
Offloading Augmented Reality Tasks with Smart
Energy Source-Aware Algorithms at the Edge

Francesco Spinelli

francesco.spinelli@imdea.org

IMDEA Networks Institute &

Universidad Carlos III de Madrid

Madrid, Spain

Antonio Bazco-Nogueras

antonio.bazco@imdea.org

IMDEA Networks Institute

Madrid, Spain

Vincenzo Mancuso

vincenzo.mancuso@imdea.org

IMDEA Networks Institute

Madrid, Spain

ABSTRACT
The development of novel use cases in beyond-5G and 6G networks

will rely, among other aspects, on the availability of computing

resources at the edge, therefore enabling the realization of appli-

cations that are both computationally demanding and latency con-

strained, such as Mobile Augmented Reality (MAR). Indeed, due to

end devices’ intrinsic constraints on computation capabilities and

battery, newer MAR applications require offloading their most de-

manding tasks. However, the constrained nature of edge resources

implies that these tasks should be carefully allocated at the edge

network in order to guarantee satisfactory Quality of Experience to

end-users. In this context, we analyze the edge operator’s resource

allocation to support the energy-aware offloading of MAR tasks

at the edge of the cellular network with the goal of not only maxi-

mizing service acceptance (i.e., revenue), but also optimizing the

operator’s business utility, which depends on its carbon footprint

and the profit of operating the service. We leverage Deep Reinforce-

ment Learning to propose an efficient model to operate the edge

resource allocation that can adapt to different utilities.

CCS CONCEPTS
• Computing methodologies→ Planning and scheduling; •
Networks→Cloud computing;Network resources allocation.

KEYWORDS
Mobile Augmented Reality, Deep Reinforcement Learning, Carbon

Footprint, Green Energy, Edge Computing

ACM Reference Format:
Francesco Spinelli, Antonio Bazco-Nogueras, and Vincenzo Mancuso. 2023.

Offloading Augmented Reality Tasks with Smart Energy Source-Aware Al-

gorithms at the Edge. In Proceedings of the Int’l ACM Conference on Modeling
Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’23), Octo-
ber 30-November 3, 2023, Montreal, QC, Canada. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3616388.3617523

1 INTRODUCTION
One of the key enablers that will allow network operators to realize

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0366-9/23/10. . . $15.00

https://doi.org/10.1145/3616388.3617523

the envisioned innovative use cases for the next generation of mo-

bile networks is the deployment of computing capabilities at the

network edge. Such a need is due to the fact that mobile users are

increasingly interested in low-latency applications that are com-

putationally demanding while requiring a great amount of band-

width resources. This combination prevents cloud computing from

providing this service [4], since it is unable to provide round-trip

latency of few milliseconds, and the network core would be easily

congested. In beyond-5G networks, the Multi-Access Edge Com-

puting (MEC) paradigm [10] places computing nodes at the edge

of the cellular network, enabling new disruptive low-latency use

cases. Among those use cases, we highlight Extended Reality (XR)

applications [1], which cover under their umbrella both Mobile

Augmented Reality (MAR) and Virtual Reality (VR) applications.

While the network support for the latter will be challenging even

for 6G networks [14], MAR applications are becoming widespread

among end-users thanks to the development of mobile equipment:

a recent Huawei report [8] indicates that by 2026 the MAR mar-

ket will generate over $30B in revenue, lead by social apps and

AR games. However, this will only be possible with the help of

edge servers to offload at least partially the computation of MAR

tasks [1], since many of these devices will be battery-constrained.

Deploying networks that are technically capable of supporting such

demanding applications (e.g., with edge computing resources) is

an important challenge, but there is an even more crucial aspect to

eventually see these systems deployed in real networks: sustaining

the required deployment has to be profitable for operators. One

manner to provide income to network operators to compensate for

the large capital expenditure (CAPEX) required to deploy a MEC

system is the business model based on leasing edge resources to

service providers or to users on a pay-per-use model [23].

At the same time, there is a growing concern about the energy

consumption that these computationally demanding applications

can bring forth [1, 24], with a particular interest in reducing the

overall carbon footprint of infrastructures, including communica-

tion networks.
1
For network providers, the deployment of comput-

ing resources at the edge will increase both the overall economic

costs and the carbon footprint, which may in turn translate into

bigger economic costs. A solution to deal with this problem is to

sustain edge nodes with renewable energy sources since there al-

ready exists equipment that can be installed in base stations and

edge nodes [25]. In this work, we try to answer one of the main

questions arising on the topic of how to realize XR applications

in next-generation communication networks: “How to distribute

1
See, for example, the United Nations vision in https://www.un.org/

sustainabledevelopment/infrastructure-industrialization, accessed 2023/06/12.

https://doi.org/10.1145/3616388.3617523
https://doi.org/10.1145/3616388.3617523


MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada Spinelli, Bazco-Nogueras and Mancuso

End MAR Devices Edge Network with Green Energy Sources

DRL-based 

Allocation 

Decision

Control Plane Data Plane

Figure 1: Edge scenario where MAR devices offload their
computation to an edge network with migration capabilities.

computation and data between different components in future XR

systems?” [15], which is crucial due to the limited available re-

sources at the edge both in computing and energy terms [26].

In particular, we study how to allocate and migrate MAR tasks

in an edge network, where edge nodes have a variable amount

of renewable energy. Our objective is not only to maximize the

operator’s profit, but also to find a compromise between profit and

carbon footprint, with the ultimate goal of making an edge network

sustainable in both costs and energy consumption. We provide a

Deep Reinforcement Learning (DRL)-based algorithm to propose a

smart model for the allocation and migration of MAR tasks. The

main contributions of the paper are:

• This is the first work considering both the tasks’ migration and

the awareness of variable renewable energy at the edge.

• We optimize both profit and a weighted fair utility to compro-

mise between profit and sustainability.

• We propose a heuristic and a DRL algorithm, which is able to

dynamically allocate and migrate jobs according to the pres-

ence of renewable energy. We evaluate the algorithms through

simulations with different loads, costs, etc., which show that

our DRL model outperforms the benchmarks and is able to

adapt to different utility expressions.

2 RELATEDWORK
The problem of allocating MAR tasks

2
in an edge scenario has been

extensively studied in the literature from different perspectives.

For example, [3] studies this problem on a multipath edge network,

Ren et al. [22] propose a three hierarchical MEC-based computation

framework for supporting AR, and in [16] the authors design an

edge network orchestrator trading off between low latency and

accurate object analytics. There also exist works that focus on the

interplay of edge offloading for MAR tasks and energy efficiency

with the use of ML techniques, which are consequently closer to

our scope. For instance, Chen et al. [6] minimize the energy con-

sumption of each user when offloading MAR tasks to MEC. In a

similar scenario, the authors in [19], leveraging Deep Learning

techniques, propose an energy-efficient task offloading algorithm

to minimize the battery consumption of devices. Always leveraging

on DRL, Chen et al. [5] propose an AR tasks offloading scheme that

maximizes the computation rate and energy efficiency in Beyond

2
From now on, we will refer to offloaded MAR tasks as jobs interchangeably.

5G systems, and Wang et al. [28] design an energy-aware system

that enables MAR clients to dynamically change their parameters

to minimize their per-frame energy consumption. Furthermore,

Cheng et al. [7] study AR task delay and power consumption min-

imization, while in [30] the authors leverage DRL to reduce the

overall (transmission and server computation) energy cost while

meeting the latency requirements. Ahn et al. [2] propose a theoret-
ical framework to improve both the resolution of offloaded frames

and the energy efficiency of multiple MAR devices connected to

a single MEC server. In [12], the authors configure the AR tasks

offloading problem as a partially observable Markov decision pro-

cess to minimize the energy consumption of mobile devices while

guaranteeing the deadlines of real-time tasks. [29] and [21] provide

a detailed implementation on how to integrate ETSI MEC and 5G

networks with MAR. Finally, many works consider the broader

topic of edge allocation for generic tasks [9, 17, 27].

Novelty and main contributions: Most of the state-of-the-art

works focus on the energy efficiency of the end-user side, while

almost none of them focuses on the service/operator side and, more

importantly, they do not consider the impact of the availability

of intermittent renewable energy. Indeed, this aspect can play a

significant role for the operator, as nowadays non-renewable energy

sources may incur exorbitant prices with high variability. In this

paper, we try to fill this gap by analyzing how MAR jobs can be

offloaded in an edge system dependent on both renewable and non-

renewable energy and in particular focusing on how this could be

sustainable for an infrastructure provider in monetary terms.

3 SCENARIO AND PROBLEM FORMULATION
A MAR application is composed of a video source, a tracker of

the user’s environment position, a model for object recognition in

the environment, and a rendering tool that shows the augmented

world on the user’s display. Except for the video source, the other

tasks can be offloaded to the edge network with different latency

deadlines [3]. We consider the offloading of jobs associated to the

processing of video frames, as done in other works [3, 16].

Our objective is to find an allocation policy that allows the edge

operator to maximize its long-term utility, where allocation refers

to both the initial job assignment and its re-allocation (migration

to another node) that might be enforced during task execution.

The utility depends on two main components: i) the monetary

profit, which has to be maximized, and ii) the environmental foot-

print, which has to be minimized. These two objectives can clearly

be contrasting. Thus, besides a mere cost-revenue function, we

design a function that describes the inherent trade-off between

profit and environmental footprint. The function is inspired on

proportional fairness [13] for the normalized versions of the two

unaligned objectives identified above, as we will explain in detail.

3.1 System Model
3.1.1 Network. We consider a MEC system as illustrated in Fig. 1,

where a Virtualized Network Function (VNF) is responsible for

(re-)allocating resources every time slot of duration 𝑇TS. Each edge

node 𝑛 ∈ 𝑁 is characterized by its maximum power consumption

(𝑃
(max)
𝑛 ) and its CPU capability (𝐶𝑛), i.e., the maximum amount of

processing cycles per time slot.



Offloading Augmented Reality Tasks with Smart
Energy Source-Aware Algorithms at the Edge MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada

Each MEC node is powered by renewable energy sources, which

can be located on-site at the same edge node [25]. Consequently,

each node has access to a variable amount of green energy that

varies through time, and we assume that the amount of renewable

power available at the nodes follows a generic distribution Ξ. The
available green energy is variable, and the remaining power re-

quired to reach the maximum 𝑃
(max)
𝑛 is provided by the standard

electric grid. The grid’s energy source is considered to be non-

renewable, since a power grid fueled by a mix of renewable and

non-renewable sources would only modify the relative goodness

of grid energy versus the locally acquired green energy.

Offloading MAR tasks to the edge servers prevents the user from

draining its battery, and, moreover, the use of renewable energy

sources at the edge implies that offloading tasks is an environmen-

tally beneficial decision. Therefore, we consider that MAR tasks are

by default offloaded to the edge network, provided that doing so

does not entail a loss of Quality of Experience (QoE) for the user, e.g.

by increasing the delay beyond a maximum acceptable threshold.

If the user does not enjoy the required wireless channel conditions,

its computation is done locally at the end-user device, and such user

does not request any offloading. Hence, and due to the fact that we

are interested in optimizing the use and allocation of computing

and energy resources independently of how offloading requests

are generated, we omit the modelling of the wireless network ac-

cess. The impact of wireless access quality and congestion might

be evaluated in future work. Finally, we consider that the edge

servers are not located far way from each other, such that the fiber

link connecting each other only introduces a few milliseconds of

delay [4], which is below the MAR latency budget.

3.1.2 MAR tasks. We consider that each job corresponds to a MAR

session requested by a user. We assume that each job has a duration

ℓ𝑗 measured in time slots of𝑇TS seconds, and 𝑡★
𝑗
denotes the arrival

time slot of job 𝑗 . Each job has a required processing load that

remains constant throughout the session, and the number of pro-

cessing cycles per time slot required to compute job 𝑗 (i.e., its size) is

given by 𝑐 𝑗 . The job requests’ arrival times follow a generic distribu-

tion Λ, and the size of the jobs follows a generic distribution Φ. If a
job has been accepted, then it must be served without interruptions

for the duration of the session, as it is assumed that this type of

applications demand a great quality of service, and interruptions

will not be tolerated by users paying a premium service.

3.1.3 Economic model. We consider that job 𝑗 provides a rev-

enue 𝜂 𝑗 if accepted, which is lost if it is interrupted or rejected.

The revenue is assumed to be proportional to the duration and the

requirements of the job. Thus, for a given fixed service fee 𝜂 repre-

senting revenue per time slot per chunk of processing resources,

job 𝑗 ’s revenue is 𝜂 𝑗 = 𝜂ℓ𝑗𝑐 𝑗 . The constant 𝜂 already includes all the

non-variable costs associated with the operation of the service. In

this way, the only remaining operational expenditure (OPEX) to be

taken into account is the variable cost of energy consumption. We

consider that the locally generated green energy incurs no OPEX,

but its availability is not guaranteed, as it fluctuates over time; con-

versely, the remaining energy obtained from the general power grid

is acquired at a cost 𝛿 per energy unit and is always available. The

power grid can contain a variable amount of green energy, and we

model such an aspect by varying the cost 𝛿 , although we consider

it to be fixed for the duration of each experiment because the price

of energy from national grids changes at most every hour.

3.1.4 Decision variables. We denote the placement variable of job

𝑗 at node 𝑛 and time 𝑡 as 𝑥
(𝑡 )
𝑗𝑛
∈ {0, 1}, such that 𝑥

(𝑡 )
𝑗𝑛

= 1 indicates

that job 𝑗 is being managed by node 𝑛 at time slot 𝑡 . The processing

cycles dedicated at time 𝑡 for job 𝑗 are similarly denoted by 𝑐
(𝑡 )
𝑗

.

We further denote by 𝐽 the total amount of jobs arriving to the

system. Next, we formally present our metrics of interest before

introducing the optimization problem.

3.1.5 Revenue metric. Let us first define 𝑎 𝑗 ∈ {0, 1} as the parame-

ter that indicates whether job 𝑗 has been accepted, i.e.,

𝑎 𝑗 ≜ 1 −
∏𝑁

𝑛=1

∏𝑡★
𝑗
+ℓ𝑗

𝜏=𝑡★
𝑗

(1 − 𝑥 (𝜏 )
𝑗𝑛
), (1)

where 𝑎 𝑗 = 1 if job 𝑗 is accepted and 𝑎 𝑗 = 0 otherwise, 𝑡★
𝑗
is the

arrival time of the job and ℓ𝑗 its duration.

Since job 𝑗 provides a revenue 𝜂 𝑗 , the total revenue obtained

by the operator is 𝑅 ≜
∑𝐽

𝑗=1
𝜂 𝑗𝑎 𝑗 , while the maximum possible

revenue, achieved only if all jobs are accepted, is 𝑅max ≜
∑𝐽

𝑗=1
𝜂 𝑗 .

From this notation, we define the normalized revenue 𝑅 ∈ [0, 1] as

𝑅 ≜
𝑅

𝑅max

. (2)

3.1.6 Power consumption metric and associated cost. We assume

that the power consumption derived from the computation of a job

is naturally proportional to the dedicated computation resources.

Specifically, job 𝑗 consumes an amount of power in node 𝑛 equal to

𝛼𝑐
(𝑡 )
𝑗
+𝛾 if it is served at time 𝑡 , where 𝛼 and 𝛾 are constant factors

that translate computation capabilities to power consumption.

Furthermore, we assume that serving a job incurs an extra power

cost due to the need of reconfiguration, allocation, and initialization

of the resources that handle the said job. This cost appears when

a job is accepted but also when a job is migrated, since, from the

perspective of the node that receives the job, a migrated job is

equivalent to accept such job in terms of resource reconfiguration.

Hence, the power consumed at node 𝑛 and time 𝑡 to serve job 𝑗 is

𝑝
(𝑡 )
𝑗𝑛
≜ (𝛼𝑐 (𝑡 )

𝑗
+ 𝛾)𝑥 (𝑡 )

𝑗𝑛
+ 𝛽𝑦 (𝑡 )

𝑗𝑛
(3)

where 𝑦
(𝑡 )
𝑗𝑛
∈ {0, 1} is 1 only if job 𝑗 arrives to node 𝑛 in the current

time slot, i.e., it is given by

𝑦
(𝑡 )
𝑗𝑛

=
(
𝑥
(𝑡 )
𝑗𝑛
− 𝑥 (𝑡−1)

𝑗𝑛

)
𝑥
(𝑡 )
𝑗𝑛

. (4)

The cost of migration accounts for the resources’ instantiation and

management, and 𝛽 is a constant factor translating such instantia-

tion procedure into power consumption.

Since we are only interested in the consumption of non-renewable
(-source) energy, we define the non-renewable energy consumption

at node 𝑛 as 𝑝
(𝑡 )
𝑛 , which is given by

𝑝
(𝑡 )
𝑛 ≜ max

(∑︁𝐽

𝑗=1

𝑝
(𝑡 )
𝑗𝑛
− 𝑔 (𝑡 )𝑛 , 0

)
(5)

where𝑔
(𝑡 )
𝑛 is the green energy available at node𝑛 at time 𝑡 . Thus, the

total non-renewable energy consumption is 𝑃 ≜
∑𝑇
𝑡=1

∑𝑁
𝑛=1

𝑝
(𝑡 )
𝑛 ,

and the associated monetary cost is 𝛿𝑃 .



MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada Spinelli, Bazco-Nogueras and Mancuso

3.1.7 Migration of jobs. We consider that jobs can be migrated

from one edge server to another. Specifically, we consider that, once

a job (i.e., a MAR session) is allocated to one server, such server

computes and sends the video frames back to the user, e.g., either

30 or 60 frames per second (fps) at least for the whole duration of

one time slot (in the order of seconds, which fits the standard time

scale for network function reconfiguration [11]). At the beginning

of the next time slot, based on the current network state, the VNF

in charge of allocating the jobs may decide to migrate them. Since

a job consists of computing video frames, there is no need of heavy

data transmission between the servers: it suffices with providing the

user metadata. While the new server is instantiating the processes

to handle the job, the initial server continues to serve the user.

Once the second server is ready, the migration is effectively applied,

which provides a seamless experience for the user.

3.2 Optimization problems
We consider two different utilities: the pure economic profit and a

proportional fairness-inspired evaluation compromising between

profit and consumption of non-renewable energy. We remark that

our objective is not finding the optimal allocation for a specific real-

ization of the problem, but finding the allocation policy that allows

the operator to maximize its long-term utility. This is important

because the operator is not aware of the future jobs arrivals nor

the future energy availability, and because of that it has to follow a

policy that is based on the expected utility from current decisions.

Next, we present the two corresponding optimization problems.

3.2.1 Profit maximization. The first problem aims at maximizing

the operator’s profit. For the sake of readability, we introduce

the notations [𝑋 ] = {1, . . . , 𝑋 }, for any positive integer 𝑋 , and

X ≜ {𝑥 (𝑡 )
𝑗𝑛
} 𝑗∈[ 𝐽 ],𝑛∈[𝑁 ],𝑡 ∈[𝑇 ] . We aim at finding the optimal job

allocation (and migration), i.e.,

max

X
𝐸Λ,Φ,Ξ [𝑅 − 𝛿𝑃] (P1)

𝑠 .𝑡 . 𝑥
(𝑡 )
𝑗𝑛
∈ {0, 1} ∀ 𝑛, 𝑗, 𝑡 ∈ [𝑁 ], [𝐽 ], [𝑇 ] (6)∑︁𝑁

𝑛=1

𝑥
(𝑡 )
𝑗𝑛

= 𝑎 𝑗 ∀ 𝑗 ∈ [𝐽 ], 𝑡 ∈ [𝑡∗𝑗 : 𝑡∗𝑗 + ℓ𝑗 ] (7)∑︁𝐽

𝑗=1

𝑐
(𝑡 )
𝑗

𝑥
(𝑡 )
𝑗𝑛
≤ 𝐶𝑛 ∀ 𝑛, 𝑡 ∈ [𝑁 ], [𝑇 ] (8)

where (7) states that, if a job is accepted, it can only be allocated

to one node at each time slot, and (8) is the node computation

constraint, which ensures that the sum of processing resources

allocated at a node 𝑛 is at most equal to its processing capacity.

We also define the profit margin 𝐵 as the ratio between the profit

𝑅 − 𝛿𝑃 and the total potential revenue 𝑅max, such that 𝐵 ≜ 𝑅−𝛿𝑃
𝑅max

.

3.2.2 Joint optimization of revenue and carbon footprint. For the
second optimization problem, the objective follows a proportional

fairness structure that allows us to compromise between revenue

maximization and minimization non-renewable energy consump-

tion, where the latter is, in our case, equivalent to carbon footprint.

To be able to jointly optimize such disparate metrics as power

consumption and revenue, we define a normalized version of the

two metrics, such that both are enclosed in the range between 0

and 1. First, for revenue, we consider its normalized expression

defined in (2), given by 𝑅 ≜ 𝑅
𝑅max

, 𝑅 ∈ [0, 1]. For the power metric,

we define the normalized power saving, which takes the form:

𝑃𝜌𝑝 ≜ 1 − 𝜌𝑝
𝑃

𝑃max

, (9)

where 𝑃max is defined as the maximum possible non-renewable

power consumption, i.e., as 𝑃max ≜
∑𝑇
𝑡=1

∑𝑁
𝑛=1
(𝑃 (max)

𝑛 −𝑔 (𝑡 )𝑛 ), and
where 𝜌𝑝 ∈ [0, 1) is a weight to prevent degenerate cases (since

𝑃𝜌𝑝 ≥ 1 − 𝜌𝑏 > 0) and to balance the importance of the power

in the objective function. 𝑃𝜌𝑝 can be seen as the percentage of

non-renewable energy that we can save with respect to the worst

case scenario. Note that 𝑃𝜌𝑝 ∈ (0, 1] is maximized when the non-

renewable power consumption 𝑃 is minimized.

Furthermore, we introduce a weight 𝜌𝑟 ∈ [0, 1) for the revenue
term, which aims at tuning the contribution of the revenue to the

objective function, such that the final revenue metric is

𝑅𝜌𝑟 = 𝜌𝑟𝑅 + (1 − 𝜌𝑟 ), (10)

which is a linear mapping from [0, 1] onto (1 − 𝜌𝑟 , 1]. The closer
the value of 𝜌𝑟 to 1, the bigger the range of the metric is and thus

the more importance it has for the operator.

The two coefficients 𝜌𝑟 , 𝜌𝑝 allow us to masquerade or emphasize

the contribution of each of the metrics and to avoid that they take

value 0, which would cause instability problems due to the logarith-

mic shape of the function defined next. Their values will depend

on the relative importance that each of the two metrics has for

the operator. We make use of the proportional-fair rule to jointly

optimize both metrics because it ensures that the best solution is

such that the sum of relative improvements for each individual

term achieved by any other solution is below zero [13], which leads

to maximizing log(𝑃𝜌𝑝 · 𝑅𝜌𝑟 ). Hence, our optimization problem is

max

X
𝐸Λ,Φ,Ξ [log(𝑃𝜌𝑝 · 𝑅𝜌𝑟 )] (P2)

𝑠 .𝑡 . (6), (7), (8) (11)

3.2.3 Complexity Analysis. We analyze the complexity of both (P1)

and (P2), proving that they are NP-hard. For that, we prove that

the well-known 0-1 Knapsack Problem (KP) can be reduced to our

problem, i.e., that every instance of the KP can be transformed into

an instance of our problem. We first recall the definition of the KP.

Definition 3.1 (0-1 Knapsack Problem[18]). Consider a knapsack
with capacity 𝐶𝑛 and 𝐽 jobs, where job 𝑗 has profit 𝑝 𝑗 and weight

𝑤 𝑗 . Let 𝑥 𝑗 ∈ {0, 1} denote the variable representing whether job 𝑗

is introduced in the knapsack (𝑥 𝑗 = 1). Then, the KP is defined as

maximize

X

∑︁𝐽

𝑗=1

𝑝 𝑗𝑥 𝑗 (12)

𝑠 .𝑡 . 𝑥 𝑗 ∈ {0, 1} ∀𝑗 ∈ [𝐽 ] (13)∑︁𝐽

𝑗=1

𝑤 𝑗𝑥 𝑗 ≤ 𝐶𝑛 (14)

Theorem 3.2. The problems (P1) and (P2) are NP-hard.

Proof. Since (P1) and (P2) only differ in the objective function,

we can simultaneously prove both. We start by considering a spe-

cific case of our problem, which takes the following assumptions:

(A1) We consider a single time instant (𝑇 = 1).

(A2) We consider a single node (𝑁 = 1).



Offloading Augmented Reality Tasks with Smart
Energy Source-Aware Algorithms at the Edge MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada

Table 1: Notation
Notation Description

𝑎 𝑗 𝑎 𝑗 = 1⇔ job 𝑗 is accepted, 𝑎 𝑗 = 0 otherwise

𝑐
(𝑡 )
𝑗

Required processing for job 𝑗 at time 𝑡

𝐶𝑛 CPU capabilities at node 𝑛

𝐽 Number of jobs

𝑁 Number of nodes

𝑝
(𝑡 )
𝑛 Non-renewable used power at node 𝑛, time 𝑡

𝑔
(𝑡 )
𝑛 Available green power at node 𝑛 at time 𝑡

𝑃 Total non-renewable power consumption

𝑃
(max)
𝑛 Total available power at node 𝑛

𝑃𝜌𝑝 Normalized non-renewable power savings

𝑅 Total revenue

𝑅max Maximum revenue (if all jobs are accepted)

𝑅 Normalized revenue 𝑅 ≜ 𝑅
𝑅max

𝑅𝜌𝑟 Normalized revenue metric

𝑡★
𝑗

Arrival time slot of job 𝑗

𝑦
(𝑡 )
𝑗𝑛

Indicates if job 𝑗 arrived to node 𝑛 at time 𝑡

Λ Distribution of job’s arrival time

Φ Distribution of job’s size

Ξ Distribution of green power availability

𝛼,𝛾, 𝛽 Constant power–computation factors

𝑥
(𝑡 )
𝑗𝑛

Placement variable of 𝑗 at node 𝑛 at time 𝑡

(A3) We consider that 𝑐 𝑗 ≤ 𝐶1 for all 𝑗 .

(A4) We consider that 𝑔
(𝑡 )
𝑛 ≥ 𝑃

(max)
𝑛 , for any 𝑡 .

(A5) Λ,Φ,Ξ are deterministic and known constants.

(A6) All jobs last a single time slot (ℓ𝑗 = 1).

We can remove the expectation over Λ,Φ,Ξ in the objective func-

tions because from (A5) we know the number and size of all jobs.

From (A1)-(A2), we can omit the sub-index𝑛 and the super-index (𝑡).
Furthermore, (A4) implies that 𝑝

(𝑡 )
𝑛 = 0, and thus 𝑃 = 0 and

𝑃𝜌𝑝 = 1. Hence, the objective function of (P1) becomes maxX 𝑅

and that of (P2) becomes maxX log(𝑅𝜌𝑟 ). Due to the monotonicity

of the log function, the values that maximize log(𝑅𝜌𝑟 ) are the same

ones that maximize 𝑅; since we are interested in the argument

that maximizes the function rather than the maximum value itself,

we can consider maxX 𝑅 as our objective function for (P2) in this

specific case. Since 𝑅max does not depend on the decision variables,

we can substitute the objective function in (P2) by maxX 𝑅, which

matches that of (P1). Hence, in this particular setting given by (A1)–

(A6), both (P1) and (P2) are equivalent. Since (1) and the assumption

𝑁 = 𝑇 = 1 imply that 𝑅 =
∑𝐽

𝑗=1
𝜂 𝑗𝑥 𝑗 , our problem is equivalent to

max

X

∑︁𝐽

𝑗=1

𝜂 𝑗𝑥 𝑗 (15)

𝑠 .𝑡 . 𝑥 𝑗 ∈ {0, 1} ∀𝑗 ∈ [𝐽 ] (16)∑︁𝐽

𝑗=1

𝑐 𝑗𝑥 𝑗 ≤ 𝐶𝑛 (17)

By assigning 𝑝 𝑗 ← 𝜂 𝑗 , 𝑤 𝑗 ← 𝑐 𝑗 in (12), the KP can be reduced to

this specific case of our problem. Hence, we can argue that (P1)

and (P2) are as complex as KP, which is NP-hard. Since this reduc-

tion can be built in polynomial time, both problems are NP-hard. □

4 ALGORITHMS
The previous optimization problem is the formal definition of the

objective of the operator. In real network deployments, the operator

cannot know how many jobs are going to arrive in the incoming

time slots. Because of that, it has to rely on probabilistic policies,

which determine the best decision to take at the current moment on

the basis of the expected behavior of the system. Furthermore, even

if the operator had access to future samples, the NP-hardness of

the optimization problem would discourage any attempt to directly

solve it, as the complexity and required time for iteratively solving

such problem would not be acceptable in a real-time system.

Thus, we need to derive practical algorithms to provide a solu-

tion for the problem above. As previously explained in Section 2,

approaches based on RL are usually considered for these decision-

making problems, where we cannot obtain an optimal solution and

the objective depends on the previous and future decisions. For the

application of RL, the problem is typically modeled as a Markov

Decision Process (MDP) and, consequently, we reformulate the

problem as an MDP.

4.1 Reformulation of the Problem as a Markov
Decision Process

The scenario presented in Section 3 can be stated as a MDP through

the 4-tuple (𝑆 , 𝐴, 𝑃𝑎 , 𝑅𝑎) governing any MDP: The state space (S),
action space (A), the probability distribution of the next state given

the current state and action 𝑎 (𝑃𝑎 (𝑠′ |𝑠)), and the immediate reward

from arriving to state 𝑠′ from state 𝑠 due to action 𝑎 (𝑅𝑎 (𝑠, 𝑠′)).

4.1.1 Agent. The agent corresponds to the edge orchestrator con-

trolling the 𝑁 edge nodes. At every time slot, it must take 𝐽𝑡 de-

cisions, where 𝐽𝑡 is the number of jobs that are present at the

beginning of time slot 𝑡 , including the jobs already being served

and the new requests arrived since the last time slot.

4.1.2 State space. The state space is comprised of all the informa-

tion obtained by the agent from the environment that influences

the action of the agent. In a given time slot, the state 𝑆𝑡 (also called

observation) indicates the current value of each one of the variables

of interest. Our state space is composed of three different parts: the

load of each of the edge nodes, the green energy availability at each

edge node, and, finally, an indicator stating whether the next job to

be managed is a new arrival request or is already being served by

one of the edge nodes. Thus, it contains 2𝑁 + 1 dimensions.

To facilitate the learning convergence, and because RL performs

better when dealing with discrete variables, we consider a quantized

status of both load and green energy availability. Next, we describe

the possible state values and how we discretize the variables.

For the green energy availability, we consider a three-step quan-

tization: state 0 means that there is enough renewable energy to fit

more jobs, state 1 that in the current state all energy consumed is

renewable but there is not enough to serve a new job, and state 2

that the node is already taking energy from non-renewable sources.



MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada Spinelli, Bazco-Nogueras and Mancuso

Algorithm 1 GreenRL: Admission control and resource

(re)allocation at each time slot

Input: state 𝑆𝑡 , set of jobs in the system (𝐽 (𝑚) ), set of new arrived

jobs (𝐽 (+) ), green energy 𝑔
(𝑡 )
𝑛 ,

Output: Allocation decisions for time slot 𝑡

for 𝑗 ∈ 𝐽 (𝑚) do { Migration decisions}

Agent selects action 𝑎 = 𝜋 (𝑆𝑡 ).
Check constraints violation ((8) or job’s interruption (7)).

If positive, agent receives a penalty, episode is stopped.

Evaluate reward and update next state.

end for
for 𝑗 ∈ 𝐽(+) do { Acceptance decisions}

Agent selects action 𝑎 = 𝜋 (𝑆𝑡 ).
Check constraint violation (8).

If positive, agent receives a penalty, episode is stopped.

Evaluate reward and update next state.

end for

Regarding the nodes’ load, we quantize the amount of process-

ing cycles required by the node to compute the allocated jobs in

a non-linear way. Specifically, we consider that the quantization

step follows a logarithmic progression, such that the steps become

smaller as the node is more loaded. This follows from the intu-

itive idea that the exact load is not so important when the node

is handling low computation load, but it becomes more important

when it is approaching maximum capacity and thus consuming

more energy. The quantization is done to enforce that the last step

represents the case where the node cannot accept more jobs and

the previous step indicates that there is space for at least one job.

Finally, the last state dimension is a discrete variable that can

take 𝑁 + 1 values, from 0 to 𝑁 , where 0 represents that the job is a

new arrived job (and thus it can be rejected or allocated), whereas

a value𝑉 from 1 to 𝑁 indicates that the job is already being served

and it is currently placed at node𝑉 (such that it can be migrated to

other node but cannot be interrupted).

4.1.3 Action space. The action space is the description of the

agent’s decision. In our scenario, the agent decides whether to

accept, reject, or migrate each job, which translates in our model to

an action space composed of a single discrete variable that can take

the values {0, 1, . . . , 𝑁 }. A value 𝑎 ∈ {1, 2, . . . , 𝑁 } indicates that the
job is allocated on node 𝑎 for the next time slot. This value can rep-

resent either an allocation of a new job or a migration to a different

node in the case of already served jobs if 𝑎 ≠ 𝑆𝑡 (2𝑁 + 1). Finally,
𝑎 = 0 represents that the job is rejected; consequently, 𝑎 = 0 is only

allowed for new jobs as active sessions must not be interrupted.

4.2 Deep Reinforcement Learning-Based
Solution: GreenRL

Wepresent next the proposedDRL-based solution, denoted as GreenRL,
and whose high-level description is presented in Algorithm 1.

As described above, at the beginning of each time slot 𝑡 the

operator makes a decision for each job present in the network. The

operator first handles the jobs that are currently being served in the

system. Those jobs must be served until they finish, but they can be

migrated from one node to another, which would incur a migration

cost as described in Section 3. The agent evaluates job-by-job the

possibility to migrate, and once they have been managed, it starts

deciding whether the new arrived jobs are accepted or not, and

where to allocate them. If accepted, the job provides revenue to the

operator (unless it is later interrupted).

We note that it is not trivial to correctly define an adequate re-

ward function, inasmuch as the state depends on decisions taken

several time slots in advance due to the shorter time scale of the

resource re-allocation time slot (few seconds) with respect to the du-

ration of the jobs (many minutes). Because of that, we consider that

the reward is a normalized sliding-window version of the objective

functions defined in Section 3, as is detailed in the following.

• Profit: To compute the reward, we first calculate the profit

obtained in the last𝑇𝑟 time slots, computed as the difference

between the revenue provided by the jobs accepted in those

𝑇𝑟 time slots and the energy cost generated by all the jobs
in the system during such interval. Then, we normalize this

profit by the total revenue of all the jobs that arrived during

the 𝑇𝑟 time slots, i.e., the reward corresponds to the value of

𝐵 for the last 𝑇𝑟 time slots and lies in the range [0, 1].
• Fairness: Similarly, the reward depends on the revenue and

cost during the last𝑇𝑟 time slots. Since reward normalization

is known to help to achieve better performance for DRL

algorithms, instead of computing log(𝑃𝜌𝑝 · 𝑅𝜌𝑟 ) as indicated
in (P2), with lies in the range [log((1 − 𝜌𝑟 ) (1 − 𝜌𝑝 )), 0], the
reward is given by log(𝑃𝜌𝑝 · 𝑅𝜌𝑟 + 1)/log(2), such that it

only takes values in the [0, 1] interval.
Training is split into episodes, each one including up to a maxi-

mum number of time slots, and up until the agent takes a decision

that violates any of the physical constraints (i.e., it interrupts a job

that has been accepted or it allocates to a node more computing

resources than its maximum capacity). When an episode is termi-

nated due to a constraint violation, the last reward is set to −1 to

prevent the agent to repeat the mistake. Once trained, the agent is

modeled through a probabilistic policy 𝜋 (𝑆𝑡 ).
In our work, we leverage an algorithm called Asynchronous

Advantage Actor Critic (A2C) [20] and, in particular, we use the im-

plementation provided by Stable Baselines3 library
3
. A2C is based

on Actor-Critic policy gradient methods, and its main idea is the use

of an asynchronous updating scheme that operates on fixed-length

segments of experience, executing asynchronously multiple agents

in parallel. We refer to the original paper for further details [20].

GreenRL may take actions that lead to QoE disruptions: It could

(𝑖) reject jobs when there was green energy available for them, (𝑖𝑖)
allocate jobs to a node that is already full, (𝑖𝑖𝑖) interrupt an ongoing

job. The training process must learn to avoid all these cases.

4.3 Heuristic Algorithm: GreenH
We also propose a heuristic algorithm to compare it with the per-

formance of the DRL-based approach. The goal is to understand the

benefits that DRL can bring over designed algorithms that do not

suffer from the low performance that the system can face during

(possibly long) training periods. This heuristic algorithm, to which

3
https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html



Offloading Augmented Reality Tasks with Smart
Energy Source-Aware Algorithms at the Edge MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada

we refer as GreenH, also handles in-system job migrations and is

aware of the green energy distribution across nodes.

The algorithm acts similarly for both in-system jobs and new jobs:

It computes the unused green energy at each node, i.e., the available

green energy at the node minus the current node consumption due

to the jobs processing. Then, it allocates the job to the node with

more unused green energy.When all nodes are consuming polluting

energy, the decision is random. A job can be forcibly rejected or

interrupted if the selected node runs out of computing resources.

4.4 Baselines
We also evaluate the performance of two simple baselines. These

algorithms do not implement migration of in-system jobs across

nodes, and they do not take into account the distribution of green

energy, i.e., they focus on maximizing only the operator’s revenue.

Consequently, the two algorithms accept all the incoming jobs, and

if the node has not enough computing power, the job is forcibly in-

terrupted with the subsequent loss of user QoE. These two baselines

algorithms are defined as follows.

• Random: This algorithm selects randomly the node to which

each job is sent. The decision is drawn from a uniform dis-

crete distribution of range {1, 2, . . . , 𝑁 }.
• Emptier sends the job to the node that has the lowest load

among the𝑁 nodes. If there are several nodes with the lowest

load, the choice is uniformly random among such nodes.

5 NUMERICAL EVALUATION
We evaluate numerically the four previously described algorithms

on a set of network scenarios and varying parameters. Besides these

four solutions, we also provide the optimal solution obtained by

solving the optimization problem ((P1) or (P2)). We remark that

this last result, to which we refer as Solver, is an ideal solution
that is not feasible since, in order to solve the optimization, we

must consider that we know in advance the state of the system in

the future time slots (number of arrivals, energy availability, etc.).

Solver is also impractical due to the complexity of the problem,

since its computation takes a time that is several orders of mag-

nitude bigger than the actual operation time. We built a Python

simulator, where the DRL framework is built on Stable-Baselines

library and the optimal solution for Solver is built using Python’s

SciPy library. We performed our experiments in a Dell T640 server

with 128 GB of RAM and 40 logical cores.

5.1 Simulation scenario
We evaluate a MEC system as the one presented in Fig. 1, where all

edge nodes are interconnected in a full-mesh topology and have

the same computing capacity and maximum power consumption.

We consider that each edge node offers a computing capacity of

𝐶𝑛 = 2 TeraFLOPS, which is in line with first MEC deployments in

metropolitan areas [25]. Time slots last 5 seconds, which is thus the

longest a user would wait to start a session. The value of the factors

to transform computation to energy consumption are 𝛼 = 0.9,

𝛽 = 0.1 and 𝛾 = 0.1, such that the additional cost of migrating a job

is approximately a 10% of the cost of computation per time slot.

We consider MAR jobs as a sequence of video frames. The edge

nodes process video frames with resolution 800 × 800, which is the

Table 2: Default simulation parameters
Job length (time slots) 7

Arrival Rate (Per time slot) 3

Job computation resources 20% of server capacity 𝐶𝑛
𝜂 (Revenue/time slot/flop) 10

𝛿 (Cost/time slot/flop) 15

Renewable Energy Random Uniform 𝜇 = 0.5𝑃
(max)
𝑛

Fairness weights 𝜌𝑟 = 0.4, 𝜌𝑝 = 0.95

same order of magnitude usually considered in the literature [16,

21, 28]. According to [16], this video frame size requires 20% of the

total computing resources of a 2-TeraFLOPS edge server.

We assume that a job requires a constant computation per frame.

Considering dynamic video frame sizes, which would vary the

computation requirements, could be investigated in future work.

We assume a static session length of several minutes,
4
much longer

than the slot length, and that jobs’ arrivals follow a Poisson process.

We assume a set of default values for all the parameters that are

valid for all the experiments unless stated otherwise, and which are

provided in Table 2. In some cases, we consider that the revenue

unit 𝜂 is smaller than the cost unit 𝛿 (of energy coming from the

power grid) due to several reasons: (𝑖) operators’ profit margin per

unit of service is known to be very small, (𝑖𝑖) the final cost of the ser-
vice is smaller due to the (relatively) free use of local green energy,

and (𝑖𝑖𝑖) naturally, if the revenue of a job is always bigger than its

cost, the decision will be simpler because all jobs will be accepted,

and the only aspect that will matter is where to allocate them. The

experiments are evaluated by averaging at least 20 different real-

izations with different renewable energy realizations. Each energy

realization is independent of each other to obtain a comprehensive

analysis covering all the possible energy distributions.

Training of DRL solution GreenRL. The DRL solution is built upon

the well-known A2C algorithm. We evaluated also other state-or-

the-art DRL approaches, such as Proximal Policy Optimization

(PPO) or Deep Q-Learning (DQN), but they were underperforming

for all the experiments, and hence we do not include them in the

results. As training parameters, we consider a total training duration

of 10 million decisions (although it is enough to train for 1 million

steps for simple cases, e.g., when 𝑁 = 3), a maximum length per

episode of 1024, a learning rate of 0.0007, and a batch size of 8.

Learning rate and batch size are selected after a careful evaluation,

and they lie within their typical range. Both policy and value neural

networks have the same architecture: each one is defined as a MLP

network composed of two hidden layers of 64 neurons each.

5.2 Results
We provide the results of the described experiments. In the figures,

all the vertical bars represent the 95% confidence interval. We also

omit the transient phase from all the experiments.

5.2.1 Trade-off of fairness function. As previously mentioned, the

operators may be interested in optimizing different Key Perfor-

mance Indicators (KPIs) besides the pure economic benefit, KPIs

4
For longer sessions, we can assume that, once the session has reached a certain

duration, a new offloading request is made to renew the service.



MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada Spinelli, Bazco-Nogueras and Mancuso

0.1 0.3 0.5 0.7 0.9
ρr

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

F
ai

rn
es

s
O

bj
.

F
un

ct
io

n
lo

g
(P̄

ρ
p
R̄
ρ
r
)

GreenRL

Random

Emptier

GreenH

Solver

(a)

0.1 0.3 0.5 0.7 0.9
ρr

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

pr
ofi

t
m

ar
gi

n
(B̄

) GreenRL

Random

Emptier

GreenH

Solver

(b)

2 1 2/3 1/2

Decreasing Ratio η̄/δ

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

F
ai

rn
es

s
O

bj
.

F
un

ct
io

n
lo

g
(P̄

ρ
p
R̄
ρ
r
)

GreenRL

Random

Emptier

GreenH

Solver

(c)

Figure 2: Evaluation of the performance of the algorithms as function of several system parameters for problem (P2). We
present in (a) the value of the objective function of (P2) for different values of the weight of the revenue metric 𝜌𝑟 , and in (b)
the corresponding value of normalized profit margin obtained in this case (when we do not directly optimize the profit). In (c),
we show the impact of varying the ratio between revenue (𝜂) and cost (𝛿) again when solving (P2).

that are more aligned with high-level goals of the company such as

satisfying certain environmental objectives, e.g., the flexible utility

introduced in (P2). Yet, the optimal decisions for (P2) will strongly

differ depending on the weights 𝜌𝑟 , 𝜌𝑝 that are best suited for the

operator’s objective. To understand the impact of these parameters,

we evaluate the performance of the algorithms for different values

of 𝜌𝑟 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for a fixed value of 𝜌𝑝 = 0.95. We

evaluate a scenario with 3 edge nodes, serving a set of users whose

requests amount to an average load of 50% of the total capacity of

the nodes. In this experiment, we consider that the revenue per job

is 20% higher than the cost of computing such job without local

green energy, i.e., 𝜂 = 1.2𝛿 . Yet, due to the varying weight of the

revenue term in (P2), it is not always better to accept all the jobs.

The results are shown in Figure 2. Figure 2a represents the main

objective function (that of (P2)) for which both Solver and GreenRL
are optimized. We observe how GreenRL performs close to the

(ideal) Solver, outperforming the other algorithms by more than

20% except for 𝜌𝑟 ≥ 0.7. For 𝜌𝑟 ≥ 0.7, GreenRL performs as well

as the best of the other algorithms because, with the considered

level of green energy, accepting all the jobs is almost optimal. Fig-

ure 2b represents the resulting (normalized) profit margin. We recall

that the algorithms are optimized to maximize the fairness-like ex-

pression (P2), and not the profit (P1). GreenRL and Solver perform
worse than the baselines for this metric, but it is expected since they

aim to optimize the other metric. Indeed, the relative result w.r.t.

the baselines worsens as the weight of the profit (𝜌𝑟 ) decreases.

5.2.2 Impact of revenue/cost ratio. The cost of non-renewable en-
ergy, which may vary greatly, also impacts the performance of the

edge network. Figure 2c shows how changing the relation between

revenue and cost could affect the performance of all algorithms,

for the case where Solver and GreenRL are optimized for (P2)

(log(𝑃𝜌𝑝𝑅𝜌𝑟 )). GreenRL is able to perform really close to the solver’s

performance for any cost, and with an important gap w.r.t. to the

baselines. The good result of all the algorithms when
𝜂

𝛿
= 1 is due

to the fact that, with that value, accepting a job that consumes only

non-renewable energy has the same profit as rejecting the job, and

thus different decisions can lead to similar performances.

5.2.3 Baseline network topology with 7 nodes. Figure 3 shows the
results for a network topology of 7 edge nodes that abides by the

parameters of Table 2, except for the jobs arrival rate, which is set

to 𝜆 = 4, such that the average system load is 65%. We provide

a detailed analysis, whose results are summarized in Fig. 3, by

presenting four metrics of interest: (𝑖) the cost of energy (Fig. 3a),

(𝑖𝑖) the normalized profit margin 𝐵 (Fig. 3b), (𝑖𝑖) the portion of

users accepted, rejected and interrupted (Fig. 3c), and (𝑖𝑣) the use
(and excess) of green and polluting energy (Fig. 3d), and for the two

considered problems: The bars labeled as “Fairness” correspond

to the case where the algorithms are designed to optimize (P2),

whereas the cases labeled as “Profit” when we optimize for (P1).

Fig. 3a-3b show how, in the “Fairness” case, GreenRL attains the

same profit as when it is optimized tomaximize the profit, while also

greatly reducing the power cost, which endorses the consideration

of (P2). In fact, GreenRL for (P2) reduces the energy cost by more

than 80% w.r.t. GreenH and the same GreenRL optimized for profit,

95% w.r.t. the baselines, and matches that of Solver.
Fig. 3c indicates that GreenRL is the most conservative algorithm,

since it accepts the smallest number of jobs, but it does so to ensure

that no job is interrupted. We remark that, in our model, not ac-

cepting a job is not critical, as it is then computed at the user device

(with the only drawback of draining its battery), whereas interrupt-

ing a job that was offloaded has a huge impact in the end-user QoE,

since due to the nature of the MAR sessions it is highly probable

that the user is unable to continue the session. The explanation

of this conservative behavior is also complemented with Fig. 3d:

Random is shown in Fig. 3c to be the most aggressive, and Fig. 3d

shows that such approach is detrimental because it incurs high

consumption of non-renewable energy. Similar rationale can be

applied, to a lesser extent, to Emptier, and while both Random and

Emptier accept more jobs, they also incur more jobs interruptions

and power consumption. Moreover, GreenRL performs quite close

to Solver, which is also quite conservative, although it is able to

accept more jobs. In terms of underuse of green energy, the algo-

rithms perform similarly, except for Solver; yet, GreenRL is the

only one that does not use non-renewable energy in place of green

energy. The patterns in energy sources usage are also maintained

for the case with 𝑁 = 10 edge nodes, represented in Fig. 4.

GreenRL and GreenH enjoy a great performance because they

allow migration to nodes with more available green energy. Specif-

ically, throughout all the experiments here presented, GreenRL



Offloading Augmented Reality Tasks with Smart
Energy Source-Aware Algorithms at the Edge MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada

GreenRL
Fairness

GreenRL
Profit

GreenH
Fairness

GreenH
Profit

Random
Fairness

Random
Profit

Emptier
Fairness

Emptier
Profit

Solver
Fairness

Solver
Profit

0

2000

4000

6000

8000

O
p

er
at

or
’s

E
ne

rg
y

C
os

t
(δ
P

)

(a) Mean energy cost and standard deviation for the different algorithms

GreenRL
Fairness

GreenRL
Profit

GreenH
Fairness

GreenH
Profit

Random
Fairness

Random
Profit

Emptier
Fairness

Emptier
Profit

Solver
Fairness

Solver
Profit

0.0

0.2

0.4

0.6

0.8

P
ro

fi
t

m
ar

gi
n

(B̄
)

(b) Mean profit margin �̄� and standard deviation for the different algorithms

GreenRL
Fairness

GreenRL
Profit

GreenH
Fairness

GreenH
Profit

Random
Fairness

Random
Profit

Emptier
Fairness

Emptier
Profit

Solver
Fairness

Solver
Profit

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
nt

ag
e

of
us

er
s

Non-offloaded jobs

Forcedly rejected jobs

Interrupted jobs

Accepted jobs

(c) Type of service provided to the users

GreenRL
Fairness

GreenRL
Profit

GreenH
Fairness

GreenH
Profit

Random
Fairness

Random
Profit

Emptier
Fairness

Emptier
Profit

Solver
Fairness

Solver
Profit

−0.2

0.0

0.2

0.4

0.6

P
er

ce
nt

ag
e

of
to

ta
l

ed
ge

p
ow

er

Green Energy Consumed

Brown Power Consumed

Green Energy Remaining

(d) Energy use by type of energy source and wasted (unused) green energy

Figure 3: Performance for the scenario with 𝑁 = 7 nodes.
We represent the results obtained when solving both the
problem (P1) (labeled “Profit”) and (P2) (labeled “Fairness”).

GreenRL
Fairness

GreenRL
Profit

GreenH
Fairness

GreenH
Profit

Random
Fairness

Random
Profit

Emptier
Fairness

Emptier
Profit

Solver
Fairness

Solver
Profit

−0.2

0.0

0.2

0.4

0.6

0.8

P
er

ce
nt

ag
e

of
to

ta
l

ed
ge

p
ow

er

Green Energy Consumed

Brown Power Consumed

Green Energy Remaining

Figure 4: Energy use by type of energy source and wasted
(unused) green energy for the scenario with 𝑁 = 10 nodes.

migrates an average of 10% of the jobs in the system, while GreenH
migrates 25% of the jobs. We omit a more detailed discussion on

migration due to space constraints.

5 7 10 15 20
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

pr
ofi

t
m

ar
gi

n
(B̄

)

GreenRL

Random

Emptier

GreenH

Solver

Figure 5: Performance as function of the number of nodes
for (P1). Computing load is 65% of the total capacity.

5 7 10 15 20
Nodes

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

F
ai

rn
es

s
O

bj
.

F
un

ct
io

n
lo

g
(P̄

ρ
p
R̄
ρ
r
)

GreenRL

Random

Emptier

GreenH

Solver

Figure 6: Performance as function of the number of nodes
for (P2). Computing load is 65% of the total capacity.

5.2.4 Performance as function of the number of edge nodes. We

evaluate the performance obtained by the algorithms when opti-

mizing (P1) (Fig. 5) and (P2) (Fig.6) as function of the number of edge

nodes. Due to its intractable complexity, Solver is evaluated only

up to 10 nodes. For (P1), all algorithms have similar performance

except for Random since, to maximize profit under the considered

parameters, especially the low-to-medium load, the optimal choice

is almost always accepting the job. Instead, in Fig. 6, differences are

more pronounced as GreenRL and GreenH outplay the baselines,

with GreenRL being the best algorithm, tied with GreenH for 𝑁 = 20.

This is another evidence of how having a DRL-approach adapting

its decisions based on different factors could lead to more robust

and scalable solutions in MEC settings.

5.2.5 Impact of higher loads with low green energy. Finally, we also
evaluate the performance of GreenRL in the case where the edge

network processes a higher load while sustaining low availability

of green energy. For all experiments, we consider the 5-edge-node

scenario with an average load of 96% of the maximum capacity of

the system and a green energy distribution being uniformly random

between 10% and 40% of the maximum required energy. For this

scenario, we considered two values of 𝛿 for a fixed revenue 𝜂 = 10.

We report the results in Table 3. Again, GreenRL greatly outper-

forms the other algorithms for problem (P2), achieving a perfor-

mance which is within the confidence interval of the Solver’s one.
Instead, for (P1) with cost 𝛿 = 𝜂, the simplest baseline performs as

good as Solver. As previously mentioned, this is due to the fact

that the operator obtains the same profit by accepting jobs that



MSWiM ’23, October 30-November 3, 2023, Montreal, QC, Canada Spinelli, Bazco-Nogueras and Mancuso

Table 3: Result with high load and low green energy level

Objective→ Fairness (P2) Fairness (P2) Profit (P1) Profit (P1)

Cost (𝛿 )→ 10 (

�̄�

𝛿
= 1) 15 (

�̄�

𝛿
= 2

3
) 10 (

�̄�

𝛿
= 1) 15 (

�̄�

𝛿
= 2

3
)

GreenRL -0.410 ± 0.128 -0.396 ± 0.019 0.332 ± 0.032 0.180 ± 0.035
GreenH -0.803 ± 0.044 -0.689 ± 0.035 0.194 ± 0.041 0.095 ± 0.041

Random -0.934 ± 0.096 -0.777 ± 0.041 0.313 ± 0.026 0.126 ± 0.036

Emptier -1.285 ± 0.144 -1.012 ± 0.080 0.341 ± 0.035 0.103 ± 0.043

Solver -0.378 ± 0.102 -0.331 ± 0.018 0.348 ± 0.102 0.280 ± 0.034

only consume non-renewable energy as it does by rejecting them.

However, when costs increase, GreenRL stands out again.

6 CONCLUSIONS
We have analyzed the offloading of MAR tasks in an edge scenario

where the edge nodes have variable availability of renewable en-

ergy sources, and we have proposed a DRL-based algorithm that

is able to adapt the decisions to the current energy availability

and energy costs, as well as to different business utilities. We have

proposed a flexible utility that offers a trade-off between pure net

economic profit and the minimization of non-renewable energy

consumption (and, consequently, carbon footprint). The proposed

approach is able to adapt the admission control, resource allocation

and migration depending on the state of the network, and we have

proven through simulations that the model achieves performances

close to an ideal optimal solution. We have also shown how job mi-

grations between edge nodes can help to sustain the MAR business

model at the edge, which motivates further analysis to understand

if migrations also benefit when considering, e.g., the latency of the

wireless link or a comprehensive energy model that includes the

end devices and the energy consumption due to the data transport.

ACKNOWLEDGMENTS
This work is supported by Project AEON-CPS (TSI-063000-2021-38),

funded by the Ministry of Economic Affairs and Digital Transfor-

mation and the European Union NextGeneration-EU in the frame-

work of the Spanish Recovery, Transformation and Resilience Plan.

A. Bazco-Nogueras is supported by the Regional Government of

Madrid through the grant 2020-T2/TIC-20710 for Talent Attraction.

REFERENCES
[1] 2020. 3GPP TR 26.928 Extended Reality (XR) in 5G. Tech. Rep.
[2] Jaewon Ahn, Joohyung Lee, Dusit Niyato, and Hong-Shik Park. 2020. Novel

QoS-Guaranteed Orchestration Scheme for Energy-Efficient Mobile Augmented

Reality Applications in Multi-Access Edge Computing. IEEE Trans. on Vehicular
Technology 69, 11 (2020), 13631–13645. https://doi.org/10.1109/TVT.2020.3020982

[3] Tristan Braud, Pengyuan Zhou, Jussi Kangasharju, and Pan Hui. 2020. Multipath

Computation Offloading for Mobile Augmented Reality. In IEEE Int. Conf. Perva-
sive Computing and Communications (PerCom). 1–10. https://doi.org/10.1109/

PerCom45495.2020.9127360

[4] R. Buyya and S.N. Srirama. 2019. Fog and Edge Computing: Principles and
Paradigms. Wiley.

[5] Miaojiang Chen, Wei Liu, Tian Wang, Anfeng Liu, and Zhiwen Zeng. 2021. Edge

intelligence computing for mobile augmented reality with deep reinforcement

learning approach. Computer Networks 195 (2021), 108186.
[6] Xing Chen and Guizhong Liu. 2021. Energy-Efficient Task Offloading and Re-

source Allocation via Deep Reinforcement Learning for Augmented Reality in

Mobile Edge Networks. IEEE Internet of Things Journal 8, 13 (2021), 10843–10856.
https://doi.org/10.1109/JIOT.2021.3050804

[7] Yuan Cheng. 2020. Edge caching and computing in 5G for mobile augmented

reality and haptic internet. Computer Commun. 158 (2020), 24–31.
[8] Huawei Technologies Co. 2021. AR Insight and Application Practice White Pa-

per. https://carrier.huawei.com/~/media/CNBGV2/download/bws2021/ar-insight-

and-application-practice-white-paper-en.pdf.

[9] Xiaoheng Deng, Jingjing Zhang, Honggang Zhang, and Ping Jiang. 2023. Deep-

Reinforcement-Learning-Based Resource Allocation for Cloud Gaming via Edge

Computing. IEEE Internet of Things Journal 10, 6 (2023), 5364–5377. https:

//doi.org/10.1109/JIOT.2022.3222210

[10] ETSI. 2019. Multi-Access Edge Computing (MEC); Framework and Reference Archi-
tecture. Technical Report. ETSI MEC ISG.

[11] Juliver Gil Herrera and Juan Felipe Botero. 2016. Resource Allocation in NFV: A

Comprehensive Survey. IEEE Transactions on Network and Service Management
13, 3 (Sep. 2016), 518–532. https://doi.org/10.1109/TNSM.2016.2598420

[12] Hui Huang, Qiang Ye, and Yitong Zhou. 2022. Deadline-Aware Task Offloading

With Partially-Observable Deep Reinforcement Learning for Multi-Access Edge

Computing. IEEE Trans. Netw. Science and Eng. 9, 6 (2022), 3870–3885. https:

//doi.org/10.1109/TNSE.2021.3115054

[13] Frank P Kelly, Aman K Maulloo, and David Kim Hong Tan. 1998. Rate control

for communication networks: shadow prices, proportional fairness and stability.

Journal of the Operational Research society 49, 3 (1998), 237–252.

[14] Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, Ningwei Dai, and HungSheng Lee.

2020. Furion: Engineering High-Quality Immersive Virtual Reality on Today’s

Mobile Devices. IEEE Trans. Mobile Comput. 19, 7 (2020), 1586–1602. https:

//doi.org/10.1109/TMC.2019.2913364

[15] Matti Latvaho, Kari Leppänen, Federico Clazzer, and Andrea Munari. 2019. Key
drivers and research challenges for 6G ubiquitous wireless intelligence. University
of Oulu, Oulu, Finland.

[16] Qiang Liu, Siqi Huang, Johnson Opadere, and Tao Han. 2018. An Edge Network

Orchestrator for Mobile Augmented Reality. In IEEE Conf. on Computer Commu-
nications (INFOCOM). 756–764. https://doi.org/10.1109/INFOCOM.2018.8486241

[17] Tong Liu, Shenggang Ni, Xiaoqiang Li, Yanmin Zhu, Linghe Kong, and Yuanyuan

Yang. 2023. Deep Reinforcement Learning Based Approach for Online Service

Placement and Computation Resource Allocation in Edge Computing. IEEE
Transactions on Mobile Computing 22, 7 (2023), 3870–3881. https://doi.org/10.

1109/TMC.2022.3148254

[18] S. Martello. 1990. Knapsack Problems: Algorithms and Computer Implementa-

tions. Wiley-Interscience series in discrete mathematics and optimiza tion (1990).

https://ci.nii.ac.jp/naid/20000416220/en/

[19] MahshidMehrabi, Shiwei Shen, Yilun Hai, Vincent Latzko, George P. Koudouridis,

Xavier Gelabert, Martin Reisslein, and Frank H. P. Fitzek. 2021. Mobility- and

Energy-Aware Cooperative Edge Offloading for Dependent Computation Tasks.

Network 1, 2 (2021), 191–214.

[20] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-

thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-

chronousMethods for Deep Reinforcement Learning. CoRR abs/1602.01783 (2016).

arXiv:1602.01783 http://arxiv.org/abs/1602.01783

[21] Diego González Morín, Pablo Pérez, and Ana García Armada. 2022. Toward the

Distributed Implementation of Immersive Augmented Reality Architectures on

5G Networks. IEEE Commun. Magazine 60, 2 (2022), 46–52. https://doi.org/10.

1109/MCOM.001.2100225

[22] Jinke Ren, Yinghui He, Guan Huang, Guanding Yu, Yunlong Cai, and Zhaoyang

Zhang. 2019. An Edge-Computing Based Architecture for Mobile Augmented

Reality. IEEE Network 33, 4 (2019), 162–169. https://doi.org/10.1109/MNET.2018.

1800132

[23] Sandra Rodriguez. [n. d.]. Crafting a Market for for independent XR.
https://xnquebec.co/pdf/Etude_Distribution_XR.pdf.

[24] Yushan Siriwardhana, Pawani Porambage, Madhusanka Liyanage, and Mika

Ylianttila. 2021. A Survey on Mobile Augmented Reality With 5G Mobile Edge

Computing: Architectures, Applications, and Technical Aspects. IEEE Communi-
cations Surveys Tutorials 23, 2 (2021), 1160–1192. https://doi.org/10.1109/COMST.

2021.3061981

[25] Francesco Spinelli, Antonio Bazco-Nogueras, and Vincenzo Mancuso. 2022. Edge

Gaming: A Greening Perspective. Computer Commun. 192 (2022), 89–105. https:

//doi.org/10.1016/j.comcom.2022.05.022

[26] Francesco Spinelli and Vincenzo Mancuso. 2021. Toward Enabled Industrial

Verticals in 5G: A Survey on MEC-Based Approaches to Provisioning and

Flexibility. IEEE Commun. Surveys Tutorials 23, 1 (2021), 596–630. https:

//doi.org/10.1109/COMST.2020.3037674

[27] Ming Tang and Vincent W.S. Wong. 2022. Deep Reinforcement Learning for

Task Offloading in Mobile Edge Computing Systems. IEEE Transactions on Mobile
Computing 21, 6 (2022), 1985–1997. https://doi.org/10.1109/TMC.2020.3036871

[28] Haoxin Wang and Jiang Xie. 2020. User Preference Based Energy-Aware Mobile

AR System with Edge Computing. In IEEE Conf. on Computer Communications
(INFOCOM). 1379–1388. https://doi.org/10.1109/INFOCOM41043.2020.9155517

[29] Yue Wang, Tao Yu, and Kei Sakaguchi. 2021. Context-Based MEC Platform

for Augmented-Reality Services in 5G Networks. In 2021 IEEE 94th Vehicular
Technology Conference (VTC2021-Fall). 1–5. https://doi.org/10.1109/VTC2021-

Fall52928.2021.9625304

[30] Han Xiao, Changqiao Xu, Yunxiao Ma, Shujie Yang, Lujie Zhong, and Gabriel-

Miro Muntean. 2021. Edge Computing-Assisted Multimedia Service Energy Opti-

mization based on Deep Reinforcement Learning. In IEEE Global Communications
Conf. (GLOBECOM). https://doi.org/10.1109/GLOBECOM46510.2021.9685687

https://doi.org/10.1109/TVT.2020.3020982
https://doi.org/10.1109/PerCom45495.2020.9127360
https://doi.org/10.1109/PerCom45495.2020.9127360
https://doi.org/10.1109/JIOT.2021.3050804
https://doi.org/10.1109/JIOT.2022.3222210
https://doi.org/10.1109/JIOT.2022.3222210
https://doi.org/10.1109/TNSM.2016.2598420
https://doi.org/10.1109/TNSE.2021.3115054
https://doi.org/10.1109/TNSE.2021.3115054
https://doi.org/10.1109/TMC.2019.2913364
https://doi.org/10.1109/TMC.2019.2913364
https://doi.org/10.1109/INFOCOM.2018.8486241
https://doi.org/10.1109/TMC.2022.3148254
https://doi.org/10.1109/TMC.2022.3148254
https://ci.nii.ac.jp/naid/20000416220/en/
https://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://doi.org/10.1109/MCOM.001.2100225
https://doi.org/10.1109/MCOM.001.2100225
https://doi.org/10.1109/MNET.2018.1800132
https://doi.org/10.1109/MNET.2018.1800132
https://doi.org/10.1109/COMST.2021.3061981
https://doi.org/10.1109/COMST.2021.3061981
https://doi.org/10.1016/j.comcom.2022.05.022
https://doi.org/10.1016/j.comcom.2022.05.022
https://doi.org/10.1109/COMST.2020.3037674
https://doi.org/10.1109/COMST.2020.3037674
https://doi.org/10.1109/TMC.2020.3036871
https://doi.org/10.1109/INFOCOM41043.2020.9155517
https://doi.org/10.1109/VTC2021-Fall52928.2021.9625304
https://doi.org/10.1109/VTC2021-Fall52928.2021.9625304
https://doi.org/10.1109/GLOBECOM46510.2021.9685687

	Abstract
	1 Introduction
	2 Related Work
	3 Scenario and Problem Formulation
	3.1 System Model
	3.2 Optimization problems

	4 Algorithms
	4.1 Reformulation of the Problem as a Markov Decision Process
	4.2 Deep Reinforcement Learning-Based Solution: GreenRL
	4.3 Heuristic Algorithm: GreenH
	4.4 Baselines

	5 Numerical evaluation
	5.1 Simulation scenario
	5.2 Results

	6 Conclusions
	Acknowledgments
	References

