
kaNSaaS: Combining Deep Learning and Optimization
for Practical Overbooking of Network Slices
Sergi Alcalá-Marín

sergi.alcala@imdea.org

IMDEA Networks Institute & UC3M

Madrid, Spain

Antonio Bazco-Nogueras

antonio.bazco@imdea.org

IMDEA Networks Institute

Madrid, Spain

Albert Banchs

albert.banchs@imdea.org

IMDEA Networks Institute & UC3M

Madrid, Spain

Marco Fiore

marco.fiore@imdea.org

IMDEA Networks Institute

Madrid, Spain

ABSTRACT
Cloud-native mobile networks pave the road for Network Slicing

as a Service (NSaaS), where slice overbooking is a promising man-

agement strategy to maximize the revenues from admitted slices by

exploiting the fact they are unlikely to fully utilize their reserved

resources concurrently. While seminal works have shown the po-

tential of overbooking for NSaaS in simplistic cases, its realization

is challenging in practical scenarios with realistic slice demands,

where its actual performance remains to be tested. In this paper,

we propose kaNSaaS, a complete solution for NSaaS management

with slice overbooking that combines deep learning and classical

optimization to jointly solve the key tasks of admission control and

resource allocation. Experiments with large-scale measurement

data of actual tenant demands show that kaNSaaS increases the net-
work operator profits by 300% with respect to NSaaS management

strategies that do not employ overbooking, while outperforming

by more than 20% state-of-the-art overbooking-based approaches.

CCS CONCEPTS
•Networks→Network resources allocation; Traffic engineer-
ing algorithms.

KEYWORDS
Network Slicing, 5G, Forecasting, Optimization, Overbooking

ACM Reference Format:
Sergi Alcalá-Marín, Antonio Bazco-Nogueras, Albert Banchs, and Marco

Fiore. 2023. kaNSaaS: Combining Deep Learning and Optimization for

Practical Overbooking of Network Slices. In The Twenty-fourth Interna-
tional Symposium on Theory, Algorithmic Foundations, and Protocol De-
sign for Mobile Networks and Mobile Computing (MobiHoc ’23), October
23–26, 2023, Washington, DC, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3565287.3610265

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in The Twenty-fourth
International Symposium on Theory, Algorithmic Foundations, and Protocol Design for
Mobile Networks and Mobile Computing (MobiHoc ’23), October 23–26, 2023, Washington,
DC, USA, https://doi.org/10.1145/3565287.3610265.

1 INTRODUCTION
Softwarization has marked the evolution of mobile network in-

frastructures over the past decade, and Mobile Network Operators

(MNOs) are today experimenting with proofs-of-concept and early

deployments of cloud-native network technologies, supported by

major cloud service providers [5, 32]. The dramatic increase in flex-

ibility granted by production-grade cloud-native mobile network

architectures will finally open new and long-envisioned business

opportunities for MNOs. One of the most promising is network slic-

ing, which abstracts a single physical infrastructure into multiple

logical instances, or slices [25]. Each network slice is dedicated to

specific traffic flows (e.g., the video streaming demand generated

by mobile clients of a given platform) and is configured so as to

provide strong guarantees that the Service Level Agreement (SLA)

for such traffic is met (e.g., in terms of latency, throughput, or jitter).

Cloud-native NSaaS management. Cloud-native network ar-

chitectures offer a natural support to network slicing operations [29]:

they allow assigning dedicated resources (e.g., spectrum, transport

capacity, compute or memory resources, depending on the target

network domain) to each slice [1], configuring dynamically the

Virtual Network Functions (VNF) according to the SLA of each

slice [24], and monitoring the fulfillment of such SLA [9]. As a re-

sult, the cloudification of networks implicitly paves the way to the

realization of Network Slicing as a Service (NSaaS) models. Here,

MNOs deliver slices to vertical customers, i.e., Service Providers
(SPs) who are able to configure their assigned slices up so as to best

run their applications [38]. The NSaaS model ultimately creates a

new marketplace that allows operators to maximize their revenue

through an appropriate slice brokering [3].

Network slicing has drawn significant attention from the re-

search community in the past years, and studies have tackled many

challenges in the practical implementation of this paradigm. Among

those, admission control and resource allocation are central tasks:

a great portion of the potential advantage that NSaaS can bring to

MNOs depends on correct choices on whether to accept a slice, and,

if so, with what dedicated resources. As we will discuss in detail in

Sec. 2, prior works have addressed both these problems, possibly in

a joint fashion. Yet, the vast majority of the studies in the literature

overlooks an important degree of freedom for the operator, i.e.,
its flexibility in allocating resources that are not necessarily those

specified by the SLA, as explained next.

https://orcid.org/0000-0001-9848-0484
https://orcid.org/0000-0001-7367-0898
https://orcid.org/0000-0003-3544-8537
https://orcid.org/todo
https://doi.org/10.1145/3565287.3610265
https://doi.org/10.1145/3565287.3610265

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Sergi Alcalá-Marín, Antonio Bazco-Nogueras, Albert Banchs, and Marco Fiore

0 60 120 180 240 300 360 420 480 540
Time slot [minutes]

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Tr

af
fic

 d
em

an
d

[b
yt

e/
m

in
ut

e]

Real traffic (ℓs)

SP requested traffic (ℓ(SP)
s)

Tblock

IO predicted traffic (ℓ(IO)
s)

Talloc

C(lq)
rSaved resources

Remaining potential gain

(a)

Tr
a
ff

ic
d
e
m

a
n
d

1

+

C

N
o
rm

a
liz

e
d

1.4 SP requested capacity

1.2
(P)

1.0
1

Increased benefit

Saved resources

SLA violation

MNO allocated capacity
(O) (O)
1 2

(l)
r

0.8
(P) + (P)

2

0.6

0.4

0.2

0.0
0 210

Real traffic
420 630

Time

1 1 + 2

840 1050 1260 1470 1680
slot [minutes]

(b)

Figure 1: Overbooking in NSaaS, with notation. (a) Real traffic generated by one mobile service, requested slice capacity by the
associated service provider (SP) at every slice brokering interval 𝑻SLA, and actual capacity allocated by the Mobile Network
Operator (MNO) thanks to a fast orchestration at periodicity 𝑻RA and a fine-tuning of allocated resources closer to the actual
service demand. We highlight the resource savings with respect to a blind allocation of the exact capacity requested by the
SP, along with the remaining gain margin with respect to a perfect allocation matching the actual traffic. (b) Example of how
overbooking improves the MNO NSaaS operation in a simple case with two slices. We show the real traffic and requested
resources of the first slice (solid brown lines) and those of both slices (solid black lines). As per plot (a), the MNO can perform a
faster and more accurate anticipatory allocation of resources to both slices (dotted line). This leads to resource savings (blue
areas) with respect to allocating all the SP requests when those are below the capacity limit 𝑪 (𝒍)

𝒓 . More importantly, it allows
accepting both slices even if their aggregated requests exceed the MNO available capacity (green areas). Overbooking errors
may however lead to SLA violations, when the actual demand of the accepted slices cannot be served (red area).

Overbooking network slices. Cloud-native technologies al-
low the MNO to orchestrate resources and VNFs at much faster

timescales than those of NSaaS brokering. Thus, while the network

slice tenant requests resources for its peak consumption over long

reservation periods, the actual allocation and re-configuration of

slice-dedicated resources can be performed at a finer time granu-

larity. In addition, the operator has in-depth visibility of the actual

infrastructure utilization, and can hence allocate resources based

on the real resource occupancy generated by the service demands,

beyond the capacity requests issued by the vertical tenants. These

technical advantages, illustrated in Fig. 1a, open the door to large

slice multiplexing gains, letting the MNO make a more efficient use

of its resources [20] and ultimately increasing its profit.

Specifically, reducing the amount of capacity needed to serve

each slice can free up space for accommodating more requests, as

exemplified in Fig. 1b. In other words, the MNO can sell more ca-

pacity than it has deployed, considering that vertical customers will

not use all the capacity they requested all the time. The strategy

maps to overbooking, a well-known revenue management approach

used to maximize profit in scenarios where limited resources must

be reserved based on stochastic requests [30]. In the case of over-

booking for NSaaS, errors in admitting excess slices come at the

cost of monetary fees for violating the SLA with one or multiple

tenants during some fraction of time, as also shown in Fig. 1b. Over-

booking has been recently considered as a way to increase NSaaS

revenues for the MNO, with promising results [26–28]. Yet, as later

detailed in Sec. 2, prior studies are few, have technical limitations,

and none has demonstrated practical solutions with real-world traf-

fic demands of vertical customers collected in actual operational

networks. The latter aspect is especially critical now that cloud-

native networks are bringing slicing closer to deployment, and there

is a clear need to understand how overbooking would perform in

production systems.

Contributions. In this paper, we make the following contribu-

tions towards an efficient realization of NSaaS overbooking.

• We design and implement kaNSaaS, a novel complete solu-

tion for overbooking-aware NSaaS, which solves the joint

problem of slice admission control and anticipatory resource

allocation by combining (𝑖) deep-learning slice demand fore-

casting and (𝑖𝑖) optimization-based decision-making. Our

formulation is modular and can accommodate any SLA ex-

pressions and Operating Expenses (OPEX) cost definitions.

• We provide a first assessment of overbooking gains in pres-

ence of real-world demands generated by multiple service

providers, as measured in a metropolitan-scale production

network. We investigate advantages for the MNO in terms of

net profit along diverse dimensions that include the resource

orchestration flexibility, the cost of allocated resources to

slices, or the overdimensioning strategy of the operator. Ours

is the very first evaluation of overbooking for NSaaS in pres-

ence of realistic slice requests, which unveils the actual ad-

vantages that the technology may bring in practical settings.

• We prove that kaNSaaS increases the MNO profits by 300%

with respect to legacy NSaaS management strategies, and

above 20% over state-of-the-art slice overbooking.

• We show that results stay consistent under original synthetic

slice demands that we generate to mimic the measurement

data. While we cannot disclose the latter due to confiden-

tiality agreements, we release
1
the synthetic traffic together

with our implementation of kaNSaaS, so as to foster the re-

producibility of our study and support further investigations.

Overall, our work contributes to advance the state of the art

in NSaaS management, and sheds light on the actual gains that

overbooking can bring to the MNO in production settings.

1
Code and data are available at https://github.com/nds-group/kansaas.

https://github.com/nds-group/kansaas

kaNSaaS: Combining Deep Learning and Optimization for Practical Overbooking of Network Slices MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

2 RELATEDWORK
Most studies on network slicing have investigated the key manage-

ment functionalities of admission control of slice requests [10, 18]

and allocation of resources to individual slices [11, 35] in isola-

tion. Previous works that jointly addressed the two tasks [4, 7, 8]

have overlook the important trade-offs entailed by: (𝑖) the added

revenues of accepting slices that request capacity beyond that avail-

able, while not using it all the time; and, (𝑖𝑖) the potential cost

of violating SLAs in the moments when the actual demand of all

accepted slices exceeds the total capacity.

Overbooking specifically tackles the trade-off above. Its appli-

cation to the communications field is very recent, with a focus

on pricing and billing strategies [31] or resource trading [15] in

network edge clouds. When considering the specific context of net-

work slicing, overbooking must not be confused with the simpler

problem of slice multiplexing. For instance, there exist data-driven

analyses of the multiplexing efficiency of network slices [20] or

works that propose optimized resource allocation to multiplexed

network slices [6, 37]. However, plain multiplexing does not con-

sider the additional problem dimension of reserving less resources

than those requested by the SPs, which is the focus of overbooking.

The literature considering overbooking as an approach to maxi-

mize NSaaS revenues for the operator is in fact very thin. Sexton et
al. [28] derive analytical models of the performance of slicing with

overbooking under perfect prediction, but does not present a prac-

tical solution to the problem. Saxena et al. [27] propose a model

for network slice overbooking, which relies on a Long Short-Term

Memory (LSTM) neural network for demand forecasting, and a

Reinforcement Learning (RL) approach for admission control. Yet,

the solution operates on inflexible SLA costs and does not tackle

the resource allocation part of the problem. The current state of the

art in NSaaS overbooking is represented by the work by Salvat et
al. [26], who first introduced the concept and demonstrated its

practical viability in a small-scale experimental platform [36]. They

propose a solution to the joint admission control and resource reser-

vation problem under overbooking: the approach is based on traffic

prediction via multiplicative Holt-Winters exponential smoothing,

combined with a stochastic yield management optimization prob-

lem for slice admission and resource allocation. We use this solution

as a benchmark in our performance evaluation. It is also worth not-

ing that ours is one of the very few works in the network slicing

literature to build upon large-scale measurements of tenant de-

mands, and the very first to do so in the context of overbooking for

NSaaS. Indeed, the vast majority of the literature relies on synthetic

data [12], which undermines the dependability of results. When

real-world data is employed, it often describes aggregate traffic

over all services and is thus not representative of actual tenant

demands [13, 14, 34]. Evaluations of NSaaS management solutions

with service-level measurements are rare, and, as mentioned above,

do not consider overbooking [17]. Indeed, previous solutions for

NSaaS overbooking have been tested with synthetic workloads

only [26], or on traces of resource utilization in cloud datacenters

that are hardly representative of mobile service demands [27]. By

evaluating NSaaS overbooking solutions with production-level mo-

bile traffic measurements, we offer an unprecedented view on the

real-world performance of slicing.

3 SYSTEM MODEL
We consider a dynamic resource allocation scenario where an MNO

running the mobile network infrastructure aims at maximizing the

profit obtained from NSaaS. To this end, the MNO needs to take

decisions on admission control of slice requests and allocation of

resources
2
to active slices. The problem can be instantiated at any

target network location where slicing is implemented, e.g., from
individual Remote Units (RUs) where spectrum can be sliced, all the

way to Core Network (CN) datacenters where compute andmemory

resources are reserved to run slice-tailored VNFs. Let layer 𝑙 denote
the layer whose nodes serve, on average, the aggregated traffic of

𝑙 RUs; then for each node at layer 𝑙 , we model the system as follows.

3.1 NSaaS operation
TheMNO serves a set of𝑁 Service Providers (SPs), whichwe denote

by S ≜ {𝑠𝑛}𝑛∈N , |S| = 𝑁 , where we define N ≜ {1, . . . , 𝑁 } for
any natural number 𝑁 . The MNO monitors the demand generated

by each SP within a short interval (e.g., per minute in Fig. 1a). We

denote the traffic generated by SP 𝑠 at the monitoring interval 𝑘

as ℓ𝑠 [𝑘] (see Fig. 1a). At any time, a service provider can request a

network slice associated to an SLA with the following parameters.

• 𝑇
slice

: time during which the slice must be active and the related

SLA satisfied, e.g., the whole span of Fig. 1a.

• 𝑇SLA: duration of an SLA block of an SP request, i.e., time interval

during which a constant capacity is requested by the SP.

• ℓ̄
(P)
𝑠 (𝑡): Requested capacity by an SP 𝑠 for the 𝑡-th SLA block, e.g.,
the ordinates of the 4 constant segments requested in Fig. 1a.

• 𝑀𝑠 ℓ̄
(P)
𝑠 (𝑡): Price that the SP 𝑠 is offering to pay for the 𝑡-th SLA

block. We model prices as linearly proportional to the capacity

by a factor𝑀𝑠 (in $/bps), but other definitions are possible.

The MNO decides whether to accept the slice requests,
3
and what

resources to allocate to them if accepted. These decision are based

on the request attributes above, as well as on the next parameters.

• 𝑇
hor

: time horizon for the overall system optimization, e.g., the
multiple repetitions of the span of Fig. 1a.

• 𝑇
dec

: time interval between admission decisions. The operation

is batched, such that the MNO considers all requests arrived over

the last 𝑇
dec

, decides which slices are accepted, continued or

dismissed, and estimates the resources that shall be dynamically

reserved to each slice for its duration.

• 𝑇RA: duration of one Resource Allocation (RA) block, i.e., the in-
terval during which the capacity allocated by the MNO to a slice

remains constant, which is typically bounded by the technol-

ogy available at the target network domain. We also define as

𝑛RA ≜
𝑇SLA
𝑇RA

the number of RA blocks per SLA block, i.e., the
amount of re-allocation opportunities for the MNO while the

requested capacity ℓ̄
(P)
𝑠 stays fixed. As an example, in Fig. 1a we

have 𝑇RA = 30 and 𝑇SLA = 120 minutes, yielding 𝑛RA = 4.

• 𝐶
(𝑙)
𝑟 : capacity available at the target node 𝑟 of layer 𝑙 , which sets

the boundary to the total traffic demand that can be served at

any time instant, as shown in Fig. 1b.

• ℓ
(O)
𝑠 (𝑡, 𝑛): Capacity actually reserved by the MNO for slice 𝑠 .

2
We use the terms resources and capacity interchangeably in the following, as the

amount of dedicated resources directly determines the capacity that can be provisioned.

3
We refer to the slice that serves the traffic of SP 𝑠 as slice 𝑠 , ∀𝑠 ∈ S.

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Sergi Alcalá-Marín, Antonio Bazco-Nogueras, Albert Banchs, and Marco Fiore

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of committed demand effectively served, βs(t,n)

−1.0

−0.5

0.0

0.5

1.0

S
L

A
(β

s(
t,

n
))

Figure 2: SLA function adopted for our experiments.

• 𝑐opex: MNO’s OPEX (in $/bps) of reserving one unit of capacity

to a slice during a whole RA block, due, e.g., to the energy or

monetary cost of running dedicated VNF containers or CPU cores.

• 𝜌𝑜𝑝 : operational profit ratio between the revenue from the SP

and the OPEX of reserved resources, i.e.,𝑀𝑠/(𝑛RA𝑐opex).4

Based on the above, we define a hierarchical time indexing. The

index 𝑡 refers to the SLA block index, and the notation (𝑡, 𝑛) refers
to the 𝑛-th RA block of the 𝑡-th SLA block; e.g., in Fig. 1a, 𝑇RA is

represented for the (3, 2) RA block. Moreover, we consider ℓ𝑠 (𝑡, 𝑛) ≜
max𝑘∈[𝑇RA] ℓ𝑠 [𝑘] as the real demand in the (𝑡, 𝑛) RA block. To avoid

cluttering notation, we focus hereinafter on a given node 𝑟 in layer 𝑙 ,

and omit the dependence on 𝑟 and 𝑙 . Also, we let𝑇
slice

= 𝑇SLA = 𝑇
dec

,

i.e., a slice has the same duration (𝑇
slice

) of an AC time slot of the

MNO (𝑇
dec

), and the capacity requested by SP 𝑠 is constant for

the whole duration of the slice (𝑇SLA), typically in the order of

hours. In this way, a certain scenario can be succinctly referred to

as E = {𝑇
hor

,𝑇SLA,𝑇RA,𝐶}.

3.2 SLA function
The SLA defines the monetary compensation or penalty associated

to an accepted slice. It is modeled as a function that depends on the

requested capacity (for which the SP pays a fee as set out in Sec. 3.1)

and the actual traffic served by the MNO. Specifically, at the 𝑛-th

RA block of the 𝑡-th SLA block, the MNO commits to serve slice 𝑠

with a capacity ℓ𝑐𝑠 (𝑡, 𝑛) ≜ min(ℓ𝑠 (𝑡, 𝑛), ℓ̄ (P)𝑠 (𝑡)): if the slice traffic

is below the level requested in the SLA, the operator only needs to

serve such traffic and not the requested capacity in the SLA. The

actual served traffic is ℓeff

𝑠 (𝑡, 𝑛) = min(ℓ𝑠 (𝑡, 𝑛), ℓ (O)
𝑠 (𝑡, 𝑛)), i.e., an

over-allocation of resources does not bring any benefit to the MNO.

The full monetary compensation set out by the SLA as per Sec. 3.1

is paid by the SP 𝑠 to the MNO when ℓeff

𝑠 (𝑡, 𝑛) ≥ ℓ𝑐𝑠 (𝑡, 𝑛). If instead
the served demand is below that the MNO committed to accommo-

date, the SLA defines a reduction of the MNO’s revenues. We model

the compensation as a generic function SLA𝑠 (𝛽𝑠 (𝑡, 𝑛)), where

𝛽𝑠 (𝑡, 𝑛) ≜ min

(
1,

ℓeff

𝑠 (𝑡,𝑛)
ℓ𝑐𝑠 (𝑡,𝑛)

)
(1)

is the fraction of committed demand that is effectively served by

the MNO, capped at 1 in the case where MNO unnecessarily serves

more traffic than committed.

While our definition of SLA above is general, and our solution

can accommodate other expressions, for the experiments carried out

in this paper we leverage the SLA portrayed in Fig. 2. The rationale

is that the agreed compensation drops linearly as the MNO fails to

deliver the required capacity down to 80% of what it committed to.

Below such a threshold, the MNO must pay a monetary fee (i.e., a
negative gain in the plot) to the SP, which grows up to the original

compensation when only 60% of the slice traffic is served.

4𝑛RA = 𝑇SLA/𝑇RA transforms the cost per RA block into cost per SLA block.

AC / RA
Optimizer

RA
Optimizer

{"# $, … "' $ }

{)# $, * , …)' $, * }

+# ℓ#(.)($)
ℓ#0,1 ($, *)

Slice-level
live traffic

Accepted
slices

Reserved capacity
for accepted slices

MNO prediction for AC

MNO prediction for RA

ℓ'0,1 ($, *)
+' ℓ'(.)($)

+# ℓ#(.)($)
ℓ#0,2 ($, *)

ℓ'0,2 ($, *)
+' ℓ'(.)($)

ℓ3[5]

(P1)

(P2)

...
...

Custom
loss
function

Custom
loss
function

Long-term

Short-term

Figure 3: Overall architecture of kaNSaaS, with long-term and
short-term prediction-enabled AC and RA components.

3.3 MNO profit
The MNO’s objective is to maximize the total net profit over the

operating horizon𝑇
hor

. The profit is the result of the overall revenue

obtained from the slice brokering minus the costs incurred by the

operator, i.e., SLA violations that may induce a penalty as discussed

in Sec. 3.2 and operating expenses derived from allocating the

network resources. Formally:

• Revenues correspond to the compensations from meeting SLAs

with SPs, i.e.,𝑀𝑠 ℓ̄
(P)
𝑠 (𝑡) for 𝑡-th SLA block of duration 𝑇SLA, pos-

sibly decreased according to SLA𝑠 (𝛽𝑠 (𝑡, 𝑛)).
• SLAviolation costs are incurredwhen accepted slices are poorly
served. This cost is embedded in the SLA definition when it takes

values < 0, hence a single expression𝑀𝑠 ℓ̄
(P)
𝑠 (𝑡) · SLA𝑠 (𝛽𝑠 (𝑡, 𝑛))

captures both revenues and SLA violation costs.

• OPEX costs are proportional to the capacity ℓ
(O)
𝑠 (𝑡, 𝑛) actually

reserved by the MNO, by the 𝑐opex factor.

• Profits, denoted by 𝑝E , combine the previous as follows

𝑝E =
∑︁
𝑡 ∈T

∑︁
𝑠∈S

𝑥𝑠 (𝑡)
∑︁𝑛RA

𝑛=1

(
𝑀𝑠 ℓ̄

(P)
𝑠 (𝑡)
𝑛RA

SLA𝑠 (𝛽𝑠 (𝑡, 𝑛))

− 𝑐opexℓ
(O)
𝑠 (𝑡, 𝑛)

)
. (2)

In (2), the binary variable 𝑥𝑠 (𝑡) ∈ {0, 1} is set to 1 if slice 𝑠 is

accepted in SLA block 𝑡 . In case the slice is admitted, the profit is

the difference between the revenue (or SLA violation cost) and the

OPEX cost across all 𝑛RA RA blocks composing the SLA block. The

total profit is then computed over all slice requests S and through

the whole temporal set of SLA blocks T ≜ {𝑡 | 𝑡 ∈ [𝑇
hor

/𝑇SLA]}.

4 KANSAAS
In order to maximize the MNO profit in (2), we propose a novel

solution for overbooking-aware NSaaS, or kaNSaaS. Our approach
addresses the joint problem of (𝑖) Admission Control (AC), i.e., de-
ciding which slice requests to accept, and (𝑖𝑖) Resource Allocation
(RA), i.e., determining how many resources to allocate to each of

the accepted slices. It is important to note that both parts of the

problem are inherently anticipatory in nature, but operate at dif-
ferent timescales. In AC, the MNO must admit slices at the start of

each SLA block so as to ensure that their demand is accommodated

during the future𝑇SLA time interval. In RA, the MNO has to reserve

resources at the beginning of each RA block in a way to best serve

the traffic through the following 𝑇RA interval.

kaNSaaS: Combining Deep Learning and Optimization for Practical Overbooking of Network Slices MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

The overall architecture of kaNSaaS is illustrated in Fig. 3. Our

design abides by the observations above, and hinges upon tailored

forecasting models that support decision-making at two different

timescales, i.e., long-term SLA blocks and short-term RA blocks, as

highlighted in the figure and detailed next.

• First, at every 𝑇SLA time slots, the MNO computes slice demand

predictions that inform a tentative resource allocation for the

next𝑇SLA time interval. In turn, this provisional allocation is used

to guide AC and decide which slices are accepted. Formally, the

long-timescale component sets the binary variables 𝑥𝑠 (𝑡) ∈ {0, 1}
that indicate whether a service 𝑠 is accepted at SLA block 𝑡 .

• Then, at each 𝑇RA time slot 𝑛 within the SLA block 𝑡 , the opera-

tor performs the actual allocation of resources for the admitted

slices for the next RA block, leveraging a more accurate forecast

that is limited to the shorter 𝑇RA interval. Formally, the short-

timescale component defines 𝛼𝑠 (𝑡, 𝑛), i.e., the percentage of the
(predicted) traffic capacity that is to be reserved by the MNO

to slice 𝑠 . Clearly, AC actions at the longer timescale constrain

and drive RA decisions at the shorter timescale, as shown by the

arrow connecting the long- and short-term operations in Fig. 3.

The design above lets kaNSaaS take advantage of traffic forecasting

to spot gaps between the capacity ℓ̄
(P)
𝑠 (𝑡) requested by the SPs at

each SLA block 𝑡 and the future demand generated by the slices at

every RA block (𝑡, 𝑛). Then, it uses suitable optimizers to maximize

the MNO profit in (2) from the identified gaps, via overbooking.

From a technical viewpoint, kaNSaaS combines apt machine

learning and optimization tools to implement each component.

Specifically, we adopt data-driven approaches to implement the

prediction components at both short and long timescales, since

Deep Learning (DL) models have been largely proven to outper-

form statistical models in time series forecasting tasks [19]. The

predicted demands are then fed to dedicated optimizers that take

rapid, effective decisions on AC and RA based on explainable logic.

Next, we detail the structure and operation of the two compo-

nents, focusing on the long-term first and on the short-term after.

4.1 Long-term admission control
The AC operation takes place at the beginning of each SLA block,

and aims at selecting slices so as to maximize the MNO profit,

through overbooking based on long-timescale forecasts. The traffic

prediction and decision-making parts are implemented as follows.

Traffic prediction. The MNO forecasts the expected traffic vol-

ume for each one of the RA blocks belonging to the next SLA block.

Consequently, this Long-Term Predictor (LTP) outputs 𝑇SLA/𝑇RA =

𝑛RA traffic values for the next 𝑇SLA time slots. Our implementation

uses a separate LTP for each requested slice 𝑠 , which (𝑖) best adapts

to the diverse temporal dynamics of the heterogeneous mobile ser-

vices associated with each slice, and (𝑖𝑖) allows for a modular design

where predictors for SPs entering or leaving the slice brokering

process can be dynamically added or removed.

This long-term prediction, denoted as ℓ̄ (O,a) (𝑡, 𝑛), makes use

of the state-of-the-art TES-RNN model for traffic forecasting [16].

This model combines statistical modeling and machine-learning

tools, via a Recurrent Neural Networks (RNN) whose inputs are first

passed through a Thresholded Exponential Smoothing (TES) [33]

block. The key aspect is that the TES coefficients are simultaneously

optimized with the RNN weights through a unified gradient de-

scent [16]. The original TES-RNN is limited to output a single-value

forecast, which is not suitable for our problem. We thus extend

TES-RNN to support a multidimensional output (i.e., a set of 𝑛RA
values), as well as to handle different time scales of input (i.e., the
monitoring samples ℓ𝑠 [𝑘]) and output (i.e., the RA block interval).

Our TES-RNN implementation takes as input traffic samples for the

last 8 hours for each service, and hinges on a deep neural network

architecture with 2 LSTM hidden layers with dilations (1,3) and

(6,12), both having a state size of 50, followed by a nonlinear layer

with 50×50 state size and a linear adapter to the output size.

We train our enhanced TES-RNN model offline, with the 𝛼-OMC

loss parametrized with 𝛾 = 0.75 [2]. This asymmetric loss

avoids underestimations that may lead to SLA violations, while

trying to minimize overprovisioning that increases OPEX costs.

Admission control. The predicted values ℓ̄ (O,a) (𝑡, 𝑛) are fed
together with the compensation for each slice 𝑠 to an admission

control optimizer. Let V𝛼 ≜ {𝛼𝑠 (𝑡, 𝑛) |𝑛 ∈ {1, . . . , 𝑛RA}, 𝑠 ∈S, 𝑡 ∈
T } andV𝑥 ≜ {𝑥𝑠 (𝑡) |𝑠 ∈ S, 𝑡 ∈ T }. The optimization problem is

max

V𝛼 ,V𝑥

∑︁
𝑡 ∈T

∑︁
𝑠∈S

𝑥𝑠 (𝑡)
∑︁𝑛RA

𝑛=1

(
𝑀𝑠 ℓ̄

(P)
𝑠 (𝑡)
𝑛RA

SLA𝑠 (𝛼𝑠 (𝑡, 𝑛))

− 𝑐opex𝛼𝑠 (𝑡, 𝑛)ℓ (O,a) (𝑡, 𝑛)
)

(P1)

s.t.

∑︁
𝑠∈S 𝑥𝑠 (𝑡)𝛼𝑠 (𝑡, 𝑛)ℓ̄ (O,a)𝑠 (𝑡, 𝑛) ≤ 𝐶 ∀𝑛, 𝑡 (3)

0 ≤ 𝛼𝑠 (𝑡, 𝑛) ≤ 1 ∀𝛼𝑠 (𝑡, 𝑛) ∈ V𝛼 (4)

𝑥𝑠 (𝑡) ∈ {0, 1} ∀𝑥𝑠 (𝑡) ∈ V𝑥 . (5)

Problem (P1) maximizes the operational profit of the MNO defined

in (2), i.e., revenue minus costs of SLA violations and OPEX, subject

to the available network capacity𝐶 and on the basis of the predicted

demands ℓ̄
(O,a)
𝑠 (𝑡, 𝑛) of each slice 𝑠 through the next SLA block. It

does so by identifying the admitted slices for which 𝑥𝑠 (𝑡) = 1,

via a tentative allocation of resources 𝛼𝑠 (𝑡, 𝑛) in each RA block

𝑛 of the future SLA block 𝑡 . We remark that the MNO does not

directly apply the resource allocation 𝛼𝑠 (𝑡, 𝑛) obtained from (P1);

instead, it triggers the short-term stage to fine tune the resource

allocation, as described in Sec. 4.2 hereafter. Problem (P1) is NP-

hard and can be modeled as a knapsack problem, as we formally

prove in Appendix A. However, the number of variables (i.e., slices)
that would be handled in NSaaS do not grow exponentially, and

efficient solvers exist for knapsack problems [22].

4.2 Short-term resource allocation
Once the admission control for the next 𝑛RA RA blocks is decided

in (P1), the MNO performs the actual resource reservation at the

start of each RA block. The rationale is that this requires a forecast

over a shorter future horizon, which is inherentlymore accurate and

allows higher savings on OPEX for the MNO. The implementation

of such short-term operation, depicted in the bottom half of Figure 3,

has a structure similar to the long-term decision component.

Traffic prediction. As anticipated, the MNO only forecasts the

expected traffic volume for the next RA block. To this end, we use

one Short-Term Predictor (STP) for each admitted slice 𝑠 . The STP

is based on the exact same hybrid model as the LTP, although the

STP only outputs a single value. The predicted values ℓ̄ (O,r) (𝑡, 𝑛)
serve as input for the RA shot-term optimization presented next.

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Sergi Alcalá-Marín, Antonio Bazco-Nogueras, Albert Banchs, and Marco Fiore

Resource allocation. At every 𝑇RA, i.e., 𝑛RA times per SLA

block, kaNSaaS solves an optimization problem to determine the

exact resources 𝛼𝑠 (𝑡, 𝑛) reserved for each slice for the following RA

block. Formally, for a given RA block (𝑡, 𝑛), the optimization is

max

S (𝑎)

∑︁
𝑠∈S (𝑎)

(𝑀𝑠 ℓ̄
(P)
𝑠 (𝑡)
𝑛RA

SLA𝑠 (𝛼𝑠 (𝑡, 𝑛)) − 𝑐opex𝛼𝑠 (𝑡, 𝑛)ℓ̄ (O,r)𝑠 (𝑡, 𝑛)
)
(P2)

s.t.

∑︁
𝑠∈S (𝑎) 𝛼𝑠 (𝑡, 𝑛)ℓ̄

(O,r)
𝑠 (𝑡, 𝑛) ≤ 𝐶 (6)

0 ≤ 𝛼𝑠 (𝑡, 𝑛) ≤ 1 ∀𝑠 ∈ S (𝑎) . (7)

Problem (P2) aims at maximizing the contribute of the current RA

block to the profit of the MNO, hence has a similar expression to

that of (P1). The main differences are that (𝑖) there is no admission

control decision, (𝑖𝑖) it only considers the services in the set accepted

in the last (P1) problem, denoted as S (𝑎) ⊆ S, and (𝑖𝑖𝑖) it leverages

the STP forecast ℓ̄
(O,r)
𝑠 (𝑡, 𝑛). This problem is considerably simpler

than the MIP in (P1), as it does not contains discrete variables, and

its complexity depends solely on the expression of the SLA function.

Thus, (P2) is a linear programming (LP) problem with the SLA in

Sec. 3.2, yet it could turn non-linear under a different SLA function.

4.3 MNO profit from AC/RA decisions
The AC/RA decisions taken by the components described in Sec. 4.1

and Sec. 4.2 determine the MNO profit, as follows. The values

𝛼𝑠 (𝑡, 𝑛) denote the percentages of the predicted future traffic that

is reserved for slice 𝑠: thus, the actual served traffic at RA block

(𝑛, 𝑡) is ℓeff

𝑠 (𝑡, 𝑛) = min(ℓ𝑠 (𝑡, 𝑛), 𝛼𝑠 (𝑡, 𝑛)ℓ̄ (O,r)𝑠 (𝑡, 𝑛)). From this ex-

pression, we obtain the value of 𝛽𝑠 (𝑡, 𝑛) in (1), i.e., the percentage
of agreed traffic volume that is effectively served by the MNO. The

final profit uses the 𝛽𝑠 (𝑡, 𝑛) above and is given by

𝑝E =
∑︁
𝑡 ∈T

∑︁
𝑠∈S

𝑥𝑠 (𝑡)
∑︁𝑛RA

𝑛=1

(
𝑀𝑠 ℓ̄

(P)
𝑠 (𝑡)
𝑛RA

SLA𝑠 (𝛽𝑠 (𝑡, 𝑛))

− 𝑐opex𝛼𝑠 (𝑡, 𝑛)ℓ (O,r)𝑠 (𝑡, 𝑛)
)
. (8)

Discrepancies between (8) and the objective functions of (P1) and (P2)

are possible due to slice traffic prediction errors, and are part of the

complexity of an overbooking-based NSaaS.

5 PERFORMANCE EVALUATION
We evaluate kaNSaaS using both real and synthetic datasets of slice

demands, presented in Sec. 5.1, and we compare its performance to

benchmark NSaaS management approaches, described in Sec. 5.2.

The results of our evaluation are presented in Sec. 5.3.

5.1 Datasets
A contribution of our study is a first assessment of the potential gain

of overbooking in NSaaS in presence of real-world demands gener-

ated by a variety of service providers, based on measurements of

the traffic of individual mobile applications in a metropolitan-scale

network of a major European MNO. As this dataset is protected

by a Non-Disclosure Agreement (NDA) with the MNO, we also

generate a synthetic dataset that mimics the main properties of

the real-world service-level demands, and leads to comparable re-

sults in our evaluations. We disclose this second dataset to allow

reproducibility of our results and foster further research in NSaaS.

5.1.1 Measurement dataset. The real-world mobile demand dataset

captures all traffic generated by several millions of users in a large

metropolitan area during 8 consecutive weeks. The data consist

of the traffic loads served by each of the hundreds of base station

covering the target geographical region, at a time granularity of

1 minute. The traffic is reported separately for 20 different mobile

services, which include the most popular smartphone applications,

such as YouTube, Instagram, Twitter or various Google services.

Such data was collected and aggregated by the MNO in its pro-

duction infrastructure, using passive measurement probes deployed

in the Evolved Packet Core (EPC). The probes run commercial and

proprietary traffic classifiers to identify the service associated to

each IP flow. The measurement dataset allows defining realistic

SP demands, by assigning one slice to each service. As shown in

Fig. 4a-b, the resulting slices have heterogeneous traffic volumes

and time dynamics, which opens opportunities for multiplexing.

5.1.2 Synthetic dataset. We emulate demands for the three main

network slicing categories for 5G, namely enhanced Mobile Broad-

Band (eMBB), Ultra-High Reliability & Low Latency (uRLLC) and

Massive Machine-type communications (MMTC). For the eMBB

and uRLLC classes, we created a weekly pattern of 5 work days and

2 weekend days, with each day containing a sinusoidal dynamic

that mimics the well-known circadian rhythm of mobile traffic.

Based on our measurement data, we also model two daily traffic

peaks, higher in the morning and lower in the afternoon. Instead,

MMTC slices are characterized by a steady demand over time, to

reflect to deterministic behavior of many applications in that class.

Individual slices are told apart by their generated traffic volumes

and weekly patterns. We use peak traffic values of 60 Mbps for

eMBB, 7 Mbps for mMTC, and 35 Mbps for uRLLC, and introduce

diversity across slices of the same category, by scaling all values of

a slice by a random factor between 0.7 and 1.4. Also, we reflect the

temporal variability observed in the measurement data by randomly

shifting each slice demand by up to 1.5 hours. We then imitate

the inherent randomness of mobile device behaviors, by adding a

coloured noise with a standard deviation equal to 35% of the mean

throughput. This power-law noise has a power spectral density per

unit of bandwidth proportional to
1

𝑓 𝜙
[23], where 𝜙 = 0 implies

white noise, 𝜙 = 1 represents pink noise, and Brownian noise

corresponds to𝜙 = 2. We select𝜙 = 1.08 to strike a balance between

trend and noise. Ultimately, our synthetic dataset consists of 90, 720

data points at 1 minute granularity for each emulated slice, which

is consistent with the real-world data, as exemplified in Fig. 4c.

5.1.3 Slice requests. We generate the SP requests from the datasets

of service demands above, by considering that each SP forecasts

the expected future traffic generated by its service, and asks for

sufficient slice resources to process it. For fairness, we consider that

the SPs make use of the state-of-the-art model from [16], which is

suitably configured to predict a single value corresponding to the

maximum traffic demand for the next SLA block of duration 𝑇SLA.

We also assume that SPs rely on more conservative predictions

than the MNO, since they are committed to ensure proper quality of

experience to their users. To this end, we parameterize the 𝛼-OMC

loss with a higher 𝛾 = 1.5 parameter that induces a higher safety

margin against underprovisioning in SP forecasts [2].

kaNSaaS: Combining Deep Learning and Optimization for Practical Overbooking of Network Slices MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

Mobile Services0.0

0.1

0.2

0.3

0.4 Streaming

Social Networks

Others

(a) Ranked SP traffic

0 2000 4000 6000 8000 10000

Time slot [minutes]

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

T
ra

ffi
c

d
em

an
d Instagram Facebook Netflix

(b) Sample measurement slice traffic

0 2000 4000 6000 8000

Time slot [minutes]

0.05

0.10

0.15

N
or

m
al

iz
ed

T
ra

ffi
c

d
em

an
d emBB uRLLC mMTC

(c) Sample synthetic slice traffic

Figure 4: (a) Sorted normalized traffic per SP; (b)-(c) Temporal demands of 3 slices in the measurement and synthetic datasets.

5.2 Benchmarks
We consider two baselines that allow contextualizing the perfor-

mance of kaNSaaS, and one state-of-the-art benchmark, as follows.

Legacy NSaaS. This is a traditional network slicing management

strategy where the MNO allocates exactly what the service provider

requests, and does not perform any slice overbooking. This implies

that ℓ̄
(O)
𝑠 (𝑡, 𝑛) = ℓ̄

(P)
𝑠 (𝑡). We denote by E (P)

the Legacy NSaaS
counterpart of a given overbooking scenario E (as defined at the

end of Sec. 3.1), and compute the net profit gain of overbooking as

𝐺𝑝 (E) ≜
𝑝E − 𝑝E (P)

𝑝E (P)
. (9)

Oracle NSaaS. This is an unfeasible but optimal slice AC/RA

management where ℓ̄
(O)
𝑠 (𝑡, 𝑛) = ℓ𝑠 (𝑡, 𝑛) and 𝑇RA = 1. We denote

by E★
the oracle counterpart of a given scenario E, and calculate

the similarity of a practical solution with the optimal as the ratio

�̄�𝑝 (E) ≜
𝑝E
𝑝E★

. (10)

CoNEXT. This is the state-of-the-art solution for NSaaS over-

booking, originally introduced by Salvat et al. [26] and denoted

by CoNEXT in the following. As partially anticipated in Sec. 2,

CoNEXT relies on SP demand forecasts returned by the multiplica-

tive version of the three-smoothing Holt-winters (HW) algorithm

with seasonality. Admission decisions of slices are taken by solv-

ing a stochastic yield management optimization problem, which is

however based only on a short-term forecast over the future 𝑇RA
interval. As slice AC is enforced through a longer interval of 𝑇SLA
time slots, CoNEXT then updates the forecast and compute the

resource re-allocation at every subsequent RA block of duration

𝑇RA. In other words, CoNEXT lacks the two-timescale operation of

kaNSaaS, which forces it to take long-term SLA AC decisions based

on short-term demand forecasts. In addition to such a fundamental

design gap, the solution differs from kaNSaaS in the implementation

of both the prediction and decision modules.

5.3 Evaluation
Weassess the performance of kaNSaaS, Legacy NSaaS andCoNEXT
in presence of both measurement and synthetic demands. All re-

sults are expressed in terms of the profit similarity from the per-

formance of the oracle approach �̄�𝑝 , as defined in (10). Unless

stated otherwise, we use the following default settings throughout

all experiments: 𝑇RA = 30 min, 𝑇SLA = 120 min, 𝑐opex = 0.9
𝑀𝑠

𝑛RA

(i.e., a profit margin 𝜌𝑜𝑝 = 11%), and the network capacity is set to

be equal to the maximum aggregated traffic over services over the

whole dataset, or 𝐶
(𝑙)
𝑟 = max𝑡 ∈T

∑
𝑠∈S ℓ𝑠 (𝑡).

0.8

1.0

1.2

1.4

0.1

0.2

0.3

0.4

0.5

D̄
p

kaNSaaS CoNEXT Legacy NSaaS Gain over CoNEXT

0.0

0.5

1.0

Resource allocation cost, cOPEX

0.0

0.5

1.0

D̄
p

Average gain 30%

(a)

0 60 120

RA block interval, TRA [min]

0.0

0.5

1.0

D̄
p

Average gain 32%

(b)

0.8

1.0

1.2

1.4

Normalized available capacity, C̄
(l)
r

0.0

0.5

1.0

D̄
p

Average gain 20%

(c)

0.0

0.5

1.0

Resource allocation cost, cOPEX

0.0

0.5

1.0

D̄
p

Average gain 58%

(d)

0 60 120

RA block interval, TRA [min]

0.0

0.5

1.0

D̄
p

Average gain 68%

(e)

0.8

1.0

1.2

1.4

Normalized available capacity, C̄
(l)
r

0.0

0.5

1.0

D̄
p

Average gain 69%

(f)
Figure 5: Performance evaluation as function of (a,d) the
profit margin, (b,e) the orchestration interval 𝑇RA, and
(c,f) network capacity. Results refer to (left) real-world de-
mands and (right) synthetic traffic. We compare kaNSaaS,
CoNEXT [26], and Legacy NSaaS. Performance is expressed
as a similarity �̄�𝒑 with the unfeasible oracle. Gray vertical
lines represent the default settings listed in Sec. 5.3.

5.3.1 Overall overbooking gain with kaNSaaS. The main results of

our performance evaluation are summarized in Fig. 5. The figure

reports the profit of each tested solution (as different curves), under

real-world (left column) and synthetic (right column) SP demand

datasets. As anticipated, all values are indicated as similarity to the

optimum oracle performance, so as to favor interpretability.

The vertical greyed region in each plot highlights the default

settings, for which the following key observations are in order.

• The gain of kaNSaaS with respect to Legacy NSaaS is very large
at around 300%. This implies that overbooking can grow fourfold
the economic profit for the MNO with respect to a case where the

operator just abides by the requests of the SPs in a typical case.

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Sergi Alcalá-Marín, Antonio Bazco-Nogueras, Albert Banchs, and Marco Fiore

• The gain of kaNSaaS with respect to CoNEXT under the default

settings is of 20% with real demands, and of 40% with synthetic

traffic. In other words, thanks to a more complete two-timescale

design and more effective implementations of forecasting and

AC/RA decision models, kaNSaaS significantly grows the net profit
for the MNO over the best available solution for NSaaS overbooking.

• The similarity to the performance of the oracle is at 0.5 denoting

that the default settings scenario does not allow kaNSaaS to take

full advantage of the potential of NSaaS overbooking.

These considerations shed light on the actual monetary advantage

that overbooking can bring to anMNO in a dependable slice demand

scenario, and unveil in particular how such an advantage can be

surprisingly large. We next investigate how the system settings

affect the overbooking performance.

5.3.2 Impact of profit margin. A chief parameter of interest for the

MNO is the profit margin at which it can operate the service. This

element directly determines the feasibility and interest of NSaaS

use cases. We analyze the impact of the profit margin by varying

the ratio 𝜌𝑜𝑝 =
𝑀𝑠

𝑐opex𝑛RA

. In particular, we vary the coefficient 𝑐opex

from 0 (i.e., neglecting OPEX) to 0.99
𝑀𝑠

𝑛RA

(beyond which NSaaS

is not profitable for the MNO, as 𝜌𝑜𝑝 → 1). Fig. 5a shows how

varying 𝑐opex (as a coefficient of
𝑀𝑠

𝑛RA

) impacts the profit in real-

world demands, and Fig. 5d shows the same for synthetic traffic.

The two plots highlight the very significant role of resource

operation costs in controlling the gain of overbooking strategies.

• On the one hand, the gain of kaNSaaS over Legacy NSaaS is

maximum at profit margins around 10-20%, i.e., for 𝑐opex in the

[0.8, 0.9] range (× 𝑀𝑠

𝑛RA

). Here, overbooking grants dramatic many-

fold boosts in the economic profit.

• On the other hand, the performance of kaNSaaS tends to get

closer to the optimal oracle as 𝑐opex decreases, with a similarity

�̄�𝑝 closer to 1 as 𝑐opex tends to 0. Indeed, as we will later show

in Sec. 5.3.5, all the cost induced by our solution is imputable to

overdimensioning, and reducing 𝑐opex shrinks that cost.

• The state-of-the-art CoNEXT solution performs well under low

profit margins, yet the quality of its AC/RA decisions tends to

rapidly deteriorate as 𝑐opex is reduced, up to the point where the

profits it grants become lower than those of a no-overbooking

Legacy NSaaS strategy. The reason is that, as shown in Sec. 5.3.5,

CoNEXT aggressively overbooks resources, serving more traf-

fic than all other approaches but also incurring in many SLA

violations. The cost of such violations dominates in absence of

significant OPEX costs, thus penalizing this solution. Our pro-

posed kaNSaaS does not suffer from this problem, and stays a

better choice than Legacy NSaaS and CoNEXT across all 𝑐opex.

5.3.3 Impact of resource orchestration interval. We vary 𝑇RA from

5 to 120 minutes, which is the same as the duration of the 𝑇SLA
requested by each SP and thus an upper bound to the RA block dura-

tion. Fig. 5b and Fig. 5e show how kaNSaaS increases its profit gain
over CoNEXT as 𝑇RA increases, i.e., as the resource re-allocation
decisions are spaced apart: the gain grows from 20% at 𝑇RA = 30

minutes to 72% at 𝑇RA = 120 minutes. Also, the profit gain of

CoNEXT over Legacy NSaaS is only of 16% at 𝑇RA = 120 min-

utes, while kaNSaaS still doubles the profit over the baseline NSaaS
without overbooking. These gains demonstrate the importance of

DL-based forecasting to predict traffic over longer time horizons.

Legacy NSaaS CoNEXT KaNSaaS Oracle

−100

−50

0

50

R
ev

en
u

e

R
ev

en
u

e

R
ev

en
u

e

R
ev

en
u

e

Profit OPEX SLA violation

Legacy NSaaS CoNEXT KaNSaaS Oracle

−100

−50

0

50

100

P
ro

fit
/
T
S
L
A

R
ev

en
u

e

R
ev

en
u

e

R
ev

en
u

e

R
ev

en
u

e

(a)

Legacy NSaaS CoNEXT KaNSaaS Oracle

−100

−50

0

50

100

P
ro

fit
/
T
S
L
A

R
ev

en
u

e

R
ev

en
u

e

R
ev

en
u

e

R
ev

en
u

e

(b)
Figure 6: Revenue, profit, OPEX, and SLA violation costs of
all considered NSaaS solutions under (a) measurement and
(b) synthetic demands, and with default system settings.

5.3.4 Impact of network capacity. Let us denote the maximum sum

traffic over the whole dataset by 𝐿 ≜ max𝑡 ∈T
∑
𝑠∈S ℓ𝑠 (𝑡): we then

define the normalized available capacity as 𝐶
(𝑙)
𝑟 = 𝐶

(𝑙)
𝑟 /𝐿, and

vary 𝐶
(𝑙)
𝑟 ∈ [0.8, 1.5]. The results are in Fig. 5c and Fig. 5f. For

kaNSaaS, the performance with respect to the oracle approach is

not strongly affected by the network capacity, as it is similar (at

48% and 54%) in the extremes case where the network is under-

dimensioned (𝐶
(𝑙)
𝑟 = 0.8) or overdimensioned (𝐶

(𝑙)
𝑟 = 1.5). The

performance of CoNEXT is similarly not affected by the capacity of

the network, with a steadily lower 43% performance with respect

to oracle. The result of Legacy NSaaS is very far from oracle,

with low similarity that varies from 17.4% for 𝐶
(𝑙)
𝑟 = 0.8 to 22% at

𝐶
(𝑙)
𝑟 = 1.5. Ultimately, these results prove how the overbooking

gains are only marginally affected by the available capacity.

5.3.5 Profit deconstruction. In order to better understand how

kaNSaaS outperforms the benchmarks, we break apart the economic

gain and costs incurred by each NSaaS scheme, so as to reveal how

the final net revenue is obtained. Fig. 6 shows the total revenues

from accepted slices, the OPEX from resource allocation, the fees

due to SLA violations, and the profit resulting from subtracting

the latter two costs from the initial revenues. We first observe how

Legacy NSaaS does not incur in any cost in terms of SLA violations,

owing to a conservative policy of abiding by the requests of the SPs,

which are in turn designed to avoid any service disruption. How-

ever, this result comes at a very high OPEX cost, since SP requests

tend to be overdimensioned. Also, Legacy NSaaS yields the lowest

total revenues, as its conservative approach leads to accepting a

lower number of slices. On the other end of the spectrum, CoNEXT

is the most aggressive approach, which accepts the highest number

of slices and thus attained the highest total revenues. To do so, this

NSaaS solution heavily employs overbooking, but it also pays a

substantial penalty from SLA violations. Ultimately, SLA violation

costs curb the MNO net profit. kaNSaaS achieves a better trade-

off between slice overbooking (accepting more slices than Legacy
NSaaS, thus increasing the total revenue) and SLA violation avoid-

ance (paying a negligible cost for those, especially when compared

with CoNEXT). By striking this balance, and even though the total

revenues are lower and the OPEX is higher than those of CoNEXT,

kaNSaaS creates a significantly higher total profit for the MNO. We

also observe that our solution is the one that resembles the most

the optimal oracle approach: indeed, the two solutions accepts

roughly the same SP requests, which results in a very similar total

revenue. The difference is then ascribed to the fact that oracle
relies on a perfect prediction over instantaneous RA block intervals,

which is not feasible in practice.

kaNSaaS: Combining Deep Learning and Optimization for Practical Overbooking of Network Slices MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

6 EXHAUSTIVE SYSTEM ANALYSIS
In this section, we carry out a complete analysis of the NSaaS over-

booking performance across the additional system dimensions that

we did not explore in Sec. 5. Specifically, we analyze how sensitive

the performance is to the network layer at which the NSaaS man-

agement is performed, as well as how different levels of accuracy

in the MNO traffic prediction affect the final net profit. In order

to control the second aspect, we replace the actual LTP and STP

models with a parametrizable overprovisioning factor 𝑎 that multi-

plies the actual peak throughput in the following RA block. In other

words, we employ an abstract predictor that achieves a tunable

accuracy instead of practical forecasting solutions. Specifically, the

default values for overprovisioning are 20% for SPs and 5% for the

MNO, such that we have that ℓ̄
(P)
𝑠 (𝑡) = 1.2 max𝑛∈[𝑛RA] ℓ𝑠 (𝑡, 𝑛) and

ℓ̄
(O,a)
𝑠 (𝑡, 𝑛) = 1.05ℓ𝑠 (𝑡, 𝑛). In the following, we only report results

obtained with the real-world measurement demands, since those

returned with synthetic data did not show significant differences

and are omitted due to space limits. Also, all results are presented

in terms of the gain of kaNSaaS over Legacy NSaaS, as per (9).

6.1 Network layer
The NSaaS management problem tackled by kaNSaaS can be in-

stantiated at different locations of the network infrastructure. For

instance, slicing could occur for spectrum at the level of individual

Remote Units (RUs), for radio scheduling at the level of Distributed

Units (DUs), for compute resources at the level of Centralized Units

(CUs), or for transport or Cloud resources in the Core Network (CN).

We model such different network layers as nodes that aggregate

an increasing volume of traffic, or equivalently serve a growing

number of clustered RUs, as we move from the radio access to the

network core. Fig. 7a shows the total network capacity required to

serve the whole demand in our measurement dataset at different

network layers. The x-axis represents the average traffic demand

per minute per cluster, normalized, in a logarithmic scale. As we

move towards the RU layer (left-most value), the required capac-

ity grows exponentially. Hence, although handling NSaaS at RUs

provides the MNO with higher gains and flexibility, the required

management and resources escalate at an unaffordable rate. We

represent the gain over Legacy NSaaS in Fig. 7b and Fig. 7c, where

the 𝑥-axis is the number of RU per cluster, and where 𝑥 = 843 rep-

resents the CN layer. Fig. 7b shows the different performance when

the orchestration interval 𝑇RA varies from 1 to 120 min, whereas

Fig. 7c shows the variation with respect to the level of overprovi-

sioning, modeled by a coefficient 𝑎, such that ℓ̄
(O)
𝑠 (𝑡, 𝑛) = 𝑎 · ℓ𝑠 (𝑡, 𝑛),

and where 𝑎 varies from 1 to 2. We only highlight the extreme and

the default values for the sake of clarity.

The profit gain 𝐺𝑟 exceeds 600%, i.e., the operator can multiply

its profit by seven times with overbooking. Importantly, the profit

gain increases as we approach the RU layer, where traffic is more

dynamic and there are more opportunities to multiplex demands.

6.2 Traffic prediction accuracy
Finally, we jointly analyze the impact of jointly varying𝑇RA (30 min

by default) and the prediction accuracy level (𝑎 = 1.05 by default).

The gain over Legacy NSaaS (𝐺𝑝) is show in the 3D plot of Fig. 7d.

We observe a non-monotonic behavior in the accuracy axis. This

is due to the fact that, for 𝑎 ≤ 1.2, 𝑎 increases for the MNO but

not for the SPs, which keeps the default value 𝑎 = 1.2. Hence,

reducing 𝑎 improves the performance because we are assuming

perfect predictions with no uncertainty. For 𝑎 > 1.2, however,

both MNO and SP share the same 𝑎 (because SP will never be

more aggressive provisioning than the MNO); then, increasing 𝑎

is beneficial for the MNO due to the fastest resource allocation

decision. We also observe that the peak gain is achieved at 𝑇RA =

𝑎 = 1, because we do not have prediction errors (and thus SLA

violations) in this controlled evaluation. Even when 𝑇RA = 60 and

𝑎 = 1.2, overbooking increases the MNO profit by 75%.

7 CONCLUSIONS
We have proved that, under real-world service-level demands col-

lected in a large-scale production network and with realistic op-

erating cost margins, the net profit of the MNO from a practical

overbooking-based NSaaS solution can be multiplied by a factor

four. We also presented kaNSaaS, a practical solution that achieves

the gains above over legacy NSaaS models, and largely outperforms

the state-of-the-art scheme for NSaaS overbooking.

ACKNOWLEDGMENTS
We thank the Mobihoc anonymous reviewers for their helpful com-

ments and guidance. The work of S. Alcalá-Marín was supported

by the European Union’s Horizon 2020 research and innovation

programme under grant agreements no.101017109 “DAEMON". The

work of A. Bazco-Nogueras was supported by the Regional Gov-

ernment of Madrid through the grant 2020-T2/TIC-20710 for Talent

Attraction. The work of A. Banchs was also supported in part by the

European Union’s Horizon-JU-SNS-2022 Research and Innovation

Programme under Grant Agreement No. 101095871 (TrialsNet) and

by the Spanish Ministry of Economic Affairs and Digital Transfor-

mation and the European Union-NextGenerationEU through the

UNICO 5G I+D 6G-CLARION project. The work of M.Fiore was

supported by the European Union-NextGenerationEU through the

UNICO 5G I+D project no.TSI-063000-2021-52 “AEON-ZERO”.

A NP-HARDNESS OF PROBLEM (P1)
The proof that (P1) is NP-hard follows by reduction from the Knap-

sack Problem (KP) [21], whose description we omit due to space

constraint. Let us consider a particular case of our problem, in

which 𝑛RA = 1 and the SLA function is given by SLA𝑠 (𝛼𝑠 (𝑡)) = 1

if 𝛼𝑠 (𝑡) ≥ 1 and SLA𝑠 (𝛼𝑠 (𝑡)) = −1 if 𝛼𝑠 (𝑡) < 1, i.e., any under-

provisioning incurs a penalty equivalent to the possible revenue.

Here, we have that, for any solution in which some slice 𝑠 is ac-

cepted (𝑥𝑠 (𝑡) = 1) with 𝛼𝑠 different than 1 for that same slice, we

can find another solution improving the objective value just by

setting 𝑥𝑠 = 0. Thus, our problem is equivalent to maximizing∑
𝑠∈S, 𝑡 ∈T,𝑛∈𝑛RA

𝑀𝑠 (𝑡)ℓ̄ (P)𝑠 (𝑡)𝑥𝑠 (𝑡) over the set {𝑥𝑠 (𝑡)}𝑠∈S subject

to 𝑥𝑠 (𝑡) ∈ {0, 1} and ∑
𝑠∈S ℓ̄

(O,a)
𝑠 (𝑡, 𝑛)𝑥𝑠 (𝑡) ≤ 𝐶

(𝑙)
𝑟 for each 𝑡 ∈ T

and 𝑛 ∈ 𝑛RA. Our problem is then equivalent to a KP with weights

ℓ
(O,a)
𝑠 (𝑡, 𝑛), rewards 𝑀𝑠 (𝑡)ℓ̄ (P)𝑠 (𝑡), and capacity 𝐶

(𝑙)
𝑟 . Ultimately,

the NP-hard KP is a particular case of our problem, and since this

reduction can be built in polynomial time, our problem is NP-hard.

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Sergi Alcalá-Marín, Antonio Bazco-Nogueras, Albert Banchs, and Marco Fiore

10−3 10−2 10−1 100

Average capacity per cluster

0.2

0.4

0.6

0.8

1.0

City1698543
17

9

1
Number of BS/cluster

(a)

843

156

2951

RU per cluster

0

5

10

15

Ḡ
p

1min 30min 120min

843

156

2951

RU per cluster

0

2

4

6

8
Ḡ
p

1.0 1.05 2
(b)

843

156

2951

RU per cluster

0

5

10

15

Ḡ
p

1min 30min 120min

843

156

2951

RU per cluster

0

2

4

6

8

Ḡ
p

1.0 1.05 2

(c)

𝐺𝑝

𝑇RA 𝑎

(d)

Figure 7: (a) Total capacity required to serve all demands at different network layers. (b,c,d) System performance as function of:
(b) the network layer where NSaaS occurs, for different 𝑻RA from 1 to 120 minutes; (c) the network layer where where NSaaS
occurs, for different prediction accuracy 𝒂 from 1 to 2; and, (d) the RA block interval 𝑻RA and prediction accuracy 𝑎, at CN layer.

REFERENCES
[1] S. Arora and A. Ksentini. 2021. Dynamic Resource Allocation and Placement of

Cloud Native Network Services. In IEEE Int. Conf. Commun. (ICC). 1–6.
[2] D. Bega et al. 2019. DeepCog: Cognitive Network Management in Sliced 5G

Networks with Deep Learning. In Proc. of IEEE INFOCOM. 1–9.

[3] D. Bega, M. Gramaglia, A. B., V. Sciancalepore, K. Samdanis, and X. Costa-Perez.

2017. Optimising 5G infrastructure markets: The business of network slicing. In

Proc. of IEEE INFOCOM. 1–9.

[4] W. Ben-Ameur, L. Cano, and T. Chahed. 2021. A framework for joint admission

control, resource allocation and pricing for network slicing in 5G. In 2021 IEEE
Global Communications Conf. (GLOBECOM). 1–6.

[5] M. Burman and M. Gall. 2022. Ericsson and Red Hat empower service providers

to build multi-vendor networks.

[6] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Pérez. 2017. Multi-Tenant

Radio Access Network Slicing: StatisticalMultiplexing of Spatial Loads. IEEE/ACM
Transactions on Networking 25, 5 (2017), 3044–3058.

[7] P. Caballero, A. Banchs, G. de Veciana, X. Costa-Pérez, and A. Azcorra. 2018.

Network Slicing for Guaranteed Rate Services: Admission Control and Resource

Allocation Games. IEEE Transactions on Wireless Communications 17, 10 (2018),
6419–6432.

[8] S. Gholamipour, B. Akbari, N. Mokari, M. M. Tajiki, and E. A. Jorswieck. 2021.

Online Admission Control and Resource Allocation in Network Slicing under

Demand Uncertainties.

[9] D. Giannopoulos, P. Papaioannou, C. Tranoris, and S. Denazis. 2021. Monitoring

as a Service over a 5G Network Slice. In Joint European Conf. on Networks and
Commun. & 6G Summit (EuCNC/6G Summit). 329–334.

[10] B. Han, V. Sciancalepore, D. Feng, X. Costa-Perez, and Hans D. Schotten. 2019. A

Utility-Driven Multi-Queue Admission Control Solution for Network Slicing. In

Proc. of IEEE INFOCOM. 55–63.

[11] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang. 2020. GAN-Powered Deep

Distributional Reinforcement Learning for Resource Management in Network

Slicing. IEEE J. Selected Areas in Communications 38, 2 (2020), 334–349.
[12] J. A. Hurtado Sánchez, K. Casilimas, and O. M. Caicedo Rendon. 2022. Deep

Reinforcement Learning for Resource Management on Network Slicing: A Survey.

Sensors 22, 8 (2022).
[13] J. Koo, V. B. Mendiratta, M. R. Rahman, and A. Walid. 2019. Deep Reinforcement

Learning for Network Slicing with Heterogeneous Resource Requirements and

Time Varying Traffic Dynamics. In Int. Conf. on Network and Service Management
(CNSM). 1–5.

[14] Q. Liu, T. Han, and E. Moges. 2020. EdgeSlice: Slicing Wireless Edge Computing

Network with Decentralized Deep Reinforcement Learning. In IEEE Int. Conf. on
Distributed Computing Systems (ICDCS). 234–244.

[15] M. Liwang, X. Wang, and R. Chen. 2022. Computing Resource Provisioning at

the Edge: An Overbooking-Enabled Trading Paradigm. IEEE Wireless Commun.
29, 5 (2022), 68–76. https://doi.org/10.1109/MWC.104.2100380

[16] L. Lo Schiavo, M. Fiore, M. Gramaglia, A. Banchs, and X. Costa-Perez. 2022. Fore-

casting for Network Management with Joint Statistical Modelling and Machine

Learning. (2022).

[17] Z. Luo, C. Wu, Z. Li, and W. Zhou. 2019. Scaling Geo-Distributed Network

Function Chains: A Prediction and Learning Framework. IEEE J. Selected Areas
in Communications 37, 8 (2019), 1838–1850.

[18] Q. T. Luu, S. Kerboeuf, and M. Kieffer. 2021. Uncertainty-Aware Resource Provi-

sioning for Network Slicing. IEEE Transactions on Network and Service Manage-
ment 18, 1 (2021), 79–93.

[19] S. Makridakis, E. Spiliotis, and V. Assimakopoulos. 2020. The M4 Competition:

100,000 time series and 61 forecasting methods. Int. Journal of Forecasting 36, 1

(2020), 54 – 74. https://doi.org/10.1016/j.ijforecast.2019.04.014

[20] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Pérez. 2019. Re-

source Sharing Efficiency in Network Slicing. IEEE Transactions on Network and
Service Management 16, 3 (2019), 909–923.

[21] S. Martello. 1990. Knapsack Problems: Algorithms and Computer Implementa-

tions. Wiley-Interscience series in discrete mathematics and optimiza tion (1990).

[22] S. Martello and P. Toth. 1990. Knapsack Problems: Algorithms and Computer
Implementations. Wiley. https://books.google.es/books?id=0dhQAAAAMAAJ

[23] F. Patzelt. 2022. Colored Noise. https://github.com/felixpatzelt/colorednoise.

[24] A. Pino, P. Khodashenas, X. Hesselbach, E. Coronado, and S. Siddiqui. 2021.

Validation and Benchmarking of CNFs in OSM for pure Cloud Native applications

in 5G and beyond. In 2021 Int. Conf. on Computer Communications and Networks
(ICCCN). 1–9.

[25] JE Rachid and J Erfanian. 2015. NGMN 5G Initiative White Paper.

[26] J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, and X. Costa-Perez.

2018. Overbooking Network Slices through Yield-Driven End-to-End Orches-

tration. In Proc. Int. Conf. Emerging Networking EXperiments and Technologies
(CoNEXT). 353–365.

[27] S. Saxena and K. M. Sivalingam. 2022. Slice admission control using overbooking

for enhancing provider revenue in 5G Networks. In NOMS 2022-2022 IEEE/IFIP
Network Operations and Management Symposium. 1–7.

[28] C. Sexton, N. Marchetti, and L. A. DaSilva. 2020. On Provisioning Slices and

Overbooking Resources in Service Tailored Networks of the Future. IEEE/ACM
Transactions on Networking 28, 5 (2020), 2106–2119.

[29] S. D. A. Shah, M. A. Gregory, and S. Li. 2021. Cloud-Native Network Slicing Using

Software Defined Networking Based Multi-Access Edge Computing: A Survey.

IEEE Access 9 (2021), 10903–10924.
[30] K. T. Talluri and G. Van Ryzin. 2004. The theory and practice of revenue manage-

ment. Vol. 1. Springer.
[31] Z. Tang, F. Zhang, X. Zhou, W. Jia, and W. Zhao. 2022. Pricing Model for Dy-

namic Resource Overbooking in Edge Computing. IEEE Transactions on Cloud
Computing (2022).

[32] The Linux Foundation. 2022. The Linux Foundation and Google Cloud Launch

Nephio to Enable and Simplify Cloud Native Automation of Telecom Network

Functions. Consulted on March 10th 2023.

[33] D. Tikunov and T. Nishimura. 2007. Traffic prediction for mobile network using

Holt-Winter’s exponential smoothing. In Int. Conf. on Software, Telecommunica-
tions and Computer Networks. IEEE, 1–5.

[34] S. Troia, R. Alvizu, and G. Maier. 2019. Reinforcement Learning for Service

Function Chain Reconfiguration in NFV-SDN Metro-Core Optical Networks.

IEEE Access 7 (2019), 167944–167957.
[35] N. Van Huynh, D. Thai Hoang, D. N. Nguyen, and E. Dutkiewicz. 2019. Optimal

and Fast Real-Time Resource Slicing With Deep Dueling Neural Networks. IEEE
J. Selected Areas in Communications 37, 6 (2019), 1455–1470.

[36] L. Zanzi, J. X. Salvat, V. Sciancalepore, A. Garcia-Saavedra, and X. Costa-Perez.

2018. Overbooking Network Slices End-to-End: Implementation and Demonstra-

tion. In Proc. of ACM SIGCOMM. 144–146.

[37] J. Zheng, P. Caballero, G. de Veciana, S. J. Baek, and A. Banchs. 2018. Statistical

Multiplexing and Traffic Shaping Games for Network Slicing. IEEE/ACM Trans-
actions on Networking 26, 6 (2018), 2528–2541. https://doi.org/10.1109/TNET.

2018.2870184

[38] X. Zhou, R. Li, T. Chen, and H. Zhang. 2016. Network slicing as a service: enabling

enterprises’ own software-defined cellular networks. IEEE Communications
Magazine 54, 7 (2016), 146–153.

https://doi.org/10.1109/MWC.104.2100380
https://doi.org/10.1016/j.ijforecast.2019.04.014
https://books.google.es/books?id=0dhQAAAAMAAJ
https://github.com/felixpatzelt/colorednoise
https://doi.org/10.1109/TNET.2018.2870184
https://doi.org/10.1109/TNET.2018.2870184

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	3.1 NSaaS operation
	3.2 SLA function
	3.3 MNO profit

	4 kaNSaaS
	4.1 Long-term admission control
	4.2 Short-term resource allocation
	4.3 MNO profit from AC/RA decisions

	5 Performance evaluation
	5.1 Datasets
	5.2 Benchmarks
	5.3 Evaluation

	6 Exhaustive system analysis
	6.1 Network layer
	6.2 Traffic prediction accuracy

	7 Conclusions
	A NP-hardness of Problem (P1)
	References

