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ABSTRACT
We analyze 4G and 5G transport-layer sessions generated by a wide

range of mobile services at over 282, 000 base stations (BSs) of an

operational mobile network, and carry out a statistical characteriza-

tion of their demand rates, associated traffic volume and temporal

duration. Our study unveils previously unobserved session-level

behaviors that are specific to individual mobile applications and

persistent across space, time and radio access technology. Based

on the gained insights, we model the arrival process of sessions at

heterogeneously loaded BSs, the distribution of the session-level

load and its relationship with the session duration, using simple

yet effective mathematical approaches. Our models are fine-tuned

to a variety of services, and complement existing tools that mimic

packet-level statistics or aggregated spatiotemporal traffic demands

at mobile network BSs. They thus offer an original angle to mobile

traffic data generation, and support a more credible performance

evaluation of solutions for network planning and management. We

assess the utility of the models in practical application use cases,

demonstrating how they enable a more trustworthy evaluation of

solutions for the orchestration of sliced and virtualized networks.

CCS CONCEPTS
• Computing methodologies → Modeling methodologies; •
Networks → Network measurement.
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1 INTRODUCTION
Data-driven solutions will play an increasingly important role in

the 5G mobile network ecosystem during its evolution towards

6G. This trend is stimulated by the unprecedented access to traffic

indicators and statistics enabled by a plethora of new network mon-

itoring functions: prominent examples include the Network Data

Analytics Function (NWDAF) [4] and Management Data Analyt-

ics Function (MDAF) [5] that appeared in 3GPP Release 16, or the

database-like Radio Network Information Base (RNIB) [33] and the

consumer/producer Data Management and Exposure Services [32]

for the near-real-time and non-real-time (respectively) RAN Intelli-

gent Controller (RIC) in O-RAN. This abundance of data can feed

innovative machine learning models that have been proven to yield

promising performance in many complex network management

tasks, including forecasting of mobile demand [43] and through-

put [22], beam management in mmWave Radio Access Networks

(RAN) [34], orchestration of network slices [9], classification of flow-

level traffic [49] or control of virtualized RAN resources [7], just to

cite a few representative examples. Overall, the combination of live

data provisioning and learning-based inference is expected to pave

the road for paradigms such as Zero-touch Network and Service

Management (ZSM) [12] and Intent-Based Networking (IBN) [1].

In the emerging context above, the availability of vast and de-

pendable mobile network data becomes even more critical to the

development and evaluation of new network functions across all do-

mains. Unfortunately, access to the large-scale real-world datasets

that are needed to train and test original data-driven algorithms is

today very limited. Broad measurements from actual production

systems at city or national scales that capture the full diversity

of mobile traffic demands are hard to come by, and are typically

protected by restrictive Non-Disclosure Agreements (NDA) that pre-

vent their circulation. Public traffic data is scarce and outdated [8]

or gathered via small-scale client-driven experiments whose repre-

sentativeness is inherently circumstantial [16].

In this scenario, trustworthy models of mobile traffic become

an indispensable asset to networking research: they allow gener-

ating realistic synthetic traces to remove the data access barrier,

and implicitly enable verifiability and reproducibility of results. As

illustrated in Figure 1 and detailed in Section 2, current models

of mobile traffic target: (𝑖) fine-grained packet-level statistics, e.g.,
about packet sizes or inter-arrival times [31]; or, (𝑖𝑖) aggregate dy-

namics at individual cellular base station (BS), e.g., describing the
total mobile data traffic demand at a given BS over time [47].

https://doi.org/10.1145/3618257.3624825
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Figure 1: Graphic taxonomy ofmobile network trafficmodels,
with representative features and typical modeling timescales
for models that operate at packet-level, (transport) session-
level, and BS-level, respectively.

In this paper, we take a different, intermediate perspective be-

tween those considered in the literature, and explore mobile traffic

statistics at the level of individual transport-layer sessions served by
one BS. Transport-layer sessions, often also referred to as flows, are

sequences of packets belonging to a same application-layer interac-

tion
1
between a User Equipment (UE) and a server, and are aimed

at provisioning one specific (portion of) service to the UE. They are

uniquely identified by a 5-tuple consisting of the transport-layer

protocol, source/destination IP addresses, and source/destination

ports. For instance, one session may be generated by a user launch-

ing the Netflix application on their smartphone to stream an episode

of a show, or by a UE retrieving in background a software update

for one of its installed applications.

As also portrayed in Figure 1, (transport) session-level models

target previously overlooked features of mobile traffic: the arrival

process of transport-layer data flows of a specific application at a

given BS, the duration of such flows, their associated load, or the

distribution of average throughput that the combinations of such

duration and load statistics entail. Since transport-layer sessions are

associated to the one application they serve, session-level models

are inherently service-specific. The transport session-level models

fill in fact a gap in the space of mobile network trafficmodelling, and

allow generating for the first time realistic demands aligned with

those observed at the BSs of a modern 4G/5G RAN infrastructure.

Specifically, they can complement studies on packet-level modeling

so as to reproduce fine-grained mobile traffic loads at an individual

BS that dependably mimic how the users attached to the target

BS request specific services and what amount of traffic each such

request entails.

As such, session-level models support the design of data-driven

solutions and more credible performance evaluations for many net-

working tasks, including planning [21], dimensioning with respect

to specific services [25], scheduling [20], or energy-efficient opera-

tion [45]; they can also inform new traffic generators for modern

network simulators [10].

1
We remark that a single application may establish multiple transport-layer sessions.

This can happen over time (e.g., a messaging service initiating new sessions at every

time the user switches to a new chat with a different contact than the current one),

or in parallel (e.g., a large file transfer application opening multiple FTP sessions).

Multiple transport-layer sessions associated to a same application-layer session may

have similar or different characteristics. However, in this paper we focus on individual

transport-layer sessions only, and leave a thorough investigation of the relationships

and interactions of such sessions at the higher layers as future work. Throughout the

paper, we will refer to transport-layer sessions simply as sessions for simplicity, hence

all future references to session-level models implicitly refer to transport sessions.

Overall, our study yields the following main contributions.

• We characterize transport-layer sessions recorded at over

282, 000 BSs of a nationwide production mobile network cov-

ering continental France, investigating (𝑖) the arrival process

at individual cellular antennas of sessions associated to a

wide range of applications, (𝑖𝑖) the distribution of the traffic

volume generated by each such session, and (𝑖𝑖𝑖) the relation-

ship between such load and the duration of the session. Our

analysis unveils statistical properties of session-level traffic

that have not been observed before, and that are hetero-

geneous across different mobile applications but persistent

across space, time and radio access technology.

• We develop simple but accurate models of the statistical

properties above for a variety of mobile services, which we

release publicly
2
so as to contribute to removing the access

barrier to dependable data needed to design and evaluate

networking solutions.

• We show the utility of the proposed models in two practical

performance evaluation use cases, where we use them to

assess solutions to (𝑖) allocate computing resources in virtu-

alized Radio Access Network (vRAN) environments and (𝑖𝑖)
configure capacity requirements for network slicing. Our

tests prove how the proposed models substantially enhance

the accuracy of the results compared to traffic models cur-

rently available for mobile network performance analysis

that are not informed by session-level statistics.

2 RELATEDWORK
Models of mobile data traffic are instrumental to the performance

evaluation of mobile communication technologies, and have existed

since the early days of wireless networking. In particular, there is a

vast body of models that aim at representing statistical properties of

mobile traffic within each session, i.e., at packet level. As illustrated
in Figure 1, such models typically operate at timescales of millisec-

onds or less, and provide analytical formulas for, e.g., inter-arrival
times between consecutive packets or requests from a device [2],

sizes of individual files or number of packets per frame [6], intervals

for deterministic reporting [3], or duration of activity and inactivity

periods [17]. Different packet-level models are specified for broad

classes of services like web browsing, video streaming, voice over

IP, gaming, downloads via FTP, or machine-type communications,

among others.

The amount of proposals for packet-level models is such that

condensing it in this section is not possible, and we refer the inter-

ested reader to a recent survey for a comprehensive review [31].

The key observation is that these models are primarily designed for

the evaluation of low-layers technology in stationary environments,

and do not capture, e.g., inter-session timings, how long a session

generated by a given application persists in a BS, or how much

traffic it generates there. The analysis and models we propose in

this paper precisely answer such questions and thus complement

the extensive literature on packet-level representations.

At the other end of the modelling spectrum are BS-level demands,

which are also visually illustrated in Figure 1. BS-level statistics

mainly describe aggregates of the traffic volume across all devices

2
https://github.com/nds-group/MobileTrafficDists
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associated to the target antenna, and are best characterized over

timescales of minutes or hours. As such, they are different and

coarser than the session-level dynamics we are interested in, which

instead occur at order-of-second granularity. This dissimilarity sets

our study apart from, e.g., works employing 𝛼-stable distributions

to model heavy-tailed samples of BS-level traffic observed in real-

world networks [19, 23, 24], or recent generative neural networks

that mimic BS-level dynamics over space [46], time [26] or both

dimensions [47], possibly per service [41].

Closer to our goal of characterizing sessions at the transport-

layer level, Mucelli et al. [29] develop six models of individual

mobile traffic consumption, by classifying the demands generated

by 6.8 million subscribers based on their temporal patterns and

amount of data usage. In a similar spirit, Wu et al. [44] identify
six major temporal profiles in the weekly demand generated by

mobile devices, and propose predictors to anticipate the future load

of each class of user. Compared to the novel models we present in

this paper, the existing ones above are much coarser, along multi-

ple dimensions. First, they only consider overall user-level traffic,

whereas we disaggregate those into more precise session-level sta-

tistics. Second, we provide models for a large variety of services,

while the studies above only consider the total traffic of each user.

Third, the previous models are purely temporal and aggregate in-

formation over all BSs visited by each user, whereas our focus is

on behaviors recorded within a single BS. We argue that the finer

granularity, added richness and per-BS viewpoint of our models

make them much more informative for the validation of mobile

communication technologies and systems.

3 MEASUREMENT DATASET
Our study builds upon massive measurement data collected in

an operational nationwide mobile network. The target network

employs 4G and 5G non-standalone (NSA) radio access network

(RAN) technologies. As depicted in Figure 2, in this configuration

5G gNodeBs coexist with 4G eNodeBs in the RAN, and provide

higher-capacity wireless communication to 5G-capable UEs. Yet,

the lack of a dedicated 5G network core in the NSA deployment

forces gNodeBs to depend on interactions with eNodeBs, via the

X2 interface, for control operations towards the 4G Mobility Man-

agement Entity (MME). Also, gNodeBs connect to 4G gateways via

a slightly modified S1-U interface for all data plane transmissions.

Consistently with the aim set forth in Section 1, we record in

the target network data about individual transport-layer sessions

observed during 45 consecutive days at the 282, 000 BSs that form

the whole 4G/5G RAN of the operator. The session-level statistics

are produced within secure compute premises of the network oper-

ator, and for the purpose of our work we only access distributions

and averages that do not contain personal or sensitive information.

A more complete discussion of how our study meets the principles

of ethical research are provided in the Appendix. Next, we detail

the collection process and basic features of the data.

3.1 Data collection platform
Two complementary passive measurement systems are used to

gather and compose the dataset, as shown in Figure 2.
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Figure 2: Simplified 4G and 5G NSA mobile network archi-
tecture illustrating the combined RAN and gateway data
collection setup used by the operator.

RAN probes deployed at the S1-MME interfaces of the MME

capture signaling data. Due to the way the 5G NSA deployment

operates, these probes can monitor the control planes of both eN-

odeBs and gNodeBs.We employ the signalling data to geo-reference

and time-stamp the session information. Specifically, the probes

observe all signaling events generated by each UE, e.g., when it

requests a service, exchanges data, performs handovers, or moves

across Tracking Areas (TA), and record the BS of attachment. By

leveraging this information, we can associate each UE (and the

sessions it generates) to its serving BS at all times.

Gateway probes tapping at the SGi interface of the Packet Gate-

way (PGW) monitor all IP traffic and extract information on each

transport-layer session. These probes record the total data traffic

generated by the session, its start and end times, and the associated

mobile service. The probes run proprietary traffic classifiers devel-

oped by the operator and based on Deep Packet Inspection (DPI)

that examines headers at both network and transport layers to de-

rive the per-flow mobile service information. While the algorithms

used for traffic classification are confidential, the operator reported

high accuracy in independent tests, and regularly uses the results

for network management purposes.

The measurement approach above allows overcoming inherent

limitations in the precision of the localization information available

in the core network. Indeed, the UE location identifiers available at

the PGW are updated infrequently, leading to stale positions and

localization errors in the order of kilometers [48, 28]. Relying on the

locations recorded by the gateway probes would thus jeopardize

our capability to geo-reference session-level data at the granularity

of the individual BS in a reliable manner. To overcome this problem,

the UE and time information gathered by the gateway probes are

crossed with the signaling data of the RAN probes so as to retrieve

the BS(s) where each session occurs and assign the correct (fraction

of) sessions to all BSs.

3.2 Aggregation into session-level statistics
The gateway probes collect information about individual TCP and

UDP sessions, which, as mentioned in Section 1, are uniquely iden-

tified by a 5-tuple consisting of the transport-layer protocol, source

and destination IP addresses, and source and destination ports.

A TCP session is typically initiated by the three-way handshake

and considered to be terminated shortly after a packet with the FIN

or RST bits set is observed. Expiration timeouts that are service-

specific are also employed to mitigate the effect of unorthodox TCP

session terminations. In case UDP sessions, they start when a new
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5-tuple is recorded, and ended once a timeout period without any

transmitted packets elapses. Again, this timeout depends on the

application that the traffic classification routines associate to the

flow. Also, it is worth remarking that, since our study is concerned

with sessions served by a single BS, handovers from and to other

BSs are recorded in the measurement dataset as newly established

or concluded transport-layer sessions, respectively.

Data about all sessions occurring at each BS for a given service

are initially aggregated at one-minute granularity by the operator,

before further processing on our part; the additional transforma-

tions are performed to ensure the privacy of the data subjects as

well as to strike a balance between a sufficient precision on the traf-

fic representation and a dataset size viable for downstream analysis.

Specifically, we aggregate the data about all sessions occurring at

each BS for a target service on a daily basis, in the form of (𝑖) the

number of sessions arriving at the BS at every minute, (𝑖𝑖) a Proba-

bility Density Function (PDF) of the total traffic volume generated

by one session at the BS, (𝑖𝑖𝑖) value pairs composed of the duration

of one session served by the BS and the traffic volume it generates.

As we will see, this is a compact, privacy-preserving representation

that allows characterizing all major session-level properties, i.e.,
the arrival rate, duration, total load, and average throughput.

Formally, data about sessions occurring at each BS 𝑐 ∈ C for

service 𝑠 ∈ S are aggregated over daily intervals 𝑡 ∈ T . For each

tuple (𝑠, 𝑐, 𝑡), we store the following statistics.
• Counts of sessions served by the BS, denoted by𝑤

𝑐,𝑚
𝑠 , captur-

ing the total number of sessions received at BS 𝑐 for service

𝑠 each minute𝑚 of day 𝑡 ∈ T , which is further aggregated

per day into a variable𝑤
𝑐,𝑡
𝑠 .

• Probability Density Function (PDF) of the traffic volume, de-
noted by 𝐹

𝑐,𝑡
𝑠 (𝑥), describing the odds that a session of service

𝑠 induces a total load 𝑥 at BS 𝑐 during day 𝑡 .

• Value pairs of discretized duration and traffic volume, denoted
by 𝑣

𝑐,𝑡
𝑠 (𝑑), capturing the mean load associated to sessions of

duration 𝑑 for service 𝑠 at BS 𝑐 in day 𝑡 .

3.3 Statistics averaging
The dataset reports statistics per BS and day. For our analyses, we

need to investigate behaviors averaged over multiple BSs and days.

For duration-volume pairs, we compute a weighted average of each

datapoint; for instance, average pairs over all BSs and days for a

service 𝑠 are obtained as

𝑣𝑠 (𝑑) =
1∑

𝑐∈C
∑
𝑡 ∈T 𝑤

𝑐,𝑡
𝑠

∑︁
𝑐∈C

∑︁
𝑡 ∈T

𝑤
𝑐,𝑡
𝑠 𝑣

𝑐,𝑡
𝑠 (𝑑), ∀𝑑. (1)

In the case of traffic volume PDFs, averaging is achieved via a

finite-dimensional general mixture model. For an all-BS and all-day

average PDF, this is formally expressed as

𝐹𝑠 (𝑥) =
1∑

𝑐∈C
∑
𝑡 ∈T 𝑤

𝑐,𝑡
𝑠

∑︁
𝑐∈C

∑︁
𝑡 ∈T

𝑤
𝑐,𝑡
𝑠 𝐹

𝑐,𝑡
𝑠 (𝑥) . (2)

The expressions in (1) and (2) are straightforwardly extended to

any subsets of C and T , so as to merge statistics from any set of

BSs and days. Illustrative samples of nationwide traffic PDFs 𝐹𝑠 (𝑥)
and duration-volume pairs 𝑣𝑠 (𝑑) averaged over all BSs and days

are later reported in Figure 5.

Figure 3: Real: measurement PDFs of the per-minute session
arrival rate for antennas serving different loads. Nonpeak
and peak: fitted distributions modelling the bi-modal ses-
sions arrivals (see in Section 5.1 for full details).

4 CHARACTERIZING SESSION-LEVEL
DEMANDS AT CELLULAR BSs

We now explore the dataset and provide both qualitative and quanti-

tative characterizations of session-level mobile traffic demands. The

insights we derive will inform the design of our proposed models,

introduced in Section 5.

4.1 Session arrivals
We start by analyzing the arrival process of sessions at a BS. Figure 3

reports the distribution of the number of new sessions established

at every minute at different categories of BSs, i.e., the PDF of𝑤𝑐,𝑚
𝑠

at all BSs 𝑐 ∈ C𝑖 of category 𝑖 , and aggregated over all services

𝑠 ∈ S. The x-axis values are then normalized by the cardinality of

set C𝑖 , so as to obtain the typical number of sessions arriving in one

minute at a single BS of category 𝑖 . Namely, categories 𝑖 ∈ I tell

apart BSs experiencing different loads: we compute the distribution

of total traffic served by each BS during the whole measurement
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Figure 4: Services ranked by the fraction of sessions they
generate, along with their normalized total traffic.

time, and separate BSs based on the decile they pertain to. Thus,

each set C𝑖 includes 10% of the BSs, with growing mobile traffic

demands from the first decile to the last one. The rationale for this

categorization is that it allows observing how the session arrival

process is affected by the target BS load.

In fact, the plots in Figure 3 show that the behavior of the arrivals

is semantically similar across all classes of BSs, or, equivalently,

the traffic volume served by the BS has no significant impact on the
high-level statistics of the arrival process. Indeed, the shape of the
overall distribution is the same for all plots, apart from the obvious

difference of scale in the abscissa induced by the growing demand

across deciles. More precisely, all PDFs of values𝑤𝑐,𝑚
𝑠 show an evi-

dent bi-modal distribution, which a close inspection reveals to be

due to the well-known circadian rhythm of mobile network traf-

fic, with low traffic (hence small number of sessions per minute)

overnight and much increased demands (hence more frequent ses-

sion arrivals) during daylight hours. Transitions between these two

phases are very rapid, which leads to a negligible probability of

having intermediate arrival rates.

Since sessions are naturally service-specific, a relevant follow-up

question is how such arrivals are distributed across different mobile

services. Figure 4 offers a first result in that sense, as a ranking of the

top 100 services based on the fraction of total sessions they generate.

The curve predominantly follows a negative exponential law (with a

very high coefficient of determination R
2
of 0.97), implying that the

number of sessions generated by each service is very heterogeneous:
the top 20 services are responsible for over 78% of the sessions

recorded overall. The imbalance is less dramatic than that in traffic,

which is known to follow an even more skewed power law [39, 27];

nonetheless, it suggests that the probability that a newly established

session belongs to a given application is far from uniform.

4.2 Qualitative analysis of service sessions
Figure 4 also shows the total normalized traffic produced by each

service. While some correlation with the number of sessions exists,

the load dots are fairly scattered (on a logarithmic scale) for similarly

ranked services: hence, different applications entail a very varied
traffic volume per session. This motivates an in-depth investigation

of such session-level traffic dynamics on a per-service basis, which

is indeed the target of our next analysis.

Samples of session-level traffic volume PDF and duration-traffic

pairs are portrayed in Figure 5 for six representative mobile ser-

vices. All statistics are averaged over the whole set of BSs and days,

using the methodology described in Section 3.3, hence they capture

archetypal behaviors of the demands of each application.

A first qualitative observation is that total traffic volumes and
duration values are highly heterogeneous, among sessions of a same
service and evenmore so across different services. Indeed, intra-service
statistics show how sessions belonging to a same application can

generate very diverse traffic volumes, spanning several orders of

magnitude, over intervals that can range from seconds to hours;

and, the shapes of PDFs and duration-traffic pairs are completely

different at inter-service level. By looking at each subfigure, we note

that the traffic volume PDFs present multi-modal shapes with an

overall smooth Gaussian-like trend (over the logarithmic abscissa)

interrupted by abrupt and marked spikes of probability. Both the

main statistics (such as the mean, standard deviation or skewness)

and the probability peaks are not comparable across the selected

services. Interestingly, heterogeneous probability peaks also tell apart
applications that ostensibly belong to the same class, e.g., messaging

services like Snapchat and Whatsapp, or video streaming services

like Netflix and YouTube.

A closer look to the PDFs of each service reveals unique facets

linked to the nature and usage of the mobile application. For in-

stance, Netflix, the leading platform for movie streaming, has a clear

mode around 40MB, and a drop of probability just after the 200MB

mark. When a user is connected to a mobile network, Netflix adopts

an automatic balancing of data usage and video quality, allowing

4 hours of playback per GB of data in typical cases. Considering

this setting, the first peak occurs at around 10minutes of streaming,

and the drop after around 50 minutes: both values are consistent

with intuition, as they match the duration of one short episode of a

series, and a full episode of a longer show.

The session-level traffic dynamics change substantially when

looking at a different video streaming service, i.e., Twitch, which,
unlike Netflix, focuses on live content. The main mode, around

20 MB, and the main knee, at 800 MB, are shifted to the right with

respect to the Netflix case; also, the amount of traffic per minute is

much higher. The data indicates that Twitch users engage in long

sessions with a high bitrate, suggesting that live streams tend to be

consumed in more stationary conditions than on-demand movies.

Another example is Deezer, a popular audio streaming service,

which shows two main traffic modes that map to the highest proba-

bility values: one is located around 3.5 MB and the other at 7.6 MB.

At the standard bit rate of 128 kbit/s [11], the two modes translate

to 3:40 minutes and 8:00 minutes of listening time, respectively.

These roughly match the duration of one and two songs, including

advertisements: according to the data, Deezer users most often lis-

ten to a couple of tunes while connected to a same BS, and longer

listening times, while possible, are less likely.

Applications that mainly rely on relatively short message ex-

changes, such as Amazon (an archetypal web browsing service),

Pokemon Go (a popular location-based game) orWaze (a navigation

service generating floating car data), show a completely different

behavior than streaming services. Loads per session are much lower,

with traffic PDFs flattening to a zero value early on. Yet, the distribu-

tions and duration-traffic pairs are completely different also among

these applications, highlighting once more the unique behavior

exhibited by diverse services at the session level.

It is worth recalling that, in all PDFs, the duration of a session

and the volume of traffic it generates are not only the result of the

application or user’s behavior, but also of the UE mobility. Indeed,
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(a) Netflix (b) Twitch (c) Deezer

(d) Amazon (e) Pokemon Go (f) Waze

Figure 5: Probability density functions of the traffic volume 𝑭𝒔 (𝒙) (top plots in each subfigure), and value pairs of discretized
duration 𝒅 and traffic volume 𝒗𝒔 (𝒅) (bottom plots in each subfigure) for a selection of mobile services. PDFs and duration-traffic
pairs are aggregated over working days (Monday through Friday) and weekends (Saturday and Sunday) separately.

many sessions of mobile users occur only in part within a same BS,
and generate a smaller-than-expected volume of traffic for a complete
sessions of the same application. This explains the presence of many

very short sessions generating reduced traffic loads in the left part

of the distributions of all services. Also, it allows interpreting the

main mode of a streaming service like Netflix, which matches 3MB

and less than one minute of content: this is a reasonable mean

dwell time in the BS for in-transit UEs running the application.

Although frequent and thus important for a credible evaluation of

mobile network performance, transient sessions have been ignored

by traffic models proposed in the literature so far.

4.3 Quantitative analysis of service sessions
The qualitative analyses above unveil interesting aspects of session-

level mobile traffic dynamics, which are however based on a close

inspection of a few representative cases. To substantiate our ob-

servations, we perform a quantitative study of the traffic volume

distributions 𝐹
𝑐,𝑡
𝑠 (𝑥); we consider for now data aggregated over all

BSs 𝑐 ∈ C and days 𝑡 ∈ T , and compare different services 𝑠 , i.e., the
PDFs 𝐹𝑠 (𝑥) from (2), as per the following steps.

(i) We normalize 𝐹𝑠 (𝑥), for each service 𝑠 , so that all PDFs have

zero mean. This removes the impact of the sheer volume of

traffic generated by each application, enabling a comparison

of less obvious dynamics, such as the standard deviation or

the modes of the PDFs.

(ii) We compute pairwise earth mover distances (EMD) [35]

among normalized 𝐹𝑠 (𝑥), compiling a similarity matrix.

(iii) We run a centroid hierarchical clustering algorithm [30] on

the similarity matrix, so as to identify classes of services

(a) Similarity matrix (b) Silhouette Score

Figure 6: (a) Similarity matrix of the normalized PDFs 𝑭𝒔 (𝒙)
of all services, with the three major clusters highlighted.
Distance values closer to zero (dark red) indicatemore similar
PDFs. (b) Associated Silhouette score.

characterized by similar PDFs. This algorithm iteratively

groups the two PDFs at minimum distance, computes their

average via (2), adds it to the set of PDFs in place of the

original pair, and recomputes distances from the aggregate

to all other PDFs in the set. By doing so, it builds a hierarchy

of PDFs based on their similarity.

The result of this process is summarized in Figure 6a. Three

main clusters emerge; by looking at the services in each, we relate

these groups to (A) streaming services, (B) low-duty-cycle services

relying on short messages, and (C) outliers.
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(a) Facebook Live (b) Facebook

Figure 7: Traffic volume PDFs 𝑭𝒔 (𝒙) (top) and duration-traffic
pairs 𝒗𝒔 (𝒅) (bottom) for two applications with shared user
base: (a) Facebook Live and (b) Facebook.

The emergence of two major behaviors is aligned with early

observations in Section 4.2 about the clear difference between the

dynamics of streaming applications like Netflix, Twitch and Deezer

and those of less demanding services like Amazon, Pokemon Go or

Waze. We can also confirm that this polarity does not depend on

the user base but it is inherent to the nature of the service. Indeed,

as shown in Figure 7, it affects services like Facebook Live (video

streaming, cluster A) and Facebook (social media, cluster B), which

have a largely common user population: the former has 𝐹𝑠 (𝑥) and
𝑣𝑠 (𝑑) aligned with that of the streaming applications in Figures 5a–

5c, whereas the latter has flattened-out PDF and low-bitrate pairs

as in Figures 5d–5f. We conclude that session-level traffic is marked
by a main dichotomy between video and audio streaming services
and applications that rely on short or lightweight message exchanges.

However, clustering services beyond the twomajor groups above

is not possible. Figure 6b shows the evolution of the Silhouette

score [37] over progressive splits of the services into a growing

number of clusters. This index is widely used to identify meaningful

clustering levels, where values closer to 1 indicates no overlaps

and zero indicates overlapping clusters; the ideal cluster level is

identified by a major drop of the score in the following level, as this

indicates that breaking down the set into more classes generate

significant overlap. Apart from the substantial change of value

after the first 3 clusters, the Silhouette score stays nearly flat for all

subsequent splits: finer-grained grouping of services is haphazard

and does not reveal any informative pattern. Therefore, apart from

a very macroscopic separation of streaming versus non-streaming

traffic, session-level statistics of mobile traffic demands cannot be
characterized for whole classes of applications, but must be studied
for specific services independently.

4.4 Impact of space, time and technology
We now break down the analysis over the temporal and spatial

dimensions, by looking at PDFs 𝐹
𝑐,𝑡
𝑠 (𝑥) and pairs 𝑣

𝑐,𝑡
𝑠 (𝑑) that are

not aggregated over all BSs 𝑐 ∈ C and days 𝑡 ∈ T .

In the time dimension, mobile traffic workloads are known to

differ primarily between working days and weekends [14], hence

we explore if the same distinction exists in session-level dynamics.

We generate new aggregations of 𝐹
𝑐,𝑡
𝑠 (𝑥) and 𝑣𝑐,𝑡𝑠 (𝑑), over all BSs

𝑐 but telling apart two sets of days: working days and weekends.

We then compute the earth mover distance (EMD) [35] between

the two traffic volume PDFs of a same service 𝑠 for the two types

(a) Traffic across space/time (b) Traffic across RATs

(c) Duration across space/time (d) Duration across RATs

Figure 8: (a,c) Boxplots of differences in session-level traffic
for (𝒊) different services, and for each service across (𝒊 𝒊) work-
ing days and weekends, (𝒊 𝒊 𝒊) urban, semi-urban and rural
regions, and (𝒊𝒗) different cities. (b,d) Boxplots of differences
in session-level traffic (𝒊) for the same service across 4G and
5G RATs, and for difference services relying on (𝒊 𝒊) 4G or (𝒊 𝒊 𝒊)
5G. Differences PDFs 𝑭 𝒄,𝒕𝒔 (𝒙) in (a,b) are computed via EMD,
while those between pairs 𝒗𝒄,𝒕𝒔 (𝒅) are computed using SED.
Whiskers indicate the 5-th and 95-th percentiles, while the
boxes outline the first, second and third quartiles.

of days. EMD compares a pair of PDFs by calculating the minimum

cost of displacing samples of one distribution to match the other,

returning a value zero for identical PDFs. For duration-traffic pairs

we use a simple squared Euclidean distance (SED) of value vectors.

The distribution of these EMD and SED values is condensed in

Figures 8a and 8c, under the ‘Days’ tag. As a reference, we also

report the distances between different services, i.e., the values in
the matrix of Figure 6a, under the ‘Apps’ tag. By comparing the two

boxes, it is evident that the dynamics observed for a same service yield
negligible differences across working days and weekends, whereas
inter-service heterogeneity is much more pronounced. Visual ex-

amples of the lack of impact of the day type on session-level traffic

are also in Figure 5 and Figure 7, where measurements collected in

workdays and weekends does not show clear differences.

From a spatial perspective, we experiment by aggregating 𝐹
𝑐,𝑡
𝑠 (𝑥)

and 𝑣
𝑐,𝑡
𝑠 (𝑑) for each service 𝑠 , over all days 𝑡 but separately over

BSs that belong to different regions and cities. At a region level, we

compute PDFs and pairs for BSs that are located into (𝑖) dense urban,

(𝑖𝑖) semi-urban and (𝑖𝑖𝑖) rural regions; we employ urbanization level

information provided by the local national institute for statistics to

tell apart the three types of regions. Concerning cities, we derive

statistics for each of the 5 largest metropolitan areas in the country.

We then repeat the test used before for different days of the week,

by calculating for a same service the EMD of the traffic volume PDFs

and the SED of the duration-traffic pairs among different regions as

well as among diverse cities. The results are reported in Figures 8a

and 8c, under the ‘Regions’ and ‘Cities’ tags. Again, distances are

very small when confronted to those that affect diverse services

under the ‘Apps’ tag. We conclude that the geographical location of
the BS has very limited impact on the session-level traffic statistics,
hence a single model would generalize well across urbanization levels.
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Finally, we investigate the impact that different radio access

technologies (RATs) have on the session-level statistics. For each

service, we compute separate traffic volume PDFs and duration-

traffic pairs for all sessions served by 4G eNodeBs and 5G gNodeBs.

This allows studying if the statistics of a same application change

when a user is connected via 4G or 5G. The result is reported in

terms of EMD and SED in Figures 8b and 8d, under the ‘RATs’ tag,

and shows that the diversity entailed by different RATs is negligible

if compared to that determined by the service itself. The latter is

reported in Figures 8a and 8c, under the ‘Apps’ tag, but is also

broken down by technology in Figures 8b and 8d, under the ‘Apps

(4G)’ and ’Apps (5G)’ tags: there, we observe that difference across

applications remain stable no matter if those are served by 4G and

5G BSs. Our conclusion is that RATs do not impact in a significant
manner the way users consume a same mobile service within a single
transport-layer session.

4.5 Key insights
Our characterization of session-level traffic yields a number of

takeaways relevant to modeling, as summarized below.

a) The arrival rates of newly established sessions at a given

BS follow a bi-modal distribution, independently of the load

served by the BS, hence a same modelling strategy can be

applied to arrival processes of all BSs.

b) The fraction of total sessions generated by each service is

not uniform, but follows a negative exponential law, calling

for a suitable breakdown of arrivals on a per-service basis.

c) Services are characterized by unique multi-modal distribu-

tions of per-session traffic volume, which present varied

probability peaks at specific load values. Apart from a broad

distinction between streaming and best effort services, ap-

plications cannot be grouped on the basis of class or using

statistical clustering methods: each service requires dedi-

cated session-level modeling of the load and duration of the

session they induce.

d) The statistics of session-level traffic and duration of a given

service do not vary significantly across days, urbanization

level, metropolitan areas or RATs; hence, a single model

suffice to represent the dynamics of a service at a BS.

e) Transient, partial sessions generated by users crossing the BS

coverage area for a short time period occur with significant

frequency and should be properly modelled.

5 MODELING SESSION-LEVEL TRAFFIC
We build upon the insights above to develop original models of

mobile network traffic at the session level. Insights a and b offer

pointers on how to model arrivals of sessions𝑤
𝑐,𝑚
𝑠 at one BS. The

remaining ones provide indications on the modeling of the traffic

volume PDFs 𝐹
𝑐,𝑡
𝑠 (𝑥) and duration-traffic pairs 𝑣

𝑐,𝑡
𝑠 (𝑑). Specifically,

insight c implies that dependable models need to target each service

𝑠 ∈ S separately. However, following insight d, we do not need to

further specialize these per-service models for individual BSs 𝑐 ∈ C
located in different regions and cities, for different days of the week

𝑡 ∈ T , or even across 4G and 5G NSA RATs. Ultimately, models

of the aggregate 𝑣𝑠 (𝑑) from (1) and 𝐹𝑠 (𝑥) from (2) are enough to

capture typical session-level mobile traffic reliably.

Based on these considerations, we adopt the following modeling

approaches for𝑤
𝑐,𝑚
𝑠 , 𝐹𝑠 (𝑥), and 𝑣𝑠 (𝑑), respectively.

• For session arrivals𝑤
𝑐,𝑚
𝑠 , we use simple fittings of theoretical

distributions on the bi-modal PDFs observed in Section 4.1,

using a constant measurement-driven breakdown to asso-

ciate each arrival to a specific service 𝑠 .

• For the traffic volume PDFs 𝐹𝑠 (𝑥), we present a novel al-

gorithm to decompose and approximate the distributions

as log-normal mixture models. Our model achieves good

estimation of the original 𝐹𝑠 (𝑥) for a wide set of services

𝑠 with a small set of components (hence parameters). The

approach operates over the full PDF domain, thus including

short-lived transient sessions and abides by insight e.

• For duration-traffic pairs 𝑣𝑠 (𝑑), we show that a regression

using a power law model fits well all services 𝑠 . Interestingly,

these models let us comment on how throughput varies

non-linearly with the duration of a session, in ways that are

unique to each service.

5.1 Fitting of session arrivals𝑤𝑐,𝑚
𝑠

Based on the analysis carried out in Section 4.1, we model the

peak daylight arrival process of sessions at a BS and its off-peak

nighttime counterpart separately. This gives a degree of freedom

in emulating either day or night traffic.

By looking at Figure 3, the mode during peak hours can be

described by a simple Gaussian distribution. The mean 𝜇𝑐,𝑤 of

the Gaussian fitting is necessarily different across classes of BSs

characterized by different loads, which observe diverse arrival rates:

it ranges from 1.21 sessions/minute for the first decile class up to 71

sessions/minute for the busiest BS decile. For the standard deviation

𝜎𝑐,𝑤 , we observe a pattern emerging across all classes of BSs, such

that 𝜎𝑐,𝑤 ∼ 𝜇𝑐,𝑤/10 in all cases: this lets us automate the setting of

𝜎𝑐,𝑤 and simplify the models. The second mode, representing off-

peak hours, is better modeled by a Pareto distribution, represented

by 𝑏𝑐,𝑤 · (𝑠𝑐,𝑤)𝑏𝑐,𝑤 /𝑥𝑏𝑐,𝑤+1
, where [𝑏𝑐,𝑤 , 𝑠𝑐,𝑤] are the shape and

scale parameters, respectively. The measurement data is well fitted

by fixing the shape to 𝑏𝑐,𝑤 = 1.765 and modify only the scale 𝑠𝑐,𝑤

across antennas. In fact, the growth of 𝜇𝑐,𝑤 and 𝑠𝑐,𝑤 across BSs in

increasing load decile classes is similar, i.e., exponential with akin

rate. Examples of the resulting fittings are also shown in Figure 3.

According to the results of Section 4, it is important to model

arrivals associated to different services, which are not uniform. We

opt for a simple yet effective way to break the aggregate arrival

distributions above on a per-service basis. Our approach stems from

the consideration that the share of sessions induced by each service

is relatively constant across different BSs and over time. Specifically,

Table 1 presents the expected fraction of sessions and traffic volume

generated by 28 popular mobile applications. The table also report

the corresponding Coefficient of Variation (CV), i.e., the ratio of

standard deviation to the mean, across BSs and minutes. The CV

thus represents the expected diversity of session and traffic shares

yielded by each service. While the CV of the traffic share tends

to fluctuate, that of the session share is fairly stable at around 1%

across applications. In light of this observation, we use the session

shares in Table 1 as probabilities to assign to a specific service a

newly established session obtained from the fitted arrival rate PDFs.
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(a) Main component and residuals (b) Residual selection (c) Final model

Figure 9: modeling steps for the log-normal mixture model of the traffic volume PDF 𝑭𝒔 (𝒙), for a sample service, i.e., Netflix.
(a) Decomposition of the measurement distribution (light blue) into a main log-normal component (dashed) and residual
probability peaks (red). (b) Identification and characterization of the residuals to be modelled (light grey areas), using their first
derivative (orange). (c) Final residual components used by the mixture model (red), and reconstructed PDF 𝑭𝒔 (𝒙) (black).

Table 1: Percent contribution to the total number of transport-
layer sessions and to the total mobile traffic volume, for 28
applications and with associated CV.

Service Sessions % (CV) Traffic % (CV)
Facebook (FB) 36.52 ±1.15 32.53 ±1.68
Instagram 20.52 ±1.27 31.48 ±2.13
SnapChat 18.33 ±1.17 9.52 ±2.12
Youtube 4.94 ±1.14 0.24 ±1.39
Google Maps 2.76 ±1.14 0.10 ±2.82
Netflix 2.40 ±1.29 11.10 ±1.66
Waze 1.63 ±1.39 0.62 ±1.75
Twitter 1.46 ±1.43 0.45 ±1.49
Apple iCloud ±1.45 1.04 3.24 ±4.20
FB Live 1.42 ±1.17 1.80 ±1.08
Spotify 1.12 ±1.28 0.12 ±2.54
Deezer 1.08 ±1.91 1.59 ±1.81
Amazon 0.96 ±1.17 0.25 ±1.11
Twitch 0.91 ±1.22 3.67 ±0.96
WhatsApp 0.85 ±1.27 0.41 ±2.91
Clothes 0.83 ±1.23 0.85 ±1.58
Gmail 0.54 ±1.16 0.02 ±1.17
LinkedIn 0.51 ±1.23 0.54 ±1.41
Telegram 0.44 ±1.16 1.08 ±3.27
Yahoo 0.32 ±1.18 0.10 ±2.40
FB Messenger 0.23 ±1.25 0.01 ±1.85
Google Meet 0.22 ±1.11 0.14 ±2.16
Clash of Clans 0.18 ±1.25 0.09 ±3.31
Microsoft Mail 0.11 ±1.31 0.01 ±4.48
Google Docs 0.09 ±1.21 0.02 ±3.58
Uber 0.07 ±1.92 0.01 ±1.55
Wikipedia 0.06 ±1.30 0.01 ±3.01
Pokemon GO 0.04 ±1.21 0.01 ±2.33

5.2 Log-normal mixture modeling of 𝐹𝑠 (𝑥)
The modeling approach for 𝐹𝑠 (𝑥) is in three steps, which are illus-

trated in Figure 9 for one representative service, i.e., Netflix. In the

first step, exemplified in Figure 9a, we fit the experimental 𝐹𝑠 (𝑥)
using a log-normal distribution, i.e.,

𝐿𝑜𝑔𝑁 (𝑥 ; 𝜇𝑠 , 𝜎2𝑠 ) =
1

𝜎𝑠
√
2𝜋

· exp
(
−
(log

10
𝑥 − 𝜇𝑠 )2

2𝜎2𝑠

)
, (3)

which let us represent the broad trend of session-level traffic volume

for each service 𝑠 , denoted by 𝑓𝑠 (𝑥). The rationale behind the choice
of a log-normal fit is that it is the single function best representing

the whole 𝐹𝑠 (𝑥) for the vast majority of services: indeed, we can

observe in all plots of Figure 5, Figure 7 and Figure 9a that the

PDFs yield a resemblance to Gaussian-like shapes when the traffic

is represented in a logarithmic scale. In this stage, we also subtract

the fitted PDF 𝑓𝑠 (𝑥) from the measurement PDF 𝐹𝑠 (𝑥), bounding
the result to positive values and obtaining a residual probability.

The second step, depicted in Figure 9b, focuses on analysing

the residuals; these represent the unique peaks of session-level

traffic of each service, and are thus instrumental to a realistic mod-

eling of 𝐹𝑠 (𝑥). We automate the process of identifying the most

representative residual modes as follows.

• We compute the first derivative of the residual, using a first-

order Savitzky-Golay filter [38] that smooths the resulting

curve and helps the subsequent steps.

• We check the derivative against a threshold,
3
and record

all continuous intervals of traffic values within which the

derivative stays seamlessly above the threshold.

• We rank the aforementioned intervals based on the residual

probability they contain, simply computed as the integral of

the residual curve within each interval.

This method employs the change rate of the derivative to single

out the residual peaks of actual interest for the modeling process;

these are characterized by a high rate of change over a short traffic

interval, such as the (zoomed-in) light grey regions identified by

our algorithm in Figure 9b.

In the third and final step, we model the retained residual peaks.

As those resemble low-variance Gaussian PDFs in log scale, we

represent the 𝑛-th peak as a log-normal function

𝑓𝑠,𝑛 (𝑥) = 𝑘𝑠,𝑛 · 𝐿𝑜𝑔𝑁 (𝑥 ; 𝜇𝑠,𝑛, 𝜎2𝑠,𝑛), (4)

where 𝐿𝑜𝑔𝑁 (·) is defined in (3). We set 𝜇𝑠,𝑛 to the traffic value with

maximum probability in the associated interval, so as to properly

center 𝑓𝑠,𝑛 (𝑥); 𝜎𝑠,𝑛 is then set to (0.997 · ℓ𝑠,𝑛)/3, where ℓ𝑠,𝑛 is the

span if the 𝑛-th interval, so that 99.7% of the modeled probability

lays inside the interval. Finally, 𝑘𝑠,𝑛 is the residual probability used

to rank the intervals, and allows scaling the log-normal distribution.

Samples of modeled residuals are in Figure 9c for the case of Netflix.

The final mixture model for a service 𝑠 , denoted by 𝐹𝑠 (𝑥), is
obtained by composing the main and residual functions:

𝐹𝑠 (𝑥) =
𝑓𝑠 (𝑥) +

∑𝑁
𝑛=1 𝑓𝑠,𝑛 (𝑥)

1 + ∑𝑁
𝑛=1 𝑘𝑠,𝑛

, (5)

3
Upon extensive tests, we find the algorithm to be robust to the choice of the derivative

threshold, which avoids misinterpreting tiny oscillations as peaks. This allows using a

same value, i.e., 10−5 , to model any service 𝑠 .
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Figure 10: Power law exponents of the fitted �̃�𝒄,𝒕𝒔 (𝒅) for a
subset of services. Coefficients 𝑹2 are in bold.

where 𝑁 is the number of modelled residual peaks during the third

step above, and the normalization factor at the denominator ensures

that the expression in (5) is a distribution. Figure 9c provides an

example of real 𝐹𝑠 (𝑥) and its modeled counterpart 𝐹𝑠 (𝑥), for the
Netflix service.

To conclude, we note that other approaches to derive 𝐹𝑠 (𝑥) are
possible, e.g., using traditional mixture models that automatically

find the best decomposition of a PDF into multiple distributions

of a given type. With respect to such alternative solutions, our

algorithm not only produces models that are compact and accurate,

but outputs components with a clear semantic (i.e., the main trend,

and a set of characteristic peaks), easing results explainability.

In this regard, it is worth noting that, when applied to the mea-

surement data, our procedure identifies and models at most 3 resid-

ual peaks for the majority of services; the rare additional peaks

have negligible weight 𝑘𝑠,𝑛 below 10
−4
. Therefore, we align all

models and avoid irrelevant components, by limiting the maximum

number of residual contributions to 3.

5.3 Power-law fitted modeling of 𝑣𝑠 (𝑑)
Value pairs of duration 𝑑 and traffic volume 𝑣𝑠 (𝑑) tend to align

into very consistent patterns, as shown by the examples in Figure 5

and Figure 7: therefore, the relationships between the duration

of a session and the load it generates are clearly not random, but

follow statistical trends. Longer sessions are largely associated to

higher traffic volumes, which is reasonable. Yet, the exact growth

patterns are quite different across applications, as also observed in

the figures above.

In order to properly represent the expression of 𝑣𝑠 (𝑑) for each
mobile service, we fit to the data varied functions from a range of

families. Upon experimenting with polynomial, exponential, and

power laws we find that the latter yield the best quality of fitting

across all services, while limiting the model complexity. Specifically,

we obtain a power-law model 𝑣𝑠 (𝑑) = 𝛼𝑠 · 𝑑 𝛽𝑠
for each application,

by fitting {𝛼𝑠 , 𝛽𝑠 } via the Levenberg-Marquardt non-linear least

squares method.

The low complexity of the power law model facilitates its ex-

plainability, and in particular it let us quantify the diversity of

behaviors in 𝑣𝑠 (𝑑) discussed before. The fitted exponent 𝛽𝑠 is espe-

cially revelatory in that sense. In a linear model where 𝛽𝑠 = 1, then

𝑣𝑠 (𝑑) = 𝛼𝑠 · 𝑑 , and all sessions experience an average throughput

𝛼𝑠 independently of their duration. A super-linear 𝛽𝑠 > 1 denotes

(a) Twitch (b) Twitter (c) Google Maps (d) Amazon

(e) FacebookLive (f) Facebook (g) Snapchat (h) Google Meet

Figure 11: 𝑭𝒔 (𝒙) and �̃�𝒔 (𝒅) (black solid lines) against measure-
ment data (light blue) for a choice of services.

sessions whose mean throughput increases as they last longer, and

a sub-linear 𝛽𝑠 < 1 indicates that the instantaneous demand de-

creases for longer sessions.

Figure 10 shows the value of 𝛽𝑆 for a representative subset of

mobile services. The exponent spans a wide range of values, from

0.1 to 1.8, so each application has quite different scaling of the

average throughput to the session duration. Interestingly, when

looking at the super- or sub-linearity of the models, video streaming

services dominate super-linear behaviors. We speculate that this

may be due to the fact that longer sessions within a same BS are

generated by more stationary users, who also enjoy higher video

bitrates thanks to a more stable and strong radio signal. Non-video

applications have a sub-linear evolution of 𝑣𝑠 (𝑑), as most require

user interactions that tend to be less steady over longer periods.

5.4 Model quality and usage
Overall, we generate session-level traffic models as presented above

for 31mobile services, including all those listed in Table 1.We assess

the accuracy of the models for 𝐹𝑠 (𝑥) and 𝑣𝑠 (𝑑) presented above by

means of standard tests. For the traffic volume PDFs, we compute

the error of the models by calculating its EMD with respect to the

original measurement-based 𝐹𝑠 (𝑥). Although the absolute value of

EMD is not easily contextualized, we obtain in all cases results in

the order of 10
−5
, hence one order of magnitude lower than those

recorded in the various tests on 𝐹𝑠 (𝑥) in Figure 8a: we consider

this a good indication of the fidelity of the models. In the case of

duration-volume pairs, we compute the coefficient of determination

𝑅2 as a measure of the quality of fit. The values are typically in the

0.7–0.9 range, which denotes a reliable fitting; in some cases, we

obtain values as low as 0.5, which are still reasonable and, upon

close inspection, are mainly due to noisy measurement data that

creates outliers. Examples of the 𝑅2 values are on top of each bar

in Figure 10. Finally, visual illustrations of the real data and models

are provided in Figure 11 for a subset of services, and show the

good resemblance of 𝐹𝑠 (𝑥) and 𝑣𝑠 (𝑑) with the measurements.

Each model is fully characterized by a tuple of parameters [𝜇𝑠 ,𝜎𝑠 ,

{𝑘𝑠,𝑛, 𝜇𝑠,𝑛, 𝜎𝑠,𝑛}𝑛 , 𝛼𝑠 , 𝛽𝑠 ], which we release publicly. This allows

reproducing realistic session-level statistics for the traffic volume

(extracted from 𝐹𝑠 (𝑥)), duration (obtained by applying the inverse

function 𝑣−1𝑠 to the traffic volume) and average throughput (com-

puted as the ratio of the volume to the duration). Our open models

can thus benefit the research community by empowering more

dependable performance evaluations of mobile network systems

and solutions, as demonstrated next in practical use cases.



Characterizing and Modeling Session-Level Mobile Traffic Demands from Large-Scale Measurements IMC ’23, October 24–26, 2023, Montreal, QC, Canada

6 APPLICATION USE CASES
We describe two use cases that showcase the critical impact that

accurate session-level per-service traffic modeling can have in net-

work management. We remark that our goal is not to derive inno-

vative solutions for these use cases, but rather providing examples

that illustrate, through simple network management scenarios, the

utility of the presented models with respect to more traditional,

simpler and not data-informed modeling of traffic. The first use case

highlights the importance of per-service traffic characterization,

while the second one shows the benefits of session-level modeling.

6.1 Capacity allocation for network slicing
Correct characterization of mobile traffic demand is crucial for re-

source allocation in network slicing: An accurate knowledge of the

expected traffic demand for each Service Provider (SP) requesting

a network slice would allow the operator to adjust the reserved

resources in a more efficient manner, considerably increasing its

profit margin by reducing operating expenses for each slice while

accommodating more slices.

We consider a scenario in which the operator signs a Service

Level Agreement (SLA) with each one of the 28 SPs included in

Table 1. Each SP acquires a network slice to guarantee its traffic

demand during peak hours (i.e., except night from 10pm to 8am).

The incoming sessions are sampled from the real data distribution,

such that the share of traffic and number of sessions of each service

follows the values indicated in Table 1, and the arrival time of

the sessions is modeled such that the number of arrived sessions

per minute at each RU follows the distribution of the model in

Section 5.1. We consider that the terms of the SLAs are satisfied if

the operator successfully delivers all the traffic demand from the

SP’s users at least the 95% of the time. In this setting, the operator

must decide how much capacity it allocates to each of the SPs at

each of the antennas.

6.1.1 Algorithms. We consider the derived models for the sessions’

arrival time, the traffic per session, and the session’s duration to

determine the capacity allocation of each slice. Based on these

models, we obtain the CDF of the traffic per service per antenna for

different levels of demand. Considering this CDF and the average

antenna load, we allocate to each slice the capacity that corresponds

to its 95th percentile.

We compare this approach, which is only feasible with our de-

rived session-level results, with two benchmarks. For that, we con-

sider the mobile traffic models available in the literature [42], [31]

that provide shares of mobile traffic for 3 service categories (In-

teractive Web (IW), Casual Streaming (CS) and Movie Streaming

(MS)). To the best of our knowledge, there are no available models

with higher level of service specification. Thus, as benchmarks,

we consider bm a, which considers the three mentioned categories

with the session shares derived from aggregating the corresponding

values of Table 1 (IW: 49.30%, CS: 48.46%, MS: 2.24%), and bm b,

which considers the three mentioned categories with the session

shares from the literature (IW: 50%, CS: 42.11%, MS: 7.89%). For

both benchmarks, the capacity allocated to each service within a

category is split uniformly, since no information w.r.t. the intra-

category session shares is available.

Table 2: Performance results for capacity allocation for net-
work slicing averaged over antenna and service.

Time with no dropped traffic (%) Standard deviation

Model 95.15% 2.1%

bm a 89.8% 4.3%

bm b 87.25% 4.2%

Figure 12: Normalized traffic demand and allocated capacity
to Facebook network slice at one BS over time.

6.1.2 Evaluation. We evaluate the performance of the system for

a week in an area covered by 10 different antennas, for all the 28

services listed in Table 1. Table 2 shows the percentage of time for

which the capacity allocated by the operator is sufficient to serve

all the traffic demand, averaged over antennas and services. The

solution based on the models proposed is the only one that achieves

the SLA terms to guarantee the proposed Quality of Service. The

other solutions suffer from the inaccuracy in estimating the share

of demand of each service, and they also have bigger variability

between services. An important aspect of this session-level per-

service modeling is the robustness against outliers. Mobile traffic

is very bursty, and dimensioning the slices based on traffic peaks

may be very detrimental and lead to a waste of reserved resources.

This can be seen in Figure 12, where the actual allocated capacity

that satisfies the SLA terms is far below the traffic demand peaks.

6.2 Energy consumption in CU-DU
We consider a standard virtualized Radio Access Networks (vRAN)

scenario, portrayed in Figure 13a, where Centralized Units (CU)

located at a Telco Cloud Site (CS) serve traffic from a set of DUs at

multiple Far Edge Sites (ESs), each associated to a group of Radio

Units (RU). CUs run within physical servers (PS), whose energy

consumption depends on the computing load. Therefore, the dy-

namic association of DUs to CUs within each PS, in accordance

with the fluctuation of mobile data traffic at the RUs, determines

the energy cost of the vRAN infrastructure for the operator. This is

a major operating expense that needs to be minimized [15, 40].

6.2.1 Energy optimization model. Let us assume that all PSs at

the CS are identical machines, whose capacity is limited by the

maximum sum throughput of the mobile traffic they handle, up

to 100 Mbps when working at full load [36]. We model the energy

consumption at the each PS following real specifications of IBM

servers [36, Table IV], such that a PS consumes amaximum power of

200Wwhenworking on traffic at 100Mbps; the power consumption

is instead at 60 W when the PS is turned on but idle, and increases

proportionally until the 200 W above at 100% load.
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(a) System model (b) Performance error of traffic models (c) Power consumption over time

Figure 13: (a) vRAN system model considered in 6.2. (b) APE with respect to the measurements traffic in terms of active PSs and
power consumption, for our model and the benchmarks. (c) Power consumption sample.

The operator employs then a dedicated algorithm for orches-

trating the resources in the CU, executed at every time slot (TS)

of one second. Due to the considered energy consumption model,

minimizing the energy consumption of the system is equivalent

to minimizing the number of active PSs. Thus, the algorithm is a

bin-packing heuristic [18] that minimizes the number of PSs based

on the current state of served sessions and the new session arrivals

during the TS. While this model is relatively simple, it offers reason-

able performance; more importantly, it provides a basis to assess

the impact of traffic models on the compute resource management

results, which is our goal.

6.2.2 Mobile traffic models. We assume a vRAN system with one

CS serving 20 different ESs, each handling 20 RUs. The arrival time

of the sessions is modeled such that the number of arrived ses-

sions per minute at each RU follows the modeled distribution in

Section 4.1. We consider that the sessions are generated according

to three different strategies: (𝑖) using the measurement data pre-

sented in Section 3.1, by sampling 𝐹𝑠 (𝑑) and matching the traffic

volume values to 𝑣𝑠 (𝑑) to derive duration and average through-

put; (𝑖𝑖) using our proposed models as described in Section 5.4; (𝑖𝑖𝑖)

from traditional mobile traffic models available in the literature [42,

Table II], [31, Table XVII] that provide throughput and session

size/duration for three service categories.

For all cases, the share of per service sessions are extracted from

Table 1. For (𝑖𝑖𝑖), we map our 28 classes (services) into the 3 cate-

gories that their model considers, and again generate sessions for

each category according to Table 1. As we use the model in (𝑖𝑖𝑖) as a

term of comparison, we generate in fact three different benchmarks

from it: bm a fully adheres to the original models, bm b normalizes

the generated data so that the total system throughput matches

that observed in the measurement data, and bm c normalizes the

throughput of each service class so that it matches that recorded in

the measurement data. Clearly, bm b and bm cwould not be feasible

with information from the existing literature only, but they let us

highlight the advantages of our models.

6.2.3 Performance evaluation results. We run experiments for sev-

eral emulated days, orchestrating CS resources via the described

strategy for all trafficmodels above.We employ the same realization

of class-level session arrivals in all tests to avoid biases. Figure 13b

summarizes the results, expressed as the distributions of the num-

ber of active PSs and of the power consumption. We report the

absolute percentage error (APE) with respect to the same figures

obtained by feeding the optimization model with the measurement

data. Our model tightly approximates the real scaling of the com-

pute resources at the CS, with median APE well below 5% and

very small deviation for both metrics. The difference is apparent

with respect to the benchmarks, which incur into APE of 100%–

1000%, hence leading to performance results that are completely

off. Clearly, the traffic generated by the benchmarks fails to capture

real-world session-level statistics, which completely undermines

the reliability of the performance evaluation. Figure 13c offers a

close-up view of the temporal evolution of the power consumption

with real data, our model and bm c: the result further highlights

the quality of our contribution in mimicking real-world traffic.

7 CONCLUSIONS AND LIMITATIONS
We presented a first-of-its-kind exploration of mobile traffic at a

transport-layer session level. Our study builds on substantial mea-

surement data and reveals new facets of traffic, which we model

accurately as a contribution to more reliable performance evalua-

tions of mobile system. Our work presents a few limitations: the

granularity of our data does not allow for fine grained or intra-

session simulations (i.e. packet level generation); since our models

are at service level, they will require updates over the years to con-

sider changes in popularity and new services that emerge; due to

the aggregation of sessions at BS level to comply with user privacy

regulations, we lose the ability to study sequences of TCP/UDP

flows a user may generate through the use of a mobile service,

which limits an expansion of our study to application-layer dy-

namics. We plan to continuously collect data to provide updated

models to the community, and in future works explore the patterns

of specific network protocols and application-layer dynamics, as

well as analyze the impact of user mobility on our models.
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ETHICS
Our work builds on mobile network traffic generated by users of a

nationwide cellular infrastructure. Specifically, we employ session-

level statistics at the level of individual BSs, which are generated

from network measurements carried out in the target infrastructure

as explained in Section 3.1.

The traffic measurements used to derive the session information

were collected by the operator for network management and re-

search purposes, and temporarily stored within a secure platform

at their own premises. The aggregation into session-level statistics

was also carried out in the same platform by personnel of the net-

work operator, in full compliance with Article 89 of the General

Data Protection Regulation (GDPR) [13] of the European Commis-

sion. The data collection and processing was approved by the Data

Protection Officer (DPO) of the operator, and authorized by the

French National Commission on Informatics and Liberty (CNIL),

within the context of a collaborative research project.

We remark that the original network measurements contained

personal identifiers (e.g., the International Mobile Subscriber Iden-

tifier, or IMSI) and sensitive data (e.g., locations of visited BSs, or

mobile services consumed) about individual users, and were deleted

upon aggregation. Instead, the aggregated session-level statistics

consist of distributions and averages computed over hundreds of

sessions at least, and do not contain personal identifiers or sensi-

tive information, such as the device type, preference in terms of

application consumption, or trajectories. In addition, the level of

spatiotemporal aggregation ensures that no data subject can be

re-identified, and that the statistics do not configure as personal

data in the GDPR acceptation.

The researchers involved in the work presented in this paper

only had access to such aggregated and privacy-preserving statistics

for the purpose of carrying out the study. Ultimately, our dataset

and research do not involve risks for the mobile subscribers, while

they provide new knowledge about the dynamics of session-level

traffic demands, which will benefit an improved design and more

dependable validation of technical solutions for mobile network

operations.
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