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Abstract—Positioning based on aircraft signals has been pro-
posed as an alternative to satellite-based positioning systems (e.g.
GPS). However, so far, no deployment of this technique exists,
and the real-world performance remains unclear. This paper
contributes at better understanding the performance tradeoffs
under realistic conditions. We implement SkyPos, a localization
system for GPS-denied areas or location integrity that oppor-
tunistically uses the large availability of aircraft signals to self-
localize receivers. We analyze SkyPos with data collected from
hundreds of sensors and thousands of aircraft around Europe.
Our results show that we can achieve median accuracy down to
10 m in seconds, enabling almost real-time positioning or location
verification using aircraft signals at scale.

Index Terms—IoT, SDR, Localization, Avionics.

I. INTRODUCTION

The literature on outdoor and indoor localization is vast.
While indoor localization research makes use of different sig-
nals in the terrestrial radio frequency spectrum such as WiFi,
UWB, Bluetooth, or Zigbee, outdoor localization is widely
dominated by Global Navigation Satellite System (GNSS)
based positioning such as Global Positioning System (GPS),
Galileo, GLONASS, and the like, to the point of becoming a
commodity in all sorts of hardware and environment.

In recent years, aircraft signals have been proposed as an
alternative means of positioning. In [1], they looked into
opportunistically using aircraft signals (ADS-B) to perform
indoor localization. In [2], this method has been refined to
require less time for data collection. Positioning with aircraft
signals has several advantages over classical satellite-based
systems. First, since aircraft signals are much stronger than
satellite signals, they penetrate much better in buildings and
work in obstructed or indoor environments. Second, getting a
first position is much faster (under 3 seconds of data collection
and a few minutes to obtain the fix in [2]). Finally, GPS based
systems are highly vulnerable to spoofing attacks [3], [4] while
positioning based on aircraft signals requires a more complex,
distributed, and multi-device attacker setup [5].

In GPS spoofing scenarios, an additional source of location
for verification purposes would increase the location integrity
and quantify the trust of the provided position. Integrity is
essential for systems where secure positioning is critical, such
as vehicular to everything (V2X) communications, and it is
currently under standardization within the third Generation
Partnership Project (3GPP) in Release 17 and beyond for
the design of 5G Advanced and toward 6G systems [6].
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Fig. 1: General overview of SkyPos. Several aircraft
(p1, p2, p3) pass through an area with anchors and the
user that wants to self-localize. Each anchor (red) gathers the
messages from each aircraft, timestamps them, and sends it
to a central backend. The user (green) also collects messages
and queries the backend. It receives the timestamps from the
other anchors and self-localizes using the anchors’ and its own
timestamps.

3GPP has also envisioned several positioning applications and
defines several positioning methods for 5G networks [7] that
do not rely directly on GNSS information. There is also active
research in improving accuracy and reducing latencies, as
shown in [8].

Since [1], [2] laid the theoretical foundations for positioning
based on aircraft signals a few years ago, we are not aware of
any real-world deployed system making use of this localization
technique so far. The actual performance one may get in the
wild is thus yet not clear.

In this work, we report from SkyPos (Figure 1), a first
large-scale implementation that leverages thousands of crowd-
sourced ADS-B reference stations from the OpenSky Net-
work [9] to position IoT devices across Central Europe. We
systematically evaluate the performance of this real-world
deployment comprising low-cost software-defined radios and
higher-end ADS-B reference stations synchronized through
GPS. We analyze the tradeoffs in measurement error, synchro-
nization offset, clock drift, and sensor placement errors.

The contributions of this paper are the following:
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• We introduce an architecture and an implementation for
self-localization using aircraft signals that leverages the
existing ADS-B crowdsourced sensors from the OpenSky
Network;

• We provide an extensive evaluation of the architecture’s
performance and the accuracy of the localization with
real-world data;

• We present an approach to solving the multivariate self-
localization problem given the measurement error, syn-
chronization offset, clock drift, and sensor placement
errors we find in our data, as well as insights into which
aircraft to select to increase accuracy.

To the best of our knowledge, there has not been any attempt
to design a real system for embedded sensors to self-localize
using aircraft signals at a large scale, and the limited prior
work in this field has addressed the problem only by means
of simulations or in small setups with a few sensors [1], [10],
[11]. In contrast, in our work, we perform our theoretical and
experimental analysis with a large set of embedded sensors
across Europe and provide a prototype architecture.

The paper is divided as follows: In Section II, we de-
scribe the main challenges faced when designing the proposed
system, and Section III provides a quick primer on Auto-
matic Dependent Surveillance-Broadcast (ADS-B) and how it
could be exploited for self-localization. Sections IV-V provide
the theoretical foundations and our proposed architecture,
respectively. In Section VI, we evaluate our approach with
data obtained from real sensors from OpenSky Network. We
discuss the most relevant research regarding the opportunistic
use of aircraft signals (Section VII) and provide some final
remarks in Section VIII.

II. CHALLENGES

Self-positioning using aircraft signals poses significant chal-
lenges, as the specification was not designed with this use case
in mind. We describe the main challenges in the following
paragraphs.

a) System Design: We show an overview of our system
in Figure 1. For our prototype architecture, several design
choices have to be made. Unlike GPS satellites, aircraft
do not send absolute timing information in their messages.
Therefore, to localize the device, we need several receivers
to gather those messages. By considering the differences in
arrival times among these sensors, it is possible to estimate
the location of the desired sensor. We leverage existing air
traffic surveillance networks like OpenSky [9], which already
store aircraft positions in their backend received by ADS-B
signals.

Each receiver only sends a list of ADS-B meta-
data ({mp1 , t

r1
p1,A1

}, {mp3 , t
r3
p3,A1

}, . . .), where the tuple
(mpi , t

rk
pi,Aj

) represents the message m sent by aircraft pi
and received by anchor Aj at time rk. That meta-data can
be composed of the fields present in Figure 2. There are
different ADS-B types, including position, velocity, or status.
We only collect those, including position discarding the rest,
thus reducing computation and storage requirements.

These messages are sent to the backend, reducing the data
amount compared to sending the raw In-Phase and Quadrature

Control
(8) 

ICAO
(24) 

ADS-B Message 
(56) 

Parity
(24) 

Fig. 2: Structure of an ADS-B message frame. The numbers
in parentheses represent the number of bits of each field in
the message.

(IQ) signals. Besides, as we have access to a large set of data,
we propose to rely on in-memory storage, which allows us to
reduce query times. The user also would have to send a list
of the aircraft messages collected in a period of time so that
the backend can match the messages to those collected from
reference sensors.

b) Synchronization and Timing constraints: In time-
based localization, good timing accuracy is a must. For users,
we do not impose large timing constraints on the system clock
(users in our study were using Network Time Protocol (NTP),
and is sufficient) nor on the timing of samples. Tools like
dump1090 [12] provide microsecond-level accuracy, which
we show is sufficient.

For anchors/reference receivers on the other side, there are
harder restrictions. We focus only on a subset of OpenSky’s
network sensors that have GPS-disciplined oscillators that can
provide 30ns accuracy. Using only a subset of all the sensors
in the network also has the benefit of reducing the storage and
bandwidth cost of the whole infrastructure.

c) Clock imperfections: Receivers (specifically their RF
frontends) are subject to imperfections in their internal oscilla-
tors which can decrease the localization accuracy. To overcome
this, we propose a mathematical framework that relies on a
few reference sensors with disciplined oscillators across the
network. These reference sensors allow us to reduce the load
when computing the position of users with lower-cost sensors.

d) Performance Validation: Previous literature has relied
heavily on simulations or controllable setups with few sensors.
To have a more extensive analysis, we rely on LocaRDS [13],
a dataset containing aircraft and sensor information from
OpenSky [14], a well-known air traffic surveillance, for several
hours and days. This dataset contains data from up to 700
Internet of Things (IoT) sensors spread all over Europe and
with varying coverage.

III. ADS-B FOR POSITIONING INFORMATION

Traditional systems for air traffic surveillance include Pri-
mary Surveillance Radar (PSR) which are radars that detect
the presence of aircraft by measuring radio wave reflections,
and Secondary Surveillance Radar (SSR) which can request
more information about their flight state. This is possible
because aircraft include radar transponders that reply with the
required information each time a ground station interrogates
them. ADS-B can be regarded as an enhancement of SSR
systems, which is also used to send flight status information,
but in this case, without the need for interrogation (hence the
term Automatic) [15]. ADS-B is steadily being adopted by
many aircraft. Starting January 2020, all aircraft in the US
were mandated to include ADS-B transponders, and Europe
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*8 d3452c85851967ae91c9ae20503 ;
- CRC: e20503 ( ok )
- DF 17 : ADS-B message .

- Capab i l i ty : 5
- ICAO Address : 3452 c8
- Extended Squ i t t e r Type : 11
- Extended Squ i t t e r Sub : 0

- F f l a g : odd
- T f l a g : non -UTC
- Al t i tude : 15225 f e e t
- Lat i tude : 81268 ( not dec )
- Longitude : 72858 ( not dec )

Fig. 3: Example of decoded ADS-B message containing air-
craft position.

will follow this in 2023, thus making it a widely employed
technology in aviation.

The downlink channel of ADS-B operates on the 1090
MHz band, and messages are encoded with Pulse Position
Modulation (PPM). Each ADS-B frame is 112 bits long [15],
and the frame structure is shown in Figure 2. The International
Civil Aviation Organization (ICAO) address is a 24-bit number
that is used to uniquely identify an aircraft and the ADS-B
message can be one of 9 types containing information re-
garding its position, velocity, and status. Using common open
source software like dump10901 we can capture, decode these
messages and timestamp these messages (with relatively high
precision even [16]), as it is shown in Figure 3.

In recent years, several platforms have sprouted that, based
on these ADS-B transmissions, provide real-time plane track-
ing and various related services. Examples of such platforms
are flightaware2 or flightradar243. Within all these, a notable
example is the Opensky-Network [9], [14], which is composed
of a crowdsourced sensor network monitoring air traffic, also
providing data for researchers in this field.

Recent literature shows that, apart from air traffic surveil-
lance, it is possible to exploit aircraft messages for different
purposes like synchronization [16], [10], positioning [1], [2] or
privacy assessment [11]. The key insight is that by having mul-
tiple aircraft broadcasting status messages periodically, they
effectively become an ad-hoc ’satellite network’. Moreover,
aircraft travel at substantially lower altitudes than satellites,
and messages are transmitted with relatively high Signal-to-
Noise Ratio (SNR). Thus these signals can easily be received
and decoded with low-cost off-the-shelf Software-Defined
Radio (SDR) and antennas. In Figure 4, we show the number
of distinct aircraft IDs for 3 sensors, 2 located indoors (one in
an upper floor office with windows and the other in a lower
floor with no windows) and 1 outdoors, received in a 24-hour
window with a standard dipole antenna. Except for times at
night (many airports close at night, thus reducing the air traffic
volume), there are between 30-40 distinct aircraft IDs detected
per second for the outdoor and the upper office sensor and up

1https://github.com/antirez/dump1090
2https://es.flightaware.com/
3https://www.flightradar24.com/
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Fig. 4: Number of distinct aircraft received by 3 sensors during
the day, two indoor and one outdoor. Data was aggregated in
2-minute time windows

to 15 for the sensor in the office with no windows.
We compare this to GPS reception. For that, we use the

gnss-sdr software [17] and an active GPS antenna. For the
indoor locations, we could not obtain a fix at any point in
time, whereas for the outdoor location, we could obtain a
position at any point during the day. This further proves that
we can exploit ADS-B information for self-positioning, but
there could be hours at night where some accuracy might be
lost due to fewer aircraft being present.

As mentioned in Section I, aircraft do not provide the time
the message was transmitted, so a sensor alone could not
compute its position from multiple messages. However, with
a network like OpenSky, where multiple sensors are receiving
the same broadcasts, we exploit the difference in arrival times
to provide positioning for other nodes. As mentioned earlier,
we build on top of the work in [1] and extend it to cover more
realistic scenarios with a greater variety of sensors and spatial
distributions.

IV. METHODOLOGY

There is a considerable amount of literature regarding
the problem of aircraft multilateration (MLAT), where the
objective is precise tracking of aircraft [18], [19], [20]. In
contrast, in this paper, we consider the problem of positioning
the user using aircraft signals, thus converting it into a Reverse
MLAT problem. This problem was first formulated in [1].

The core idea of this method is for multiple receivers to
decode aircraft messages which contain the aircraft’s position,
timestamp them with their local clocks, and send this infor-
mation to a backend infrastructure for location processing. We
can distinguish two types of receivers:

• Target receiver or User, whose position is unknown and
to be estimated. The requirements are not as strict as for
the reference receivers; in fact, virtually any equipment
capable of decoding aircraft messages would qualify as
a target receiver.

• Reference receivers or Anchors, which are accurately
localized and have the necessary equipment to correct
their internal clock errors (offsets and drifts). These sen-
sors are already part of an existing air traffic surveillance
network (i.e., OpenSky [9]), which also reports aircraft
locations to the backend.
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A. User Localization

Let us define the 3D distance between a static user u =
[xu, yu, zu] and an aircraft position pr

i = [xr
pi
, yrpi

, zrpi
] at any

time r as:
dru,pi

= ||u− pr
i ||2 (1)

Every time an aircraft transmits an ADS-B message, the
time at which the user receives it (in its local time) can be
written as:

t̂ru,pi
= trpi

+
dru,pi

c
+ θu + δu · (∆tru,0) + εu (2)

Being t̂ru,pi
the time at which the user received the message,

trpi
the absolute time at which the message is transmitted

by the aircraft, θu and δu are the receiver’s clock offset
and drift respectively, and εu additive white gaussian noise
corresponding to measurement error. ∆tru,0 is the elapsed time
from an absolute initial reference t0 to the current sensor time
tru.

Assuming that the aircraft’s position is known (ADS-B
signals continuously broadcast this information), we have a
total of 6 unknowns in our system: the 3D coordinates of the
receiver, offset and drift of the receiver’s local oscillator, and
the transmission time of the message. Since the transmission
time is unknown, multilateration systems take another receiver
(v) and subtract Equation (2) for both receivers:

τ ru,v,pi
=

dru,pi

c
−
drv,pi

c
+θu,v+δu·∆tru,0−δv ·∆trv,0+εu,v (3)

To solve for all the unknowns present in Equation (3), we
would at least need 10 different measurements. To reduce the
amount of data, the approach in this paper uses reference
receivers, whose GPS coordinates are known and which
possess stable oscillators so that their clock drift is negligible.
Thus, Equation (3) becomes (instead of v we will represent
reference receiver j as Aj):

τ ru,Aj ,pi
=

dru,pi

c
−

drAj ,pi

c
+ θu,Aj

+ δu ·∆tru,0 + εu,Aj
(4)

We can collect all measurements for the target receiver u.
The cost function is formed by the sum of the p-norm of all the
residuals (where p can be any order of the norm, throughout
this text, we will use the 2-norm). We then obtain the values
for S(u, θu, δu) as:

S(u, θu, δu) =
1

2

∑
∀Aj ,pi,r

(τ ru,Aj ,pi
− τ̂ ru,Aj ,pi

)2

=
1

2

∑
∀Aj ,pi,r

η2u,Aj ,pi,r

(5)

Where τ ru,Aj ,pi
is the right hand side of Equation 4. The

objective is to minimize the cost function S. To achieve this
goal, we compute the gradients for each of the terms (3D
coordinates xu,yu,zu, offset θu and drift µu) as:

∂S

∂xu
=

∑
∀Aj ,pi,r

ηu,Aj ,pi,r ·
(xu − xr

pi
)

c · dru,pi

(6)

∂S

∂yu
=

∑
∀Aj ,pi,r

ηu,Aj ,pi,r ·
(yu − yrpi

)

c · dru,pi

(7)

∂S

∂zu
=

∑
∀Aj ,pi,r

ηu,Aj ,pi,r ·
(zu − zrpi

)

c · dru,pi

(8)

∂S

∂θu
=

∑
∀Aj ,pi,r

ηu,Aj ,pi,r (9)

∂S

∂µu
=

∑
∀Aj ,pi,r

ηu,Aj ,pi,r ·∆tru,0 (10)

With these equations, it is possible to obtain the position,
offset, and drift of the target with optimization methods
widely employed in the literature like Levenberg-Marquardt
(LM) [21], BFGS [22], or Gradient-Descent and its vari-
ants [23] among others. In practice, we observe little difference
between these methods for this particular problem.

B. Reference Receiver Offset estimation

One last step to reduce the amount of data needed is to
precompute the reference receiver’s clock offset, leaving only
the parameters belonging to the user as unknowns. To estimate
the offset for the reference receivers, we start from a similar
equation as Equation (4), noting that the drift for both receivers
is negligible, that is, δu ≈ 0; ∀u. We can then transform the
equation into the following:

τ rAj ,Ak,pi
=

drAj ,pi

c
−

drAj ,pi

c
+ (θAi

− θAk
+ εAi,Aj

) (11)

Or in its matrix form:

τ = d+ F · θ + ε (12)

Where τ̂ and d are M × 1 vectors (where M is the
number of aircraft messages) containing the measured and the
geometrical Time Difference of Arrival (TDOA):

τ̂ =
[
· · · τ̂ rAj ,Ak,pi

· · ·
]T ∀i = 1 . . .M (13)

d =
[
· · ·

dr
Aj,pi

c −
dr
Ak,pi

c · · ·
]T

∀i = 1 . . .M (14)

Matrix F is an M × N matrix with N being the number
of sensors with 1 and −1 at the columns of sensors u and v
respectively:

F =


0 · · · 1 · · · −1 · · · 0
0 1 · · · −1 · · · · · · 0
...

...
...

...
...

...
...

0 · · · 1 · · · −1 0

 (15)

Finally, θ and ϵ are vectors of size N × 1 containing the
unknown offsets and noise, respectively.

Generally, this system of equations yields an over-
determined system that can be solved via Least Squares,
returning the offsets for the reference receivers in Equation
(4):

θ̂ = (FTF)−1FT (τ̂ − d) (16)
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Fig. 5: SkyPos proposed architecture overview.

C. Dilution of Precision (DOP)

Dilution of Precision (DOP) has been a popular metric to
evaluate the precision of localization systems for both Time of
Arrival (TOA) [24] and TDOA [25] approaches (which include
GPS systems) for the last decades. In recent years, DOP has
been proposed in several localization systems as a method
to estimate optimal receiver configuration [26]. In essence,
DOP and its variants quantify the expected error amplification
between the estimated and the actual position of the object
that will be localized. To evaluate the DOP for our scenario,
we take Equation 4 and calculate the Jacobian (for the sake
of simplicity, we removed the drift):

∂τ ru,Aj ,pi

∂(u, θu)
=

[
xu − xr

pi

dru,pi

yu − yrpi

dru,pi

zu − zrpi

dru,pi

1

]
(17)

We can construct the matrix H with several aircraft that
contain the Jacobian for all measurements. We notice that this
equation is actually that of the DOP for TOA [24], thus if we
calculate the matrix Q by:

Q = (HTH)−1 (18)

This matrix will contain the DOP values per each of the
directions and offset (this method can be extended to include
drifts):

Q =


σ2
x σxy σxz σxθ

σxy σ2
y σyz σyθ

σxz σyz σ2
z σzθ

σxθ σyθ σzθ σ2
θ

 (19)

With this matrix, we can estimate how precise our position
is based on the selected aircraft per direction in the 3D
space. It is also interesting to note that the receiver’s position
does not depend directly on the chosen anchors, which was
experimentally observed in [1]. However, having more anchors
makes it possible to obtain a more diverse set of aircraft (i.e.,
aircraft surrounding the sensor and not in a specific region),
which can reduce the uncertainty in the position estimation.

V. SKYPOS: SELF-POSITIONING FOR IOT DEVICES

We propose to use the collected aircraft information and
to provide users with an on-demand self-positioning service.
The architecture is illustrated in Figure 5, and it consists
of two main components: the Backend, which collects data
from the anchors and stores their messages, and the User,
which collects its own messages and queries the Backend for
the collected messages and then attempts to perform its self-
positioning.

A. Backend

1) Database: The database contains two indices, from (i)
the sensors and (ii) the aircraft, respectively. Their role is as
follows:

• Within the sensors index, we store information on the
sensor location and serial number.

• In the aircraft index, we find the message hash, the
corresponding aircraft’s ICAO address (a unique identifier
per aircraft), the time it is processed at the server, the
location of the aircraft at the transmit time, the sensors
that receive the message and the local timestamp at which
each sensor processes the message.

This database is continuously updated with OpenSky Net-
work’s data, with older data being regularly erased so that
the storage requirements are reduced. To reduce the query
times, we run in-memory database instances in Redis. The
sensors that are present in the database are not all of the ones
present in the OpenSky Network. As mentioned in Section II,
we select a subset of ”trusted” anchors that also incorporate
GPS Disciplined Oscillator (GSPDO) for higher precision
timestamping. The precision of these devices is 30ns, which
is enough for several localization applications.

2) API: The API gets the user request and processes the
data as described in the remainder of this section.

After unpacking all the messages, it constructs a query for
the aircraft index using the ICAO address. When results arrive,
distinct sensor identifiers are selected, and another query is
made to the sensors index. Once the results of both queries
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Sensor Database

Aircraft Database

TDOA Table

Fig. 6: TDOA table pre-processing from aircraft and sensor
databases.

are gathered, data is prepared in the following manner: A table
is constructed where each row represents the time difference
of arrival measurement between the user and each of the
anchors that have received the message. Each row contains
the aircraft’s ID, the reference receiver’s serial number, and the
measured TDOA in seconds. If a message mi is received by
Nmi

reference sensors, then Nmi
rows are added to the table.

Thus, if the total number of valid messages is M , this table
will have

∑mM

mi=1 Nmi rows (notation as seen in Figure 1).
The main reason for constructing such a table is to reduce the
time in the optimization step since otherwise it would need
to be constructed every iteration of the optimizer, slowing
down the computation considerably. The whole process can
be visualized in Figure 6.

B. User

1) Data collection: The user or receiver is the service’s
client that wants to self-localize. The main requirements for
the user are to possess a suitable receiver tuned at the 1090
MHz band and software able to decode ADS-B messages
and timestamp the gathered messages. This can be easily
achieved today with an inexpensive RTL-SDR receiver, some
open source software like dump1090 [12], and an embedded
machine supporting such hardware and software (most widely
available operating systems fulfill such requirements). The
tool reports data in the format shown in Figure 3 which is
sent together with the timestamp at which it was received by
the sensor. The precision achievable with a common board
like the Raspberry Pi is 1µs, which would be too high
to achieve meaningful accuracy. However, by using higher-
precision anchors, it is possible to overcome this limitation.

Serial Latitute Longitude Altitude Type Verified
Integer Float Float Float String Bool

TABLE I: Sensor dataset structure

(a) Radarcape sensors (b) dump1090 sensors

Fig. 7: Sensor locations across Europe. The circle size and
color represent the number of messages received per sensor.

Fulfilling the aforementioned requirements, the user first
collects and decodes aircraft messages, including the aircraft’s
ICAO address and its latitude, longitude, and altitude (see
Figure 3). After collecting messages for a certain time, the
user serializes and sends the data to the service’s endpoint
through the API.

2) Localization: The user receives the data of the anchors
from the API as a stream of (m1, t

A1
1 ,m1, t

A2
1 , . . .), where

mi is the ith received message and t
Aj

i is the time at with
anchor j received that message (see Figure 5). It then splits
the process into the steps mentioned in Section IV. Data
from anchors are used to estimate their offsets via linear
estimators. In parallel, the user performs an initial estimation
of its clock offset and drift. Depending on the type and quality
of the receiver, measurements might be noisy, so we use the
Iteratively Reweighted Least Squares (IRLS) technique [27]
to obtain better initial estimations. After preprocessing, the
user’s position r is obtained via any of the methods described
in Section IV.

VI. EVALUATION

A. Dataset
The dataset for our evaluation is described in LocaRDS [13],

a dataset from the Opensky Network researchers that provides
information on thousands of real aircraft collected by hundreds
of sensors operated by volunteers across Central Europe.

The data structure for sensor and aircraft databases is shown
in Tables I and II respectively. The Verified field in Table I
refers to whether the sensor position is verified by its operators.
For our evaluation purposes, we will only use as reference
sensors those that have been verified.

B. Evaluation of the dataset
To perform the evaluation, we first split the dataset between

2 types of sensors: Radarcape and dump1090 sensors (their
distribution across Europe is shown in Figure 7). These sensors
have different properties and are thus evaluated separately to
understand the impact of the sensor type better.

Message ID Time at Server Aircraft ID Latitude Longitude Baro. Altitude
Integer Float Integer Float Float Float

Geo. Altitude Num. Measurements Sensors Timestamps RSS
Float Integer Array {Int} Array {Float} Array {Float}

TABLE II: Aircraft dataset structure
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Fig. 8: Reference receivers’ clock offsets over time and
compared to each other. 8a shows the difference in geomet-
ric/measured TDOA for 2 radarcape receivers. 8b shows the
offset over time for 3 sensors running the dump1090 software.

1) Radarcape sensors: The first part of our evaluation is
done with Radarcape sensors [28]. These sensors are specially
designed to receive ADS-B messages. They incorporate GPS
receivers and GSPDO, meaning their clocks remain stable
within tens of nanoseconds. As mentioned earlier, we used
only sensors that had verified positions, so for this set of
experiments, we had 37 sensors shown in Figure 7a. The
density of such sensors is especially high in Switzerland and
Germany, and it is also where these sensors receive more
messages, as can be observed (a larger circle means a larger
number of messages are received).

The fact that these sensors have GSPDO is more notable
when computing the difference between the expected TDOA
between 2 reference sensors and the measured TDOA as it
is shown in Figure 8a, where over the course of one hour,
those differences remain constant except for variations due
to measurement noise. Using Least Squares to compute the
mean offsets (using one of the sensors as the absolute time
reference), we can observe that those offsets remain within
the ±200 ns.

To perform the evaluation, we take one of the Radarcape
sensors and randomize its position. We then compute the
offsets for the remaining sensors used as a reference and select
the 5 sensors with the highest common message count with the
target receiver. The number of anchors can vary depending on
the user’s position with respect to them. In general, and as
mentioned in Section IV, the number of anchors does not
directly affect the performance, and we did not see much
improvement from adding more anchors. This matches the
observations shown in [1]. We then compute the position of
the receiver with that data.

Figure 9 shows how considering offsets in the model already
has a notable effect on the accuracy. For the 2D scenario
(latitude and longitude), the median error when considering the
offset is 21 m, whereas it reaches 24 m when not considered.
Moreover, in the former case, all the sensors are localized
within a 41 m error and a 65 m error in the latter. We select
21 sensors with at least 10 other anchors and vary the number
to observe the effect on accuracy. The results match what
we predict in Section IV: The number of anchors does not

significantly improve accuracy (even with 1 anchor, we can
still maintain a median accuracy of 15 m).

It is also worth commenting that errors for the 3D case
(latitude, longitude, and altitude) are higher because of the
receivers and aircraft geometry. The DOP is much higher in
the vertical axis than in the horizontal axes, and thus errors
propagate faster. This is better visualized in Figure 10. Because
distances on the ground plane are larger than vertical distances
(100 km separating receivers and aircraft maximum altitude
is around 10 km), small variations in the delay estimation
generate larger uncertainties in the vertical axis (∆z) than in
the horizontal axis (∆x). Despite this, the tendency is similar,
and considering offset improves its counterpart notably in this
case.

For our next set of experiments, we look into how the
number of messages impact the location accuracy. In the
experiments shown in Figure 11a, we randomly select a
fraction of the received messages (to simulate lower message
rates). It is noticeable how even using 1% of the number of
messages can lead to a similar accuracy rather than using the
entire message dataset.

We show the 25th and 75th percentiles (black lines) and
median (red dashed line) for the amount of time and localiza-
tion accuracy, respectively, in Figure 12. In these figures, it
can also be seen that 1% of the data is a ’sweet spot’ where
the amount of time taken to process the location cannot be
greatly reduced and where the location accuracy does not get
impacted very much.

In the time between Figure 11a and Figure 11b, we also
modify several optimization parameters, which result in the
median error being reduced to 13 m, and we are also able to
localize 90% of the sensors within 25 m.

In Figure 11b, we perform a similar experiment, but instead
of randomly selecting a fraction of the messages, we select
contiguous messages to observe the effect of short captures on
accuracy. In this case, depending on the number of messages,
we can observe that accuracy varies more noticeably. One of
the reasons why accuracy drops at a larger rate could be that
on shorter, contiguous streams of messages, fewer aircraft are
seen, and the locations received are close to each other, thus
worsening the DOP.

2) dump1090 sensors: When analyzing sensors running the
dump1090 software only, from Figure 8 we can observe that
the offsets and drifts are much higher, in the order of tens of
seconds, and looking at drifts, we can deduce 2 categories:
receivers with drift of less than 2 Parts Per Million (PPM),
which matches the specification for the version 3 of the
popular RTL-SDR dongles [29]; and receivers with drifts in
the order of tens of PPM which are older versions of the same
SDR type.

Figure 13 and Figure 14 show the results when using the
whole dataset. For both the 2D and 3D cases, the positioning
error is significantly higher than when using Radarcape sen-
sors, with median errors of 450 m and 2000 m, respectively.
The fact that offsets and drifts are higher could be one of the
reasons to explain this accuracy decrease, but there are other
factors. These sensors lack GPS, thus relying on the user to
manually input their location, which might be inaccurate for a
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Fig. 9: On top: The accuracy changes when clock offset is considered and when not. Below: How error is distributed when
varying the number of anchors used for self-localization (for the 21 sensor subset).
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Fig. 11: Error varying message rate and time windows.
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Fig. 16: ECDF of the error using normal vs robust initialization

number of reasons. The ground truth could therefore be biased.
Also, many of these receivers are located in interior spaces,
which may also add errors due to sensors not seeing as many
aircraft or due to multipath effects.

We asked 8 users to verify their positions and their Radio
Frequency (RF) frontend. The returned predictions are shown
in Table III. One important aspect is that the offset and drift
are orders of magnitude bigger than the position parameters.
Thus, choosing a good starting point is key to obtain an
accurate position of the sensor. The naive approach, looking
at Figure 8b, would be to perform a linear regression and use
the intercepts as the starting points for the algorithm.

However, methods based on naive linear regression can
decrease the performance in the presence of outliers. To avoid
this issue, we decide to use IRLS [27], which consists in
adding weights to all measurements and iteratively updating
the weights and intercept until the change is less than a
specified tolerance. The difference between both approaches
can be seen in Figure 15, where for that particular sensor
of the dataset, the presence of an outlier tilts the intercept
estimation, whereas, for the robust case, it can discard it from
the offset/drift estimation.

Both in Table III and Figure 16, we can see the difference
in results between using normal and robust initialization tech-

Type Location Enor (m) Erob (m) Drift (PPM)
RTL-SDR Indoor 339.60 18.07 1.9985
RTL-SDR Indoor 133.08 121.10 38.7784

FlightAware Outdoor 71.65 25.59 0.5646
RTL-SDR Outdoor 241.42 97.49 63.1380
RTL-SDR Indoor 73.72 196.81 42.9413
RTL-SDR Outdoor 44.48 25.63 1.3269
RTL-SDR Indoor 37.83 26.58 51.9510
RTL-SDR Indoor 1140.12 35.64 63.1393

TABLE III: Predicted positions for verified sensors. Enor refers
to positions obtained using regular least squares to predict the
offset, whereas Erob refers to the robust initialization method
via IRLS
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Fig. 17: Capture of a sensor and the measured aircraft during
an hour. Upper right corresponds to selecting aircraft close to
the sensor, lower-left to aircraft far from it, and lower right
to a bad selection, where all aircraft are clustered in a narrow
space.

niques. For the former case, the median error is around 100
m, with a few sensors above that value. In the case of robust
initialization, 5 out of 8 sensors can be accurately localized
within 30 m.

Another interesting fact is that it is possible to capture the
device type with the drift parameter. For example, 3rd user’s
receiver, as per the documentation [29], has an oscillator offset
of 0.5 PPM, which is indeed what we can measure with our
approach. The same case happens for the RTL-SDR receivers.

As for the offset, we have not explored the synchronization
possibilities since our dataset contains no ground truth for the
actual time. However, it is readily implemented as well. There-
fore, simultaneous localization and synchronization could be
a future line of research.

C. Intuition on Aircraft Selection

One important factor in assessing the quality of a local-
ization system is to estimate how uncertain the position is.
That uncertainty is primarily driven by which and how many
aircraft are chosen to perform the localization, analogous to
GPS satellites. In Figure 17, we show the captured aircraft by
a sensor in an hour window and 3 different scenarios: aircraft
messages captured within 10-20 km, within 30-40 km, and
clustered around a small region 40 km away from the sensor.
The results vary notably in each scenario.

In the former, the vertical DOP is the lowest, but the uncer-
tainty in the planar directions increases. On the other hand, for
aircraft within 30-40 km, we observe a reduction in the planar
DOP and an increase in the vertical. The positioning errors
reflect the expected uncertainties in each of the directions.
In the last case, where messages are clustered in a small
region, we measure DOP values > 100 in all directions, and
the optimizers fail to find an acceptable solution. This also is
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expected since close aircraft produce ill-conditioned problems
for the optimizer.

The problem of selecting the best aircraft that minimize
the DOP is non-trivial, especially with large amounts of
data where combinations grow exponentially. It is out of the
scope of this paper, but it would be an interesting future
line of research. Besides, geometric DOP minimization does
not always work best; other approaches might yield better
localization results, as shown in [26].

Even without an algorithm that yields the absolute minimum
DOP, it is possible to establish heuristics to have a good
enough set of aircraft to perform the localization task. The
best DOP values are obtained when aircraft are separated
apart, which can be guaranteed by trying to select messages
surrounding the sensor. It might appear as a ’chicken-and-egg’
problem because to select aircraft that surround the sensor,
its position should be known. A straightforward solution is
to take the average position of the observed aircraft within a
time window and use it as the starting point. We observed that
this approach yields errors in the lower 10s of km, which is
a good starting point. It could be possible to iteratively re-
select sensors and perform the localization again should more
accurately be needed.

These heuristics also reduce the messages needed for local-
ization without significantly losing accuracy. For example, we
can draw a circle around the sensor, divide it into equal sectors
and select a few aircraft belonging to each sector. This way,
the spatial diversity is preserved, but the message amount is
reduced, reducing the time to compute a correct position.

For example, in Figure 18, we show the results of applying
sectorization (16 and 32 divisions) and their effect on the
overall accuracy. We can observe a notable improvement not
only in the number of messages but also in the accuracy.
However, improving geometrical distribution provides better
results for devices with lower PPM values. For older versions
of the RTL-SDR, the improvement is not as significant, thus
indicating that localization performance is also affected by the
radio frontend quality.
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Fig. 18: Results when sectorizing and picking aircraft per sec-
tor. For both Robust (left) and Non-robust (right) initialization.

D. Architecture performance

We set up a server and a Raspberry Pi 4 as a User to develop
and test the architecture. The server has 16 GB of memory,
an 8-core 2.2 GHz Intel Xeon CPU, and 100 GB of disk
space. The API and the Localization Engine are implemented
in Python. To develop the API, we use Flask-Restful [30], and
the localization module for the Raspberry Pi relies on SciPy’s
optimization modules [31]. For the database, we choose Re-
dis [32], a popular in-memory database in combination with
Redisearch [33] that allows creating indices and querying data
with more complex search parameters. Data for sensors and
aircraft is introduced in the database, occupying 5.71 GB of
memory.

To evaluate the performance of the different stages, we
collect the messages from each sensor into a JSON object and
send them through the API. Each aircraft message is encoded
in around 62 bytes. Thus, 1000 messages can be encoded in
about 60 kB, which is relatively small by today’s commercial
internet providers. We evaluate the time per stage with the
number of messages ranging from 10 to 10,000, and the main
results are summarized in Table IV.

The time taken to query the database and obtain the match-
ing messages is relatively small, and even for high amounts of
messages, it only takes around 1 second. On the other hand,
when computing the TDOA pairs for the user with reference
sensors, the time increases notably, taking up to 30 seconds
to process 10,000 messages.

Joining these results with the ones shown in Figure 12, for
1000 messages which are around 40 seconds of data collection,

Time to query Database (in seconds)
Amount of Messages µ σ 1% 25% 50% 75% 99%

10 0.00658 0.00045 0.00531 0.00652 0.00659 0.00666 0.00808
50 0.01072 0.00115 0.0058 0.01082 0.01092 0.01103 0.01328

100 0.0153 0.00087 0.01031 0.0152 0.01529 0.01547 0.01774
500 0.05451 0.00338 0.04364 0.05379 0.05413 0.05483 0.06959

1,000 0.10819 0.00858 0.06626 0.10741 0.10835 0.11008 0.15233
5,000 0.54248 0.02363 0.48013 0.53748 0.54053 0.54483 0.61043
10,000 1.12815 0.04312 0.982 1.12037 1.12617 1.14578 1.20786

Time to compute TDOA values (in seconds)
Amount of Messages µ σ 1% 25% 50% 75% 99%

10 0.03044 0.00492 0.02879 0.02904 0.02926 0.02954 0.05453
50 0.12524 0.00198 0.12383 0.12429 0.1245 0.1251 0.13488

100 0.24099 0.00193 0.23761 0.24031 0.24067 0.24116 0.25089
500 1.2122 0.02664 1.1984 1.2033 1.2062 1.2079 1.3417

1,000 2.5457 0.04442 2.5093 2.5169 2.5245 2.552 2.7252
5,000 13.9 0.12358 13.712 13.801 13.9 13.986 14.261
10,000 31.121 0.33737 30.669 30.941 31.063 31.195 32.603

TABLE IV: Time to execute different components of the proposed system.
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it would take on average less than 4 seconds to compute the
position of the user (not counting network latency) which is an
acceptable delay for static or slowly-moving devices. After an
initial estimation, with fewer messages, it would be possible
to recompute the position, leading to lower estimation times.

VII. RELATED WORK & DISCUSSION

The literature regarding outdoor and indoor localization is
vast. While indoor localization research uses different signals
in the radio frequency spectrum, outdoor localization is widely
dominated by GPS and the like. With techniques like Pre-
cise Point Positioning, it has been possible to achieve sub-
decimeter level accuracies over the last 20 years [34].

However, since the position is computed at the receiver,
GPS based systems are vulnerable to spoofing or jamming
attacks [3], [4]. This area of research is currently very active,
and even though there are some commercial solutions to avoid
these issues, it remains an open challenge. Works to enable
localization in GPS-constrained areas have been proposed in
recent years via UAV swarms [35], [36], or integrating mul-
tiple information sources [37] for dense vehicular networks.
However, the former requires specific and coordinated ad-hoc
deployments or more complex changes in both infrastructure
and users, as in the latter. This work explores leveraging
existing signals and sensor networks and providing a location
solution with little overhead for resource-contrained devices
like a Raspberry Pi.

In recent years, the use of aircraft signals has drawn a great
deal of attention to solve a variety of problems not only related
to aircraft positioning. In [1], they looked into opportunis-
tically using aircraft signals to perform indoor localization.
However, their analysis only extended to a few sensors and did
not consider scalability or further development of the proposed
platform. In our research, we extend this analysis to hundreds
of sensors and different topologies and provide results on the
overall performance of the proposed architecture.

In [16], aircraft signals and their waveforms were exploited
to obtain time of arrival measurements with less than a
nanosecond time precisions. ADS-B signals have also been
used to achieve sensor network synchronization with accu-
racies similar to the NTP, as it is stated in [10]. Recently,
the research from [11] has looked into the privacy of sensor
networks for avionics. In this last piece of research, the
methodology used is similar to what is proposed, but most
analysis is done in the simulation domain, and only one case
with real sensors is presented.

Apart from user positioning, SkyPos can also be used in
location verification for sensor networks. ADS-B signals are
sent in ’clear text,’ some papers have attempted to fabricate
fake signals to confuse surveillance systems [5], [38]. Nev-
ertheless, these attacks generally require multiple transmit-
ters, with accurate synchronization and calculated delays in
the transmission times to be effective. From the scope of
this paper, such an attack would have little impact on the
localization performance. If an attacker tried to inject fake
ADS-B messages to the user, those would get discarded in the
backend, so to make it feasible, it would need to target multiple

reference receivers. This would become infeasible with more
aircraft messages collected and reference sensors used.

The proposed solution in this paper has several advantages,
including notable accuracy in outdoor or high synchronization
scenarios, requires little data to obtain an initial position,
and can be implemented in low-cost sensor networks with a
cheap SDR receiver like the RTL-SDR and readily available
open source software. Work in [1], [2] has attempted indoor
localization similarly using aircraft signals to this work. The
former relies on sending fully decoded messages to a central
backend and performs aircraft tracking simultaneously. In
our work, we show that it is feasible to send less data and
it is possible to achieve slightly better accuracies even for
sensors with very high offsets and drifts. The latter relies on
operating on the raw message, notably improving accuracy
but increasing computation and storage requirements. Hence,
running on low resource Internet-of-Things (IoT) devices is
not feasible.

Our work aims to minimize the data exchange between
centralized entities and allows the user to compute its position
instead of offloading it to a single backend.

However, SkyPos is not free of limitations. In the following
lines, we mention the following most important ones:

• Low altitude accuracy. As mentioned in previous sections,
because of the geometry of the underlying positioning
problem, optimization algorithms tend to lose numerical
precision on the vertical coordinates. Other sources of
altitude might be necessary to achieve higher altitude
precision.

• Not suitable for fast-moving users. Due to the necessity
of accumulating data, sending it to the backend, and later
processing it, it cannot support highly dynamic users,
such as drones. However, for slow-moving scenarios, it
can be an additional source of position verification instead
of relying on users’ input.

• Variability due to time of day. Usually, we observed fewer
aircraft at night so that it could affect the system’s overall
accuracy at night time.

Despite these limitations, we have shown that it is possible
to build a localization infrastructure with aircraft signals and
obtain notable results. Future works will look into better
aircraft selection methodologies that reduce the data needed
and, thus, the time to compute the user’s position.

VIII. CONCLUSION

In this paper, we have addressed the problem of localizing
sensors using aircraft signals instead of the widely employed
GPS. We build on previous research, develop a prototype ar-
chitecture that can be embedded in existing aircraft monitoring
solutions, and test it against hundreds of thousands of data
points. The results obtained comparing GPS based with our
proposed solution showed that we can get reasonable position-
ing accuracy in almost real-time using lower-cost hardware.
Although it is not a complete substitute for all GNSS based
positioning services, we demonstrated that it could be used as
a positioning method for embedded sensors in IoT networks
in GPS-denied areas for example, or as position verification
mechanism for GPS based receivers.
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