or Near-RT RIC.

3) Reasoning and explainability in ML and AI: AI and ML
interpretability is a new topic that emerged recently and is
currently very active [28], [11]. The interest in ML and AI
explainability is to evaluate a learned model and to also help
its users to trust its decisions. However, although AI and ML
methods are usually evaluated over specific metrics, there is
not yet a consensus on the definition of their interpretability
and explainability, although the problem is being studied by

TABLE I
NOTATION TABLE

Short Expansion Variable Description Set
UE User Equipment u User U

MCS Modulation Coding Scheme mu User’s u MCS M
PRB Physical Resource Block nu User’s u PRBs N
TBS Transport Block Size lu User’s u TBS
CRC Cyclic Redundancy Check ru User’s u CRC

c̄u User’s u channel conditions
TTI Transmission Time Interval t

β Congestion factor B

different disciplines [29]. In general, it is still unclear what
the characteristics that the interpretation of a black-box model
should have in order to produce outputs that are relevant to a
specific audience or problem [30].

In this work we propose the idea of actionable MR [13],
[31], that is, taking additional decisions based on the ones
already taken by the AI/ML. This approach suits very well
the management and orchestration of a 5G network, as this
task is usually happening at a different time-scale [32] from
other AI/ML-based operations. To the best of our knowl-
edge, this is the first work that introduces the concept of
actionable MR in the O-RAN ecosystem. We leverage these
techniques to analyze the behavior of the underlying AI/ML
rApps/xApps/dApps [33] and to re-orchestrate resources to
meet operator-defined requirements.

III. SYSTEM MODEL AND PROBLEM

In this section, we present our model for radio scheduling,
then the resource scheduling at virtualized RAN, and finally,
we discuss how decoding is performed and its complexity.

A. System model

We focus on the physical (PHY) and the MAC layers of
the 3GPP 5G-NR stack [34]. These layers take care of several
functionalities, ranging from very low PHY level functionality
(e.g., demodulation and decoding) to radio resource scheduling
to UEs. We depict our model in Fig. 2 and provide notation
in Table I.

1) Model components: Our system consists of a set U of
user equipment (UEs) u and a base station, which we will
also call gNB, that provides communication capabilities to
users. The UEs communicate with the gNB in order to transmit
their information, according to the radio resource scheduling
policies defined by the gNB. These policies are effectively
translated into a specific amount of Physical Resource Blocks
(PRBs) and a specific Modulation and Coding Scheme (MCS),
that we will next present in detail.

At each Transmission Time Interval (TTI) t, the gNB
allocates to each UE u a number of PRBs and a specific MCS
for its data transmission, both in Uplink (UL) and Downlink
(DL). We focus on the UL pipeline, because this creates a
major computing load for the gNB [24] and, as we discuss in
Sec. III-C, it is one of the most important factors to consider
for vRAN systems.
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CPUs: Total decoding time exceeds the deadline and the ACK/NACK is not
integrated into the DL frame in time, incurring users’ desynchronization. ii)
High capacity/low congested CPUs: Decoding tasks end before the deadline
and the information regarding ACK/NACK is packed in the PDCCH of the
DL Frame, maintaining connectivity.

2) Physical Resource Blocks (PRBs): The total available
bandwidth managed by the gNB is partitioned into N blocks,
called Physical Resource Blocks (PRBs). Fifth-Generation
New Radio (5G-NR) and Long Term Evolution (LTE) sys-
tems use an Orthogonal Frequency-Division Multiple Access
(OFDMA) scheme for data transmission, encoding data allo-
cated to a UE into a portion of such N blocks [34].

In 5G-NR systems, the number N of available PRBs is
variable and depends on the total available bandwidth and the
width of each PRB. For example, in a scenario with 10 MHz
bandwidth and 180 KHz-wide PRBs, there are NUL

RB = 50
available PRBs during every TTI. However, since 5 PRBs
must be reserved for the Physical Uplink Control Channel
(PUCCH) [35], the maximum number of PRBs that is actually
available for the PUSCH is N = 45. Also, the assigned num-
ber nu of PRBs for the PUSCH of user u must be factorizable
into factors of 2,3 and 5 [35], i.e., nu = 2α0 · 3α1 · 3α2 ≤ N ,
where α0, α1, α2 non-negative integers. Thus, at each TTI, the
gNB should decide how to assign nu PRBs to UE u. The user
u is selected at each TTI by the MAC scheduler.

3) Modulation Coding Scheme (MCS): Each user’s u Mod-
ulation Coding Scheme (MCS) mu belongs to a set M =
{1, ...,M} of M elements, where each element captures a
number of bits that will be encoded in each symbol transmitted
by user u. For 5G-NR, 3GPP defines 29 MCS indexes, i.e.,
M = 29, ranging from the lowest QPSK capable of carrying
2 bits/symbol, up to 256-QAM that can carry 8 bits/symbol.

Combined with MIMO techniques, these MCSs provide the
Gbps data rates obtained by 5G. The MCS that will be used by
the UEs depends on the estimated channel conditions, which
are upper bounded by Shannon’s law. Thus, in practice, not
all MCS indices are always available.

4) Radio Resource Scheduling Procedure: With the term
radio resource scheduler, we define the component that resides

on the MAC layer of the O-DU and performs the following
three tasks; i) user selection, ii) PRB allocation, and iii) MCS
selection. The UL radio resource scheduling is performed by
a centralized agent in the gNB, e.g., the network operator, and
consists in deciding the user u granted data for the UL channel
at every TTI t. Periodically, each user u sends a Buffer State
Report (BSR) to the gNB containing the user’s UL demand,
i.e., the size (in bytes) of the total data pending in UE’s u stack.
Then, the gNB schedules the user u transmission and answers
with a transmission grant for user u. The grant consists of
two decisions: (i) the number nu of PRBs that are assigned
to user u, and (ii) the MCS mu that u must use. The choice
of the granted user u ∈ U , and the selection of nu and mu

depend on the specific controller algorithm implemented by
the gNB, which uses information such as the user’s data size
or their channel conditions, e.g., their Signal-to-Noise-Ratio
(SNR), that would limit the communication.

5) Transport Block Size (TBS): The selection of MCS and
PRBs eventually leads to a given amount of data that can be
transmitted by a UE, which is called Transport Block (TB) and
has a specific size (TBS) lu that accounts for the user data,
the size of the extra information such as Cyclic Redundancy
Checks (CRCs), and filler bits. Given the discrete number of
PRBs and MCS, the possible values of TBS can be found
using a simple deterministic procedure [36].

B. Problem: Resource scheduling in vRAN

Virtualized RANs (vRANs) are a successful network
paradigm, as they allow to decouple the underlying network
infrastructure from the software-based implementation of a
3GPP gNB. Hence, vRANs have become a very important
technology for next-generation mobile networks, also driven
by associations such as O-RAN [6]. However, the operation
of vRAN systems still presents some fundamental problems,
such as the integration of hardware accelerators or the optimal
interplay between the cloud infrastructure and the vRAN
software. In this paper, we aim at maximizing the system
throughput in the communication between the end users and
the gNB, considering the possible impairments due to the
cloud infrastructure. We take a step further from the direction
identified in [37] and consider a deep learning approach.

According to the 3GPP 5G-NR specification [35], each
UL/DL frame transmission is associated to one Hybrid Au-
tomatic Repeat Request (HARQ) process, which can handle
up to two transmissions at a time. When the UE requests to
send data, the gNB assigns a HARQ process as responsible to
manage the whole data transmission’s lifecycle. After the UL
frame receival by the Low-PHY (L-PHY), a PHY-thread starts
processing and directs it to the High-PHY (H-PHY) layer con-
taining the decoder module. We describe in Sec. III-C the role
of PHY-thread. The decoder will start sequentially decoding
the TB of each user and will inform the corresponding HARQ
process about the ACK/NACK of the UL-transmitted TB. In
the case of ACK, the UE can use this HARQ process for a new
transmission. In the case of NACK, the HARQ process will
direct the UE to retransmit the TB using a different redundancy
version, i.e., a different set of systematic and redundant bits,



that will be combined with the previous transmission in order
to increase the probability of successful decoding. However,
all the tasks that are related to uplink (UL) frame decoding
(at the PHY layer) have to be completed before the downlink
(DL) frame, containing the ACK/NACK, is scheduled to be
sent. The ACK/NACK is contained in the Physical Downlink
Control Channel (PDCCH), located in the first symbols of
the DL frame, while the rest symbols transmit the downlink
data in the Physical Downlink Shared Channel (PDSCH). This
introduces a hard deadline for the completion of the decoding
tasks (that are by far the most computing expensive of the full
protocol stack [38], [39], [15], [24]). In 5G-NR this deadline
is configurable and let it be equal to J−1 Transmission Time
Intervals (TTIs). That is, the frame decoding result has to be
ready before the ACK/NACK transmission that will take place
in the J-th TTI after the reception of the original frame. In 5G-
NR the value J is programmable, but the default values for the
TTI length (i.e., 1 ms) and J (i.e., 4 ms) impose a deadline of
3 ms to complete de-modulation, rate-matching, and decoding
operations [38]. In Fig. 2, we depict the UL frame decoding
procedure under two scenarios; i) CPUs that are congested
with third-party external tasks (also referred to as low capacity
CPUs), for which decoding deadline violations, and thus user
desynchronization, occur and ii) uncongested CPUs (i.e., with
high available capacity), where the frame can be decoded
within the deadline, and the ACK/NACK can be transmitted
within the deadline.

A deadline violation has critical consequences on the vRAN
operation, with sudden drops in the achieved performance [15],
and it must be avoided by properly configuring the required
computing resources. However, this is not an easy task in
vRANs, where computing resources are dynamically orches-
trated. Only with very high overprovisioning, which may lead
to severely unsustainable systems [40], statistical guarantees
of avoiding computing resource shortages are obtained.

This is needed because the usage of shared, cloud comput-
ing platforms introduces the so-called noisy neighbor prob-
lem [41]: Let different processes, e.g., different parts of the
implementation of a vRAN system running on the same
platform, share a computing platform. In this case, there may
be capacity oscillations due to competing processes, which
may lead the elapsed time for the completion of the task to
exceed the target deadline.

Observe that vRANs are extremely fragile systems when
dealing with computing capacity oscillation: Missing the dead-
line, even for just some UL frames, can cause the UE to
completely lose the synchronization, and hence the associated
data flow [15]. This would cause additional congestion, as the
same packets will need to be sent again.

In Sec. IV we propose an ML solution that jointly optimizes
the UL decisions and the computing effort generated by
them. This avoids disruptions that may be caused when the
generated computing load is too high, e.g., due to decisions
that impose computing-hungry operations at the same time.
We next discuss the computing footprint of a vRAN system,
and why it is paramount in a vRAN system to also consider
the computing effort of radio resource scheduling decisions.

C. Decoding in vRAN systems
1) Decoding algorithm: In a 3GPP PHY pipeline, a new

decoding task takes place at each TTI. Decoding tasks translate
the modulated and encoded digital symbols that are received in
the Physical Uplink Shared CHannel (PUSCH), which carries
UL data, into bytes associated with each UE that are delivered
to the higher layer of the gNB stack.

After de-modulating the symbols and performing other
channel optimization procedures, each bit belonging to the
original transport block is decoded using an iterative proce-
dure. During this process, each bit i is represented as a value
LLRi in the range [−1 . . . 1], carrying the log-likelihood ratio
of the i-th symbol being either a 0 or a 1. That is, the decoder
processes a vector LLR of size TBS, containing the log-
likelihood ratios for all the bits in the TB. When LLRi → 1,
then likely bit i = 1, while LLRi → −1 means that likely bit
i = 0. Finally, when LLRi = 0 there is high uncertainty on
the final value of the decoded bit i.

The decoder algorithm loops across all the LLR vector
items LLRi to maximize the likelihood of the received bits
in the TB, and repeats the loop until a threshold likelihood
ratio is achieved. After that, the TB is considered decoded
and the CRC is checked, to discover possible channel errors.
Standards define specific instances of this decoding process:
the Low-Density Parity Check (LDPC) decoder is used in 5G-
NR and the Turbo decoder in LTE [42]. Both the LDPC and
the Turbo decoder share the generic iterative procedure that
we described in this section.

2) Software implementations and complexity: The imple-
mentation of the procedure discussed above can be represented
by two nested loops: an inner one that iterates over the LLRi

values, maximizing their likelihood, and an outer one that
loops until the target likelihood is reached (or a maximum
number of iterations IMAX ). Thus, the time complexity Tdec

of the decoding task is affected mainly by: (i) the TBS lu as it
sets the number of iterations needed to process all the LLRi

(i.e., a larger TBS implies more iterations in the inner loop),
and (ii) the relation between the channel conditions and the
selected MCS mu, that we will next explain.

The actual number of iterations of the decoding algorithm
depends on the selected mu and the experienced SNR. With
low mu and high SNR, the decoding ends with one iteration of
the outer loop with a very high probability. Otherwise, more of
them are needed up to the point that the selected mu cannot be
decoded under the given channel conditions, and hence even
after IMAX iterations the TB cannot be decoded, and a NACK
is sent to the UE to trigger its re-transmission. This value
is implementation-dependent. In the software implementation
used in this paper IMAX = 8.

An LDPC/Turbo decoder instance is present in every PHY
layer thread (namely DSP worker in Fig. 2) that handles UL
frame processing in each TTI. Since the entire UL processing
pipeline can typically take longer than a single TTI, multiple
threads are deployed to ensure that UL frames in consecutive
TTIs can be served without delay. As a point of reference,
the open-source 4G/5G RAN implementation srsRAN [43]
deploys 3 PHY-layer threads by default. If an UL frame is
received and all threads are occupied, the UL pipeline pauses
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until a thread becomes available. Furthermore, if multiple
users are scheduled in a TTI, the decoder of the respective
PHY thread processes their transport block sequentially, after
which the UL pipeline resumes. As a result, if the total
decoding time exceeds the deadline, all connected users will
become desynchronized from the network and experience a
degradation in the quality of service.

Given the time-sharing nature of cloud systems, larger
Tdec values imply a higher probability of suffering computing
fluctuations (e.g., due to context switching). In this case, Tdec

becomes less deterministic and thus less suitable for the frame
decoding tasks. Fig. 3 shows Tdec vs. TBS (obtained with the
platform discussed in Sec. VI).

It illustrates the elapsed time for full decoding, under vary-
ing channel quality conditions, and different competing loads
(modeled by the variable β, which we will later introduce).

When no competing load is present (green line in Fig. 3),
the variability of Tdec increases linearly with the TBS. In the
medium and high congested scenarios, though, the trends of
both average and variability of Tdec grow non-linearly. This
effect becomes evident when the vRAN system is competing
for computing resources with others, and only a reduced
amount of frames can actually be decoded within the default
deadline of J − 1 TTIs, which in 5G systems is 3 ms for
mobile broadband traffic.

3) CPU congestion: On cloud computing systems, such as
those employed by vRANs, different execution threads share
the same computing platform (i.e., CPU cores) to perform
tasks. The element that is in charge of multiplexing comput-
ing resources among the different processes is the operating
system’s CPU scheduler, which assigns CPU quantum to
processes according to some periodicity rules (e.g., fairly
sharing the amount of CPU time across processes) or when
the process would not efficiently use the resources because it
has to wait for the completion of another operation (i.e., upon
an I/O operation or a memory cache miss).

To capture this aspect effectively, we introduce a congestion
factor β ∈ [0, 1] that mimics the overhead introduced by other
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Fig. 4. ATHENA and its integration with the most important modules
of the 3GPP and O-RAN architectures. ATHENA framework comprises i)
ATHENA-ML resource controller that integrates with a user selection compo-
nent to provide a fully-fledged MAC scheduler, and ii) ATHENA-MR engine
that (re-)orchestrates O-Cloud resources to optimize the O-DU behavior.

competing processes by slowing down the existing ones. This
allows the decoding process and the number of competing
processes to be described independently of the computing
platform that is used, working with any CPU clock time.

To indicate that there are no competing processes and that
we can operate at a full CPU speed we assume β = 0, while
β = 1 indicates a very slow and crowded computing platform.
More details about the implementation of β are provided in
Sec. V. Congestion factor β takes into account the dynamic
nature of the data center the O-RAN cloud is running on. That
is, this is not apriori fixed and can be by preference configured
by an orchestration algorithm, as we show in Sec. VII-C, or
be tracked and measured, as we explain in Sec. V-B7.

IV. ATHENA

We now discuss ATHENA framework, which as depicted in
Fig. 4, consists of two main functional blocks; i) ATHENA-ML
resource controller that adjusts the radio resources of the
scheduled users to adapt to the dynamic changes of the
execution’s environment and integrates with the user selection
component, and ii) ATHENA-MR that orchestrates the compu-
tational resources of the O-DU. Both the user scheduler and
ATHENA-ML operate at millisecond timescale [34] providing
uplink scheduling grants to UEs. For the rest of the paper,
we consider that any user selection component could be
integrated in ATHENA (e.g., round-robin, proportional fair)
and we study the radio resource controller component. In
this section, we focus on ATHENA-ML, while ATHENA-MR
is studied in Sec. VII.
ATHENA-ML, a contextual bandit learning algorithm, cre-

ates a closed control loop taking actions based on contextual
information coming from the RAN, e.g., the UE-associated
wireless channel conditions, and from the cloud provider’s data
center monitoring system, e.g., the current β. ATHENA-ML



then transforms this information into policies, optimizing
RAN performance to the hard time deadlines imposed by the
computing platform.

We formulate our problem as a contextual bandit (CB)
problem, in which in each episode t ∈ T , the agent receives
the current context c(t) as a feature vector drawn from a
context distribution C. The agent then chooses and executes
an action α(t) ∈ A, where A is the action space, and receives
a reward r(c(t), α(t)) from the execution environment. The
reward distribution over the (c(t), α(t)) pair is considered
unknown a-priori.

The CB problem can be considered a particularization of the
full Reinforcement Learning (RL) problem, with the context c
in CB analogous to the state s in RL. However, while the next
context c(t+1) in CB is independent of c(t) and α(t), in RL,
the distribution of s(t+1) depends both on the last state and
on the performed action. This observation matches our setup
since the context, which includes the channel conditions and
congestion factor, is not affected by the controller’s decision.
Also, while reward estimation in RL requires accounting for
future rewards using a discount factor γ, the reward in CB
equals the instantaneous collected reward. Therefore, any CB
problem can be solved using RL algorithms considering 1-step
episodes or alternatively γ = 0.
ATHENA-ML uses an RL algorithm to solve the CB problem

by adjusting it to 1-step episodes. The resulting policy function
π(c) : C → A is a deterministic function that maps the current
context into action. The goal is to learn the optimal policy
π∗ = argmax

π∈Π
[r(c, π(c))], which maximizes the received

reward. ATHENA-ML is also model-free, in the sense that it
does not have any insights about the environment’s internal
model. On the contrary, it relies solely on the received reward
signal, which renders ATHENA as an appealing solution for
heterogeneous computational platforms.

A. ATHENA-ML components

1) Context Space C: Let c ∈ C denote the system context,
where the context space C in ATHENA-ML incorporates the
combination of (i) the congestion β ∈ B, where B is the set of
eligible congestion factors of size |B| and (ii) the UE’s channel
conditions c̄ ∈ R, approximated via UE’s SNR as we discuss
in detail in Sec. V-B6. The first variable can be measured by
the cloud provider metrics system, while the second is usually
considered by state-of-the-art radio resource controllers. We
define ct := (βt, c̄tu) to be the context vector representing
the system’s context at stage t. We define the context space
C := B ×R.

2) The action space A: As existing radio resource man-
agement works [44], ATHENA-ML takes two consecutive
decisions: First, an assignment of a number of PRBs nu ∈ N
for UE u. Second, a selection of an MCS over those PRBs,
to match the UE channel conditions. Let mu ∈ M :=
{1, . . . ,M} be the MCS decision for user u, where M is a set
of possible MCS that is available by the 5G radio technology.

Thus, we define the action space A := N ×M, essentially
capturing all possible pairs of decisions mt

u and nt
u allocated

to user u ∈ U in decision episode t.

The decision/action is transferred to the user and modulates
the UL frame accordingly. The environment is the compu-
tational platform and more specifically the LDPC decoder,
which decodes the UL frame and gives back the reward signal.

3) Rescaling the action space for scalability: In the con-
figuration above, the size of the set A increases linearly
with the number of PRBs N . Especially for certain 5G
deployments of 100 MHz and subcarrier spacing (SCS) 30
KHz, N equals 250, which is five times more than in the
case of 10 MHz and SCS 15 KHz, showcasing the need for
an efficient representation of the action space. To avoid this,
we move from the discrete nature of the decision variables
αt
u = (nt

u,m
t
u) to the continuous one α̂t

u = (n̂t
u, m̂

t
u). By

doing so, we simplify the ML task by making the action
selection problem a continuous one, namely a regression one.
That is, the outcome variable is a continuous variable in the 2-
D space, which we discretize to space N×M according to the
procedure we will describe later. By moving to the continuous
space, we manage to associate adjacent actions which can not
happen in the discrete space where every action is distinct.

4) Reward function: Given the c̄u condition for each user u
and the congestion factor β, we encourage the actions α that
will probably lead to successful decoding, ultimately pushing
the system to learn allocations that result in high system
throughput1.

Successful decoding happens when (i) the data bits are
transmitted without any errors under the SNR conditions,
and (ii) Tdec does not exceed the deadline. Higher (nu,mu)
combinations imply carrying more data with fewer redundant
bits for error correction. Depending on the channel conditions
and system congestion, this can lead to decoding failures after
IMAX iterations and deadline violations.

We design ATHENA-ML’s reward function to account for
this observation. Our reward captures the contribution of (i)
the data bits dtu that user u is granted by the gNB to transmit
under action αt

u; (ii) a binary variable rtu denoting the result of
the Cyclic Redundancy Check (CRC) of the TB after decoding
it; (iii) the decoding time T t

dec,u for the TB; and (iv) the target
decoding deadline J . More specifically:

R =

{
du, (Tdec,u ≤ J − 1) and (ru = 1)

−K, otherwise
,

where K is a positive constant term for penalizing wrong
decisions. As we will discuss in Sec. VI, ATHENA-ML learns
quickly, because it takes advantage of both CRCs’ values and
decoding time.

B. ATHENA-ML internal design

1) Actor-Critic design: ATHENA-ML is solving the CB
problem using a 1-step episode RL architecture that follows
the Actor-Critic (AC) paradigm [45], which has shown su-
perior scalability properties [45, Chapter 13.1]. AC belongs
to the policy gradient family of algorithms, can operate on

1This assumption makes ATHENA-ML better suited for enhanced Mobile
BroadBand (eMBB) scenarios, as we do not take into account other metrics
that could be useful for e.g. low latency scenarios such as the guarantees on
the maximum length of UE transmission queues.



continuous-valued control spaces, and approximate directly
the best policy function π across the reward r obtained by
each state-action pair, and thus its direct applicability to the
5G-NR systems, especially the one based on O-RAN. On the
other hand, value-based algorithms (e.g., SARSA, Q-Learning,
DQN, etc.), operate on distinct control spaces, approximate the
state-value or the action-value function, and then apply an ϵ-
greedy selection policy on the control space. This becomes
intractable in big action spaces, such as in large bandwidth
5G deployments.

We opted for the Deep Deterministic Policy Gradient
(DDPG) [46] algorithm due to its benefit to resolve determin-
istic continuous action problems. The DDPG agent comprises
two functions; the actor and the critic. The critic approximates
the action value function Q(c, α) that predicts the expected
reward, which is received by the environment when performing
action α in context c. The critic is represented by a neural
network Qϕ(c, α), parameterized by weights ϕ. Given a set
of interactions D consisting of samples (c, α, r), it minimizes
the residual Mean Squared Error (MSE) between the predicted
Qϕ(c, α) and the received reward r:

E
(c,α,r)∼D

[(Qϕ(c, α)− r)2] (1)

The actor approximates the policy function. It is represented
by a neural network µθ, with weights θ, and gives the
deterministic action α̂ = µθ(c). The goal of the actor is to
output the action α̂ that maximizes Qϕ(c, α̂):

E
c∼D

[Qϕ(c, µθ(c))] (2)

2) Actor inference: As we mentioned in Sec. IV-A3, for
scalability reasons, we rescaled the output action so that the
actor gives the approximate continuous α̂ = (n̂, m̂) instead
of the discrete α = (n,m). In order to discretize α̂, we
implemented the following hierarchical blocks [47]:

1) Action Generation: We applied the K-Nearest Neigh-

bors (k-NN) function gk(α̂) =
k

argmin
α∈A

|α − α̂|2, where

k denotes that the k actions in A that are closest to α̂
by L2 distance.

2) Action Refinement: Even though the actions are close to
each other in A, they may have a complete direct impact
on the environment, and blindly choosing the closest to
α̂ is not ideal. For example, in low SNR conditions, if the
MCS component m̂ of the output of the actor is 9.8 then
selecting the closest m = 10, which applies 16-QAM
modulation, instead of m = 9, which applies QPSK
modulation and therefore severely lower complexity,
may have a detrimental effect on the decodability of
the frame. Hence, we evaluate each of the k actions
and select the highest rewarding one according to the
prediction of the critic.

πθ,ϕ(c) = argmax
α∈gk◦µθ(c)

Qϕ(c, α) (3)

3) Application to O-RAN and 5G-NR standards: As de-
picted in Fig. 4, ATHENA-ML acts on several components of
the 5G-NR and O-RAN architectures. Indeed, ATHENA-ML
acts in the MAC layer of the 5G-NR stack, supporting the de-
cisions of the scheduler at every TTI. We require this location
to cope with fast-changing conditions on the radio channels
since speeds up to 120 km/h and 500 km/h for vehicles
and high-speed vehicles respectively have to be supported,
according to the 5G standard [48]. Frequent user scheduling,
at every TTI to provide high throughput and low latency, and
high 5G high bands incur high SNR variations within very
few TTIs, as discussed in [49]. This requires rapid reactions
from the gNB side to maintain high throughput, by achieving
decodability and staying within the deadline constraints. We
place ATHENA-ML in the MAC layer of the O-DU directly
in inference, hence being able to support very fast responses
from the model, while the training can be performed in the
near-RT RIC, decoupled from the user plane.

For episode i at TTI t, the HARQ process (residing in the
MAC layer) queries ATHENA-ML with the context ci and
receives the controller’s decision αi. The action is enforced
in the PUSCH channel at TTI t+ J , and the reward from the
LDPC decoder ri is collected at TTI t+2 · J . Because of the
nature of the HARQ processes, a single acting agent would
suffer from the delayed reward problem; at TTI t+1 the agent
has to take an action for the episode i+ 1 before the reward
of the i-th episode is collected.

We leverage the independent lifecycle of each HARQ’s data
transmission and demultiplex the DDPG agent into |H| agents,
as many as the HARQ processes. We name them HARQ agents
and they share the same parameters θ, ϕ. Each agent i interacts
with the HARQ process i. At each TTI t, we assign the agent
indexed by t mod |H| to handle the transmission. Following
the same procedure, the decoder returns the reward to the
corresponding agent. Since the HARQ agents interact with
the HARQ (MAC) and the decoder (PHY) which require fine
time resolution, we fit them in the Distribution Unit (DU) of
the O-RAN architecture.

We also offload the learning functions of the HARQ agents
to a main agent. The main agent shares the same model
parameters with the HARQ agents. At every scheduling op-
portunity, the HARQ agents store the samples, consisting of
context, action, and reward (c, α, r) in their internal buffer. At
periodic timings, the main agent collects these samples over
the E2 O-RAN interface, calculates the gradients, optimizes
the model, and pushes back the updated weights. Since the
sample collection does not have strict timing constraints, the
main agent can reside either on Near-RT or Non-RT RIC. In
Fig. 4, we depict how ATHENA-ML integrates with the O-
RAN architecture. We have placed the main agent running as
a xApp in the Near-RT RIC and the HARQ agents running in
O-DU as dApp, adopting the concept from [33].

4) Offline Training: O-RAN principles require pretraining
of the agent models before they are deployed on a live produc-
tion environment [50]. To comply with this requirement, we
collected a dataset D from an isolated sandboxed environment
multiple samples for randomly taken decisions αt = (nt,mt)
and contexts ct = (βt, c̄t) where we recorded the decoding



time Tdec and the CRC result r as returned by the LDPC
decoder. In order to accelerate training, reduce the sample
complexity, and remove unavoidable outliers produced by a
real system, we grouped per (β, c̄, n,m) and modified the
returned reward for each group as follows:

Rgroup =

{
du, P [r = 1] ≥ rthres and T γ

dec ≤ J − 1

−K, otherwise
(4)

where T γ
dec is the γ-percentile ∈ [0, 1] of Tdec within

the group and we consider it as a proxy for performance
vs reliability trade-off. Due to the stochastic nature of the
computing platform, there is high variability of the decoding
times, which can be attributed to measurement imperfections,
incapability to isolate the low-level caches of the processors,
virtual memory invalidation during context switches, etc. Pick-
ing higher γ would lead to learning more conservative policies,
because of the negative reward, and vice-versa. With rthres,
we set a target threshold value above which we can consider
satisfactory data transmission, in terms of successful error
correction.

V. IMPLEMENTATION

To prove the feasibility of ATHENA, we implemented and
integrated it on srsRAN [43], an open-source software frame-
work that implements the functionality from the PHY up to
the higher layers for eNB/gNBs that is compliant with the
major SDO architectures. We used the 22.04 version of the
software [16], which provisions the Rel. 15 of the 3GPP stan-
dard, and implemented ATHENA in a compliant way with the
O-RAN reference architecture (see also Sec. II). The software
is written in C/C++, and it is one of the most important
tools for open experimentation with LTE and 5G prototypes.
While srsRAN provides the software solution only, it relies
on Software Defined Radio (SDR) cards for the RF frontend.
For the implementation of ATHENA-ML2., however, we could
not directly rely on this default implementation of srsRAN,
for the reasons that we will next discuss.

A. ATHENA-ML integration into vRAN software

From Sec. III, the two main variables that influence the
decoding time of a frame are (i) its MCS index mu and the
number of PRBs it spans nu and (ii) the intrinsic complexity
of the LLR maximization operation, which depends on the
selected MCS and the SNR.

To be able to train ATHENA-ML against very different
conditions, and hence allow the algorithm to cope with dy-
namic scenarios, we need to span over very different channel
conditions. While this scenario can be obtained with antennas
and over-the-air transmission, we decided to not use this way
for two reasons: first, we could not use licensed bands for our
experiments, and, most importantly, using real mobile phones
as UE would have limited the repeatability of the results
as it required a non-negligible human intervention during

2All the software components related to ATHENA-ML are available at
https://github.com/kaposnick/athena_agent

the experiment (i.e., to move the terminals creating different
channel conditions).

Instead, we relied on a feature of srsRAN, namely the
transmission of the modulated samples that would have been
transmitted using hardware RF-frontend, using an alternative
software RF-frontend based on ZeroMQ, an open source
message queueing library written in C. When using this driver,
the transmitted I/Q baseband symbols between UE and base
station are transferred over various transport methods, like
Inter-Process Communication or TCP sockets.

The use of ZeroMQ enables running the network in a
fully softwarized way, and it also opens the opportunity of
emulating complex network topologies via programming (e.g.,
arbitrary complex topologies can be created by dynamically
connecting endpoints, as they do in large-scale emulators
using hardware in the loop [51]). Hence, to allow the pro-
grammability of our experiments we utilized GNU Radio
Companion (GRC), which is another open-source project
mainly used for SDR, and, among others, contains modules
for ZeroMQ library. We coded in Python a GRC Broker,
located between the UE and the cells of the gNB implementing
the RF interface. This module intercepts the transmitted I/Q
symbols and performs operations on them to emulate the
channel conditions: to adjust the perception of the signal
strength, we add multiplier boxes to each UE that time-domain
cells’ transmitted samples with a constant gain G value in
the range [.05, 1]. When G = 1 the signal is received at full
strength, measured at 30 dB per PRB at the gNB side, while
when G = .05 the SNR drops to 5 dB, below which the
gNB can hardly decode any control or data channels. In our
experiments, we dynamically control G between .05 and 1
to emulate different channel conditions. Finally, to simulate
an Additive White Gaussian Noise (AWGN) channel, we add
an additive noise process to the intercepted symbols, which
samples from a normal distribution with zero mean. More
details about the implementation setup can be found in [52].

Then, we implemented ATHENA-ML using Python
and Tensorflow. We integrated the implementation of
ATHENA-ML directly in srsRAN scheduler, overriding the de-
fault controller and making the decision about what (nu,mu)
to assign to the different users. The context space variables
are available to our implementation either directly, as in the
case of the SNR, or indirectly, as the β factor is sent to
the controller by the monitoring application, as discussed
in Sec. V-B7. ATHENA-ML has one coordinator process,
responsible for directing requests and the decoding results to
the corresponding worker agent based on the TTI, 8 HARQ
agents’ processes, as many as the HARQ processes. Since
no online training is taking place on the experiments, we
do not deploy the main agent process in the Near-RT RIC.
The communication between srsRAN and ATHENA-ML is
achieved using Linux named pipes and between the coordinator
process and the HARQ agents using shared memory buffers.

As discussed in Sec. III, we model with β all the possible
interfering factors for the UL frame decoding times. Since this
implies an additional delay, we emulate β by introducing an
additional workload at the end of each TB decoding iteration:
We introduce βn = 1000 · β square root computations that



will force the reduction of the effective capacity offered by
the cloud platform.

B. ATHENA-ML pipeline

In order to train and execute ATHENA-ML, several factors
need to be addressed including the gathering of the training
data and the machine learning operation, we detail them next.

1) Dataset Collection: To collect the training dataset D,
we replaced the default srsRAN controller with a custom
one that randomly selects a (n,m) decision and assigns an
UL grant to the user. To span across different β and c̄, we
developed an automated process that sets the gain G of the
channel and the congestion conditions on which the decoder
threads are running.

2) Actor Critic internal structure: The actor’s neural
network is implemented using fully connected layers with
ReLU activation. It has 2 output neurons with sigmoid
activations, denoting the (n̂, m̂), which discretize to (n,m)
using Eq. 3. The critic’s neural network comprises also
fully connected layers with ReLU activation and one single
output neuron, outputting the reward prediction, with linear
activation.

3) Pretraining: Given the dataset D, we grouped according
to the procedure in Sec. IV-B4. We firstly pretrained the
critic’s neural network Qϕ as a normal regressor that
minimizes the critic’s objective, using Eq. 1. Successively,
we froze the critic’s weights and pretrained the actor’s
neural network µθ so that it maximizes its objective, i.e.,
the critic’s reward prediction, using Eq. 2. We pretrained
both actor and critic networks using the Adam optimizer,
with a learning rate 1ϵ−4 for a period of 200 epochs. In
turn, we deploy the agent’s weights θ, ϕ on ATHENA-ML on
the described testbed, which we infer using Eq. 3 using k = 5.

4) Scalability enhancements: While the srsRAN’s
ZeroMQ RF-frontend driver allows us to test ATHENA in a
real system, its capabilities are mostly targeting the debug
of the higher layers of the RAN stack. Hence, one of these
limitations is the native support to just one UE per gNB cell.

While a possible solution to this issue could have been an
enhanced software-based channel emulator using the already
integrated GNU Radio module, in order to overcome this
and simulate a multi-user cell scenario, we designed a digital
twin (DT). A digital twin is a replica of a physical system
that can replicate the system’s environment, eliminating the
need to repeat exhaustive physical tests. In our case, the
DT generates the same data distributions as the physical
vRAN’s LDPC decoder, whose output affects ATHENA-ML’s
decisions. Multiple users can now infer the DT, eliminating the
restrictions of srsRAN’s front-end. We define τ : (c, α) →
(t̂dec, r̂) as the digital twin that maps the context c and
action α to the expected decoding time t̂dec and the decoding
success probability r̂. We designed the DT as a deep neural
network that performs the following two prediction tasks; i)

the decoding time prediction task, which yields the expected
decoding time, ii) the decoding success probability prediction
task, which computes the probability P [r = 1]. The DT has
two output neurons, one for each prediction task; the decoding
time prediction neuron, activated by the linear function, and
the decoding probability prediction neuron, activated by the
sigmoid function, which is typically used for classification
tasks.

We trained the DT using collected data from the physical
system in a supervised way using the Mean Squared Error
(MSE) loss function for the decoding time prediction task and
Binary Cross Entropy (BCE) loss for the decoding success
probability task, which is negative of the log of corrected
predicted probabilities. Additional information about the
implemented DT can be found in [53].

5) Traffic shape: ATHENA-ML has been trained to control
scheduled users with full upload buffer, i.e., to serve their
maximum achievable throughput which in ideal channel
conditions is achieved at maximum PRB and MCS. In this
sense, ATHENA provides the maximum TBS that can be
decoded within the deadline. In order to avoid excessive
redundant bits in case the user’s demand is less than the
predicted maximum number of bits, we adjust ATHENA-ML’s
decision so that the equivalent TBS fills the requested
demand. We also keep the new MCS less than ATHENA-ML’s
decided MCS in order to maintain the decodability of the
frame.

6) SNR estimation: We adopt the universal channel model:
y = Gx + n, where x, y are the input and the output of
the wireless channel respectively, G is the channel’s impulse
response and n ∼ N(0, σ) is the noise that follows a normal
distribution with zero mean. SrsRAN’s eNB/gNB implemen-
tation, by default, computes the SNR using the exponentially
weighted average of the instantaneous SNR in the PUSCH
channel. The instantaneous SNR is estimated as the average
power per PRB divided by the noise estimate, which is flat
across the frequency spectrum. However, in wide band 5G de-
ployments (spanning up to 100 MHz), the power per PRB may
fluctuate because the bandwidth of the system has a higher
probability of crossing with the coherence bandwidth of the
channel, converting the channel response G from flat-fading
to frequency-selective fading. To avoid specifying the location
and the size of allocated PRBs with higher SNR (which are
further restricted by Resource Block Group parameters [36,
Chapter 6.1.2.2]), we act conservatively and take the minimum
power as reference for the calculation of the instantaneous
SNR.

On the other hand, srsUE, srsRAN’s implementation of
user equipment, distributes uniformly the power per PRB so
that the total transmitted power per subframe (1 ms) falls
under a certain threshold [54, Chapter 6.2]. This observation is
crucial, since for the same channel response G and following
the averaging procedure described above, a higher number of
PRB yields lower instantaneous SNR and vice versa.

As we consider the SNR a proxy for the channel conditions,



we estimate the channel condition as:

c̄ = SNR+ 10 · log(PRB) (5)

where c̄, SNR are expressed in dB. The variable c̄ effectively
measures the total SNR and Eq. 5 yields the same c̄ for the
same channel response G irrespective of the number of PRBs.

7) CPU Congestion Factor β: O-RAN Clouds (O-Cloud)
allow for the parallel execution of heterogeneous jobs. Private
and public cloud providers offer the tenants the capability
to select certain filters on the physical servers (e.g., avail-
ability zone, hardware acceleration, etc.), but, in principle,
tenants are agnostic of the actual silicon their application
is running on. The CPU congestion factor β, which effec-
tively expresses the number of available CPU cycles that
are allocated on the applications, can be directly configured
by popular cloud orchestrators (such as Kubernetes) or
specific orchestration algorithms, such as ATHENA-MR which
we introduce in Sec. VII-C. Additionally, O-Cloud is enhanced
with monitoring applications (e.g., Prometheus [55]), which
constantly track alerts and measure the resource consumption
(CPU congestion, memory, network/disk IO, etc.) of the in-
dividual jobs, servers or whole infrastructure. The monitoring
application run on the Service Management and Orchestration
Framework (SMO) of the O-RAN architecture in the Non-
RT RIC. Independent of whether β is directly configured or
measured, its value is available at the SMO level and can be
conveyed to infrastructure-aware applications to provide them
with the current status of resource usage. ATHENA-ML, as a
CPU-aware vRAN application running on O-DU, receives as
input the current CPU congestion metric from SMO and ad-
justs its scheduling decisions with respect to the infrastructure
contextual fluctuations. In Fig. 4, we show how SMO monitors
the O-Cloud infrastructure via the O2 interface and informs
ATHENA-ML via the O1 interface.

C. Multi-user scenario
ATHENA-ML radio resource controller works on a single-

user basis, allowing to select the optimal MCS and PRB com-
bination at every point in time. As already discussed, ATHENA
can integrate with different UE selection procedures. We
picked srsRAN’s round-robin and matched it to ATHENA-ML
that selects the best PHY layer parameter. Hence, for each TTI,
a single user is circularly selected and scheduled and their SNR
is given as input to ATHENA-ML, which then controls their
MCS and number of PRBs. The training data for this scenario
is gathered using the Digital Twin discussed in Sec. V-B4. We
studied the integration of ATHENA-ML with the round-robin
user selection procedure that imposes a maximum boundary on
the number of selected users at each TTI and hence may not be
suitable for scenarios that are more latency-constrained. Other
UE selection algorithms may be implemented leveraging the
ATHENA-ML controller, exploiting the models and interfaces
we discussed in this paper.

VI. EVALUATION RESULTS

In this section, we evaluate ATHENA-ML against the
vanilla radio resource controller available in srsRAN, namely
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Fig. 5. Actor’s objective across training epochs.

Baseline, which we consider as a general benchmark for
commercial state-of-the-art radio resource managers. In order
to demonstrate the need for having a joint PRB-MCS selection,
we have also trained, deployed, and evaluated an alternate ver-
sion of ATHENA-ML, namely ATHENA-MCS. ATHENA-MCS
is a variation of the ATHENA-ML algorithm that follows the
same actor-critic architecture but only controls the applicable
MCS, leaving the number of PRBs set as the maximum. Both
ATHENA-ML and ATHENA-MCS interact with the UE sched-
uler solution, matching the available capacity to the contextual
condition, showing how the ATHENA-ML framework can be
leveraged by different UE scheduling algorithms.

A. ATHENA-ML convergence

In Fig. 5, we depict the actor’s objective, i.e., the critic’s
average reward prediction.

We trained the two versions of ATHENA-ML for different
reliability values γ ∈ [50, 90, 99]% and different decoding
deadlines J ∈ [3, 4] ms. We set rthres = 90%, since 3GPP
defines 10% maximum BLock Error Rate (BLER), and penalty
factor K = 1. We notice that both versions of ATHENA-ML
learn to, indeed, pick high reward combinations of (n,m) in
higher deadlines leading to greater collected rewards, since
there is greater available time to decode bigger packets. Higher
γ drives the agent to learn conservative policies, i.e., less
performant combinations of (n,m), since a higher value of
decoding times is considered as a target and is compared
against the decoding deadline for the reward evaluation in
Eq. 4. Conversely, lower γ implies more aggressive, policy
learning, which though in the production system in inference
mode it can have a detrimental effect due to its lower reliabil-
ity. We observe that ATHENA-ML performs better in terms of
the average actor’s objective than ATHENA-MCS, which we
also validate in Sec. VI-B.

Through the rest of the evaluation section, unless otherwise
stated, we will refer to the J = 4 ms scenario, which is
typically used in the eMBB case, and γ = 99% to ensure
high reliability.

B. ATHENA-ML performance

We now compare ATHENA-ML against Baseline. For
PRB selection, it implements a Round Robin Policy, assigning
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the maximum number of PRBs in case of a single UE. For
MCS selection, it maps the SNR to a target code rate, via
a proprietary SNR-to-CQI table [56] and the 3GPP CQI-to-
coderate table [36], and through an MCS-TBS loop, it picks
the minimum MCS index that yields the coderate closest to the
target one. We evaluate Baseline and ATHENA-ML, trained
with J = 4 and γ = .99, in a single UE scenario that transmits
uplink UDP data at full buffer speed.

We ran our experiments using TTI of 1 ms and 10 MHz of
bandwidth, which gives 50 PRBs in the uplink out of which
the N = 45 are only available for uplink data transmission. We
have also disabled HARQ retransmissions in order to compare
the success of our solution during the first transmission of the
frame, i.e., using a single redundancy version. We adjust the
channel gain G of the UE so that the perceived SNR per PRB
at the gNB side varies between 5 dB and 30 dB.

In Fig. 6, we plot in solid lines the average throughput
(in Mbps) achieved by ATHENA-ML, ATHENA-MCS and
Baseline at each SNR level. A TB is considered success-

fully decoded when Tdec is below 3 ms and has a successful
CRC check. When β = 0, where either controller suffers
losses from deadline violations, Baseline substantially un-
derperforms both ATHENA-ML and ATHENA-MCS, in terms
of average throughput. ATHENA-ML records an improvement
of 3.94 Mbps with a maximum improvement of 7.45 Mbps
at 13 dB. This originates from the conservative nature of
traditional controllers where they stick to simulation-based
min-MCS approaches to preserve the decodability of the
frames, while the data-driven approaches can discover optimal
control policies (e.g., at high SNR ATHENA-ML picks MCS
24, while Baseline goes up to 23).

We observe similar behavior in higher β = .5, where the
congestion factor has an important impact on the decoding
time. Baseline’s throughput drops due to low reliability,
as we depict in Fig. 7, where it counts the percentage of the
frames where either CRC = 0 or Tdec ≥ 3. The maximum
achievable throughput for both versions of ATHENA-ML drops
to 11.5 Mbps with very high-reliability levels.
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When β = 1, Baseline’s reliability essentially drops to
0, along with the average throughput. For ATHENA-ML, the
SNR has minimum impact, because the high congestion forces
the agent to apply a single control policy for all the channel
conditions.

In Fig. 8, we compare the Tdec yielded by the two ap-
proaches. While in β = 0, all Tdec are below 3 ms, we
observe that variability is much higher in ATHENA-ML, which
is explained by higher MCS selection. Again, with higher
β, a non-negligible part of the frames misses the deadline.
ATHENA-ML, instead, lowers down either the MCS or the
PRB to always meet it. As a result, it obtains a flatter Tdec

distribution, which is a direct consequence of the selected
actions, as we discuss next.

C. Advantages of the joint MCS-PRB management

We now compare the two alternate versions of ATHENA-ML
and ATHENA-MCS. In Fig. 9, we plot the PRB, and MCS
decisions of the two versions for different SNR levels and three
congestion factors. While ATHENA-MCS always transmits at
full bandwidth, ATHENA-ML explores different alternatives
in the 2D action space. As we observe in Fig. 6, both
versions manage to achieve optimal levels of reliability and
equal performance, with ATHENA-ML slightly overseeding
by 500 Kbps in medium congestion factors, transmitting at
lower PRBs and increasing the MCS. The major advantage by
ATHENA-ML over ATHENA-MCS is the up to 44% spectral
efficiency improvement (in terms of PRB utilization) since
it can achieve equal or slightly better performance using
less bandwidth leaving available space for other users to be
scheduled. This aspect could be leveraged by a different UE
selection procedure, capable of integrating multiple UEs in
the same TTI, that jointly selects users and decides MCS and
PRB, so unused PRBs may be re-assigned to other UEs to
increase the total throughput of the system, respecting the
time budget as well as technology requirements and user
characteristics. We note that both the original ATHENA-ML
algorithm and ATHENA-MCS are both based on the same
original architecture and should be considered variants and
not alternative solutions.

D. Multi-user scenario

As explained in Sec. V-C, we resort to DT in order to
evaluate the performance of our solution in a multi-user
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Fig. 10. Throughput for different congestion factor β and user load.

setting. We consider 3 users in the UL with increasing mean
SNR and standard deviation of 3 dB. In each TTI, a user is
selected in a round-robin fashion. Given the user’s channel
conditions and congestion factor, the pretrained ATHENA-ML
agent provides the control decision. Subsequently, the DT
is inferred outputting the expected decoding time and the
decoding success probability. The UL frame is considered
decoded if the predicted decoding time is less than the deadline
and the sampled success probability process is 1.

To capture the capability of ATHENA-ML to adapt to
different UL traffic shapes, we modify the load as we depict
in the first row of Fig. 10 in a period of 1300 seconds. This
load reflects the demanded bits to be transferred at the UE’s
MAC level and is conveyed in the BSR message to the base
station. Accordingly, in the following three rows, we show
how the throughput is modified for each user. We see that the
throughput, achieved by ATHENA-ML, follows the pattern of
the traffic load which incurs due to MCS degradations, as we
described in Sec. V-B5, and are shown in the shaded gray area.

In Fig. 11, we repeat the same experiment but for full
traffic load (100%). We depict with bars the mean throughput
and with error lines the jitter of each user for variable β
values. We observe that in low β and high SNR scenarios,
ATHENA-ML yields high jitter (due to the SNR fluctuations),
which gets lower either when the SNR drops or the congestion
goes up. For β ≥ .6, the SNR is almost taken no account
since the congestion impact oversedes. In the same plot, we
depict the cell utilization, defined as the total throughput
of the users divided by the throughput at β = 0, which
denotes the maximum achievable throughput for these channel
conditions. We observe a gradual drop of cell utilization in low
congestion factors, reaching 60% in medium β, before falling
to below 40% in high β, showcasing its impact in the model’s
predictions.

VII. EXPLAINABILITY THROUGH MACHINE REASONING

The second block of ATHENA is represented by the Machine
Reasoning part, which interprets the results of the ML and
devises (at a slower pace) actionable decisions on the network.
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The model has to provide insights into its internal func-
tionality and decision process, which we call explanations.
These explanations are categorized into three different classes
depending on the question that they seek to answer [13]; the
attributive, the contrastive, and the actionable explanations. In
the study we conducted, we investigated methods for all three
categories and we adjusted them accordingly to our NN-based
actor-critic architecture.

A. Attributive Explanations

The attributive explanations answer to the question why,
given an input, the model gave a certain outcome. These
insights touch both the input, e.g., features of a particular
example, as well as the internals of the model (splitting rules
in the case of a decision tree, neurons in the case of neural
networks, etc.). They provide a comprehensive correlation
between the input and the output which does make sense for
an external observer. This categorization mainly comprises fea-
ture importance methods such as LIME [57] and SHAP [58],
which are model-agnostic explanators.

Model distillation is another method that can be used to
produce explanations. The key concept behind is to distill
a black-box model (such as a neural network) into an in-
herently better explainable surrogate model. This class of
surrogate models typically comprises swallow decision trees
and linear models, whose parameters (splitting criteria and
variable coefficients respectively) are generally admitted to be
better understandable. The distillation process consists of two
models, namely the teacher T and the student S. T is the
black-box trained model for which the explanations are asked.
S is a smaller surrogate model that integrates the knowledge
of T , while maintaining its accuracy.
ATHENA-ML’s model, which is described in Eq. 3, consists

of two neural networks; the actor’s µθ, which provides an
approximate solution α̂, and critic’s Qϕ, which assists to
refine it to α. We distill the actor’s model to a regression
tree, which is a decision tree that holds linear models in its
leaves (instead of constant approximators). We used response-
based knowledge distillation [59], where S mimics only the
T ’s output layer. During the training process, T (actor) and S
produce outputs α̂T , α̂S ∈ R2 respectively. In order to train
the tree S, we pass these outputs through the interpolation
function h : R2 → R. This interpolation function is created
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Fig. 12. ATHENA-ML throughput and the regions of the distilled decision
tree.

using TBS as the target value of combinations (n,m). The
outputs h(α̂T ), h(α̂S) are used to compute the distillation loss,
which in our case is the L2-distance, capturing the difference
in yielded throughput between T and S . In fact, we use the
teacher’s predictions as target values and we train the decision
tree S in a supervised way, using the distillation loss as split
criteria. We trained with maximum tree depth 3, in order to
make it easier to interpret.

In Fig. 12, we depict the achieved throughput of the agent
for combinations of the contextual features, and with the red
dashed-edged rectangles we paint the borders of the leaves of
the trained decision tree. We interpret the splitting thresholds
in order to understand the internal decision process of the
actor. The tree has divided the input space into 4 regions, in
which the NN-based actor can be approximated by a linear
model. These areas have a specific meaning in the context of
a vRAN system. For congestion factors β > .5 (Region 4), the
actor yields the same throughput independently of the channel
conditions. That is, the CPU is so congested that ATHENA-ML
is forced to scale down consistently both the MCS and PRB
for all channel conditions. For lower β, instead, the SNR
is taken into account and for values higher than 20 dB, the
agent is divided into 2 different models, so that the maximum
achievable throughput can be more finely approximated.

B. Contrastive Explanations

Contrastive explanations answer to the criticism why not a
different result is the outcome of the AI system.

To adapt this question to our case study, we look for the
explanation for a specific decision taken by ATHENA-ML:
given a certain context c, why has α = (n,m) been decided
instead of α′ = (n′,m′)? To answer this question, we leverage
the architecture and resort to the objective function of the actor
in Eq. 2, i.e., to maximize the reward prediction of the critic.
Querying the critic Qϕ(c, α) and Qϕ(c, α

′) and comparing the
reward expectation provides a quantitative explanation of the
actor’s decisions. For example, in Fig. 13, for the contextual
state β = .6 and c̄ = 20 dB, we show the critic’s reward
prediction for all possible actions. From the figure we can see
that ATHENA-ML actor learns one of the actions that yield
the highest predicted reward, effectively approximating in its
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Fig. 13. Critic’s reward prediction for SNR 20 dB and congestion factor
β = .6.

internal variables where the negative reward area (i.e., a frame
not decoded in time) is hit.3

C. Actionable Explanations.

Actionable explanations seek to answer how the input of the
model should be modified so that a certain user-defined desired
outcome is achieved. The change to be made is otherwise
called counterfactual. This category of explanations is of
particular importance from the network perspective because
it allows not only understanding the system but also taking
further decisions (e.g., re-orchestration decision) to steer the
system to a desired operational state, effectively implement-
ing the vision depicted in Fig. 1. There may exist multiple
counterfactuals that answer the question above, but we only
consider the counterfactual that requires the smallest possible
change [31].

For this analysis, we hence focus on a specific counter-
factual orchestration decision: what should be changed in
the vRAN setting so that the throughput that ATHENA-ML
achieves is at least thrtarget (e.g., a throughput KPI in an
eMBB scenario)? From the network orchestration perspec-
tive, the only variable that the operator can control is the
vRAN’s CPU congestion factor β, since the user’s channel
conditions depend on many exogenous factors related to the
UE characteristics. Because configuring the minimum β is the
obvious answer, we introduce a sustainability clause in the cost
function C(β) : R → R of operating at a certain β, measured
in monetary units, that forces the system to operate the system
using the cheapest solution in terms of computing capability.
Although the specific shape of this cost function can be very
complex, we only draw a simple requirement constraining
C(β) to be a monotonically decreasing function. This is
motivated by real systems, as high β implies the usage of a less
expensive CPU (in terms of executed instructions per second)
or a higher concentration of competing jobs on the same CPU
set as the one the vRAN is running on, in a CPU sharing
fashion. In this context, the counterfactuals are produced as a

3It is important to clear out that the agent outputs directly the best action
and we do not infer the critic for all the possible actions, which would be
intractable.
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Fig. 14. Congestion factor re-orchestration by ATHENA-MR to satisfy KPI.

solution to the following optimization problem [31]:

min
β∈B

C(β)

s.t. thrβATHENA-ML ≥ thrtarget
(6)

where the constraint assures that the throughput achieved
by ATHENA-ML thrβATHENA-ML at congestion factor β satisfies
the target.

The MR block of ATHENA, namely ATHENA-MR, analyzes
the different input states, over a time window, in order to
take further decisions that target the optimization of e.g., the
computing resources. Consequently, the MR part runs in the
Non-RT RIC, optimizing the orchestration by e.g., (i) orches-
trating the gNB decoder threads to a more congested CPU
to save operational costs, or (ii) taking the opposite decision
when they are running in a too congested infrastructure and
the performance is not acceptable anymore.

To solve the optimization, we devised a simple heuristic.
A replica of ATHENA-ML agent exists in the Non-RT RIC.
We act reactively and consider the user’s minimum SNR over
the last window, i.e., the worst-seen channel condition, iterate
over the possible βi ∈ B, infer ATHENA-ML’s achievable
throughput and retrieve the minimum β that satisfies the
constraint in Eq. 6.

To showcase the capability of the ATHENA-MR to re-
orchestrate the congestion factor, we consider a UE at full
buffer demand and we modify the gain G of the channel
periodically between .5 and .12 for 200 s. The time window
over which MR operates is 30 s and initially β = 0, i.e.,
operating at maximum operational cost. In order to mimic a
network orchestrator that has to decide among a finite set of
possible actions (e.g., assigning a given number of CPU cores,
each of them with a specific capacity), we set the feasible set
of possible actions equal to B = {0, .1, .2, . . . , 1}.

Expanding or restricting the feasible set affects the running
time of ATHENA-MR, which is linear to the number of
elements and its running time is trivial to the time window. We
consider 3 different scenarios with 3 desirable throughputs; 8,
13, and 17 Mbps. In the top row of Fig. 14, we show in black



the SNR per PRB and in red the re-orchestrated β. In the
second row, we show the achieved throughput and the target
throughput with a straight line.

In all three scenarios, the ATHENA-MR reorchestrates the
computational resources to save operational costs and satisfy
the constraints. We observe that in the case of 8 Mbps target
throughput, the congestion factor is only once modified since
the target can be reached at both SNR levels. At a target of
13 Mbps, β is accordingly adjusted but throughput violations
occur when the SNR drops since the orchestration algorithm
has not yet reacted to the contextual changes. Finally, in the
last scenario of 17 Mbps, the minimum throughput can not
be even reached because of the low SNR, however, the MR
reacts best-effort and lowers the congestion factor to 0, before
recovering back to .2 when the SNR increases back again.

In Fig. 4, we see how a closed-loop using MR is shaped.
The O-DU informs ATHENA-MR about the worst seen SNR
over the last time window via the O1 interface, which solves
the optimization problem based on ATHENA-ML model and
service requirements and configures the computing resources
in the O-Cloud via the O2 interface.

VIII. CONCLUSION

In this paper, we presented ATHENA, a machine learning
framework for the radio resource management in vRAN
systems, that optimizes the achieved throughput according to
the status of the underlying cloud infrastructure. We discuss
ATHENA design, implementation, and alignment with the most
relevant network standards. Moreover, we propose the concept
of actionable Machine Reasoning, which takes further deci-
sions based on the decisions taken by the Machine Learning al-
gorithm. We show how ATHENA outperforms the vanilla radio
resource controller available in the baseline implementation of
a gNB and discuss the explainability of the proposed system,
especially in terms of actionable explanations.
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