
1

Offloading Algorithms for Maximizing Inference
Accuracy on Edge Device in an Edge Intelligence

System
Andrea Fresa and Jaya Prakash Champati

Edge Networks Group, IMDEA Networks Institute, Madrid, Spain
E-mail:{andrea.fresa, jaya.champati}@imdea.org

Abstract—With the emergence of edge computing, the problem
of offloading jobs between an Edge Device (ED) and an Edge
Server (ES) received significant attention in the past. Motivated
by the fact that an increasing number of applications are
using Machine Learning (ML) inference from the data samples
collected at the EDs, we study the problem of offloading inference
jobs by considering the following novel aspects: 1) in contrast to a
typical computational job, the processing time of an inference job
depends on the size of the ML model, and 2) recently proposed
Deep Neural Networks (DNNs) for resource-constrained devices
provide the choice of scaling down the model size by trading off
the inference accuracy. Considering that multiple ML models are
available at the ED, and a powerful ML model is available at the
ES, we formulate an Integer Linear Programming (ILP) problem
with the objective of maximizing the total inference accuracy of
n data samples at the ED subject to a time constraint T on
the makespan. Noting that the problem is NP-hard, we propose
an approximation algorithm Accuracy Maximization using LP-
Relaxation and Rounding (AMR2) and prove that it results in a
makespan at most 2T and achieves a total accuracy that is lower
by a small constant from the optimal total accuracy implying
that AMR2 is asymptotically optimal. Further, if the data
samples are identical we propose Accuracy Maximization using
Dynamic Programming (AMDP), an optimal pseudo-polynomial
time algorithm. Furthermore, we extend AMR2 for the case
of multiple ESs, where each ES is equipped with a powerful
ML model. As proof of concept, we implemented AMR2 on a
Raspberry Pi, equipped with MobileNets, that is connected to a
server equipped with ResNet, and studied the total accuracy and
makespan performance of AMR2 for image classification.

I. INTRODUCTION

Edge computing is seen as a key component of future
networks that augments the computation, memory, and battery
limitations of Edge Devices (EDs) (e.g., IoT devices, mobile
phones, etc.), by allowing the devices to offload computational
jobs to nearby Edge Servers (ESs) [1]. Since the offloading
decision, i.e., which jobs to offload, is the key to minimizing
the execution delay of the jobs and/or the energy consumption
at the ED, it received significant attention in the past [2].
Recently, an increasing number of applications are using
Machine Learning (ML) inference from the data samples
collected at the EDs, and there is a major thrust for deploying
pre-trained Deep Neural Networks (DNNs) on the EDs as
this has, among other advantages, reduced latency. Thanks to
the development of DNN models with reduced computation
and storage requirements, at the cost of reduced inference
accuracy, and the advancements in the hardware of EDs [3],

Edge Device (ED)

.

.

.Scheduler

Edge Server (ES) 1

2

m

n jobs, T m+1
Communication

Fig. 1: Scheduling inference jobs between an ED and an ES.

ML frameworks such as Tensorflow Lite [4] and PyTorch
Mobile [5] are now able to support the deployment of DNNs
on EDs. In this context, we study the offloading decision
between an ED and an ES for inference jobs, where an
inference job refers to the execution of a pre-trained ML model
on a data sample.

In comparison to the fixed processing time requirement of a
generic computational job (typically represented by a directed
acyclic task graph), the processing time requirement of an
inference job depends on the ML model size: a larger model
size results in a longer processing time and may provide higher
inference accuracy. For example, on Pixel 3 smartphone,
ResNet [6] has size 178 MB, requires 526 ms, and provides
76.8% accuracy (Top-1 accuracy) for the ImageNet dataset [7],
while the smallest DNN model of MobileNet [8] has size 1.9
MB, requires 1.2 ms, but provides 41.4% accuracy [4]. Fur-
thermore, recently developed DNNs for EDs allow for scaling
the model size by simply setting a few hypeparameters (cf.
[8]–[10]), enabling the EDs to choose between multiple model
sizes. However, as we explain in Section II, the offloading
decision for inference jobs considering the above novel aspects
has received little attention in the literature.

Taking into account the novel aspects for inference jobs, or
simply jobs in the sequel, we consider the system in Figure 1,
where the ED has m ML models to choose from, and the
ES is equipped with a state-of-the-art ML model for a given
application. Consider that n jobs (corresponding to n data
samples) are available at the ED. It may offload them all to the
ES to maximize the inference accuracy. However, offloading
each job incurs a communication time to upload the data
sample in addition to the processing time at the ES. This may
result in a large makespan, i.e., the total time to finish all
the jobs. On the other hand, executing all the jobs on the

2

smallest ML model at the ED may result not only in a smaller
makespan, but also the lowest inference accuracy. Thus, a
scheduler at the ED needs to strike a trade-off between the
accuracy and the makespan. Toward this end, we formulate
the following problem: given n data samples at time zero, find
a schedule that offloads a partition of the jobs to the ES and
assigns the remaining jobs to m models on the ED, such that
the total accuracy is maximized and the makespan is within a
time constraint T . Solution to this problem will be beneficial
to applications such as Google Photos where a set of photos
selected by a user need to be classified into multiple categories
in real time. Also, the problem has relevance to applications
which do periodic scheduling, i.e., the ED periodically collects
all the data samples that arrived in a time period T and aims
to finish their processing within the next time period T .

Since the true accuracy (top-1 accuracy) provided by a
model for a given data sample can only be inferred after the
job is executed, for analytical tractability, we consider the
average test accuracy of the model is its accuracy for any
data sample. Given the processing and communication times
of the jobs, we formulate the problem as an Integer Linear
Program (ILP). We note that the ILP is agnostic to the actual
ML models used on the ED and the ES. Different ML models
on the ED may correspond to different instantiations of the
same DNN with different hyperparameter values (cf. [8]), or
they may correspond to different ML algorithms such as linear
regression, SVMs, DNNs, etc., although in this work we focus
on the former setting.

Solving the formulated ILP is challenging due to the follow-
ing reasons. Partitioning the set of jobs between the ED and
the ES is related to scheduling jobs on parallel machines [11],
and assigning the jobs to the models on the ED is related to
the knapsack problem [12], both are known to be NP-hard. A
special case of our problem, where the ED has a single model
(m = 1), is the Generalized Assignment Problem (GAP) with
two machines [13]. GAP is known to be APX-hard1, and
the best-known approximation algorithm provides a solution
that has maskespan at most 2T [14]. However, the algorithms
for GAP and their performance guarantees are not directly
applicable to our problem due to the additional aspect that, on
the ED there are multiple models to choose from. We propose
a novel algorithm that solves a Linear Programming relaxation
(LP-relaxation) of the ILP, uses a counting argument to bound
the number of fractional solutions, and used a simple rule to
round the fractional solution.

Our main contributions are summarized below2:
• We formulate the total accuracy maximization problem

subject to a constraint T on the makespan as an ILP. Not-
ing that the ILP is NP-hard, we propose an approximation
algorithm Accuracy Maximization using LP-Relaxation
and Rounding (AMR2) to solve it. The runtime of AMR2

is O(n3(m+ 1)3).
• We prove that the total accuracy achieved by AMR2 is

at most a small constant (less than 1), lower than the

1An APx-hard problem has no polynomial-time approximation scheme
unless P = NP.

2A part of this work was accepted to be published in ACM MSWIM,
2022 [15].

optimum total accuracy, and its makespan is at most 2T .
We also extend AMR2 for the case of K ESs and prove
performance bounds. A salient feature of AMR2 is that
it is asymptotically optimal.

• For the case of identical jobs, i.e., the data samples
are identical, we propose an optimal algorithm Accuracy
Maximization using Dynamic Programming (AMDP),
which does a greedy packing for the ES and solves a
Cardinality Constrained Knapsack Problem (CCKP) for
job assignments on the ED. We implement AMDP and
demonstrate that its runtime is much lower compared to
AMR2.

• As proof of concept, we perform experiments using a
Raspberry Pi, equipped with MobileNets, and a server,
equipped with ResNet50, that are connected over a Local
Area Network (LAN). The MobileNets and ResNet50 are
trained for classifying images from the ImageNet dataset.
We estimate processing and communication times for
different sizes of images and implemented AMR2 and
a greedy algorithm, Greedy-RRA, on Raspberry Pi. Our
results indicate that the total test accuracy achieved by
AMR2 is close to that of the LP-relaxed solution, and its
total true accuracy is, on average, 40% higher than that of
the greedy algorithm. We also implemented AMR2 and
Greedy-RRA for the case of K ESs. We find that as the
number of ESs increases the total accuracy increases but
the total accuracy gain provided by AMR2 over Greedy-
RRA decreases.

The rest of the paper is organized as follows. In Section II,
we present the related work. The system model is presented in
Section III. In Sections IV and V, we present AMR2 and its
performance bounds, respectively. In section VI we present
a Dynamic Programming algorithm for a particular instance
of our problem: when all jobs have identical processing time
when inferred on an ML model. In section VII we present the
extension of AMR2 for the case of K ESs. In Section VIII,
we present the experimental results and finally conclude in
Section IX.

II. RELATED WORKS

In this section, we first present the related works for com-
putation offloading problem and then discuss closely related
classical job scheduling problems.

A. Offloading and ML Inference Jobs

Since the initial proposal of edge computing in [16], sig-
nificant attention was given to the computational offloading
problem, wherein the ED needs to decide which jobs to
offload, and how to offload them to an ES [2]. The objectives
that were considered for optimizing the offloading decision
are, 1) minimize job execution times, see for example [17]–
[20], 2) minimize the energy of the ED spent in computing
and/or transmitting the jobs, subject to a constraint on the
execution delay, see for example [21]–[23] and [24], and 3)
decide scheduling strategy to guarantee statistical QoS for jobs
where unreliable communication channels between EDs and
ESs are considered, see for example [25]. However, the above

3

works consider generic computation jobs, and the aspect of
accuracy, which is relevant for the case of inference jobs, has
not been considered.

Recently, a few works considered the problem of maximiz-
ing accuracy for inference jobs on the ED [26] , [27], [28].
In [26], the authors studied the problem of maximizing the
accuracy within a deadline for each frame of a video analytics
application. They do not consider offloading to the edge and
their solution is tailored to the DNNs that use early exits [9]. A
similar problem was studied in [27], where offloading between
a mobile device and a cloud is considered. The authors account
for the time-varying communication times by using model
selection at the cloud and by allowing the duplication of
processing the job a the mobile device. A heuristic solu-
tion was proposed in [28] for offloading inference jobs for
maximizing inference accuracy subject to a maximum energy
constraint. In contrast to the above works, we consider multiple
models on the ED and provide performance guarantees for
AMR2. The authors in [29] studied the minimization of the
energy consumption on the EDs by offloading inference jobs
to Cloudlets. In [30], the authors proposed a novel approach
for reducing communication costs while offloading images.
This work proposes the computation of a discrimination matrix
P , which is computed on the Cloud, that is then used by
the ESs. When an ED offloads an image X to an ES, the
ES computes the product PTX that determines the features
that are relevant to be offloaded to the cloud. This approach
reduces the communication cost to offload the image to the
cloud and also increases the accuracy of the inference result.
In [31], the authors studied the properties of DNN networks in
order to increase the parallelism in computation. Specifically,
considering the independence of some operations in the same
DNN layer, they proposed a novel technique which transforms
the DNN into a Direct Acyclic Graph (DAG) DNN. With this
technique, multiple operations can be executed in parallel,
thus increasing the throughput of serving inference jobs on
the DNN. In contrast to the above works, we study inference
accuracy maximization on an ED by scheduling inference jobs
between the ED and ESs with a constraint on the makespan.

B. Job Scheduling
As noted in Section I, our problem is related to the knapsack

problem [12]. To see this, note that if it is not feasible to
schedule on the ES and all jobs have to be assigned to
the ED, then maximizing the total accuracy is equivalent to
maximizing profit, and the constraint T is equivalent to the
capacity of knapsack. In this case, our problem turns out to
be a generalization of the CCKP [32]. Another special case
of our problem, where the ED has only a single model, can
be formulated as a GAP [13], [33], with two machines. In
GAP, n jobs (or items) have to be assigned to r machines
(or knapsacks). Each job-machine pair is characterized by
two parameters: processing time and cost. The objective is
to minimize the total cost subject to a time constraint T on
the makespan. It is known that GAP is APX-hard [34].

In their seminal work [14], the authors proposed an algo-
rithm for GAP that achieves minimum total cost and has make-
span at most 2T . Their method involves solving a sequence

of LP feasibility problems, in order to tackle the processing
times that are greater than T , and compute the minimum
total cost using bisection search. Their algorithm can also
be used for solving a related extension of GAP, where the
cost of scheduling a job on a machine increases linearly with
decrease in the processing time of the job. In comparison to
this setting, the accuracies (equivalent to negative costs) are
not linearly related to the processing times of the jobs and thus
the proposed method in [14] is not directly applicable to the
problem at hand. Our proposed algorithm AMR2 is different
from their method in that it does not require to solve LP
feasibility problems and the use of bisection search. Further,
we prove the performance bounds using a different analysis
technique which is based on a counting argument for the LP-
relaxation and solving a sub-problem of the ILP.

III. SYSTEM MODEL

Consider an ED and an ES connected over a network and the
ED enlists the help of the ES for computation offloading. At
time zero, n inference jobs, each representing the processing
requirement of a data sample on a pre-trained ML model, are
available to a scheduler at the ED. Let j denote the job index
and J = {1, 2, . . . , n} denote the set of job indices.

A. ML Models and Accuracy

The ED is equipped with m pre-trained ML models, or
simply models. Note that these may correspond to m instanti-
ations of the same DNN with different hyperparameter values
resulting in different model sizes; see for example [8], [9], or
the models may correspond to different ML algorithms such as
logistic regression, support vector machines, DNN, etc. Since
the ES is a computationally powerful machine, we consider
that it is equipped with a state-of-the-art model. We note that
our problem formulation and the solution are applicable to any
family of ML models deployed on the ED and the ES. Also,
later in Section VII, we study the multiple ESs scenario.

Let ai ∈ [0, 1] denote the top-1 accuracy of model i.
Since we do not know if a job is classified correctly by a
model without first processing it on that model, for analytical
tractability, we consider that the accuracy of a model i for any
job is ai. Note that assigning a job to a model with higher top-
1 accuracy increases its probability of correct classification.
WLOG, we assume that a1 ≤ a2 ≤ . . . ≤ am, and also assume
that the model m+1 is a state-of-the-art model with a higher
top-1 accuracy than the models on the ED, i.e., am ≤ am+1.
In the sequel, the term ‘accuracy’ refers to the top-1 accuracy,
unless otherwise specified.

B. Processing and Communication Times

The processing time of job j on model i ∈ M\{m + 1}
is denoted by pij , and on model m + 1 it is denoted by
p′(m+1)j . In several applications, the data samples may need
pre-processing before they are input to the ML model. For ex-
ample, in computer vision tasks, images require pre-processing
and the time required for pre-processing varies with the size
of the image [35]. In our experiments with the images from

4

the ImageNet dataset, the pre-processing stage only involves
reshaping the images to input to the DNN models. Let τij
denote the pre-processing time of job j on model i. We
consider the pre-processing times are part of the processing
times defined above.

Let cj denote the communication time for offloading job j.
It is determined by the data size of the job, i.e., the size of the
data sample in bits, and the data rate of the connection between
the ED and the ES. Given p′(m+1)j and cj , the total time to
process job j on the ES, denoted by p(m+1)j , is given by
p(m+1)j = cj + p′(m+1)j . We deliberately use similar notation
for the processing times pij on the ED and the total times
p(m+1)j on the ES because it simplifies the expressions in
the sequel. We consider that the communication times cj are
fixed and are known apriori. This is possible in the scenarios
where the ED and the ES are connected in a LAN or in a
private network with fixed bandwidth. In our experiments,
the ED and the ES are connected via our institute’s LAN,
and the communication times have negligible variance. We
also consider that the processing times of the jobs are known
apriori and that they can be estimated from the historical job
executions.

C. Optimization Problem

Given the set of jobs J at time zero, the makespan is
defined as the time when the processing of the last job in
J is complete. The objective of the scheduler at the ED is to
assign the set of jobs J to the set of models M such that the
total accuracy, denote by A, is maximized and the makespan
is within the time constraint T . Note that a schedule involves
the partitioning of the set J between the ED and the ES, and
the constraint on the makespan implies that the completion
time of all the jobs should be within T on both ED and ES.
The above objective is relevant in applications where the ED
periodically collects the data samples in a period T and aims
to finish their processing within the next period. By choosing
a small period T , a real-time application can aim for fast ML
inference at reduced total accuracy.

Let xij denote a binary variable such that xij = 1, if the
scheduler assigns job j to model i, and xij = 0, otherwise.
Note that, if x(m+1)j = 1, then job j is offloaded to the ES.
Therefore, a schedule is determined by the matrix x = [xij].
We impose the following constraints on x:

m∑
i=1

n∑
j=1

pijxij ≤ T (1)

n∑
j=1

p(m+1)jx(m+1)j ≤ T (2)

m+1∑
i=1

xij = 1, ∀j ∈ J (3)

xi,j ∈ {0, 1}, ∀i ∈ M, ∀j ∈ J, (4)

where constraints (1) and (2) ensure that the total processing
times on the ED and the ES, respectively, are within T , and
thus the makespan is within T . Constraints in (3) imply that
each job is assigned to only one model and no job should

be left unassigned, and (4) are integer constraints. We are
interested in the following accuracy maximization problem P:

maximize
x

A =

m+1∑
i=1

n∑
j=1

aixij

subject to (1), (2), (3), and (4).

Note that P is an ILP. We will show later that a special case of
P reduces to CCKP, which is NP-hard, and thus P is NP-hard.
Let A∗ denote the optimal total accuracy for P .

IV. ACCURACY MAXIMIZATION USING LP-RELAXATION
AND ROUNDING (AMR2)

In this section, we first present the LP-relaxation of P and
a result that guides the design of AMR2.

A. LP-Relaxation

Given P , we proceed with solving the LP-relaxation of P ,
where the integer constraints in (4) are replaced using the
following non-negative constraints:

xij ≥ 0,∀i ∈ M and ∀j ∈ J. (5)

Note that, the constraints xij ≤ 1 are not required as this is
ensured by the constraints in (3). Let the matrix x̄ = [x̄ij] and
A∗

LP denote the schedule and the total accuracy, respectively,
output by the LP-relaxation. The LP-relaxed solution provides
an upper bound on the total accuracy achieved by an optimal
schedule, and thus we have A∗

LP ≥ A∗.
Note that the solution to the LP-relaxation may contain xij

values that are fractional, and the rounding procedure is critical
to proving the performance bounds. To design a rounding
procedure, we first refer to a key result in [36], where the
author studied the problem of assigning N jobs to K parallel
machines with the objective of minimizing the makespan. For
the LP-relaxation of this problem, the author presented the
following counting argument: there exists an optimal basic
solution in which there can be at most K − 1 fractional jobs,
i.e., the jobs that are divided between machines, and all the
other jobs are fully assigned. Further, the simplex algorithm
outputs such a basic optimal solution. In our problem, there
are two parallel machines, the ED and the ES, but in contrast
to [36], the ED has multiple models and the jobs assigned to
the ED are processed in sequence. Taking this new aspect into
account, we extend the counting argument for the problem at
hand and show that solving the LP-relaxation of P results in
at most two fractional jobs. This structural result is stated in
the following lemma.

Lemma 1. For the LP-relaxation of P , there exists an optimal
basic solution with at most two fractional jobs.

Proof. Since LP-relaxation of P has n + 2 constraints, apart
from the non-negative constraints in (5), one can show using
LP theory that there exists an optimal basic solution with n+2
basic variables that may take positive values and all the non-
basic variables take value zero. Under such an optimal basic
solution, for the n constraints in (3) to be satisfied, at least
one positive basic variable should belong to each of those n

5

constraints. The remaining 2 basic variables may belong to at
most two equations. This implies that at least n− 2 equations
should have exactly one positive basic variable whose value
should be 1 in order to satisfy the constraint. Therefore, there
can be at most two equations with multiple basic variables
whose values are in (0, 1), and the two jobs that correspond
to these equations are the fractional jobs.

Given the basic optimal solution to the LP-relaxation, the
result in Lemma 1 reduces the rounding procedure to assigning
at most two fractional jobs. WLOG, we re-index the jobs and
refer to the fractional jobs by job 1 and job 2. We define the
set I = J\{1, 2} and refer to the assignment of I under x̄ as
the integer solution of the LP-relaxation. We define:

P1 =

m∑
i=1

∑
j∈I

pi,j x̄i,j , (6)

P2 =
∑
j∈I

pm+1,j x̄m+1,j . (7)

With a slight abuse in notation, we use ij and kj to denote the
indices of the machines on which the fractional job j ∈ {1, 2}
is scheduled. We have

x̄i1 + x̄k1
= 1, (8)

x̄i2 + x̄k2
= 1. (9)

B. AMR2 Description

The main steps of AMR2 are summarized in Algorithm 1.
In the first step, AMR2 solves the LP-relaxation. In the second
step, if there is one fractional job, it is assigned to model with
largest accuracy such that the makespan does not exceed 2T .
If there are two fractional jobs, we use the simple rounding
rule and assign the job to the model on which it has a higher
fraction. Though the algorithm is not sophisticated, we will
later see that proving the performance bounds is involved. We
use x† and A† to denote the schedule and the total accuracy,
respectively, output by AMR2.

Computational complexity: The computational complexity
of solving an LP with l variables is O(l3) (cf. [37]). In the
LP-relaxation, the number of variables are n(m + 1) and
thus its runtime is O(n3(m + 1)3). The rounding technique
has negligible complexity when compared to the complexity
of solving the LP-relaxation. In conclusion, the runtime is
O(n3(m+ 1)3).

V. ANALYSIS OF AMR2

In this section, we analyse AMR2 and present a 2T bound
for its makespan and show that its total accuracy is at most
am+1 − a1 lower than the optimal accuracy.

Theorem 1. If P is feasible, then the makespan of the system
under AMR2 is at most 2T.

Proof. For the case of one fractional job, the result follows
by the construct of AMR2. For the case of two fractional
jobs, based on the fractional job assignment output by the
LP-relaxation solution we consider three cases and for each
case, we consider sub-cases based on the schedule of AMR2.

Algorithm 1: AMR2

1: Input: pij , for all i ∈ M and j ∈ J .
2: Solve the LP-relaxation of P .
3: if One fractional job then
4: if P2 + pm+1,1 ≤ 2T then
5: Assign job 1 to model m+ 1
6: else
7: Assign job 1 to model

argmaxi∈M\{m+1}{ai : pi1 + P1 ≤ 2T}.
8: end if
9: end if

10: if Two fractional jobs then
11: for all j ∈ {1, 2} do
12: if x̄ij > x̄kj

then
13: x†

ij
= 1

14: else
15: x†

kj
= 1

16: end if
17: end for
18: end if
19: Output: Assignment matrix x† and total accuracy A†

For the proof, we assume (10) and (11) are true. The proof
steps are similar for other cases.

x̄k1
< x̄i1 , (10)

x̄i2 < x̄k2
. (11)

Case 1: Both jobs are assigned as fractional on the ED,
i.e., i1 and k2 are in {1, 2, . . . ,m}. Clearly, in this case the
makespan on the ES is at most T , same as that given in the LP-
relaxed solution. Suppose that after rounding, the completion
time on the ED under AMR2 violates 2T , i.e.,

P1 + pi1 + pk2
> 2T. (12)

From the LP-relaxed solution, we obtain

T − P1 = pi1 x̄i1 + pk1
x̄k1

+ pi2 x̄i2 + pk2
x̄k2

. (13)

Substituting (13) in (12), we obtain

pi1 + pk2
> T + pi1 x̄i1 + pk1

x̄k1
+ pi2 x̄i2 + pk2

x̄k2
. (14)

Using (8) and (9) in (14), we obtain

pi1 x̄k1 + pk2 x̄i2 − pk1 x̄k1 − pi2 x̄i2 > T. (15)

The inequality in (15) implies that

pi1 x̄k1 + pk2 x̄i2 + pk1 x̄k1 + pi2 x̄i2 > T. (16)

Given (10) and (11), (16) should hold if we substitute x̄i1 in
place of x̄k1 and x̄k2 in place of x̄i2 , i.e.,

pi1 x̄i1 + pk1
x̄k1

+ pi2 x̄i2 + pk2
x̄k2

> T. (17)

However, the left hand side (LHS) of (17) is equal to T −P1

(cf. (13)), which is smaller than T. Therefore, (15) is false and
by contradiction P1 + pi1 + pk2

≤ 2T is true.
Case 2: One job is assigned as fractional between the ED

and the ES and the other job is assigned as fractional between

6

two models on the ED. WLOG, we consider job 1 is assigned
to models on the ED and job 2 is assigned between the ED
and the ES. We consider the following sub-cases.

Case 2a: Job 2 is scheduled on the ES and from (11) we
must have k2 = m+1. From the LP-relaxed solution, we have

P1 + pi1 x̄i1 + pk1
x̄k1

+ pi2 x̄i2 ≤ T, (18)
P2 + pk2

x̄k2
≤ T. (19)

For the ES, consider that

P2 + pk2
> 2T. (20)

Because of (11), pk2 x̄k2 > T is true. If pk2 x̄k2 > T then also
P2+pk2 x̄k2 > T , which contradicts (19), and thus P2+pk2 ≤
2T.

For the ED consider that

P1 + pi1 > 2T. (21)

Substituting (18) in (21), we obtain:

pi1 > T + pi1 x̄i1 + pk1 x̄k1 + pi2 x̄i2 .

Using (9) we arrive to

pi1 x̄k1
− pk1

x̄k1
− pi2 x̄i2 > T. (22)

We consider (18) and (22), we have

P1 + pi1 x̄i1 + pk1
x̄k1

+ pi2 x̄i2 < pi1 x̄k1
− pk1

x̄k1
− pi2 x̄i2

=⇒ P1 + pi1(x̄i1 − x̄k1
) + 2pk1

x̄k1
+ 2pi2 x̄i2 < 0,

which is false as all quantities on LHS are positive. This means
that (22) is false, thus (21) too.

Case 2b: Job 2 is scheduled on the ED. When using the
basic solution of the LP problem, the completion time of the
ED is

P1 + pi1 x̄i1 + pk2
x̄k2

+ pk1
x̄k1

≤ T. (23)

We claim that P1 + pi1 + pk2
≤ 2T .

Consider

P1 + pi1 + pk2 > 2T. (24)

Substituting (23) in (24), and using (8) and (9), we obtain

pi1 x̄k1
+ pk2

x̄i2 − pk1
x̄k1

> T. (25)

Substituting (23) in (25), we obtain

−P1 − pi1(x̄k1
− x̄i1) + pk2

(x̄i2 − x̄k2
) ≥ 0.

The LHS is the sum of negative terms because of (10) and
(11), thus the inequality is false.

Case 3: Both jobs are assigned as fractional between ED
and ES by the LP-relaxation. We have three different sub
cases based on the fractional assignation of the LP-relaxation
problem.

Case 3a: Both jobs are scheduled on the ES. The comple-
tion time of the ES, when considering the basic solution x̄
is:

P2 + pi1 x̄i1 + pk2
x̄k2

≤ T (26)

We claim that P2 + pi1 + pk2
≤ 2T . Suppose that

P2 + pi1 + pk2
> 2T. (27)

We substitute (26) in (27) and obtain

pi1 x̄k1
+ pk2

x̄i2 > T. (28)

Substituting (26) in (28) we have

−P2 − pi1(x̄i1 − x̄k1)− pk2(x̄k2 − x̄i2) ≥ 0

which is false because of hypotheses (10) and (11).
Case 3b: One job is scheduled on the ED and the other on

the ES. The completion time of the ED under the LP-relaxed
solution satisfies

P1 + pi1 x̄i1 + pi2 x̄i2 ≤ T, (29)

while the completion on the ES satisfies:

P2 + pk2
x̄k2

+ pk1
x̄k1

≤ T. (30)

We claim P1+pi1 ≤ 2T , and P2+pk2
≤ 2T . Suppose that

P1 + pi1 > 2T. (31)

We substitute (29) in (31) and obtain

pi1 x̄k1
− pi2 x̄i2 > T. (32)

Using (32) and (29) we have:

P1 + pi1 x̄i1 + pi2 x̄i2 < pi1 x̄k1
− pi2 x̄i2

=⇒ P1 + pi1(x̄i1 − x̄k1
) + 2pi2 x̄i2 < 0,

which is false, thus (31) is not true.
On the ES, suppose that

P2 + pk2
> 2T. (33)

Substituting (30) in (33) we obtain

pk2
x̄i2 − pk1

x̄k1
> T. (34)

Using (34) and (30) we have

P2 + pk2
x̄k2

+ pk1
x̄k1

< pk2
x̄i2 − pk1

x̄k1

=⇒ P2 + pk2
(x̄k2

− x̄i2) + 2pk1
x̄k1

< 0

which is false, thus (33) is not true.
Case 3c: Both jobs are scheduled on the ED. We claim

P1 + pi1 + pk2
≤ 2T. (35)

The completion time equation on the ED using the basic
solution x̄ is

P1 + pi1 x̄i1 + pk2
x̄k2

≤ T. (36)

We negate (35):

P1 + pi1 + pi2 > 2T. (37)

We substitute (36) in (37) and obtain

pi1 x̄k1
+ pk2

x̄i2 > T. (38)

Substituting (36) in (38), we obtain

−P1 − pi1(x̄i1 − x̄k1)− pk2(x̄k2 − x̄i2) ≥ 0,

7

which is false because of hypotheses (10) and (11).

Theorem 2. The difference between the optimal total accuracy
A∗ and A†, the total accuracy achieved by AMR2, is upper
bounded by am+1 − a1.

Proof. Since A∗ ≤ A∗
LP , we prove the result with respect to

A∗
LP . WLOG, we consider that i1 and i2 as the indices of the

models with lower accuracy, respectively, for jobs 1 and 2, and
k1 and k2 are the index of the models which provide higher
accuracy. To prove the performance bound we distinguish the
following three cases.

Case 1: x̄k1 ≥ 1
2 , x̄k2 ≥ 1

2 . In this case, AMR2 will
schedule job 1 on model k1 and job 2 on model k2. The
contribution of the following jobs to the A† is ak1

+ ak2
. The

contribution of the same jobs to the optimal solution A∗
LP is:

ai1 x̄i1 + ak1
x̄k1

+ ai2 x̄i2 + ak2
x̄k2

. However, ak1
> ai1 and

ak2 > ai2 : thus it is trivial that A† > A∗.
Case 2: x̄k1 ≥ 1

2 and x̄k2 < 1
2 . Here, AMR2 schedules job

1 on k1 and job 2 on i2.

A∗
LP −A† = ai1 x̄i1 + ak1

x̄k1
+ ai2 x̄i2 + ak2

x̄k2
− ai2 − ak1

= ai1 x̄i1 + ai2(x̄i2 − 1) + ak1
(x̄k1

− 1) + ak2
x̄k2

= ai1 x̄i1 − ai2 x̄k2
− ak1

x̄i1 + ak2
x̄k2

= x̄i1(ai1 − ak1
) + x̄k2

(ak2
− ai2).

Substituting x̄k1
≥ 1

2 and x̄k2
< 1

2 in the above equation we
have ai1 − ak1

< 0. In conclusion

A∗
LP −A† ≤ 1

2
(ak2 − ai2). (39)

Proof for the case x̄k1 < 1
2 , x̄k2 ≥ 1

2 is similar to Case 2.
Case 3: x̄k1

< 1
2 and x̄k2

< 1
2 . AMR2 schedules job 1 on

i1, and job 2 on i2.

A∗
LP −A† = ai1 x̄i1 + ak1 x̄k1 + ai2 x̄i2 + ak2 x̄k2 − ai1 − ai2

= x̄k1(ak1 − ai1) + x̄k2(ak2 − ai2) ≤ am+1 − a1.

In the last equation above, we used x̄k1 < 1
2 and x̄k2 < 1

2 ,
and the fact that ak1 − ai1 and ak2 − ai2 are upper bounded
by am+1 − a1.

From Theorem 2, the accuracy ratio between AMR2 and
the optimal schedule is bounded as follows:

A†

A∗ ≤ 1 +
am+1 − a1

A∗ .

Note that am+1 − a1 < 1 and A∗ grows as O(n), where n
is the number of jobs. To see the latter, note that A∗ ≥ na1
since the total accuracy for n jobs cannot be lower than na1.
Thus, A†

A∗ goes to 1 as n goes to infinity. Thus, AMR2 is
asymptotically optimal.

Corollary 1. If the processing times of all jobs on the ES are
at most T , then A∗ ≤ A†.

Proof. Considering AMR2 when all jobs have processing time
less than T on all the models, we consider three cases. In the
first case, there is no job assigned as fractional in the LP-
relaxed solution which implies that we obtain A∗ = A∗

LP =
A†. In the second case, there is a single fractional job and we

have A∗
LP ≤ A∗

LP,I+am+1. In this case, AMR2 schedules the
fractional job on the ES and we obtain A† = A∗

LP,I + am+1.
Thus, A∗

LP ≤ A†. In the third case, the number of fractional
jobs is two. AMR2 schedules or either both jobs on the ES or
one on the ES and the other on model m of the ED, achieving
a total accuracy that is at least A† = A∗

LP,I +am+1+am. The
solution of AMR2 will be always greater or at most equal to
the solution of A∗

LP , as it will have T seconds to schedule the
two jobs, meanwhile, the LP-relaxation will have a time that
is less or equal to T to schedule both of them. In all the three
cases A† ≥ A∗

LP ≥ A∗.

Remark 1: The schedule x† given by AMR2 may result
in a makespan greater than T . In our experimental results,
we show that the percentage of violation on an average is
at most 40% for the considered application. As noted before,
a special case of our problem is GAP for which the best-
known approximation algorithm, proposed in [14], has the
makespan bound 2T and produces a schedule that may exceed
T . The algorithm in [14] achieves the optimal cost for GAP.
However, it requires a bisection search to find this optimal
cost and each step in the bisection search requires solving
an LP-relaxed feasibility problem. In contrast, in AMR2 we
solve an LP-relaxed problem only once and thus it has a lower
computational complexity, which is important because, as we
will see later in Section VIII, computing the schedule itself
cannot take significant time when T is small.

VI. IDENTICAL JOBS

In this section, we consider the problem PI, a special case
of P where the jobs are identical, i.e., pij = pi, for all models
i ∈ M . We present Accuracy Maximization using Dynamic
Programming (AMDP) for PI. The formulation for PI is given
below.

maximize
x

m+1∑
i=1

ai

n∑
j=1

xij

subject to
m∑
i=1

pi

n∑
j=1

xij ≤ T (40)

pm+1

n∑
j∈1

x(m+1)j ≤ T (41)

m+1∑
i=1

xij = 1, ∀j ∈ J (42)

xij ∈ {0, 1}, ∀i ∈ M, ∀j ∈ J. (43)

Next, we exploit the structure of PI and reduce it to solving
a Cardinality Constrained Knapsack Problem (CCKP).

A. CCKP

Our first observation is that the number of jobs assigned to
the ES under an optimal schedule is given by nc =

⌊
T

pm+1

⌋
.

To see this, assigning number of jobs less than nc can only
reduce the accuracy as the ES provides highest accuracy, and
no more than nc can be assigned due to constraint (41). We
present this observation in the following lemma.

8

Lemma 2. Under an optimal schedule, the number of jobs
assigned to the ES is given by nc =

⌊
T

pm+1

⌋
.

We define nl = n−nc. Since the jobs are identical, without
loss of generality, we assign the last nc jobs to the ES. We
are now only required to compute the optimal assignment for
jobs j ∈ {1, . . . , nl} to the models 1 to m on the edge device.
Thus, given Lemma 2, solving PI is reduced to solving the
following problem PI

′:

maximize
x

m∑
i=1

ai

nl∑
j=1

xij

subject to
m∑
i=1

pi

nl∑
j=1

xij ≤ T, (44)

m∑
i=1

xij = 1, ∀j ∈ {1, . . . , nl} (45)

xij ∈{0, 1}, ∀i ∈ M\{m+ 1},∀j ∈ {1, . . . , nl}.
We do a variable change to formulate the CCKP. Let r denote
an index taking values from {1, . . . ,mnl}. We define new
variables zr, accuracies ār, and processing times p̄r as follows:
for i ∈ M\{m+ 1} and j ∈ {1, . . . , nl},

zr = {xij : r = j + (i− 1)nl},
ār = ai, (i− 1)nl ≤ r < inl,

p̄r = pi, (i− 1)nl ≤ r < inl.

The CCKP using {zr : 1 ≤ r ≤ mnl} as the decision variables
is stated below.

maximize
{zr}

mnl∑
i=1

ārzr

subject to
mnl∑
r=1

p̄rzr ≤ T, (46)

mnl∑
r=1

zr = nl, (47)

zr∈{0, 1}, ∀r ∈ {1, . . . ,mnl}. (48)

Let {z∗r : 1 ≤ r ≤ mnl} denote an optimal solution for CCKP.
The CCKP can be interpreted as follows. We have mnl items,
where each item represents a model and there are nl copies
of the same model. Since the jobs are identical, the problem
reduces to the number of times a model is selected, equivalent
to the number of jobs assigned to it, such that all jobs are
assigned. In the following lemma we state that solving CCKP
results in an optimal solution for PI

′.

Lemma 3. The solution x∗
ij = {z∗r : r = j + (i− 1)nl} is an

optimal solution for PI
′.

Proof. By construction, PI
′ and CCKP have one-to-one map-

ping between the decision variables, have equivalent objective
functions and constraints in (44) and (46). They only differ in
the constraints (45) and (47). We note that (47) is equivalent
to

nl∑
j=1

m∑
i=1

xij = nl. (49)

Let PI
‡ denote the problem PI

′ with the constraint (45) re-
placed by (49). From the above observations, PI

‡ is equivalent
to CCKP, and thus it is sufficient to show that an optimal
solution {x‡

ij} for PI
‡ is optimal for PI

′. Since (49) is a
relaxation of the constraint in (45), the optimal objective value
of PI

‡ should be at least the optimal objective value of PI
′.

On the other hand, given {x‡
ij}, consider the assignment where

for each model i, we assign
∑nl

j=1 x
‡
ij jobs to it. Given that

the jobs are identical, and from (49), all the nl jobs will be
assigned exactly once to some model. Thus, this assignment is
feasible for PI

′ and objective value under this assignment will
be equal to the optimal objective value of PI

‡. Thus, {x‡
ij} is

also an optimal solution for PI
′.

In Algorithm 2 we present AMDP for solving PI. The
optimality of AMDP is a direct consequence of Lemmas 2
and 3 and is stated in the following theorem.

Theorem 3. AMDP is an optimal algorithm for PI.

Algorithm 2: AMDP

1: nl = n−
⌊

T
pm+1

⌋
2: Assign the jobs j ∈ {nl + 1, . . . , n} to the ES
3: Solve the CCKP for {z∗r} using the DP algorithm
4: Assignment for remaining jobs:

x∗
ij={z∗r : r = j+(i− 1)nl} for all i ∈ M\{m+ 1},

and j ∈ {1, . . . , nl}.

B. The DP Algorithm

The main step in AMDP is to solve the CCKP for which one
can leverage existing branch-and-bound or Dynamic Program-
ming (DP) algorithms [12]. We use the DP algorithm since
it has pseudo-polynomial runtime for computing the optimal
solution. The summarize the main steps of the algorithm.
Let s, k, and τ denote positive integers. We define ys(τ, k)
as the maximum accuracy that can be achieved by selecting
items from the set {1, . . . , s}, where s ≤ mnl, given a time
constraint τ (≤ T) and the number of items to be selected are
k (≤ nl).

ys(τ, k)=max

{
s∑

r=1

ārzr

∣∣∣ s∑
r=1

p̄rzr ≤ τ,

j∑
r=1

zr = k, zr∈{0, 1}
}

(50)

The DP iterations are given below:

ys(τ, k)=

{
ys−1(τ, k) if p̄s ≥ τ

max{ys(τ−p̄s, k−1)+ās, ys−1(τ, k)} otherwise.

We compute the solution for ys(T, nl), where s = mnl.
The computational complexity of the DP algorithm is

O(mnT) and AMDP has the same computational complexity.

9

Fig. 2: Scheduling between an Edge Device and K Edge
Servers.

VII. MULTIPLE EDGE SERVERS

In this section, we extend AMR2 for the case of multiple
ESs. As before, the ED is equipped with m models and it
is connected through multiple communication links to K ESs
which are physically collocated. Each ES is equipped with a
powerful ML model and on average they give more accurate
inferences compared with those executed in the ML models on
the ED. The system is shown in Fig. 2. The motivation for this
system comes from the scenario where there is a single server
which hosts multiple virtual machines each equipped with a
powerful ML model or a factory floor where for reliability
reasons there are multiple servers.

Inference jobs can be executed locally on one of the m
ML models, or remotely on one of the K ESs. Again, our
objective is to maximize the total inference accuracy subject
to a constraint T on makespan. Let the index set for the ML
models is M ′ = {1, ..,m,m+ 1, . . . ,m+K}, where m+ 1
to m + K denote the models on the ESs. We formulate the
following constraints:

m∑
i=1

n∑
j=1

pijxij ≤ T (51)

n∑
j=1

pijxij ≤ T, ∀i = {m+ 1, ...,m+K} (52)

m+K∑
i=1

xij = 1, ∀j ∈ J (53)

xij ∈ {0, 1}, ∀i ∈ M ′,∀j ∈ J, (54)

where constraints (51) and (52) ensure that the total processing
times on the ED and all the ESs, respectively, are within T , and
thus the makespan is within T . Constraints in (53) imply that
each job is assigned to only one model and no job should be
left unassigned, and (54) imposes the integer constraints. We
are interested in the following accuracy maximization problem
PK :

maximize
x

A =

m+K∑
i=1

n∑
j=1

aixij

subject to (51), (52), (53), and (54).

Clearly, PK is an extension of P and is thus NP-hard. With a
slight abuse in the notation, we use A∗ to denote the optimal
total accuracy of PK .

We solve PK by first formulating the LP-relaxation by
relaxing the constraints in (54) as follows:

xij ≥ 0, ∀i ∈ M ′,∀j ∈ J. (55)

In the following lemma we state that, in the case of K ESs,
the number of fractional jobs in the LP-relaxed solution can
be at most K + 1.

Lemma 4. For the LP-relaxation of PK , there exists an
optimal basic solution with at most K + 1 fractional jobs.

Proof. Since the LP-relaxation of PK has n+K+1 constraints
apart from the non-negative constraint in (55), there exists an
optimal basic solution with n+K + 1 basic variables, where
all the basic variables take positive value and all the non-
basic variables take value zero. In this basic solution, for the
n constraints in (53) to be satisfied, at least one positive basic
variable should belong to each of those n constraints. The
remaining K+1 basic variables may belong to at most K+1
equations. This implies that at most n−K−1 equations should
have exactly one positive basic variable whose value should be
1 in order to satisfy the constraint. Remaining K+1 jobs will
have multiple basic variables that takes value in the interval
(0, 1). Thus, at most K+1 jobs in the LP-relaxed solution of
PK are fractional.

We re-index the fractional jobs such that they are assigned
indices from F = {1, 2, . . . ,K + 1}. We find the assignment
for F . We use the same notation presented in the case of a
single ES: given a generic job j ∈ F we refer to i and k as
the model which job j is divided. The details of the algorithm
are presented in Algorithm 3.

Algorithm 3: AMR2 for K ESs
1: Input: pij , for all i ∈ M ′ and j ∈ J .
2: Solve the LP-relaxation of PK .
3: The fractional job are collected in F .
4: for all j ∈ F do
5: if x̄ij > x̄kj then
6: x†

ij = 1
7: else
8: x†

kj = 1
9: end if

10: end for
11: Output: Assignment matrix x† and total accuracy A†

Next, we present the performance analysis for AMR2,
presented in Algorithm 3, for solving Pk.

Theorem 4. For the case of K edge servers, AMR2 provides
a makespan of at most 2T .

Proof. In the case of K ESs, enumerating all possible cases for
different fractional jobs scheduled between the models of the
ED and the ESs and proving the 2T bound is tedious because
as K increases the number of cases increases exponentially.

10

Nevertheless, the idea behind the proof for each case is similar
to as that in Theorem 1 and therefore, we present the proof
step for one case. The proof for all other cases follows using
similar steps. In this proof, we refer to the set of jobs to be
scheduled {1, . . . , N} as J .

Suppose that x̄(m+K)j ≥ 1
2 ,∀j ∈ F , this means that we are

in the case where AMR2 schedules all fractional jobs on model
m+K. The completion time of the ED, when considering only
the jobs that are assigned as integer in the LP solution, is:

P1 =

m∑
i=1

∑
j∈J

pij x̄ij ,

meanwhile, on each of the K ESs is:

PK =
∑
j∈J

p(m+K)j x̄(m+K)j

=
∑

j∈J\F

p(m+K)j x̄(m+K)j +
∑
j∈F

p(m+K)j x̄(m+K)j ≤ T.

(56)

We want to prove that∑
j∈J\F

p(m+k)j x̄(m+k)j +
∑
j∈F

p(m+k)j ≤ 2T. (57)

Assume (57) is false, i.e.,:∑
j∈J\F

p(m+k)j x̄(m+k)j +
∑
j∈F

p(m+k)j > 2T. (58)

We use (56) in (58) and obtain:

−
∑
j∈F

p(m+K)j x̄(m+K)j +
∑
j∈F

p(m+K)j > T

=⇒
∑
j∈F

p(m+K)j(−x̄(m+K)j + 1) > T

=⇒
∑
j∈F

p(m+K)j(−x̄(m+K)j + 1) > T. (59)

Recalling x̄(m+K)j ≥ 1
2 , 1− x̄(m+K)j <

1
2 , for all j. Because

of this, (59) is false, as LHS of (56) is larger than LHS of
(59), and this means that (57) is true.

Theorem 5. Assuming am+K and a1 are the highest and the
lowest accuracy, respectively, the total accuracy achieved by
an optimal schedule is at most (K+1) (am+K−a1)

2 higher than
the total accuracy achieved by the extended AMR2 (Algorithm
3), i.e., A∗ −A† ≤ (K + 1) (am+K−a1)

2 .

Proof. Given the solution x̄ from the LP-relaxation of PK we
divide the fractional decision variables in:

bij =

{
x̄ij if x̄ij ≤ 1

2
0 otherwise.

cij =

{
x̄ij if 1

2 < x̄ij < 1
0 otherwise.

Then, A∗
LP −A† is given by the followig expression:

m+K∑
i=1

∑
j∈F

aibij +

m+K∑
i=1

∑
j∈F

aicij −
m+K∑
i=1

∑
j∈F

aix
†
ij . (60)

The expression in (60) takes maximum value for the problem
instance, which we call worst-case problem instance, where
bij = b(m+K)j and cij = c1j , for all j ∈ F . Therefore, we
obtain

A∗
LP −A† ≤ am+K

∑
j∈F

b(m+K)j + a1
∑
j∈F

c1j −
∑
j∈F

a1,

(61)

and, to be precise, the RHS of (61) is maximized when c1j =
1
2 +ϵ, for all j ∈ F , where ϵ > 0 approaches zero. To see this,
note that in the worst-case problem instance, a fractional job
j∗ contributes to A∗

LP the value a1c1j +am+Kb(m+K)j , while
in A† it contributes a1. Therefore, the accuracy difference
contributed by j∗ is given by

a1c1j∗ + am+Kb(m+K)j∗ − a1. (62)

Now consider a modified problem instance where the assign-
ment is the same as the worst-case problem instance for all
jobs j ∈ F , except for job j∗ for which c2j∗ is equal to
c1j∗ of the worst-case problem instance. For this modified
instance, AMR2 assign j∗ to model 2 with accuracy a2, and
the accuracy difference contributed by j∗ is given by

a2c2j∗ + am+Kb(m+K)j∗ − a2. (63)

Clearly, the difference in (62) is bigger than that in (63), as
c1j∗ = c2j∗ < 1 and a2 > a1. Using similar arguments, it can
be verified that (61) is the upper bound for A∗

LP − A† over
all problem instances. Therefore, we have

A∗
LP −A† ≤ am+K

∑
j∈F

b(m+K)j + a1
∑
j∈F

c1j −
∑
j∈F

a1

=am+K

∑
j∈F

b(m+K)j + a1
∑
j∈F

(1− b(m+K)j)−
∑
j∈F

a1

=(am+K − a1)
∑
j∈F

b(m+K)j

≤K + 1

2
(am+K − a1). (64)

In the last step above, we have used b(m+K)j ≤ 1
2 , for all j ∈

F , and that, according to Lemma 4, the number of fractional
jobs from the LP solution can be at most K + 1.

From Theorem 5, we have

A†

A∗ ≤ 1 +
(K + 1)(am+K − a1)

2A∗ .

Noting that K is a constant, am+K − a1 < 1, and A∗ grows
as O(n), we see that AMR2 is asymptotically optimal for the
case of K ESs.

VIII. EXPERIMENTAL RESULTS

In this section, we first present the experimental setup.
We then present the implementation details for estimating
the processing and communication times. As explained in
Section II, the aspect of multiple models on the ED has not
been considered in computation offloading literature and there
are no existing algorithms that are applicable for the problem
at hand for a performance comparison. Therefore, we present
the performance comparison between AMR2 and a baseline

11

Greedy Round Robin Algorithm (Greedy-RRA). Given the list
of jobs, Greedy-RRA offloads them from the start of the list
to the ES until the constraint T is met. The remaining jobs
are assigned in a round robin fashion to the models on the
ED until the constraint T is met. Any further remaining jobs
are assigned to model 1. Note that Greedy-RRA solution may
violate the time constraint T and its runtime is O(n). Finally,
we also demonstrate the performance of the extended AMR2

for the case of multiple ESs.
For the experimental setup, we chose image classification

as the ML application due to its prevalence. Nevertheless, we
emphasize that our system model and the proposed algorithm
apply to other ML applications.

A. Experimental Setup

Our experimental setup comprises a Raspberry Pi device
(the ED) and a local server (the ES) that are connected and
located in the same LAN. Raspberry Pi has 4 cores, 1.5
GHz CPU frequency, and 4 GB RAM, with the operating
system Raspbian 10, while the server has 512 cores, 1.4
GHz CPU frequency, and 504 GB RAM, with the operating
system Debian 11. All the functions on Raspberry Pi and on
the server are implemented using Python 3. We used HTTP
protocol to offload images from Raspberry Pi to the ES and
implemented HTTP Client and Server using Requests and
Flask, respectively. The LP-relaxation problem of P is solved
using PuLP library on the ED. The data samples are images
from the ImageNet dataset for which we use DNN models for
inference. On Raspberry Pi we import, from the TensorFlow
Lite library, two pre-trained MobileNets corresponding to two
values 0.25 and 0.75 for the hyperparameter α, which is
a width multiplier for the DNN [38]. Both the models are
quantized and require input images of dimensions 128× 128.
Quantization describes the process of reducing the precision of
the weights. Thus, it is reduced the size of the DNN model. On
the ES, we import a pre-trained ResNet50 model [6] from the
Tensorflow library. The ResNet50 model requires input images
of dimensions 224×224. Images of different dimensions need
to be reshaped to the respective dimensions on the ES and the
ED. The top-1 accuracies for the three models are presented
in Table I.

Model Top-1 Accuracy
MobileNet α = 0.25 (model 1) 0.395
MobileNet α = 0.75 (model 2) 0.559

ResNet50 (model 3) 0.771

TABLE I: Test accuracies of the considered DNN models [4].

We implemented both AMR2 and Greedy-RRA on Rasp-
berry Pi in Python 3. AMR2 takes up to 50 ms for computing
a schedule for 40 jobs. The runtime of AMR2 is dominated by
the runtime of the solver from the Python library for solving
the LP-relaxation. In future, we plan to reduce this runtime by
implementing AMR2 in C.

B. Estimation of Processing and Communication Times

In our experiments, we consider images of dimensions
333× 500, 375× 500, and 480× 640, for which we estimate

the processing and communication times using the following
procedure. On Raspberry Pi, we run 30 samples of same
image dimensions and use the median processing times as our
estimate. Note that median is an unbiased estimate, and unlike
the mean, it is not affected by cold start. We note that the
estimates for the processing times include the reshape times.

In order to estimate the total time on the ES, we use the
HTTP client/server connection to send 30 images of same
image dimensions from Raspberry Pi to the server. For each
image we measure the time till the reception of an inference
for the image from the ES, and finally use the median. At the
server we also measure the reshape time and the processing
time, and the estimate for the communication time is obtained
by subtracting the reshape time and the processing time from
the total time. Since Raspberry Pi and the dedicated local
server are in the same LAN, the observed communication
times are almost constant with negligible variance. This is also
true for the observed processing times, and we will later verify
this when implementing the schedules using these estimates.

The estimates for the processing times are presented in
Table II. Observe that the processing times increase with the
model size. On Raspberry Pi, the variance in the processing
times on a model is small. In contrast, the total times on the
ES vary with the dimensions of the image and are an order
of magnitude higher than the processing times on Raspberry
Pi. In Figure 3, we present the communication, reshape, and
processing times on the ES. It is worth noting that, as the
dimensions of the image increases, both communication time
and the reshape times increase. Thus, it is more advantageous
to offload images with smaller dimensions. The bandwidth of
the communication of the system has been studied using iPerf3
with 30 experiments of 1 minutes each. Note that the measured
bandwidth varies based on the chosen Tranport layer. We use
HTTP to send images from ED to ES. Thus, we measured TCP
bandwidth. The average bandwidth is 987 Mbit/s. However,
using Requests and Flask we achieved an average bandwidth
of 144 Mbit/s. The most important think that we realized is
that the bandwidth is constant within the experiments. Given
as input a JPEG image of 1024 × 1024 to the network, we
experienced an average communication time of 0.0007 sec
with a variance of 2.88× 10−5 sec.

Model Location 333×500 375×500 480×640

MobileNet
α = 0.25

ED 0.01 0.011 0.011

MobileNet
α = 0.75

ED 0.04 0.04 0.043

ResNet50 ES 0.28 0.32 0.38

TABLE II: Estimated processing times (in seconds).

C. Performance of AMR2

In Figure 4, we examine the number of jobs assigned to
different models under AMR2. Observe that as T increases
the number of jobs assigned to larger models increases. Also,
note that MobileNet α = 0.25 is only being used when T is
small. In all the subsequent figures, for each point, we run
30 experiments and compute the average. Recall that the total
accuracy A† is based on the top-1 accuracy of the models.

12

333x500 375x500 480x640
0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
im

e
(s

ec
)

Connection Time Reshaping Time Processing Time

Fig. 3: Estimated total time for inference on the ES.

Fig. 4: Job assignment under AMR2 for varying T .

In Figures 5 and 6, we compare total accuracy achieved
under different schedules, by varying T and n, respectively.
For n = 60, no LP-relaxed solution exists for T = 2 sec. From
both figures, we observe that A† overlaps with, and in some
cases exceeds, the total accuracy of the LP-relaxed solution
A∗

LP. This is because all the processing times (cf. Table II) are
less than 2 sec, the minimum value used for T , and therefore,
from Corollary 1, A† exceeds A∗. Furthermore, in some cases,
where T is large enough, AMR2 may assign both the fractional
jobs to the server and A† exceeds A∗

LP. In the above cases,
however, the makespan under AMR2 exceeds T .

From Figure 5, we observe that AMR2 always has higher
total accuracy than Greedy-RRA with a percentage gain be-
tween 20–60% averaging at 40%, but the percentage gains are
lower at smaller T . The latter fact is also confirmed in Figure 6
when T = 2 sec. This is expected, because for T = 2 sec,
not many jobs can be offloaded to the server as the processing
times are around 0.3 seconds. For T = 4 sec we see significant
gains of around 40–50%.

In Figure 7, we present the makespan achieved by AMR2

and Greedy-RRA for varying n. The actual makespan, i.e., the
time elapsed at Raspberry Pi from the start of scheduling the
jobs till the finishing time of the last job is indicated by AMR2

in the legend. The estimated makespan that is numerically
computed using the schedule x† and the estimated processing
and communication times is indicated by AMR2 (estd. proc.
time). Observe that both these makespans have negligible

34

36

38

40

42

44

46 n = 60

6 8 10 12 14 16 18

Time constraint T (sec)

19

20

21

22

23

T
ot

al
ac

cu
ra

cy

n = 30

Greedy-RRA AMR2 (A†) LP-relax.

Fig. 5: Total accuracy varying T for n = (30, 60).

5

10

15

20
T=4 sec

10 15 20 25 30 35

Number of jobs n

5

10

15

20T
ot

al
ac

cu
ra

cy

T=2 sec

Greedy-RRA AMR2 (A†) LP-relax.

Fig. 6: Total accuracy varying n with T = (2, 4) sec.

difference asserting that the variances in our estimates for both
communication and processing times are small. For T = 4,
AMR2 violates T for n ≥ 17, but then it saturates at a
makespan with a maximum percentage of violation of 15%.
This is expected because from Lemma 1 there cannot be more
than two fractional jobs irrespective of n value and thus, the
constraint violation due to the reassignment of the fractional
jobs do not increase beyond n = 30. This saturation effect can
also be observed for T = 2. In this case, the percentage of
violation under AMR2 is higher because the processing times
on the server are comparable to T = 2 sec and reassigning a
fractional job to the server results in a higher percentage of
violation.

D. Experimental results for multiple ESs

As a proof of concept, we study the performances of AMR2

for the case of multiple ESs. We use the same experimental
testbed as before. On the server, we create multiple containers.
On each container, we implemented an HTTP server that hosts
a DNN. To make containers independent of one from another

13

2.0

2.5

3.0

3.5

4.0
T=4

10 15 20 25 30 35

Number of jobs n

1.0

1.3

1.6

1.9

2.2 T=2

M
ak

es
p

an
(s

ec
)

AMR2 Greedy-RRA AMR2 (estd. proc. time)

Fig. 7: Makespan under AMR2 and Greedy-RRA for varying
n, and T = 2 sec and T = 4 sec.

and from the processes of the Operative System on the physical
machine, we limited the resources of containers to a maximum
of 8 GB of RAM and 4 CPUs each. In Table IV, we present
the DNN models from which we choose.

Model Average test Accuracy
MobileNetV2 0.713

ResNet50 0.749
Xception 0.790

InceptionResNetV2 0.803

TABLE III: Test accuracy of the considered DNN models on
the ESs [4].

Model 333× 500 375× 500 480× 640

MobileNetV2 0.2050 0.2102 0.2101
ResNet50 0.87 0.90 0.92
Xception 1.79 1.79 1.80

InceptionResNetV2 2.51 2.51 2.53

TABLE IV: Processing time (sec) for image of dimensions
128× 128, 512× 512, 1024× 1024 when using models from
[39].

We ran experiments using 2 ESs (using MobileNetV2
and InceptionResNetV2) and 4 ESs (using MobileNetV2,
ResNet50, Xcpetion, InceptionResNetV2). In Figure 8, we
study the total accuracy for time constraints T = 2 sec
and T = 4 sec. The two subplots on the left represents
the experiments for k = 2, and the two subplots on the
right represents the experiments for k = 4. Greedy-RRA
works as described before doing a round-robin assignment
by including k ESs. From Figure 8, we observe that as the
time constraint increases, the difference between the total
accuracy achieved by AMR2 and Greedy-RRA decreases. This
is expected because Greedy-RRA has more ESs to use for
offloading images without exceeding the maximum completion
time T on them. Also, as the number of edge servers increases
the total accuracy increases. For example, for T = 2.0 sec,
the total accuracy achieved by AMR2 increases by 20% for

5 10 15 20 25 30 35
0

5

10

15

20

25
K = 4

T = 4 sec

5 10 15 20 25 30 35
0

5

10

15

20

25
K = 4

T = 2 sec

5 10 15 20 25 30 35
0

5

10

15

20

25

T = 4 sec

K = 2

5 10 15 20 25 30 35
0

5

10

15

20

25

T = 2 sec

K = 2

Number of Jobs n

T
ot

al
A

cc
u

ra
cy

AMR2 Greedy-RRA LP Solution

Fig. 8: Total Accuracy under AMR2 and Greedy-RRA for
varying n, and T = 2 sec and T = 4 sec. On the left in
the case of 2 ESs, on the right with 4 ESs.

K = 4 when compared to K = 2. Furthermore, observe that
for K = 2 we achieve a total accuracy of 21 for 30 jobs, but
for K = 4 we reach the same accuracy with 27 jobs. Thus, the
average accuracy per job increases as k increases, we observe
similar trends as in the case of K = 1 for increasing T. The
figures are not presented due to redundancy.

E. Experimental results for AMDP

In this subsection, we present the results of AMDP using
the same setup for the single ES described above, except for
considering identical inference jobs, i.e., images with equal
data size 480 × 640 pixels. The top-1 accuracies of the
models are presented in Table I, and their processing times
are presented in Tabel II. Recall that AMDP is a Dynamic
Programming algorithm that guarantees optimal solution (The-
orem 3). Its optimality is verified by comparing its solution
with the solution given by an ILP Solver for PI. Also, we
compare its runtime with the runtimes of the ILP solver and
AMR2. In Figure 9, we present this comparison by varying
the number of jobs between 10 to 200. Observe from the
upper sub-figure that AMDP reaches the same solution as
the ILP solver. From the lower sub-figure, observe that the
runtime of AMDP is much lower (by more than an order of
magnitude) when compared to the runtime of the ILP solver,
which increases approximately linearly (note that the figure
is in log scale) with the number of jobs. Interestingly, we
found that AMR2 also provides an optimal solution for these
problem instances as there are no fractional jobs to be rounded.
However, the advantage of using AMDP is that it has a lower
runtime (an order of magnitude less) than that AMR2.

IX. CONCLUSION

We have studied the offloading decision for inference jobs
between an ED and an ES, where the ED has m models and

14

25 50 75 100 125 150 175 200
Number Images

25

50

75
Ac

cu
ra

cy
AMDP
ILP PI

AMR2

25 50 75 100 125 150 175 200
Number of Jobs n

10 1

100

101

Ru
nt

im
e

(s
)

Fig. 9: Comparison between the solution of AMDP, an ILP
solver which solves PI, and AMR2.

the ES has a state-of-the-art model. Given n data samples at
the ED, we proposed an approximation algorithm AMR2 for
maximizing the total accuracy for the inference jobs subject
to a time constraint T on the makespan. We proved that the
makespan under AMR2 is at most 2T , and its total accuracy
is lower than the optimal total accuracy by at most 2, and
for typical problem instances its total accuracy is at least the
optimal total accuracy. When the data samples are identical,
we have proposed AMDP, a pseudo-polynomial time algorithm
to compute the optimal schedule. We have implemented AMR2

on Raspberry Pi and demonstrated its efficacy in improving
the inference accuracy for classifying images within a time
constraint T . Also, under the considered scenarios AMR2

provides, on average, 40% higher total accuracy than that of
Greedy-RRA. We also extended AMR2 for the case of multiple
edge servers and observed an increase of 20% in the total
accuracy when the number of ESs increase from k = 2 to
k = 4.

In our problem model, we considered that the communi-
cation times are deterministic and in our testbed we used
an architecture where the ED and the ES are connected
via Ethernet. If the ED and ES are connected over wireless
channels where the communication times are random, AMR2

can still be used by using the estimated mean communication
times. The performance analysis of AMR2 for this case is left
for future work.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[3] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[4] “Image classification using TensorFlow Lite,” https://www.tensorflow.
org/lite/guide/hosted models.

[5] “Pytorch mobile,” https://pytorch.org/mobile/home/.
[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE CVPR, 2016, pp. 770–778.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. IEEE CVPR, 2009,
pp. 248–255.

[8] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proc. IEEE
CVPR, 2018, pp. 4510–4520.

[9] S. Teerapittayanon, B. McDanel, and H. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in Proc. ICPR,
2016, pp. 2464–2469.

[10] H. Cai, C. Gan, and S. Han, “Once for all: Train one network and
specialize it for efficient deployment,” CoRR, vol. abs/1908.09791, 2019.

[11] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd ed.
Springer Publishing Company, Incorporated, 2008.

[12] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer,
Berlin, Germany, 2004.

[13] G. Ross and R. Soland, “A branch and bound algorithm for the
generalized assignment problem,” Mathematical Programming, vol. 8,
pp. 91–103, 1975.

[14] D. Shmoys and E. Tardos, “An approximation algorithm for the gen-
eralized assignment problem,” Mathematical Programming, no. 62, pp.
461–474, 1993.

[15] A. Fresa and J. P. Champati, “Offloading algorithms for maximizing
inference accuracy on edge device in an edge intelligence system,” in
Proc. ACM MSWIM (to appear), Oct 2022.

[16] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[17] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE
ISIT, 2016, pp. 1451–1455.

[18] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[19] J. P. Champati and B. Liang, “Semi-online algorithms for computational
task offloading with communication delay,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 4, pp. 1189–1201, 2017.

[20] ——, “Single restart with time stamps for parallel task processing with
known and unknown processors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 1, pp. 187–200, 2020.

[21] M.-H. Chen, B. Liang, and M. Dong, “A semidefinite relaxation ap-
proach to mobile cloud offloading with computing access point,” in Proc.
IEEE SPAWC Worskhop, 2015, pp. 186–190.

[22] M. Kamoun, W. Labidi, and M. Sarkiss, “Joint resource allocation and
offloading strategies in cloud enabled cellular networks,” in Proc. IEEE
ICC, 2015, pp. 5529–5534.

[23] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282,
2016.

[24] Y. Chen, F. Zhao, Y. Lu, and X. Chen, “Dynamic task offloading for
mobile edge computing with hybrid energy supply,” Tsinghua Science
and Technology, vol. 28, no. 3, pp. 421–432, 2023.

[25] Q. Li, S. Wang, A. Zhou, X. Ma, F. Yang, and A. X. Liu, “Qos driven
task offloading with statistical guarantee in mobile edge computing,”
IEEE Transactions on Mobile Computing, vol. 21, no. 1, pp. 278–290,
2022.

[26] Z. Wang, W. Bao, D. Yuan, L. Ge, N. H. Tran, and A. Y. Zomaya, “See:
Scheduling early exit for mobile dnn inference during service outage,”
in in Proc. MSWIM, 2019, p. 279–288.

[27] S. S. Ogden and T. Guo, “Mdinference: Balancing inference accuracy
and latency for mobile applications,” in Proc. IEEE IC2E, 2020, pp.
28–39.

[28] I. Nikoloska and N. Zlatanov, “Data selection scheme for energy efficient
supervised learning at iot nodes,” IEEE Communications Letters, vol. 25,
no. 3, pp. 859–863, 2021.

[29] Z. Xu, L. Zhao, W. Liang, O. F. Rana, P. Zhou, Q. Xia, W. Xu, and
G. Wu, “Energy-aware inference offloading for dnn-driven applications
in mobile edge clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 4, pp. 799–814, 2021.

[30] S. Wang, C. Ding, N. Zhang, X. Liu, A. Zhou, J. Cao, and X. Shen, “A
cloud-guided feature extraction approach for image retrieval in mobile
edge computing,” IEEE Transactions on Mobile Computing, vol. 20,
no. 2, pp. 292–305, 2021.

[31] H. Zhou, M. Li, N. Wang, G. Min, and J. Wu, “Accelerating deep learn-
ing inference via model parallelism and partial computation offloading,”

15

IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 2,
pp. 475–488, 2023.

[32] K. Dudzinski, “On a cardinality constrained linear programming knap-
sack problem,” Operations Research Letters, vol. 8, no. 4, pp. 215–218,
1989.

[33] D. G. Cattrysse and L. N. Van Wassenhove, “A survey of algorithms for
the generalized assignment problem,” European Journal of Operational
Research, vol. 60, no. 3, pp. 260–272, 1992.

[34] C. Chekuri and S. Khanna, “A ptas for the multiple knapsack problem,”
in Proceedings of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms, ser. SODA ’00. USA: Society for Industrial and
Applied Mathematics, 2000, p. 213–222.

[35] P. Ross and A. Luckow, “Edgeinsight: Characterizing and modeling the
performance of machine learning inference on the edge and cloud,” in
2019 IEEE International Conference on Big Data (Big Data), 2019, pp.
1897–1906.

[36] C. Potts, “Analysis of a linear programming heuristic for scheduling
unrelated parallel machines,” Discrete Applied Mathematics, vol. 10,
no. 2, pp. 155–164, 1985.

[37] J. van den Brand, “A deterministic linear program solver in current
matrix multiplication time,” in Proc. ACM SODA. Society for Industrial
and Applied Mathematics, 2020, p. 259–278.

[38] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017.

[39] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

Andrea Fresa is a PhD student at IMDEA
Networks Institute and Universidad Carlos III,
Madrid, Spain. He obtained his Bachelors and
Masters degree in Computer Engineering at
Universita’ di Napoli Federico II, Naples, Italy.
Prior to joining PhD, he was part of the IoT
group in Ericsson Research, Helsinki, Finland,
where he focused on the development of a cross-
communication platform for heterogeneous IoT
devices. His general research interest is in the
design and analysis of algorithms for Edge Com-

puting Systems.

Jaya Prakash Champati received his bachelor
of technology degree from the National Institute
of Technology Warangal, India in 2008, and
master of technology degree from the Indian
Institute of Technology (IIT) Bombay, India in
2010. He received his PhD in Electrical and
Computer Engineering from the University of
Toronto, Canada in 2017. From 2017-2020, he
was a post-doctoral researcher with the division
of Information Science and Engineering, EECS,
KTH Royal Institute of Technology, Sweden. He

is currently a Research Assistant Professor at IMDEA Networks Institute,
Madrid, Spain where he leads the Edge Networks Group. His general
research interest is in the design and analysis of algorithms for scheduling
problems that arise in networking and information systems. Prior to
joining PhD he worked at Broadcom Communications, where he was
involved in developing the LTE MAC layer. He is a Marie Skłodowska-
Curie Actions (MSCA) postdoctoral fellow, 2021, and a recipient of the
best paper award at IEEE National Conference on Communications,
India, 2011.

