
Universidad Politécnica
de Madrid

Escuela Técnica Superior de
Ingenieros Informáticos

Máster Universitario en Software y Sistemas

Trabajo Fin de Máster

In-depth analysis of the Android supply
chain:Vendor customizations on critical

networking components

Author(a): Rathnayaka Mudiyanselage Vinuri Gayanthika Bandara
Tutor(a): Dr. Srdjan Matic
Tutor(b): Dr. Narseo Vallina-Rodriguez

Madrid, May 2023

Este Trabajo Fin de Máster se ha depositado en la ETSI Informáticos de la
Universidad Politécnica de Madrid para su defensa.

Trabajo Fin de Máster
Máster Universitario en Software y Sistemas

Título: In-depth analysis of the Android supply chain:Vendor customizations on
critical networking components

May 2023

Autor(a): Rathnayaka Mudiyanselage Vinuri Gayanthika Bandara

Tutor(a): Dr. Srdjan Matic
IMDEA Software Institute
ETSI Informáticos
Universidad Politécnica de Madrid

Tutor(b): Dr. Narseo Vallina-Rodriguez
IMDEA Networks Institute/AppCensus
Madrid

Resumen

La amplitud y extensión del proyecto de código abierto Android (AOSP) permiten a los
vendedores de dispositivos Android (también conocidos como fabricantes de equipos
originales) introducir personalizaciones en sus productos para diferenciarse en el
mercado y añadir nuevas capacidades. Sin embargo, estas personalizaciones pueden
tener implicaciones importantes y graves para la seguridad y la privacidad de los
usuarios.

Los riesgos para la seguridad y la privacidad causados por la falta de control sobre
la cadena de suministro de Android han llamado la atención de los investigadores
en ciberseguridad. Estudios anteriores se han centrado en analizar los problemas
de seguridad relacionados con las aplicaciones preinstaladas y las modificaciones re-
alizadas en la tienda raíz de Android o en las configuraciones de red. A pesar de
ello, existe una importante laguna en la investigación acerca de cómo las person-
alizaciones de los proveedores en la pila de red de Android pueden obstaculizar el
establecimiento de comunicaciones de red seguras.

Para evaluar las amenazas a la comunicación segura introducidas por los vende-
dores, estudio las personalizaciones en la pila del protocolo TLS/SSL. Empleo técni-
cas avanzadas de análisis estático, concretamente diffing sobre datos de firmware de
Android recopilados a través de campañas de crowdsourcing. Aplicando mi pipeline
de análisis estático sobre un conjunto de datos de 48.520 dispositivos de más de
300 proveedores, detecto y analizo las desviaciones de los proveedores con respecto
al proyecto oficial Android Open Source Project (AOSP), mantenido por Google. Al
analizar las personalizaciones identificadas, descubro vulnerabilidades de seguridad
críticas que pueden comprometer la seguridad de los usuarios y de las aplicaciones.
Éstas van desde malas prácticas de los proveedores, el uso de versiones antiguas de
la plataforma Android, parches de seguridad críticos retrasados, implementaciones
criptográficas obsoletas, distribuciones inseguras de proveedores criptográficos como
versiones vulnerables de OpenSSL, hasta la ausencia de funciones de seguridad
avanzadas como validación de certificados, verificación de nombres de host y cifrados
priorizados debido a la eliminación por parte de los proveedores de métodos públicos
estándar que ofrecen estas capacidades.

En particular, estas deficiencias persisten tanto en los proveedores certificados de
Android como en los no certificados. Esto sugiere una falta total de control sobre
la cadena de suministro y su cumplimiento de las mejores prácticas que afectan
directamente a los intentos de los desarrolladores de aplicaciones de proteger sus
aplicaciones utilizando la pila de protocolos nativos. Los resultados preliminares de
esta tesis ponen de manifiesto la necesidad de controles más estrictos sobre la cadena
de suministro de Android. De hecho, creo que los reguladores y las autoridades

i

de certificación pueden promover nuevas iniciativas para reforzar las garantías de
seguridad de los dispositivos y controlar las prácticas de los distintos actores de la
cadena de suministro de Android.

ii

Abstract

The openness and extensibility of the Android Open Source Project (AOSP) enable An-
droid device vendors (also known as Original Equipment Manufacturers) to introduce
customizations in their products for market differentiation and adding new capabili-
ties. However, these customizations can have significant and severe implications for
user’s security and privacy.

The security and privacy risks caused by the lack of control over the Android supply
chain have caught the attention of cybersecurity researchers. Previous studies have
focused on analyzing the security issues related to pre-installed applications and
modifications made to the Android root store or network configurations. However,
a significant research gap exists due to the lack of investigation into how vendor
customizations on Android’s network stack can hinder the establishment of secure
network communications.

To assess the threats to secure communication introduced by vendors, I study the
customizations on the TLS/SSL protocol stack. I employ advanced static analysis
techniques, specifically diffing on Android firmware data gathered through crowd-
sourcing campaigns. By applying my static analysis pipeline over a dataset of 48,520
devices from more than 300 vendors, I detect and analyze vendor’s deviations from
the official Android Open Source Project (AOSP), maintained by Google. By ana-
lyzing the identified customizations, I uncover critical security vulnerabilities that
can compromise users’ and application’s security. These range from poor vendor
practices such as using older Android platform releases, delayed critical security
patches, outdated cryptographic implementations, insecure distributions of crypto-
graphic providers like vulnerable versions of OpenSSL to the absence of advanced
security functions such as certificate validation, hostname verification, and priori-
tized ciphersuites due to vendors’ removal of standard public methods offering these
capabilities.

Notably these shortcoming are persistent both within Android certified vendors as
well as non-certified ones. This suggests a total lack of control over the supply chain
and their compliance with best practices that directly impact on app developers’ at-
tempts to secure their applications using the native protocol stack. The preliminary
findings reported in this dissertation, highlight the need for stricter controls over the
Android supply chain. In fact, I believe that regulators and certification authorities
can promote new initiatives to strengthen device security guarantees and control the
practices of the different actors in the Android supply chain.

iii

Contents

List of abbreviations vii

1 Introduction 1
1.1 Knowledge gap and Dissertation Objectives 2
1.2 Contributions . 3

2 Background 5
2.1 Android Open Source Project (AOSP) . 5
2.2 The Android OS Architecture . 6

2.2.1 Building an Android Image . 8
2.3 The SSL/TLS Protocol Stack . 10

2.3.1 Android TLS/SSL implementation 10
2.3.1.1 Java Secure Socket Extension (JSSE) API 11
2.3.1.2 Java Cryptography Providers (JCA providers) 12
2.3.1.3 Java Cryptographic Extensions (JCE) 15
2.3.1.4 Android HTTPS Providers 17

2.3.2 Android Root Store . 18
2.4 Compiling the Android source code . 18

3 Literature Review 23
3.1 Characterizing Android OEM/vendor customizations 23
3.2 Android network security . 24

4 Research Methodology 27
4.1 Data Collection . 27

4.1.1 Firmware Scanner . 27
4.1.2 Android Dumps . 29

4.2 Extracting SSL/TLS packages . 31
4.2.1 Java Secure Socket Extension (JSSE) packages 31
4.2.2 Java Cryptographic Architecture (JCA) providers 34
4.2.3 Java Cryptographic Extension (JCE) packages 37
4.2.4 Android HTTPS providers . 38

4.3 Detecting Vendor Customizations . 39
4.3.1 Establishing the Baseline . 39
4.3.2 Java Secure Socket Extension (JSSE) packages 41

4.3.2.1 Edit Distance for JSSE packages 41
4.3.2.2 Method-based Diffing . 43

4.3.3 Java Cryptographic Architecture (JCA) providers 45

v

CONTENTS

4.3.3.1 Source of Cryptographic Providers 46
4.3.3.2 Vendor Modifications on TLS/SSL Protocol Implementa-

tions . 47
4.3.3.3 Vendor Usage of Cryptographic Primitives 48

4.3.4 Java Cryptographic Extension (JCE) packages 48

5 Results and Discussion 49
5.1 JSSE Customizations . 49

5.1.1 Removed JSSE functionality . 52
5.1.2 Added JSSE functionality . 58
5.1.3 Functionality and Security Loss Overview 60

5.2 JCA Providers Customizations . 62
5.2.1 Provider Choice . 62
5.2.2 Functionality Changes . 65

5.3 JCE customizations . 72
5.3.1 Conscrypt Customizations . 73
5.3.2 Vendor adaptation of Okhttp and BouncyCastle 76

6 Conclusion 79
6.1 Discussion . 80
6.2 Future work . 81

Bibliography 90

vi

List of abbreviations

AOSP Android open source project

CDD Compatibility definition document

CTS Compatibility test suite

.dex Dalvik executable

.jar Java archive

JCA Java cryptography architecture

JCE Java cryptography extension

JSSE Java secure socket extension

.odex Optimized dalvik executable

.oat Optimized android file format

ODM Original design manufacturing

OEM Original equipment manufacturer

OS Operating system

.so Shared object

SNI Server name indication

vii

Chapter 1

Introduction

As of today, Android is the dominating mobile operating system (OS) with a 78% mar-
ket share.1 One of its keys to success is its open source nature, which is maintained
by Google under the name Android Open Source Project (AOSP) [14]. However, its
open source nature has enabled a large and complex software supply chain which
includes stakeholders such as:

• Chipset/processor manufacturers like Qualcomm or MediaTek.

• Original Equipment Manufacturers(OEMs) such as Google, Samsung, HTC and
Huawei, which are the phone vendors considered by buyers when purchasing an
Android device. Certain vendors may sell their products under different brands.

• Mobile network operators (MNOs), such as Telefonica or Orange, may preloaded
their own software in subsidized Android devices.

• Android app markets such as Google Play, the Baidu app store [18], or the
Amazon App Store [1] may come preloaded in Android devices. When an Android
vendor is Google-certified [7] may also come with other Google’s products such
as Gmail, Google Maps, or Youtube.

• Third-party applications like social networks, browsers, streaming platforms,
games or anti-virus software that could be bundled as a preloaded app when an
Android device is released to the market.

AOSP can be heavily modified by any of these actors to incorporate additional features
that can differentiate their products from other vendors or to pre-install third-party
applications such as MNO apps for billing, browsers, or social network apps. The
feature additions done on the AOSP could extend from adding vendor-unique prein-
stalled apps (also known as preloaded applications), broadening the usability of the
original applications and overall creating an exclusive look and character for their An-
droid devices. However, while the booming number of feature addition on Android de-
vices is attractive from an end-user perspective and also from a revenue perspective,
this raises concerns regarding the privacy and security guarantees of these products
as reported by prior work: customizations and pre-installed apps are privileged sys-
tem components that cannot be removed without rooting the device [69]. Moreover,

1iOS vs Android Quarterly Market Share

1

https://www.counterpointresearch.com/global-smartphone-os-market-share/

1.1. Knowledge gap and Dissertation Objectives

actors in the supply chain may also introduce privacy-intrusive third-party advertis-
ing and tracking libraries in their apps, which can silently harvest users’ personal
data without their awareness and consent.

It is, therefore, pivotal to understand the nature and risks associated with OS-level
customizations, their origin and their purpose. I consider two types of customiza-
tions:

• Customized Android core components that come packaged with any Android
device as they are a critical part of the Android Operating System (e.g., the
Telephony Manager, Contacts Manager, or the Location Manager). These ele-
ments are initially developed and maintained by the development team behind
the AOSP but vendors can add or remove features, and even include third-party
tracking libraries on them for monitoring users.

• Vendor core components, which are structural elements that come preloaded in
an Android framework but are are created and embedded by different actors in
the supply chain (e.g,. a browser, app store, or music player). These elements
presents the most potential of being different between vendors due to the supply
chain relationship and product diversity; additionally the vendor-defined core
components can also be specific to a region due to MNO operations or chipset
manufacturers or region-specific requirements.

The escalating security and privacy risks associated with the lack of control over the
Android supply chain have increasingly come under the scrutiny of the cybersecu-
rity researcher community. I discuss extensively prior work in Section 2. Yet, prior
research has been dedicated to analyzing the security implications of customizing
pre-installed apps, specifically (i) investigating the issues of over-privileged applica-
tions, misuse of third-party libraries and permissions [69], and (ii) compliance issues
among vendors [87]. A separate but complementary line of research has focused on
identifying the vulnerabilities that arise due to modifications made by supply chain
actors to the Android root store [93, 82], or to network configurations [92, 83, 73].

1.1 Knowledge gap and Dissertation Objectives

A significant but critical research gap remains unexplored in the research litera-
ture: how customization and source code alterations on Android’s network stack
can impair the establishment of secure network communications. Vendor cus-
tomizations in the SSL/TLS network stack —both at the kernel and Android frame-
work level—can affect the establishment of secure communications. Inadequate cus-
tomizations done upon the SSL/TLS stack could expose the end-user to unforeseen
threats due to insecure communication channels such as state surveillance or in-
path proxies. With the goal of narrowing this research gap, this dissertation has the
following two goals:

1. Develop scalable and accurate methods to identify vendor customizations on the
Android’s SSL/TLS networking libraries. Specifically, we focus on customiza-
tions on the:

• Android Java secure socket extension API implementation

• Android native cryptographic providers

2

Introduction

• Android Java cryptographic Extensions

2. Examine how the lack of control over the Android supply chain is responsi-
ble for platform fragmentation, potential compatibility issues (i.e., by removing
standard API features), and even for impairing end-users’ networking security
by introducing vulnerabilities.

The customizations on the Android native cryptographic providers and the Java cryp-
tographic extensions ultimately contribute to the networking abilities of an device
through Android Java secure socket extension APIs. These APIs are critical from a
network security standpoint as they determine the default configuration for SSL/TLS
communication and allow the developers to integrate enhanced security practices
such as TLS based protocols [50], setting prioritized ciphersuites [51], certificate pin-
ning [53, 52].

1.2 Contributions

Using a novel purpose-built static analysis method (Described in Chapter 4), this dis-
sertation empirically analyzes for the first time (i) the extent of vendor’s customiza-
tions on critical networking components on Android devices, and (ii) assess to which
extent they could become threat to end-user’s security. By applying my analysis
pipeline on a dataset formed by over 48,500 Android images, spanning across the
latest 5 versions and covering 300 different vendors, we find that:

• Level of customizations. I analyzed the Android devices released under 300
vendors running on Android version 9, 10, 11, 12 and 13 to characterize the
level of customizations done on the Android SSL/TLS stack by vendors through
differential analysis (i.e., “diffing”). My analysis on the Java secure socket API
vendor implementations shows that around 70% of the vendor versions show de-
viations from the established baseline which is the AOSP, with some even lack-
ing basic endpoint verification functionalities implemented by OpenJDK. The
analysis on the Java cryptographic providers, provided insight into the low-level
provider shifts done by vendors resulting in OpenSSL and it’s alternative deriva-
tives (Libgcrypt) being used as the cryptographic primitive and protocol provider
instead of BoringSSL, the default cryptographic provider by Google in response
to OpenSSL vulnerabilities. Finally the examination on Java cryptographic ex-
tension layer (default Conscrypt as used by Google AOSP) showed that some
vendors do not give access to the latest cryptographic implementations to be
used in the application level. For example, I found instances where specific ci-
phersuites introduced for the advancements in TLS 1.3 are lacking in SSL/TLS
stacks of some Chinese device vendors.

• Security issues due to customizations. The analysis done on each SSL/TLS
critical component showed that developer lack discipline and best practice ap-
proaches when implementing and maintaining Android networking capabilities,
therefore falling behind on basic end-user security. The usage of OpenSSL al-
ternatively to BoringSSL, raises doubts on the vendor knowledge on the best
effort approaches in the community. I found isolated cases where, the version
of BoringSSL used within the device was potentially released two years prior to
the device release therefore showing the importance of proper validation of such
critical components and bad praxis by supply chain actors. The examination of

3

1.2. Contributions

all three critical component layers, suggested a lag in vendors’ diligence to in-
corporate the latest security efforts taken by Google. Samsung devices showed
a delay in deprecating a patchy Diffie-Hellman protocol by one year and Xiaomi
devices are yet to incorporate hybrid public key encryption to their networking
capacities by the year 2021. These findings are more worrying given that both
Samsung and Xiaomi are Google certified vendors according to Google’s list [7].
The missing functionalities catering to certificate verification found within the
analysis of Java cryptographic extensions, can potentially impair user and app
security by limiting application developers’ ability to incorporate additional se-
curity measures such as certificate pinning.

• The explorations conducted on vendor SSL/TLS stacks, within the scope of the
research objectives lead to to identification of commonality among the vendors.
On the network interface level, some vendors showed a staggering similarity
between their API specifications. Yet, I observe methods for certificate trans-
parency and verification missing in a certain set of Android vendors, many of
which are not certified by Google. Despite the complex nature of the Android
supply chain and the lack of transparency of their Android manufacturing pro-
cesses, reaching a conclusion on the actual reasons behind these findings is
difficult. Yet these results could lead to the identification of some mutual stake-
holders providing Android images to different brands, as well as common inse-
cure practices by some actors in the Android supply chain.

All in all, this study reveals the shortcomings and the probable scope for improve-
ments in Android vendor TLS/SSL implementations. I conclude this dissertation
with a general discussion of the findings and a discussion of potential mitigations
that could rectify the inconsistencies and the poor security development practices
observed in the Android supply chain, including independent certification efforts and
stricter regulatory compliance in the context of the new EU Cyber Resilience Act [26].

4

Chapter 2

Background

This chapter discusses the technical background knowledge required to understand
the scope of this dissertation. First I introduce the basic structure of the Android
open source project (Section 2.1). Then, I present the fundamentals components of
Android architecture (Section 2.2). Lastly, I describe the networking libraries, with
an emphasis on SSL/TLS, used to establish network communications (Section 2.3).

2.1 Android Open Source Project (AOSP)

The Android open source Project [14], led and maintained by Google, serves as the
basis of the different Android variants found in the market. AOSP is a complete and
well-maintained project with thorough documentation which provides Android ven-
dors with almost all the functionalities to create a functional Android device, either a
smartphone or a Smart TV. Yet, its open source nature allows vendors to customize
AOSP by modifying the code, selecting dependencies (e.g., cryptographic providers)
or integrating third-party apps to meet their specific needs and differentiate their
products from competitors. The overall impact and process of the supply chain is
presented in Section 3.1.

The Android supply chain initiates from the need to included the additional com-
ponents such as kernel drivers with respect to each custom Android variant. This
phenomena, known as “fragmentation”, is responsible for producing a myriad of An-
droid variants that may have their own vulnerabilities and threats, and for potential
incompatibilities by modifying the native APIs that developers can invoke. When it
comes to custom Android variations, the closest derivation of the AOSP is found with
in Android Pixel phones [37], which are manufactured by Google itself.

. AOSP/
- art
- bionic
- bootable
- build
- compatibility
- cts
- dalvik
- developers

5

2.2. The Android OS Architecture

- development
- device
- external
- frameworks
- hardware
- kernel
- libcore
- libnativehelper
- Makefile
- out
- packages
- pdk
- prebuilts
- sdk
- system
- tools
- vendor

2.2 The Android OS Architecture

The Android open-source platform is a complete software stack that includes multi-
ple components such as the operating system, middleware and system applications.
Android is built primarily using Java programming language but some low-level li-
braries are implemented using C/C++. It consists of multiple components stacked
and grouped into different architecture layers, as shown in figure 2.1 [15]:

• Linux Kernel. This the the underlying base structure of the Android architec-
ture, the ART utilizes this layer for low level functionalities such as memory
management and multi-threading. The underlying kernel is different for each
Android version release since this is modified by Google using the already exist-
ing Linux open-source OS.

• Hardware Abstraction Layer (HAL). The hardware abstraction layer (HAL) is
an abstraction layer built upon the Android linux kernel which includes a set of
standard interfaces manufactured or implemented by hardware manufacturers
or or the chipset manufacturers as we refer to them in the Android supply chain.
This layer allows the programs to seamlessly communicate with the kernel layer
components like the camera driver even if substantial changes are done on the
Android OS.

• Android Runtime (ART). The ART establishes the runtime environment for run-
ning Android applications and system services using the strategy called “Ahead-
of-Time (AOT)” compilation. This turns the complete application code into native
bytecode (.dex representations) during the installation and stores it for the time
being.

• Native C/C++ libraries. Native C/C++ libraries play a crucial role in improving
Android performance along with application functionality. Their purpose could
ranges from database connection support, cryptographic primitive implementa-
tions to TLS protocol implementations. Since the ART is built using native code,

6

Background

Figure 2.1: Android software stack (source : https://developer.android.com/
guide/platform).

the required libraries by the Android OS are also implemented using native code
(C or C++). The developers can access system-level functionalities provided by
these libraries through implementations of Java APIs that bridges the gap be-
tween the native layer and the high-level user layer. This integration between
the Java code and the native layer is facilitated by the Java native interface
(JNI) and allows developers to incorporate features from both Java-based plat-
form and the native implementations.

For example the cryptographic primitives and TLS implementations which are
incorporated as native libraries are exposed to the Android application layer
through Java APIs which are constructed through Conscrypt which is an Java
wrapper around the networking native libraries. During the Android build pro-
cess, the C/C++ sources of these libraries are compiled into ELF binary files
and are stored in the system partition. Therefore this allows the vendor/OEM
to include their own libraries or extra libraries that support the inherent func-

7

https://developer.android.com/guide/platform
https://developer.android.com/guide/platform

2.2. The Android OS Architecture

tionalities or advanced functionalities for their applications and hardware.

• Android Framework. This layer allows user-space applications to access lower-
layer components through the JAVA API framework. The application program-
ming interfaces (APIs) made available to developers through the framework layer
gives them an opportunity to create applications using higher-level languages
(e.g., Java) and yet communicate with the more advanced and complicated An-
droid OS using the simple APIs. Even though this layer creates easy access
points for developers to communicate with Android OS, some of the APIs might
allow access to sensitive data hardware components if not regulated properly.
Therefore the Android architecture includes a permission-based security mech-
anism which requires the user to accept or decline the usage of these sensitive
APIs. When using an Android application when requires the user location, the
Android OS will require user permission to allow access to such sensitive infor-
mation.

• Application Layer. The top layer is the application layer which contains both
user-space Android applications as well as preinstalled ones (typically installed
in the system partition). User-installed applications are typically done through
any Android market place or through an Android Package (APK) installation (i.e.,
side-loading). On the other hand the system apps are embedded in the device’s
system partition and are typically included when creating the image, yet they
can be added or modified during the updates/security updates performed by
Firmware-Over-the-Air (FOTA) components [63], which are typically under the
control of the original OEM/vendor but can be externalized to companies like
Redstone. Due to the read-only nature of the systems partition, users simply
can’t uninstall preinstalled apps, which also run with privileged system privi-
leges.

2.2.1 Building an Android Image

When building an Android build using the AOSP code or a modified version, the
output will be stored in the Out/ folder which then can be flashed into a physical
handset using Google’s platform tools such as the Android SDK platform tools [16].
An Android image is typically structured as follows:

1. art : Compiles the latest Android runtime (ART) environment.

2. bionic : Contains Android’s C library, math library , dynamic liner interfaces (as
a library) [20].

3. bootable : OS startup or boot related code is available in this folder.

4. build : The starting point to building the Android OS is through the build/en-
vsetup.sh. This prepares the build environment by ensuring all the dependen-
cies are fulfilled.

5. compatibility : Testing and helper components for ensuring the compatibility
between different Android versions and with the Android platform. Includes
critical Google initiatives such as the Android compatibility definition (CDD) [5].

6. cts : Contains the test suites as required as CDD, which is namely the Android
compatibility test suite (CTS).

8

Background

7. dalvik : Source code responsible for establishing the Dalvik virtual machine for
Android devices.

8. development : Aids the development by providing source for tools such as ndk
and sdk.

9. device : Some common product specific configurations that can be used for
different devices. Such as the Google Android accessories kit and template for
creating a customized Android shared library along with how to embed in the
Android device using the Java Native interface(JNI).

10. external : Supports the extensibility of the AOSP. This folder includes the source
code from all the external open source projects used when building the Android
version; such as Webkit, Boringssl, Apache Http, OkHttp etc.

11. frameworks : The source for the Android framework. Containing the implemen-
tations for system services such as package and activity managers along with
the methods of communication between the Java APIs and the native libraries.

12. hardware : The HAL related source code such as hardware specifications and
implementations.

13. kernel : specific to the devices, includes the linux kernel source code based on
the device configuration setup.

14. libcore : Includes source for ojluni, luni, libart which are supporting libraries
for core functionalities in the Android OS [39].

15. libnativehelper : Contains a set of JNI utilities to be used in Android OS imple-
mentation.

16. packages : The Android standard applications that are core components such
as the telephone, camera.

17. pdk : Includes the platform development kit,to be used when creating custom
Android powered devices. This helps the manufacturers to migrate to newer
releases since this contains the necessary components for implementing the
HAL.

18. prebuilts : Binary forms of necessary packages and libraries used for success-
fully building Android OS.

19. sdk : Some applications which are not part of the Android OS, these can be
further built upon by the developers or used when creating custom applications.

20. system : Source code for the core Android system. The base linux system before
the Dalvik virtual machines and Java services are added on top. Mainly the init
process and script are included.

21. tools : External tools aiding the build and compilation of the OS.

22. vendor : vendor specific libraries which are most of the time proprietary and
non-open source.

All of these sections listed above, are integral parts of the Android OS and during
the build process can be extended according to vendor requirements. For example
the external section can extended by adding external open source packages such

9

2.3. The SSL/TLS Protocol Stack

as LibreSSL and any vendor-specific implementations that are closed source can be
included within the vendor partition during the

Customizations shouldn’t cause incompatibility issues with the standard Android
applications. To ensure this compatibility of customized devices, Google initiated the
CDD and the CTS. Any vendor who wants to market their device as an Android device
can use the CTS which is a set of tests to assure the AOSP compatibility. While the
CTS is open source there are other test suites used by Google as way of clearing
the Android vendor as a Google certified vendor [7]. Vendors who do not adhere
to these tests are not allowed to come bundled with Google’s app suite, yet they
can include Google Play by outsourcing their devices to a certified original design
manufacturers or ODMs [7]. Google Play is the most popular app store to install
third-party applications on the device, currently hosting over 1M apps. Yet, users
and vendors can opt to use alternative app stores like Xiaomi’s or Baidu’s [94].

2.3 The SSL/TLS Protocol Stack

The Android ecosystem provides security to its users by protecting the data transfers
that enters and leaves the device, this is accomplished through transport layer se-
curity (TLS) which is the predecessor of secure socket layer (SSL) which are the two
mostly used cryptographic protocols. From Android 10 onwards TLS 1.3 is enabled
by default for all the TLS connections being established, while TLS 1.2 was supported
since Android 12.

HTTPS (Hypertext Transfer Protocol Secure) utilizes the TLS to encrypt data moving
back and forth between client devices and servers, which is controlled and main-
tained through the android:usersCleartextTraffic configuration in an Android appli-
cation. This attribute is set to "false" by default as a best-effort method for preventing
clear text traffic from an application. In Android the trust model of TLS is based
on the TLS certificates presented in the Android root store, which will be further dis-
cussed in section 2.3.2, and the technical implementations and the lower level details
on the TLS/SSL implementation in Android context will be discussed in section 2.3.1.

2.3.1 Android TLS/SSL implementation

The openness and extensibility of the AOSP is not only limited to upper layer levels
such as the Android applications but also escalates to lower level implementations
such as TLS protocol implementations. While the usability of these implementation
narrows down to establishing a secure connection, the underlying architecture is
rather complicated and needs to be studied extensively. The given figure 2.2 shows
these critical components, adhering to more abstract concepts these components
can be grouped into two classes; JSSE (Java secure socket extension) API and the
JCA (Java cryptographic architecture) which compiles into the Android cryptographic
software stack. This stack is implemented using Java (JSSE, OkHttp, Conscrypt)
and C (Boringssl), while during the build process the C/C++ libraries are compiled
and stored as shared library files or .so files and the Java libraries/source code is
compiled and stored as jar, oat, or odex files depending on the Android build and
version [9].

10

Background

Figure 2.2: Android HTTPS/TLS implementation and core components.

2.3.1.1 Java Secure Socket Extension (JSSE) API

The Java Secure Socket Extension (JSSE) is the layer between the mobile applica-
tion/service and the JCA/HTTPS providers, this bridges the gap between the native
libraries layer and the Android application layer. The two main classes which hold
support for Android TLS/SSL are javax.net [12] and javax.net.ssl [13]. These
classes provide groundwork for services such as ssl client, server socket, ssl engine
(supports the I/O operations of the application), ssl context , https url connection,
trust management and key management.

Table 2.1 provides an overview of the important javax.net and javax.net.ssl sub-
classes, along with their purpose in the SSL/TLS context. Most of the functionalities
defined in these classes supplements the core networking and cryptographic func-
tionalities defined in java.net [10] andjava.security [11] packages.

To observe how javax.net.ssl extends other classes such as java.* , org.*, the fol-
lowing figure 2.3 depicts the high-level connection between the javax and java pack-
ages.

The javax API access the low level implementations of secure communication proto-
cols offered by "providers" through Conscrypt which acts as the bridge between the
native BoringSSL libraries and the high-level Java interfaces. As shown in figure
2.2 javax.net.ssl and javax.net only includes interfaces, the reciprocal classes
are implemented in Conscrypt and BoringSSL. For example, through figure 2.2 we
can create the internal dependencies for javax.net.ssl.SSLContext; while Con-
scrypt’s OpenSSLContextImpl and SSLParametersImpl classes create the relation-
ship between Java classes and C libraries ,BoringSSL’s Struct_SSL_CTX provides the
actual TLS context.

11

2.3. The SSL/TLS Protocol Stack

JSSE class JSSE subclass Purpose
ServerSocketFactory Create server sockets

javax.net
SocketFactory Create sockets
CertPathTrustManagerParameters Handles certificate path parameters

ExtendedSSLSession
Extension of the SSL session interface to add
additional attributes such as supported signature algorithms

HandshakeCompletedEvent Indication of the completed SSL handshake

HttpsURLConnection
Extend java.net.HttpURLConnection with support for
HTTPS features

KeyManagerFactory Factory for key managers based on key store or provider

KeyManagerFactorySpi
Service provider interfaces for the above
KeyManagerFactory class

KeyStoreBuilderParameters
X509KeyManager parameter object encapsulates the list
of KeyStore builders

SNIHostName
Create instances to represent DNS hostname in a Server
Name Indication extension

SNIMatcher
Create instances to represent a matcher for performing
match operations on an SNIServerName instance

SNIServerName
Create instances to represent a server name in a
Server Name Indication extension

SSLContext
Represent a secure socket protocol implementation
(The protocol could be a factory for secure socket factories
and SSL engines)

SSLContextSpi Service Provider Interface(SPI) for SSLContext

SSLEngine
Enable secure communication using protocols such as
SSL and TLS

SSLEngineResult
Encapsulate the resulting state produced by an
SSLEngine I/O call

SSLParameters Encapsulates parameters for an SSL/TLS connection instance

SSLPermission
This is noted as Legacy at the time of the research, recommended
not to be used

SSLServerSocket
Extend the ServerSockets and exposes secure server sockets using
TLS or SSL protocols

SSLServerSocketFactory Create SSLServerSockets

SSLSessionBindingEvent
Send the event to SSLSessionBindingListner; which is an interface for objects
to ensure their SSL session status (bound or unbound)

SSLSocket
Extension of Sockets for providing secure sockets using protocols,
currently SSL and TLS

SSLSocketFactory Create SSLSockets
StandardConstants Include standard constants definitions

TrustManagerFactory
Factory for trust managers based on the type of of trust material
used by secure sockets. Currently supports the PKIX algorithm.

TrustManagerFactorySpi Define the service interface for the TrustManagerFactory class
X509ExtendedKeyManager Extension of the X509KeyManager interface

javax.net.ssl

X509ExtendedTrustManager
Extensions to the X509TrustManager interface to
support sensitive trust management for TLS or SSL

Table 2.1: The JSSE API subclasses and functionalities [12, 13].

The internal supply chain of Google depends on OpenJDK [48] to embed the JSSE
APIs into Android OS, these are pulled into /platform/libcore/ojluni and mod-
ified according to the needs of Android. The complication of keeping track of the
changes done by each vendor for OpenJDK based files comes from the developer
freedom to depend on different versions of OpenJDK, for example the following up-
stream versions of javax.net.ssl classes (as shown in figure 2.4) are extracted from
different versions.

2.3.1.2 Java Cryptography Providers (JCA providers)

The Android architecture includes an extensible cryptographic and protocol provider
stack, in the AOSP this is implemented using BoringSSL (derivative of OpenSSL)
and Conscrypt (Java wrapper around native BoringSSL). From a developer stand
point these provide the Java equivalents of BoringSSL functionalities available to
developers in the forms of protocol implementations and cryptographic primitives.

12

Background

Figure 2.3: javax.net.ssl dependencies among java.* , org.* and sun.* classes.

BoringSSL

This low level native library provides the actual TLS functionalities to the Android OS.
According to the Google source of BoringSSL [35] this is Google’s fork of OpenSSL [85]
and therefore is not intended to be used for external projects due to the API and ABI
instability. Due to the high severity vulnerabilities [91] found in OpenSSL, and Google
who was depending on OpenSSL until year 2014 decided to create their own fork due
to high amount of patches OpenSSL released due to the exposed threats. Due to
the non maintainability issues that arose within this period, Android shifted to Bor-
ingSSL leaving their OpenSSL [49] branch unmaintained. At the time of composing
this document, this branch records it’s last commit 7 years ago (In 2016). BoringSSL
provides the basic primitives and TLS/SSL implementations and the chromium docu-
mentation [21] provides the overall functionality overview. When referring to the SSL
implementation included in BoringSSL, the following protocols are currently available
to be used within the Android OS.

#define DTLS1_VERSION_MAJOR 0xfe
#define SSL3_VERSION_MAJOR 0x03
#define SSL3_VERSION 0x0300
#define TLS1_VERSION 0x0301
#define TLS1_1_VERSION 0x0302
#define TLS1_2_VERSION 0x0303

13

2.3. The SSL/TLS Protocol Stack

Figure 2.4: Libcore upstream OpenJDK dependencies and the versions.

#define TLS1_3_VERSION 0x0304
#define DTLS1_VERSION 0xfeff
#define DTLS1_2_VERSION 0xfefd

When it comes to cipher suites, currently these algorithms have global functions that
can be called from the java interfaces.

OPENSSL_EXPORT const EVP_CIPHER *EVP_rc4(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_cbc(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ecb(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede3(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede_cbc(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede3_cbc(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ecb(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_cbc(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ctr(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ofb(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ecb(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_cbc(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ctr(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ofb(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_xts(void);

This library is included in the AOSP within the external/boringssl and within the
build process is stored lib(lib64)/libssl.so and lib(lib64)/libcrypto.so (ELF representa-
tions) which respectively refers to TLS/SSL implementations and cryptographic prim-
itives. This fork of BoringSSL is validated and certified through the "Cryptographic
Module Validation Program" (certificate 3753) [46] to provide secure cipher suites and
protocols.

14

Background

Alternate crypto providers

The extensibility and the openness of the Android ecosystem allows the developers to
embed their own cryptography providers into the native library layer. Following are
some of the most popular cryptography providers developers can integrate into their
TLS/SSL stack.

OpenSSL [85] was Android’s choice of sole crypto provider until the year 2014 when
OpenSSL’s HeartBleed vulnerability which allowed anyone on the internet to read the
system memory of any device/system that such integrated with the vulnerable ver-
sion of OpenSSL. This issue brought upon many security patches that the AOSP had
to send to it’s devices. Due to the scale of remediation to be done and the following
compatibility issues Google decided to fork their own OpenSSL branch as rename it
to BoringSSL which is described in section 2.3.1.2. But due the extensibility and the
openness of the Android eco system the developers still has the freedom to use any al-
ternative over the recommended and comparatively vulnerability free BoringSSL.(The
only CVE entry for BoringSSL was recorded in 2018 [24]). The current Android repos-
itory for OpenSSL has been left unmaintained. OpenSSL has obtained FIPS 140-2
validation which assures that specific security requirements for cryptographic mod-
ules have been satisfied [27].
GnuTLS [34] is a library for secure communication that provides developers with sim-
plistic APIs implemented in C with access to protocols such as SSL, TLS and DTLS
protocols with strong encryption capabilities such as AES and Camellia. GnuTLS
claims that this provides smooth integration along with the rest of linux native li-
braries.
WolfSSL [95] is an attractive alternative for traditional TLS libraries given the small
size , better memory utilization. The WolfSSL stack is made from two core compo-
nents; the WolfSSl SSL/TLS library and the WolfCrypt crypto-engine. Their crypto-
engine has received the FIPS 140-2 certification and the development team behind
the library claims that this is a stable and progressive addition or alternative for
long-time SSL/TLS implementations such as OpenSSL.
Botan [54] cryptographic library is implemented using C++ and is distributed under
the permissive BSD license which gives developers the opportunity to use unmodified
source or binaries of Botan in their implementations; this could reduce the attrac-
tiveness of Botan for Android developers.
LibreSSL [43] is a fork of OpenSSL which was made with the goal of security improve-
ments , best development practices. Same as OpenSSL and BoringSSL , LibreSSL also
includes libcrypto and libssl but also libtls which is an improved TLS library. libtls
can be built upon libcrypto from LibreSSL, OpenSSL or BoringSSL.
Libgcrypt [33] created by GNU privacy guard is a general purpose cryptographic li-
brary which includes all the basic components for a cryptographic stack such as
ciphers, hash algorithms, public key algorithms and MACs etc.

2.3.1.3 Java Cryptographic Extensions (JCE)

The Android JCE layer consists of Conscrypt and BouncyCastle as for the current
AOSP source code. Among these two, Conscrypt is considered the primary security
provider for the JSSE API level since the release of Android 8.0 [4]. Conscrypt can
be completely replaced by third-party implementations such as BouncyCastle (which
was the default security provider for the application level APIs until Android 8.0),

15

2.3. The SSL/TLS Protocol Stack

although it is mostly deprecated.

Conscrypt

Conscrypt which is implemented in Java, presents the Android developer with a cor-
respondent to BoringSSL. Therefore is referred to as the Java cryptographic extension
(JCE) [23] and is mainly exposed through the javax.crypto JSSE API. The following
mapping can be used to further clarify the one-to-one mapping between Conscrypt
and BoringSSL.

Conscrypt BoringSSL
SSLParameterImpl —> SSL_CTX_new
OpenSSLSocketImpl —> SSL_new
OpenSSLSessionImpl —> SSL_SESSION_new

According to Android claims, incorporating Conscrypt guarantees an improvement of
security without relying on the Over-the-Air updates. Within an Android device, the
library is stored as a JAR files or OAT files depending on the version and configura-
tions. From a secure communication point of view, Conscrypt provides support for
the following TLS protocol versions.

• SSLv3 (Almost deprecated / If initiated, ignored by Android OS)

• TLSv1

• TLSv1.1

• TLSv1.2

• TLSv1.3

This also exposes implementations of different cipher suites which are already defined
in BoringSSL , based on the required TLS protocol version (As shown in table 2.2).

BouncyCastle

BouncyCastle is a cryptography API provider for Java (JCE) and is minimally used
for it’s cryptographic algorithms by Android. BouncyCastle’s implementations can be
used in place of BoringSSL and Conscrypt, in terms of it’s purpose. Due to security
considerations, namespace conflicts BouncyCastle has two main releases used within
the Android history.

First alternative is ’SpongyCastle’ [57], a customized version of the original package
to provides easier updates and android-specific functionalities. This distribution has
not been updated since the year 2018 as the namespace conflicts behind the origin
of SpongyCastle was resolved [19]. The second alternative was initiated due to the
security concerns arose regarding the BouncyCastle implementation, this resulted in
the development team behind BouncyCastle to develop StripyCastle. StripyCastle is
a FIPS 140-2 release version of BouncyCastle, that only includes cryptographic mod-
ules that have been tested against the FIPS 140-2(Federal Information Processing
Standard) therefore providing developers with a stronger addition to the JCE stack.
According to the BouncyCastle documentation StripyCastle only supports upto An-
droid Oreo (version 8).

16

Background

TLS 1.0

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_256_GCM_SHA384

TLS 1.1

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_256_GCM_SHA384

TLS 1.2

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_256_GCM_SHA384

TLS 1.3
TLS_AES_128_GCM_SHA256
TLS_AES_256_GCM_SHA384
TLS_CHACHA20_POLY1305_SHA256

Table 2.2: Enabled cipher suites based on TLS protocol version

2.3.1.4 Android HTTPS Providers

OkHttp [90] developed by Square, is a third party HTTP/HTTPS and apache client
provider in Android architecture. Although OkHttp is included in the Android AOSP
SSL/TLS stack, it can be replaced by alternative HTTPS providers such as Vol-
ley [38], Retrofit [58] and Apache HttpClient [17]. In the context of HTTPS, the
HttpsURLConnectionImpl of OkHttp supplies JSSE’s HttpsURLConnection interface
with a concrete class implementation; which mean OkHttp has the ability to provide
HTTP/HTTPS connections and apache client interfaces by extending the java socket
layer without relying on other dependencies. Similar to Conscrypt, OkHttp also exists
in the external/okhttp within AOSP and after building it’s stored as JAR files or OAT
files.

17

2.4. Compiling the Android source code

2.3.2 Android Root Store

The Android root store plays a critical part in the establishment of secure commu-
nication, this is the Android storage for trusted root certificates. In the event of
an Android device initiates an SSL/TLS connection with a server, it needs to per-
form certificate verification due to the standards of public key infrastructure (PKI). In
summary, during this process the target server presents the digital certificate which
holds it’s public key. Then the client (in this case, the Android device) needs to verify
the authenticity of the server certificate before establishing a secure communication.

For this purpose, the Android root store, located in system/etc/securty/cacerts/
holds a collection of preloaded trusted root certificates issued by various certificate
authorities (CAs). In a user stand point, during the verification process the Android
SSL/TLS process checks whether the certificate sent by server is signed by a trusted
CA. If so then a connection is established otherwise the connection is rejected or
the Android user is prompted to make a decision on continuing with an untrusted
connection. For Android version 13, the AOSP included a total of 129 trusted CAs in
it’s root store but this can be modified by vendors to add their own custom CAs to
ensure the device’s secure communication.

The JSSE holds the TrustManager which holds the responsibility of managing overall
trust materials along with digital certificates and therefore utilizes the Android root
store. BoringSSL holds the base functionalities such as SSL_CTX_set_verify_depth,
SSL_CTX_set_cert_store.

The root store in Android devices are updated through FOTA updates to include new
trusted root certificates or remove certificates that are no longer considered secure.
(deprecated or vulnerable)

2.4 Compiling the Android source code

The Android source code documentation provides vendors with extensive instructions
on how to build Android from the AOSP source code [6]. This requires downloading
the AOSP source, initiating the build environment, selecting Android build variant
and then finally building the OS. These steps are further discussed below.

1. Downloading the AOSP source

This step requires the use of the tool ’Repo’ [56]. Repo is an executable python
script which can be incorporated in the target location of thr AOSP. This tool is
built upon Git which helps with maintaining versioned code repositories. During
building the AOSP, repo will be used to checkout and sync the source code.

1 $ curl https://storage.googleapis.com/git-repo-downloads/repo > <repo script path>
2 $ chmod a+x <repo script path>
3

4 Add repo to PATH variable
5 $ PATH = <repo script path>:$PATH

As a pre-requirement, the developer should set up their git details in order to
source the AOSP code.

1 $ git config --global user.name <Git username>

18

Background

2 $ git config --global user.email <Git user email>

After the above steps are completed the developer can use repo, to initialie the
required Android version to be built. The list of source code builds [8] has been
made available to Android developers, therefore each AOSP platform release can
be checked out and built using repo.

For example if the vendor device is built on Android build ID sp1a.210812.016.a1,
that indicates that this device was built upon Android 12 platform release 3
(android-12.0.0_r3). Developers can initialize this platform release using the
repo tool in a desired target location. Before downloading the AOSP source the
space requirement of the build process should be taken into consideration. The
AOSP source code requires 250 GB of free space and in order to build it, the
space requirement is 150 GB.

1 # Using repo tool, the developer can check out android-12.0.0_r3 release.
2 $ repo init -u https://android.googlesource.com/platform/manifest -b android-12.0.0\

_r3
3

4 # After successfully checking out and initializing the repository, repo can be used
to download the source code into a desired folder.

5 $ repo sync (should be executed within the desired target location)

2. Integrating vendor-specific code, packages and libraries into the AOSP source
code.

Add the vendor-specific code, packages and libraries into the appropriate lo-
cations within the AOSP source code. If these are proprietary packages or li-
braries, these should be addded in vendor/ folder and any other open source
implementations can be added to the external/ folder. This can involve adding
new components, modifying existing components, or creating custom implemen-
tations to extend the functionality of the Android system. After the additons of
the vendor-specific modules, it’s pivotal to resolve any dependency issues.

3. Setting up build environment

For a successful build, the developer should initialize the execution environment
using the envsetup.sh script provided by the AOSP.

1 # This should be executed at the root of the AOSP
2 $ source build/envsetup.sh

4. Choosing a target and a variant to build

This allows the developers to select the product target which decides the features
that are allowed on the device and the capability of the OS to run on different
hardwares. This step also includes selecting the variant, which decides the
behavior of the OS. For example if the variant ’eng’ is selected then the OS will
include additonal debugging capabilities.

1 # Launching the lunch command allows the developer to select the target and the build
variant.

2 $ lunch

19

2.4. Compiling the Android source code

When the above command is executed, the following choices will be displayed to
the developer.

vinurib@hydra:~/AOSP$ lunch

You’re building on Linux

Lunch menu .. Here are the common combinations:
1. aosp_arm-eng
2. aosp_arm64-eng
3. aosp_barbet-userdebug
4. aosp_bluejay-userdebug
5. aosp_bramble-userdebug
6. aosp_bramble_car-userdebug
7. aosp_car_arm-userdebug
8. aosp_car_arm64-userdebug
9. aosp_car_x86-userdebug
10. aosp_car_x86_64-userdebug
11. aosp_cf_arm64_auto-userdebug
...
...
...
36. aosp_whitefin-userdebug
37. aosp_x86-eng
38. aosp_x86_64-eng
39. arm_krait-eng

Which would you like? [aosp_arm-eng]
Pick from common choices above (e.g. 13) or specify your own (e.g. aosp_barbet-eng):

After this prompt appears, the developers are free to select the target_variant
combination they require. For the generalizability of the builds, during this
study the option ’aosp_arm64-eng’ is used.

5. Building the AOSP

After the above lunch process is successful, the developers are shown a prompt
which summarizes the Android build to be built and where the final build will
be stored. In the output below, the OUT_DIR is shows as ’out’, which means the
OS will be stored in the folder called out.

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=13
TARGET_PRODUCT=aosp_arm64
TARGET_BUILD_VARIANT=eng
TARGET_BUILD_TYPE=release
TARGET_ARCH=arm64
TARGET_ARCH_VARIANT=armv8-a
TARGET_CPU_VARIANT=generic
TARGET_2ND_ARCH=arm
TARGET_2ND_ARCH_VARIANT=armv8-a
TARGET_2ND_CPU_VARIANT=generic
HOST_ARCH=x86_64
HOST_2ND_ARCH=x86
HOST_OS=linux
HOST_OS_EXTRA=Linux-5.10.0-11-amd64-x86_64-Debian-GNU/Linux-11-(bullseye)
HOST_CROSS_OS=windows
HOST_CROSS_ARCH=x86
HOST_CROSS_2ND_ARCH=x86_64
HOST_BUILD_TYPE=release
BUILD_ID=TP1A.221005.002

20

Background

OUT_DIR=out
PRODUCT_SOONG_NAMESPACES=device/generic/goldfish device/generic/goldfish-opengl
hardware/google/camera hardware/google/camera/devices/EmulatedCamera

==

After the above prompt appears, the OS is ready to be built. The final building
process might take a few hours depending on the resource availability.

1 # Needs to be executed from the root of the AOSP
2 $ m

6. Extracting the built OS

If executed succesfully, the ’out/target’ folder within the AOSP root will be pop-
ulated with the Android OS and will carry the following structure or similar
structure depending on the target_variant selected.

.
|-common
|-obj
|-APPS
|-JAVA_LIBRARIES

|-product
|-generic_arm64

|-apex
|-debug_ramdisk
|-dexpreopt_config
|-fake_packages
|-gen
|-obj
|-obj_arm
|-root
|-system
|-vendor

21

Chapter 3

Literature Review

This section provides a literature review of prior work related to security and privacy
aspects associated with the Android supply chain and vendor customizations.

3.1 Characterizing Android OEM/vendor customizations

Prior studies have analyzed and assessed the effect of the supply chain on security
and privacy of the resulting Android devices. The pioneering studies analyzed the
Android OS customizations mainly focusing of device drivers (kernel level) and the
overall firmware [65, 97, 98, 99]. Another subset of studies focused more specifically
on the risks associated to preinstalled applications and vendor customizations. While
some focused on critical aspects such as open ports in Android images [96], others
characterized OEM customizations, from personal data collection by privileged com-
ponents [69, 66, 79, 80] to custom permissions [70]. I discuss these seminal papers
in more depth next.

Gamba et al. presented the first large-scale study analyzing the pre-installed appli-
cations existing across 200 Android vendors, in order to study the user information
dissemination through these applications. The authors utilized static analysis, man-
ual analysis and traffic analysis techniques to uncover known malware in system
partitions of Android devices, applications requesting dangerous custom permissions
and potential dissemination of personally identifiable information (PII). Through the
extensive analysis, the authors show that the Android supply chain is a largely com-
plicated ecosystem which is built around the contingencies of user data [69].

Complementing Gamba’s work, the work by Liu et al. used traffic analysis methods
to report privacy leaks caused by the actual Android OS. Even when the device is
at an idle state, the vendor handsets communicate sensitive information such as
IMEIs, hardware serial numbers to the respective developers of the Android OS and
also to supply chain partners such as social networks (Facebook, LinkedIn) through
the relationship made through the preinstalled applications. Another similar study
done on comparing the security and privacy of traffic sent by Pixel and iPhone [79] in
similar execution environments showed that the even at idle state both Android and
iOS based devices share user information and data on average every 4.5 minutes,
and this also includes MAC address sharing with nearby devices either IoT or mobile
devices. Another study done by Leith revealed how telemetry data (specifically Google

23

3.2. Android network security

Dialer and Google Messages apps) is sent to Google services such as Firebase ana-
lytics. The data sent out such as the hash of message text, call time and durations
shows how system apps with privileged permissions and non-opt out behaviors could
raise privacy concerns for users.

Compliance related issues inherited due the Android customizations was thoroughly
analyzed by Possemato et al. in accordance with the Google’s CDD. The authors fo-
cused on Android binary customizations (ELF executable and native library layer),
mandatory access control (MAC) system or security enhanced linux - SELinux poli-
cies, Android init script and kernel security [87]. Out of the 2,907 Android images
analyzed, 20% of the Android firmware failed the compliance rules presented in CDD
by failing at least one test. Interestingly, this proportion included already Google
certified Android OEM/vendor devices which could be used as a indication on the
extent of freedom enjoyed by Android developers and the loopholes within the Google
compliance test suites.

Finally, Grace et al. revealed different shortcomings in the Android permission system
that allows user-installed applications gaining access to unprotected sensitive com-
ponents exposed by privileged systems applications [72]. A study done on malware
detection in Android firmware [98] using static and dynamic analysis showed that
preinstalled system applications can act as a distribution channel for malware.[63]
analyzed a important dynamic part of the Android supply chain, Firmware over the
Air app (FOTA). These applications hold the capacity to updates applications within
the system partition as well as install new ones. The authors showed that FOTA apps
in the wild display cases of installing malware, potentially unwanted programs and
the integration of third party libraries which could result in privacy intrusive behav-
iors [63]. A recent study on vendor defined Android custom permissions revealed that
these permissions are essentially invisible to the end user, therefore contributes to
the lack of transparency within vendor supply chains. The researchers used custom
tools to detect how custom permissions can act as an enabler for normal apps to
access permission-protected Android resources [70].

3.2 Android network security

The rise of TLS/SSL based attacks such as Man-in-the-Middle (MITM) attacks, en-
couraged the security researchers to pay attention to Android’s take on SSL/TLS,
both by Android app developers and by device OEMs. A study done on Android SSL
vulnerabilities on Android apps show that developer misconfigurations are a leading
cause for insecure implementations, as a result of the complex SSL stack. The au-
thors present two package-level solutions for the issue; allowance of any certificate
and hostname based on SSL verification debug flag and enabling the SSL pinning
in the package manifest. Similarly, MalloDroid [67], confirms these prior findings,
pointing at common developer errors such as applications that trust all certificates,
allow all host names, mix secure and insecure communication, and trusting too many
certificates. Similar studies with similar conclusions, yet using different methodolo-
gies, were carried out by Greenwood and Khan and Razaghpanah et al.. The latter
shows that most applications tend to gravitate towards using the TLS configurations
provided by the OS itself by default. While this could provide a secure implementation
rather than a customized TLS/SSL stack this depends on Android OS being up-to-
date with the latest security patches and system updates including the TLS libraries,

24

Literature Review

CA certificates. Yet, some developers implement their own TLS libraries to protect
their applications from vulnerabilities introduced at the operating system [89].

Pradeep et al. conducted an analysis on one of the most popular security mecha-
nisms used by application developers: certificate pinning. The authors discuss the
importance of providing developers with proper programmatic support to facilitate
certificate pinning functions. Otherwise, developers are compelled to use their own
TLS implementations or rely on third-party TLS libraries, which have been proven to
be inconsistent and introduce various threats into the Android ecosystem [88].

In fact, developer practices and their shortcomings play a significant role in the An-
droid supply chain, a study done on the developer’s dependency on online program-
ming discussion platforms like stackoverflow on Java security libraries including
JCA, JCE and JSSE [68]. The application level copy and pasted insecure code that
is handling TLS connections was 14% of the 200K application the authors analyzed,
where a significant portion of copied code was detected in javax.crypto, javax.net.ssl
and java.security.

Yet, these prior studies focus on Android app developer practices, outside the scope
of this thesis. A very specific study done on low-level Android OpenSSL’s pseudo-
random number generator by Kim et al. discovered that Android security could be
threated by giving the ability partially recovering the PreMasterSecret of the initial-
ized SSL sessions [75]. Blessing et al. conducted an extensive study on all the open
source cryptographic libraries which has the potential to server as the crypto provider
in Android OS. The authors focus on C/C++ based libraries due to the potential of not
memory safe unlike java, the findings showed that the public disclosure of vulnerabil-
ities in crypto libraries are far less that non-crypto libraries. The authors show that
Google has kept BoringSSL relatively secure and small in size by removing 70% of the
original OpenSSL codebase (but at the time of this study the size of BoringSSL has
being growing at an accelerating phase) and in default discards many of the outdated
ciphers [64]. Due to BoringSSL being relatively secure, the authors conclude this as
a safe alternative for OpenSSL in Android but any changes done to the network stack
might overshadow this secureness by introducing security implications.

A TLS layer security analysis based on the proper deletion of cryptographic keys once
they have served their purpose, shows the complicated interface between C and Java
code that promotes the potential for memory disclosure attacks in Android [78]. The
authors conclude that the session cache deletion process in Conscrypt is problematic
in the current Android TLS/SSL stack.

A recent study looking at the large scope of vulnerabilities in Android, security patches
and updates [74] revealed how Android images from large vendors such as Realme
issue vulnerable Android images 90% of the time. The authors highlight that almost
all the Android vendors focus on feature updates rather than applying critical secu-
rity patches,which results in a device and in relationship the user being vulnerable
to external threats for as much as 3 months.

Finally, Vallina-Rodriguez et al. gave insight into the supply chain’s effect on the root
store certificates by showing that a considerable amount of certificate are added on
top of the default root store from the AOSP by MNOs, government agencies and point
out that the certificate root store is a strong decision point in Android SSL/TLS secu-
rity [93]. Though not limited to Android, Ma et al. presents the first large scale root

25

3.2. Android network security

store ecosystem exploration. The authors shows that Android device vendors could
take as long as 430 days to remove high severity CA certificates from their devices,
which shows the importance of proper sanitation of Android network stack [82].

26

Chapter 4

Research Methodology

This chapter describes the methodology followed to achieve the dissertation objec-
tives listed in the Introduction chapter. This chapter is structured as follows: Sec-
tion 4.1 describes the data sources and the process followed for gathering Android
firmware images at scale. Section 4.2 describes the process for extracting the net-
work stack packages and libraries. I note that this step requires different methods
of decompilation based on the Android version and thevendors. After the successful
extraction of JSSE , JCE and JCA critical components, Section 4.3 presents the static
analysis methods that I implemented to (i) detect vendors’ customizations, and (ii)
evaluate the potential introduction of security vulnerabilities and threats. The whole
methodology is visualized in Figure 4.1, describing the different steps that compose
my analysis pipeline.

4.1 Data Collection

In order to conduct our empirical and exhaustive analysis of vendor customizations, it
is important to have access to a diverse set of Android images, from different vendors
and Android versions. To that end, We rely on two complementary datasets com-
piled by the research and cybersecurity community: Firmware Scanner [36] and An-
droid dumps [60]. FirmwareScanner gathers Android firmware files through crowd-
sourcing while Android dumps and official images are manually downloaded from
third-party and vendor websites. The manually download firmware images are used
to validate the credibility of the firmware files collected through crowd-sourcing and
also to extract network related components from some vendor devices which were
lacking from the FirmwareScanner dataset but were necessary to the analysis. In the
next subsections, I describe each data source in detail.

4.1.1 Firmware Scanner

The primary method of data collection depends on the FirmwareScanner app [36],
which is developed and maintained by IMDEA Networks Institute’s internet Analytics
Group (IAG). This tool is publicly available in Google Play Store and serves the pur-
pose of crowdsourcing preinstalled applications, certificates and other executables,
binaries using crowd-sourcing means; as for the OS partitions Firmware Scanner is
able to scan system, vendor, ODMs and product partitions.

27

4.1. Data Collection

Figure 4.1: Overview of the methodology followed in order to detect vendor customiza-
tion effect on secure communication.

Figure 4.2: System partitions scanned by Firmware Scanner (Source : https://
source.android.com/docs/core/architecture/partitions).

The system partition is critical for the network stack analysis since this contains the
Android framework, which is the parent folder for native libraries, apex files and core
system modules. ODM contains the original design manufacturer (ODM) customiza-
tions done on the HAL and the kernel modules, while the vendor partition contains
the any binary files that doesn’t belong in the AOSP stack which are the propri-
etary packages or libraries. Finally, product partition is used by Android developers
or vendors to install product-specific module, which can also be interpreted as an
extension on the system partition. This includes files such as build.prop, product
specific native libraries, java libraries and apps.

Once installed in a user device, Firmware Scanner requests user consent to start

28

https://source.android.com/docs/core/architecture/partitions
https://source.android.com/docs/core/architecture/partitions

Research Methodology

the scanning of the device. If the user consent is granted the tools will start with
computing hashes to perform a server-side checksum comparison to see if the file
already exists in the database, if the files do not exists then they are queued to be
uploaded to our servers. Along with the files that have been scanned, some meta
data regarding the device will also be recorded; such as the Android build fingerprint,
Android version the device is running, device model,name and manufacturer and
the timezone of the device. Once the firmware scanner send the files to the server
and finishes the analysis, it shows the Android device user the number of files and
the types of files detected (Figure 4.3 shows the steps the user see while using the
FirmwareScanner).

Figure 4.3: FirmwareScanner’s UI screenshots showing the data collection.

4.1.2 Android Dumps

While Firmware Scanner is used as the primary data source for this analysis, its cov-
erage for newer Android versions is limited. To overcome this limitation, we rely on a
secondary data source; Android dumps [60] which gives us access to official firmware
versions from vendors (OEMs) like AT&T, Blackshark, Hisense, LGE, Oneplus, Oppo,
Redmi, TCL, Tecno, Huawei, Asus, ZTE, Nokia, Motorola and Alps, since Android 9.

Like FirmwareScanner, Android Dumps relies on crowd-sourcing approaches. How-
ever, it is a publicly available and free web platform where users from around the
world can upload their Android firmware images into a common repository. These
images are sometimes saved as .zip files or .img files, therefore suitable methods of
file extraction needs to be followed in order to extract their TLS/SSL implementation.
The overview of the Android firmware images collected for this research is shown in
Table 4.1.

29

4.1. Data Collection

Versions Number of devices collected Number of vendors
9 18005 193
10 16433 176
11 10719 115
12 2952 47
13 411 13

Table 4.1: Summary of the data collected through the FirmwareScanner and Android
Dumps.

Since the focus of the study is studying the core components of the network stack in
Android devices, it is important to explore the location of these classes and libraries
to extract the maximum information from an Android device. Table 4.2 presents
the default locations and the files and libraries which could be found in each of the
locations that will be used in this study.

File type Default location Potential networking components

boot.oat
/system/framework/arm/boot.oat
/system/framework/arm64/boot.oat

Includes the core-oj components including
javax.net, javax.crypto etc which
are sourced by OpenJDK

core-oj.jar
/system/framework/core-oj.jar
*/apex/com.android.art.debug/javalib/core-oj.jar

Includes the core-oj components including
javax.net, javax.crypto etc which
are sourced by OpenJDK

Root certificates /etc/security/cacerts Includes the root store certificates of each device

Native libraries
*/lib
*/lib64

Includes the compiled libraries built during runtime
including the JCA providers

Conscrypt

/framework/arm/boot-conscrypt.oat
/framework/arm64/boot-conscrypt.oat
/framework/conscrypt.odex
/framework/conscrypt.jar
*/apex/com.android.conscrypt/javalib/conscrypt.jar

Includes the source code for conscrypt, could be either
in .oat, .jar or .odex formats

Okhttp

/framework/arm/boot-okhttp.oat
/framework/arm64/boot-okhttp.oat
/framework/okhttp.odex
/framework/okhttp.jar
*/apex/com.android.art.debug/javalib/okhttp.jar

Includes the source code for okhttp, could be either
in .oat, .jar or .odex formats

Bouncy Castle

/framework/arm/boot-bouncycastle.oat
/framework/arm64/boot-bouncycastle.oat
/framework/bouncycastle.odex
/framework/bouncycastle.jar
*/apex/com.android.art.debug/javalib/bouncycastle.jar

Includes the source code for bouncy castle, could be
either in .oat, .jar or .odex formats

Table 4.2: The default locations and probable locations for the networking libraries,
packages and core components.

The default location of these files could change across vendors. As a result, the
images must be carefully explored to find the correct location of each file. The apex/
(Android pony express) folder and structure was introduced to the Android OS in
Android version 10 as way to deliver low-level system modules in an Android device.
While the build of an Android device is straight-forward the reversing of different files
requires different techniques, each of these approaches and the tools used will be
discussed in Section 4.2.

30

Research Methodology

4.2 Extracting SSL/TLS packages

4.2.1 Java Secure Socket Extension (JSSE) packages

The JSSE packages in Android exists in the core-oj.jar or in the boot.oat files.
While the source of the JSSE, OpenJDK is common to each vendor depending on the
build version and the developer specific Android architecture, the destination of the
compiled code might vary. The files could exists in either boot.oat and core-oj.jar
as shown in table 4.2.

The initial core-oj/ structure according to the AOSP is as follows in smali code:

.core-oj
|-com

|--sun
|-java

|--awt
|--beans
|--io
|--lang
|--math
|--net
|--nio
|--security
|--sql
|--text
|--time
|--util

|-javax
|--annotation
|--crypto
|--net
|--security
|--sql

|-jdk
|--internal
|--net

|-sun
|--invoke
|--misc
|--net
|--io
|--reflect
|--security
|--util

Decompiling the boot.oat. The important classes that make up JSSE API are
within javax/net folder, shown in Table 2.1. In order to reverse an oat file, it’s
important to understand the underlying process of creating an .oat file from their
source .java files. The overview of the complete process in shown in Figure 4.4.

31

4.2. Extracting SSL/TLS packages

Figure 4.4: Java to oat compilation for Android (applies to all the .oat files found
within an Android device).

The dex to oat conversion includes two subprocesses. The first step involves applying
optimization techniques to decrease package size and improve performance using
tools like ProGuard (or DexGuard). ProGuard [41] is a tool to optimize code that
removes any unused fields, methods or classes and then applies obfuscation, thus
making it hard for humans to reverse-engineer and understand the binary object.
DexGuard, although it is similar to ProGuard, it is specifically targeted for Android
OS code. After the optimization step the resulting java bytecode is converted to its
architecture specific Dalvik bytecode. Therefore, reverse-engineering requires the
execution of unpacking and disassembly applied from oat to Java. For a boot.oat
file, the following steps produce the Java representation of the initial source code.

1 #oat TO Java
2 #Step 1: use oat2dex to convert .oat to .dex (This will deodex the boot file)
3 java -jar oat2dex.jar -o <output path> boot <boot.oat path>
4

5 #Step 2: use dex2jar to convert the resulting .dex files in to their respected .jar
representations which encapsulates the java bytecode.

6 ./d2j-dex2jar.sh <dex_input path> -o <output path>
7

8 #Step 3: use fernflower decompiled to convert the .jar file from bytecode to java code and
decompress the resulting .jar file/

9 java -jar fernflower.jar <input_bytecode_jar path> -o <output_java_code_jar path>
10 unzip <output_java_code_jar path> -d <output_java_code path>

Listing 4.1: Reversing .oat to .java.

I use existing tools such as baksmali git [31], dex2jar git [30] and fernflower [28] for
reversing, all of which are open source tools widely used by the Android research
community [69, 71, 76]. As shown in the Java to oat compilation process, deobfus-
cation through optimization techniques are applied to high level languages such as
Java. However, these techniques do not directly impact on low-level machine code
such as smali code. In simple terms, smali for Android Java code is equivalent to
assembly for C language; therefore in order to have a deobfuscation tolerant repre-
sentation of the network components the oat files are also disassembled to create the
smali representation as well.

1 #oat to smali
2 #Step 1: use baksmali to disassemble the boot.oat file
3 java -jar baksmali.jar dis <boot.oat path> -d <framework_folder path> -o <output path>

Listing 4.2: baksmali usage for decompiling .oat files.

For this step, I use baksmali [29]. Even though the smali representation is not human
readable, it presents a proper overview of the class structure. From example following

32

Research Methodology

is the smali representation of the javax.net.SocketFactory class.

1 .class public abstract Ljavax/net/SocketFactory;
2 .super Ljava/lang/Object;
3 .source "SocketFactory.java"
4

5

6 # static fields
7 .field private static theFactory:Ljavax/net/SocketFactory;
8

9

10 # direct methods
11 .method protected constructor <init>()V
12 .registers 1
13

14 .prologue
15 .line 82
16 invoke-direct {p0}, Ljava/lang/Object;-><init>()V
17

18 return-void
19 .end method
20

21 .method public static getDefault()Ljavax/net/SocketFactory;
22 .registers 2
23

24 .prologue
25 .line 92
26 const-class v1, Ljavax/net/SocketFactory;
27

28 monitor-enter v1
29

30 .line 93
31 :try_start_3
32 sget-object v0, Ljavax/net/SocketFactory;->theFactory:Ljavax/net/SocketFactory;
33

34 if-nez v0, :cond_e
35

36 .line 100
37 new-instance v0, Ljavax/net/DefaultSocketFactory;
38

39 invoke-direct {v0}, Ljavax/net/DefaultSocketFactory;-><init>()V
40

41 sput-object v0, Ljavax/net/SocketFactory;->theFactory:Ljavax/net/SocketFactory;
42 :try_end_e
43 .catchall {:try_start_3 .. :try_end_e} :catchall_12
44

45 :cond_e
46 monitor-exit v1
47

48 .line 104
49 sget-object v0, Ljavax/net/SocketFactory;->theFactory:Ljavax/net/SocketFactory;
50

51 return-object v0

Listing 4.3: smali representation of javax.net.SocketFactory.

As we can observe in this code snippet, we can observe how the class Ljavax/net/SocketFactory
includes an initialization method and a getDefault method which returns a Ljavax/net/SocketFactory
type object.

Decompiling the core-oj.jar, core-oj.jar which is a Java archive can be decom-
piled using baksmali.

1 #.jar to smali
2 #Step 1: use baksmali to convert .jar to smali
3 java -jar baksmali.jar dis <core-oj.jar path> -o <output path>

33

4.2. Extracting SSL/TLS packages

Listing 4.4: baksmali usage for decompiling .oat.

4.2.2 Java Cryptographic Architecture (JCA) providers

In Android JCA provider by default (or as implemented in the AOSP) is BoringSSL.
BoringSSL is implemented using C/C++, and it compiles into two .so files: libssl
and libcrypto.These are stored in lib/ and lib64/ folders. Since these are object
files, they can only be analyzed through assembly instructions and by studying their
external dependencies. Due to them exisiting as shared objects, several methods of
object analysis techniques are considered.

Objdump [45] is a popular linux tool used to extract and display information from
object files. Using objdump, the external dependencies of a .so file can be detected.
For example the following libssl.so file shows that it depends on libcrypto.so.
libcrypto object file consists the cryptographic algorithms and operations that is used
by libssl.so to implement secure communication protocols. These dependencies
can indicate any additional cryptographic primitive providers that vendors might be
using.

1 $ objdump -x system/lib64/libssl.so | grep ’NEEDED’
2 NEEDED libcrypto.so
3 NEEDED libc.so
4 NEEDED libm.so
5 NEEDED libdl.so

Listing 4.5: Dependencies between shared objects.

The .so file can be represented using its’ symbol table which holds information needed
to locate the program’s symbolic definitions which I used to extract function names
and function calls between libssl and libcrypto. The symbol tree for a given object file
can be retrieved using multiple tools such as the objdump, elf and nm.

nm [44] provides a clear overview of the symbol table and can be used to filter out
global functions and global text. The linux nm command displays symbol information
from an object file or a library by providing a list of symbols which are defined,
undefined or referenced within the file.

1 $ nm -D system/lib64/libssl.so
2 U abort@LIBC
3 U BIO_callback_ctrl
4 U BIO_clear_retry_flags
5 U BIO_ctrl
6 U BIO_find_type
7 U BIO_flush
8 U BIO_free
9 000000000001b014 T BIO_f_ssl

Listing 4.6: Symbol table for libssl.so.

The above listing includes all the dynamic symbols including defined and undefined
symbols, which means this could include symbols which are defined internally to
the shared object and any symbols which are external (but used within the object).
To distinguish between these two cases, the nm command is modified as described

34

Research Methodology

below. The addition of the –defined-only flag provides the symbols which have a
defined implementation within the libssl object file.

1 $ nm -D --defined-only system/lib64/libssl.so
2 00000000000121fc T BIO_f_ssl
3 0000000000012208 T BIO_set_ssl
4 00000000000600e0 A __bss_start
5 000000000002e5a4 T d2i_SSL_SESSION
6 000000000002e528 T d2i_SSL_SESSION_bio
7 ...
8 ...
9 ...

10 000000000002bc08 T _Z23SSL_CTX_sess_set_get_cbP10ssl_ctx_stPFP14ssl_session_stP6ssl_stPhiPiE
11 000000000003c2a8 T _ZN4bssl10OpenRecordEP6ssl_stPNS_4SpanIhEEPmPhS3_
12 000000000003c54c T _ZN4bssl10SealRecordEP6ssl_stNS_4SpanIhEES3_S3_NS2_IKhEE
13 000000000002530c T _ZN4bssl14CBBFinishArrayEP6cbb_stPNS_5ArrayIhEE
14 000000000002a194 T _ZN4bssl15SSL_SESSION_dupEP14ssl_session_sti
15 00000000000155dc T _ZN4bssl17SSL_apply_handoffEP6ssl_stNS_4SpanIKhEE
16 0000000000015a40 T _ZN4bssl18SSL_apply_handbackEP6ssl_stNS_4SpanIKhEE
17 000000000003c3ac T _ZN4bssl19SealRecordPrefixLenEPK6ssl_stm
18 000000000003c434 T _ZN4bssl19SealRecordSuffixLenEPK6ssl_stm
19 0000000000015594 T _ZN4bssl19SSL_decline_handoffEP6ssl_st
20 00000000000154b0 T _ZN4bssl21SSL_serialize_handoffEPK6ssl_stP6cbb_st
21 0000000000015760 T _ZN4bssl22SSL_serialize_handbackEPK6ssl_stP6cbb_st
22 0000000000025a78 T _ZN4bssl24SSL_CTX_set_handoff_modeEP10ssl_ctx_stb

Listing 4.7: Defined only symbols in shared object.

The middle column of the output indicates the type of symbol while the first column
shows the symbol value. For symbol type ’T’ indicates that the respective symbol
is defined exported symbols while ’A’ indicates an defined absolute value. Looking
at the example of defined export symbols, in Listing 4.7 we can see how it includes
low-level symbols that are not human understandable from line 10 onwards. This
requires converting these into user-level names, which outputs the human-readable
C/C++ function names.

1 $ nm -D --defined-only --demangle system/lib64/libssl.so
2 00000000000121fc T BIO_f_ssl
3 0000000000012208 T BIO_set_ssl
4 00000000000600e0 A __bss_start
5 000000000002e5a4 T d2i_SSL_SESSION
6 000000000002e528 T d2i_SSL_SESSION_bio
7 ...
8 ...
9 ...

10 000000000002bc08 T SSL_CTX_sess_set_get_cb(ssl_ctx_st*, ssl_session_st* (*)(ssl_st*,
unsigned char*, int, int*))

11 000000000003c2a8 T bssl::OpenRecord(ssl_st*, bssl::Span<unsigned char>*, unsigned long*,
unsigned char*, bssl::Span<unsigned char>)

12 000000000003c54c T bssl::SealRecord(ssl_st*, bssl::Span<unsigned char>, bssl::Span<unsigned
char>, bssl::Span<unsigned char>, bssl::Span<unsigned char const>)

13 000000000002530c T bssl::CBBFinishArray(cbb_st*, bssl::Array<unsigned char>*)
14 000000000002a194 T bssl::SSL_SESSION_dup(ssl_session_st*, int)
15 00000000000155dc T bssl::SSL_apply_handoff(ssl_st*, bssl::Span<unsigned char const>)
16 0000000000015a40 T bssl::SSL_apply_handback(ssl_st*, bssl::Span<unsigned char const>)
17 000000000003c3ac T bssl::SealRecordPrefixLen(ssl_st const*, unsigned long)
18 000000000003c434 T bssl::SealRecordSuffixLen(ssl_st const*, unsigned long)
19 0000000000015594 T bssl::SSL_decline_handoff(ssl_st*)
20 00000000000154b0 T bssl::SSL_serialize_handoff(ssl_st const*, cbb_st*)
21 0000000000015760 T bssl::SSL_serialize_handback(ssl_st const*, cbb_st*)
22 0000000000025a78 T bssl::SSL_CTX_set_handoff_mode(ssl_ctx_st*, bool)

Listing 4.8: Defined only symbols in shared object converted to user-level.

35

4.2. Extracting SSL/TLS packages

The example below shows how to filter undefined but used symbols within the shared
object, the output values could indicate a dependency between two shared objects.

1 $ nm -D --undefined-only system/lib64/libssl.so
2 U abort
3 U ASN1_d2i_bio
4 U ASN1_i2d_bio
5 U BIO_callback_ctrl
6 U BIO_clear_retry_flags
7 U BIO_copy_next_retry
8 U BIO_ctrl
9 U BIO_find_type

10 U BIO_flush
11 U BIO_free
12 U BIO_free_all
13 U BIO_get_fd
14 U BIO_get_retry_reason
15 U BIO_method_type
16 U BIO_new
17 U BIO_read
18 U BIO_read_filename

Listing 4.9: Undefined only symbols in shared object.

As shown in the libssl.so dependencies (listing 4.5), the shared object libssl de-
pends on libcrypto share object. This relationship can be systematically visualized
using the command explained above.

Figure 4.5: BoringSSL internal dependencies, between libssl and libcrypto shared
objects.

The source code files of shared objects provides insight into the cryptographic provider
source code folder within the vendor Android architecture. For this task, I used the
strings command ; for example if the C/C++ source files are compiled into the .so
following command can be used to see which sources were exactly compiled. This
indicates that the libssl.so under examination is compiled using boringssl.

1 $ strings -a system/lib64/libssl.so | grep ’\.c’
2 external/boringssl/src/ssl/custom_extensions.cc
3 external/boringssl/src/ssl/d1_both.cc

36

Research Methodology

4 external/boringssl/src/ssl/d1_lib.cc
5 external/boringssl/src/ssl/d1_pkt.cc
6 external/boringssl/src/ssl/d1_srtp.cc
7 external/boringssl/src/ssl/dtls_method.cc
8 external/boringssl/src/ssl/dtls_record.cc
9 external/boringssl/src/ssl/handshake.cc

10 external/boringssl/src/ssl/handshake_client.cc
11 external/boringssl/src/ssl/handshake_server.cc
12 external/boringssl/src/ssl/s3_both.cc
13 external/boringssl/src/ssl/s3_pkt.cc
14 external/boringssl/src/ssl/ssl_aead_ctx.cc
15 external/boringssl/src/ssl/ssl_asn1.cc
16 external/boringssl/src/ssl/ssl_buffer.cc
17 external/boringssl/src/ssl/ssl_cert.cc
18 external/boringssl/src/ssl/ssl_cipher.cc
19 external/boringssl/src/ssl/ssl_file.cc
20 external/boringssl/src/ssl/ssl_key_share.cc
21 external/boringssl/src/ssl/ssl_lib.cc
22 external/boringssl/src/ssl/ssl_privkey.cc

Listing 4.10: ’Source code files compiled into libssl.so.

4.2.3 Java Cryptographic Extension (JCE) packages

The current Android network stack includes two Java Cryptographic Extension (JCE)
packages: Conscrypt and BouncyCastle. Although the developers are free to incorpo-
rate any custom or third-party package that facilitates the purpose of the JCE, these
two packages are the current standard practice within the AOSP with Conscrypt as
the default JCE provider (Section 2.3.1.3).

Decompiling Conscrypt. Conscrypt can be decompiled using the above mentioned
techniques, depending on the file type. For .oat and .jar files the methods described
in listings 4.2 and 4.4 are used, respectively. There could be another instance where
conscrypt could be encapsulated in a .odex file. In this case, I use baksmali.

1 #.jar to smali
2 #Step 1: use baksmali to convert .odex to smali
3 java -jar baksmali.jar dis <conscrypt.odex> -o <output path>

Listing 4.11: baksmali usage for decompiling .odex files.

After the decompilation the conscrypt packages will include the structure as follows,

.conscrypt
|-com
|-android

|-org
|-conscrypt

|-ct

Decompiling BouncyCastle. Similarly to conscrypt, .oat, .jar, and .odex files can
be decompiled using baksmali. The decompiled Bouncy castle includes a complicated
structure compared to other packages included in the Android network stack.

.bouncycastle
|-android
|-org

|-bouncycastle
|-asn1

|-bc

37

4.2. Extracting SSL/TLS packages

|-cms
|-eac
|-iana
|-isismtt
|-kisa
|-misc
|-nist
|-ntt
|-oiw
|-pkcs
|-sec
|-teletrust
|-util
|-x500

|-style
|-x509
|-x9

|-crypto
|-agreement
|-digests
|-ec
|-encodings
|-engines
|-generators
|-io
|-macs
|-modes

|-gcm
|-paddings
|-params
|-signers
|-util

|-jcajce
|-provider

|-asymmetric

|-dh
|-dsa
|-ec
|-rsa
|-util
|-x509

|-config
|-digest
|-keystore

|-bc
|-pkcs12

|-symmetric
|-util

|-util
|-spec
|-util

|-jce
|-exception
|-interfaces
|-netscape
|-provider
|-spec

|-math
|-ec

|-custom
|-sec

|-endo
|-field
|-raw

|-util
|-encoders
|-io

|-pem
|-x509

|-extension

4.2.4 Android HTTPS providers

OkHttp can be decompiled similar to Conscrypt using baksmali according to each file
type. The overview of the structure of OkHttp is as follows:

.Okhttp
|-com

|-android
|-Okhttp

|-internal
|-tls
|-http
|-io
|-framed

38

Research Methodology

|-okio

4.3 Detecting Vendor Customizations

By exploring each device’s Java and C/C++ networking packages , we study vendor
customizations and their effect on TLS/SSL security. Yet, this analysis requires a
meticulous approach. Our methodology involves the following steps:

1. Establishing the baseline for the differential analysis between vendors.

2. Implemeting a generalizable framework for differential analysis

3. Applying the differential techniques (i.e., diffing) to each of the SSL/TLS stack
core components - Characterzing the vendor customizations on the Android TL-
S/SSL stack

(a) Extracting the vendor customizations on the JSSE API layer

(b) Extracting the vendor customizations on the JCE layer

(c) Extracting the vendor customizations on the native library JCA providers

In order to properly detect and extract vendor customizations done by vendors on a
AOSP derivative, we set a proper baseline. This will act as the ground truth when
comparing the OEM/vendor manufactured Android devices, and provides an oppor-
tunity to compare and delve into (i) vendor specific modifications, and (ii) their pur-
pose. The process of establishing the baseline is described in Section 4.3.1, and how
the baseline will be utilized in analyzing the vendor’s adaptation of JSSE, JCA pack-
ages and JCA providers is presented in Sections 4.3.2, 4.3.4 and 4.3.3, respectively.

4.3.1 Establishing the Baseline

The ground truth selection within this study determines the success of properly defin-
ing the customizations done by the vendors. A careful examination of the past lit-
erature showed that, while some developers used the original AOSP source 1 as a
reference point [87], some researchers have opted for Google Pixel or Nexus devices
as a reference point [74].

The varying versions and builds collected through in the firmware dataset being ex-
plored in the study, requires the availability of each Android build version (either
AOSP sourced build or Google Android devices) in order to produce a stable differe
analysis of each vendor. This acts as an important indicator when selecting the base-
line between the AOSP build or Google manufactured Android handsets. Collection of
Pixel/Nexus firmware for each android version build could be a daunting task given
the plethora of devices that needs to be scanned to narrow down the wanted Google
device firmware. But due to openess and the availability of the versioning information
of the AOSP source code, it is possible to build each Android version required for the
analysis. Therefore AOSP builds for each Android version/build will be used as the
baseline models in this study. The techniques used to build the AOSP builds from
the source are described section 2.4.

1It will be referred to as the AOSP build in the study.

39

4.3. Detecting Vendor Customizations

After establishing the baseline for the study, the technique of differentiating between
vendor’s AOSP derivative and the AOSP build should be established. As mentioned
in Section 4.2, the Java code in the Android source goes through multiple opera-
tions in order to become machine executable code that could be executed on Android
hardware.

When selecting a direct comparison model for characterzing the vendor customiza-
tions, a fair representation of the OEM’s Android OS and Google’s Android OS should
be established. Since the Java code goes through optimizations and obfuscations
during the compilation process the disassembled Java code might present some dif-
ferential results due to the optimization techniques applied that aren’t necessarily
vendor modifications. For example the below code snippet in listings 4.12 and 4.13
shows the reversed Java code for the javax.net.SSLSocketFactory class for the
original AOSP source and vendor implementations respectively.

1 public abstract class SSLSocketFactory extends SocketFactory
2 {
3 private static int lastVersion = -1;
4 static final boolean DEBUG;
5 static {
6 String s = java.security.AccessController.doPrivileged(
7 new GetPropertyAction("javax.net.debug", "")).toLowerCase(
8 Locale.ENGLISH);
9 DEBUG = s.contains("all") || s.contains("ssl");

10 }
11 private static void log(String msg) {
12 if (DEBUG) {
13 System.out.println(msg);
14 }
15 }
16
17 }

Listing 4.12: AOSP source code.

1 public abstract class SSLSocketFactory extends SocketFactory {
2 static final boolean DEBUG;
3 private static SSLSocketFactory defaultSocketFactory;
4 private static int lastVersion = -1;
5

6 static {
7 String var0 = ((String)AccessController.doPrivileged((PrivilegedAction)(new

GetPropertyAction("javax.net.debug", "")))).toLowerCase(Locale.ENGLISH);
8 boolean var1;
9 if (!var0.contains("all") && !var0.contains("ssl")) {

10 var1 = false;
11 } else {
12 var1 = true;
13 }
14

15 DEBUG = var1;
16 }
17

18 private static void log(String var0) {
19 if (DEBUG) {
20 System.out.println(var0);
21 }
22

23 }
24

25
26 }

40

Research Methodology

Listing 4.13: Vendor source code.

Although the logic behind the code snippets above are the same, the Java code visu-
ally provides a different textual representations. Therefore, in order to perform a fair
comparison and a model, an alternative needs to be defined or chosen.

The unaffectability of the optimization and obfuscation techniques on the smali code
(as explained in Section 4.2), promotes itself over the high-level Java code as the fair
representation for the Vendor vs. AOSP differentiating model.

4.3.2 Java Secure Socket Extension (JSSE) packages

The extraction of the JSSE packages is as mentioned in section 4.2. After the identi-
fication of the JSSE package location within the OEM firmware files, each respective
smali class file is scanned in order to explore the vendor modifications. In order to
characterize the modifications, two enumeration and differential analysis techniques
are carried out.

1. Calculate the edit distance between AOSP and vendor javax classes which are
used when establishing secure communication.

2. Create a differential technique to detect the method additions and removals
carried on by vendors.

In order to produce and overview of the vendor customizations and enumerate the
changes done on the JSSE package, edit distance between the AOSP default JSSE
classes and the vendor JSSE classes are calculated. The techniques used for cal-
culating the edit distance is explained in section 4.3.2.1. After, the extent of the
vendor customizations are summarized and calculated using edit distance. The exact
modifications are examined in Section 4.3.2.1.

4.3.2.1 Edit Distance for JSSE packages

The edit distance for smali code can be calculated using hashing techniques such
as SHA256, MD5, SHA1 and also advanced hashing methods such as fuzzy hashing.
For performance reasons, I rely on the latter.

Fuzzy hashing is a popular diffing technique within the security research community.
It is an effective and scalable method for computing the similarities between almost
identical files using piece-wise hashing (CTPH) techniques. For example, one of the
most popular and trusted fuzzy hashing techniques used for Android malware analy-
sis is ssdeep. Ssdeep [59] converts the file into distinct segments using a rolling hash
and then generates a 6 bit value for each segmentm. Af a final stage, it concatenates
the generated hash values into a final hash digest.

The ssdeep hash of a file can be calculated by inputing the smali code as a string to
the hash function of ssdeep.

1 import ssdeep
2

3 file = (<file to hash>, encoding=’utf-8’)
4 content = file.read()
5 hash = ssdeep.hash(content)

41

4.3. Detecting Vendor Customizations

Listing 4.14: Calculating the hash using ssdeep.

After calcuating the fuzzy hashes using ssdeep, the similarity between two hashes
can be calculated using the compare function provided by ssdeep.

1 import ssdeep
2

3 file_1 = (<file_1 to hash>, encoding=’utf-8’)
4 content_1 = file_1.read()
5 hash_1 = ssdeep.hash(content_1)
6

7 file_2 = (<file_2 to hash>, encoding=’utf-8’)
8 content_2 = file_2.read()
9 hash_2 = ssdeep.hash(content_2)

10

11 similarity = ssdeep.compare(hash_1 , hash_2)

Listing 4.15: Calculating file similarity using ssdeep.

The resulting similarity will be as a percentage from 0 to 100. If the similarity is 0
that means there are no similarility and a 100 indicates that the two files are similar
or the dissimilarities found are negligable. When applying ssdeep to calcualte the
changes in vendor devices, the methodology followed is as shown the Figure 4.6.

Figure 4.6: JSSE class hash calculation and similarility comparison.

The smali representation of each Java class includes entries starting with the anno-

42

Research Methodology

tation ".line". Simply the number that follows .line indicates which line of code with
reference to the original Java code is represented using smali, immediately following
the shown line number.

1 .method public static getDefault()Ljavax/net/SocketFactory;
2 .registers 2
3

4 .prologue
5 .line 92
6 const-class v1, Ljavax/net/SocketFactory;
7

8 monitor-enter v1
9

10 .line 93
11 :try_start_3
12 sget-object v0, Ljavax/net/SocketFactory;->theFactory:Ljavax/net/SocketFactory;
13

14 if-nez v0, :cond_e

Listing 4.16: smali representation of the Java method with line numbers.

The above code snippet shows that the smali representation includes Java code of
the method getDefault() within the class javax.net.SocketFactory. Specifically,
the code shown on lines 92 and 93. However, these line number could vary between
vendors and the AOSP code due to vendor modifications such as added/removed lines
of code, added/removed methods, or added/removed comments. Since these line
numbers could be interpreted as a noticable difference when using CTPH techniques,
during the hash calculation these are filtered in order to perform a more accurate
detection of changes.

After filtering out line indicators from the smali code, each class from vendor and also
the AOSP build are hashed using ssdeep. Then using the hash.compare() function
the two hashes can be compared. Example outputs of the process are as follows,

javax.net.ssl.SSLSocketFactory.smali
Android 11
vendor hash = 48:8c8rqGK0921ICcfLxviYs97wCGYu/YkQxj9e:8AOdPfLxvs97wGxj9e

Android 11
AOSP hash = 48:8c8rqGK0921ICcfEviYs97wCGY6/YkQxj9e:8AOdPfEvs97wSxj9e
similarity = 94

The similarility based on the hash distance is calculated as 94, which means that the
vendor class file and the AOSP class file differentiate slightly. During this study the
scope of the JSSE classes being analyzed is limited to the javax.net, javax.net.ssl
and javax.crypto sections. These classes presents the most critical components for
establishing secure communication as described in section 2.3.1.

Next, in order to find the cause of the dissimilarities found in smali code a method
based differential technique is used. This technique as discussed on Section 4.3.2.2
will show the added or removed methods by each vendor.

4.3.2.2 Method-based Diffing

The method-based diffing is used to examine the dissimilarities I found during the
hash-based dissimilarity analysis. In Java programs, classes and methods provide

43

4.3. Detecting Vendor Customizations

the internal structure. By focusing on method-level differences, I extract the specific
modifications made to the vendor SSL/TLS stacks, providing insights into the struc-
tural changes introduced. The results of the diffing process are further analyzed to
gain a comprehensive understanding of the vendor modifications and reasons behind
them.

The method based differential technique will scan over each class file belonging
to javax.net, javax.net.ssl and javax.crypto and extract the methods defined
in each. The smali code indicates the method declaration by .method string. Accord-
ing to the code snippet in listing 4.16, the method declaration is shown as " .method
public static getDefault()Ljavax/net/SocketFactory;". This gives information on the
method named ’getDefault()’, which is public static method which returns an object
of type ’javax.net.SocketFactory’. All such defined methods which are important in
secure communication [12] and also any vendor added methods are extracted in this
technique.

A regex match using the pattern shown in the smali code (Listing 4.17) can be used
for extracting the method signature and the method names. A query run on a vendor
javax.net.DefaultSocketFactory.smali class results in the following method list.

Listing 4.17: Extraction of method definitions/names from the smali level.
1 def extract_method_names(smali_code):
2 method_names = []
3 pattern = r’\.method (.*?)\(’
4

5 for line in smali_code.splitlines():
6 match = re.match(pattern, line)
7 if match:
8 method_name = match.group(1)
9 method_names.append(method_name)

10 return method_names
11

12 smali_file = ’javax/net/DefaultSocketFactory.smali’
13 smali_code = smali_file.read()
14

15 #output method list is as below
16 ["constructor blacklist <init>", "public whitelist core-platform-api createSocket"]

The extraction of methods and the comparison with the baseline (AOSP) is performed
as shown in the below Figure 4.7.

The diiferences between the methods that exists in the baseline AOSP class and the
vendor class will present the following two families of findigs.

• Methods removed by the Android vendor

These are the methods that only exists within the baseline AOSP build but not
vendor build. These could be an indicator of features that are not deemed useful
by the vendor. These removals could result in important features or security
measures being removed from the TLS/SSL stack.

• Methods added by the Android vendor

These are the methods that only exists within the vendor implementation but
not within the baseline AOSP classes. These added methods could be additonal
supporting/extending features for the original JSSE functions but could also
result in security advancements or decrease.

44

Research Methodology

Figure 4.7: JSSE method-wise diffing technique.

4.3.3 Java Cryptographic Architecture (JCA) providers

The JCA providers are different from JSSE and JCE packages given that they are
compiled into shared objects starting with C/C++ source code. These providers are
stored as dynamic shared objects which means that programs can use them simul-
taneously and are built and stored in the Android lib or lib64 folders to be called by
the programs as required.

In Android, the TLS/SSL stack is built upon the TLS protocol and cryptographic
primitives provided by the cryptographic libraries. The AOSP uses BoringSSL as
their default cryptographic provider but until the year 2014, OpenSSL was used as
the default provider. Other open-source/proprietary cryptographic libraries can be
used to replace or either increase the functionalities of the provider layer, such as
LibreSSL, Libgcrypt, GnuTLS and WolfSSL.

When analyzing the vendor customizations done to shared objects, it’s important to
examine the source ,symbols tree of each shared object and the dependency calls be-
tween shared objects. In order to explore the vendor customizations on the TLS/SSL

45

4.3. Detecting Vendor Customizations

Cryptographic provider Native library shared object

OpenSSL
libssl.so
libcrypto.so

BoringSSL
libssl.so
libcrypto.so

LibreSSL
libssl.so
libcrypto.so
libtls.so

gnuPG libgcrypt.so
GnuTLS libmod_gnutls.so
wolfSSL libwolfssl.so

Table 4.3: Android cryptographic providers and shared objects.

stack’s native library layer, several steps of methods are used.

1. Examine the sources of the cryptographic providers.

2. Create a differentiating technique to extract the added or removed TLS/SSL
protocol implementations.

3. Create a differential technique to extract the utilized cryptographic primitives
and the modifications done by the vendors.

4.3.3.1 Source of Cryptographic Providers

The cryptographic provider sources can be extracted using two techniques,

• The shared object files found within the android native library layer

The lib/ and lib64/ folders in the Android architecture includes the shared ob-
jects that is used with a particular Android OS. The names of the compiled .so
can be used as an indicator of the cryptographic provider used. Table 4.3 shows
the overview of most common cryptographic providers used.

• The strings command in order to identify the source code files

According to Table 4.3 BoringSSL, OpenSSL and LibreSSL produces libssl.so
and libcrypto.so as their compiled shared objects due BoringSSL and LibreSSL
both being derivatives of OpenSSL. Due to this reason, a technique of differen-
tiating among the three needs to established. The method used for this purpose
within this study is examining the strings embedded within the .so files using
the ’strings’ command.

– Examining the source code files

The "strings" command’s output can be filtered to extract the code paths as
shown in example in listing 4.10. The following path expressions as shown
in table can be used to differentiate the cryptographic provider sources.

– Examining the versioning annotation

As a method of validating and extending the first method of differentiating
between BoringSSL and OpenSSL, the string output is filtered to extract
the versioning expression as shown in the below example. For BoringSSL,

46

Research Methodology

Cryptographic provider Provider path expression

OpenSSL
external/openssl
crypto/

BoringSSL external/boringssl
LibreSSL external/libressl

Table 4.4: Android cryptographic providers and potential source file paths.

Google does not maintain a versioning number and therefore could be used
as an indicator that the shared object originates from OpenSSL.

1 shared_object = ’libssl.so’
2 strings_sharedObj = subprocess.check_output([’strings’, file]).decode(’utf-8’)
3 version_info = re.findall(r’^OpenSSL.*\s\d{4}$’,strings_sharedObj,flags=re.

MULTILINE)
4

5 # output for version_info will include a version number if the origin of the
libssl.so is OpenSSL otherwise it is BoringSSL.

6 # output expected from a OpenSSL origin libssl.so is shown.
7 [’OpenSSL 1.0.1j 15 Oct 2014’]

Listing 4.18: Extraction of OpenSSL version using strings command.

4.3.3.2 Vendor Modifications on TLS/SSL Protocol Implementations

In the Android TLS/SSL stack, the protocol implementations are provided through
the libssl.so functions. Using the nm command and applying a filter on the re-
sulting symbol tree these functions can be extracted. Once the output of dynamic
defined symbols are identied then symbol which are indicated by the symbol type ’T’
can be filtered. The defined symbols with the type ’T’ are the functions defined in the
object file.

The function extraction is carried out on both AOSP build’s libssl.so and ven-
dor’s libssl.so. BoringSSL is constantly maintained by the developers at Google
and therefore the Android developers are advised to pull the latest version of Bor-
ingSSL for their products. Therefore each vendor libssl.so is compared with the
AOSP’s libssl.so based on the android tag embedded in the device fingerprint. This
build id, points the vendor OS to the exact Android platform release.

The resulting difference could indicate the additional functions and the removed func-
tions. Additional functionalities could indicate an added vendor function or a the
latest BoringSSL function that was not part of the AOSP build. An available func-
tion within the AOSP build which doesn’t include in the libssl.so indicates that
the Android developer has removed it due to being unuseful, security concerns. Also
they could have not existed (deprecated) with in BoringSSL by the time of the vendor
build, therefore deprecated functions from BoringSSL should also be examined.

When considering Android over the air updates, native librabries such as BoringSSL
are incorporated in to major system upates where the entire Android system image
is updated. Therefore the effect of over the air updates on BoringSSL is considered
negligable.

47

4.3. Detecting Vendor Customizations

4.3.3.3 Vendor Usage of Cryptographic Primitives

The Android OS’s usage of cryptographic primitives can be analyzed through map-
ping libssl.so to libcrypto.so. The defined functions in libcrypto.so is called
in libssl.so and can be extracted using the technique visualized in Figure 4.5. For
each vendor device and the related AOSP build, the mappings created are compared
to find the difference between the functions being called by libssl.so in roder to im-
plement TLS/SSL protocols.

The differences in the functions related to cryptographic primitives used to define
TLS/SSL protocols, can present evidence on which functionalities developers use
within their TLS/SSL stack and the functionalities the developers remove during their
modifications.

4.3.4 Java Cryptographic Extension (JCE) packages

The current Android implementation includes two main JCE providers, Conscrypt
and OkHttp. Conscrypt was built and currently maintained by Google while OkHttp
is an externally sourced HTTP/HTTPS client sourced by Square. In order to study the
Android supply chain effect on Conscrypt a similar method as the JSSE packages is
used. The baseline AOSP build is compared with the vendor’s Conscrypt adaptation
in order to characterize additional functionalities and removed functionalities within
the vendor implementation. As the Conscrypt module is built upon the JCA providers
and connects the providers to the JSSE, the prior step of supply chain effect on JCA
providers can be complemented through analyzing the effect of developer modifica-
tions on the bridge between JCA and JCE. After the extraction of the modifications
done by vendors on Conscrypt classes, the official Conscrypt release by Google will
be used to study the final impact of these findings.

Conscrypt’s job within the Android TLS/SSL stack is to act as a wrapper between
JSSE and JCA, therefore by practice the function names defined in Conscrypt is
similar to the ones found within OpenSSL. If any functionality revocation or additions
that was found during the

The externally-sourced JCE components OkHttp and BouncyCastle require a higher-
level study on the vendor specific variations before examining the modificationn to
the intended functionality. Therefore in this study, a breif study on the OkHttp and
BouncyCastle libraries is conducted in order to gather information on the existence
of these libraries in the wild.

48

Chapter 5

Results and Discussion

The empirical results obtained as a result of applying my research methodology are
organized in dedicated sections that reflect the customizations done to each layer of
the TLS/SSL stack with regards to the baseline, and how these changes affect the
functionalities and security guarantees intended by the AOSP source code. Specif-
ically: Section 5.1 analyzes vendor modifications on the JSSE layer, separating the
analysis into added functionalities and removed ones. Section 5.2 presents the anal-
ysis of JCA providers. Lastly, Section 5.3 analyzes interface between JSSE and the
JCA providers, including the JCE packages.

5.1 JSSE Customizations

After decompiling the Java Secure Socket Extension (JSSE) packages as described in
Section 4.2, the extracted smali representations of the packages are analyzed using
the methods described in Section 4.3.2. I use a fuzzy hashing technique, and the
method-wise differentiating analysis to study the effect of the Android supply chain
on the JSSE implementation.

Throughout this Chapter, I rely on Ssdeep to compute the dissimilarities of vendor
JSEE, JCA and JCE implementations with regards to their corresponding baseline.
Ssdeep [59] is a fuzzy hashing tool which uses the CTPH technique to calculate two
hash values for each smali class. The first hash value is generated using the ven-
dor’s JSSE smali class and the second one using the smali class of its corresponding
AOSP baseline version. The hashes obtained are then compared to determine the
similarity between the two. Their similarity score ranges from 100 (complete similar-
ity) to 0 (total lack of similarity). The similarility score highlights the smali classes
which are similar to each other, therefore in order to obtain an overall view on the
modifications done by each vendor, we compute the average dissimilarity score. The
dissimilarity score is calculated between the JSEE packages and their corresponding
baseline, for all the devices for a given vendor and Android version; i.e., the average of
dissimilarities for javax.net and javax.crypto classes of each vendor and version.

Figure 5.1 shows the results of the average dissimilarity for each vendor.

While a small cluster of vendors such as Zebra, Oneplus and Blackshark keep the
original AOSP source code for their own Android distributions, 67% of the vendors

49

5.1. JSSE Customizations

Figure 5.1: Android JSSE package dissimilarities between each vendor device and
the baseline AOSP build.

and versions in my dataset diverge from their AOSP counterpart. Examining Fig-
ure 5.1, it is noticeable that some vendors present similar patterns in their changes
and customizations. For example, all Nokia, ZTE, Qlink, Cloud, Mobicel, Schok,
Onn and AT&T devices that runs on Android 10 have the same dissimilarity score.
The observed alikeness can be further analyzed by examining the dissimilarities of
each JSSE class of the vendor. For the Android 10 devices with the same average
dissimilarity, the class-wise dissimilarity of the javax.net.ssl sub package can be
visualized in Figure 5.2.

This could suggest the presence of a common node in the Android supply chain
behind these vendors or common development approaches. In fact, publicly available
information on the web suggests that some of the identified similarities arise from
existing partnerships and device factories building devices for other brands. This
commonality is studied further in Section 6.1, yet we show two examples below:

• Nokia and ZTE. These two brands have joined forces with the OSSii (Operations
Support Systems interoperability initiative). This supports easier interoperabil-
ity between operating support systems and reduces the overall cost of updates
and time-to-market. This common stakeholder could potentially be the reason
for the JSSE API similarities detected through the analysis.

• ZTE,Qlink and AT&T. ZTE has entered into partnerships with both mobile net-

50

Results and Discussion

work operators in order to provide additional functionalities to their end users.
The network stack commonalities seen during the analysis could be due these
potential partnerships.

Figure 5.2: Vendor JSSE classes with akin dissimilarities compared to the baseline
JSSE classes.

Table 5.1 shows the vendors with the highest dissimilarity scores. The highest dis-
similarities are found in Alps and Amlogic (chipset manufacturer) devices: 69% and
66%, respectively.

51

5.1. JSSE Customizations

Android vendor Android version overall dissimilarity
Alps 10.0 69

Amlogic 10.0 66
Sprd 9.0 53
Alps 9.0 45

Yestel 9.0 45
Alcatel 9.0 38

Mediacom 9.0 38
Amlogic 9.0 28

TC; 9.0 28
samsung 9.0 28

Table 5.1: JSSE package dissimilarities across vendors and versions for the vendors
displaying most deviations from the baseline AOSP.

In order to examine these deviations, we analyze the structural difference of these
classes across vendors and versions. This is done using a method-level differential
technique of the JSSE class code with regards to the AOSP baseline. This approach
allows identifying additional functionalities (i.e., new methods) and removed ones
(i.e., removed methods) across devices.

5.1.1 Removed JSSE functionality

Figure 4.7 shows the pipeline that I designed to identify JSSE methods removed by
the vendors. The total number of methods removed from the vendor JSSE packages
are shown in Figure 5.3. The removed methods (in y-axis) indicates the number of
unique methods removed/missing from the inspected JSSE classes. Vendor devices
(in x-axis) are categorized into Android versions using different symbols and colors;
blue, red , green and purple respresenting version 9, 10, 11 and 12 respectively.
Alps, Sprd and Amlogic vendors display a significant deviations from the AOSP base-
line JSSE classes. In Alps devices running Android version 10, I identify up to 40
methods in total been removed. This accounts for 7% of the intended AOSP JSSE
functionalities. In the case of Sprd devices running on Android 9, 5% of the JSSE
functionalities are removed. It is significant to note that while the mentioned vendors
are not among Android certified vendors, Samsung devices —which is an Android
ceritied vendor—also have method removals, though minimal.

For reference, note that the JSSE AOSP code for Android versions 9, 10, 11, 12
includes 636 different methods in total when considering all the JSSE sub-classes
belonging to javax.net and javax.crypto.

Figure 5.4 categorizes the removed methods discovered in the previous step into the
JSSE classes they belong to. This provides insight into the most affected JSSE classes
from vendor modifications.

52

Results and Discussion

Figure 5.3: Android JSSE methods removed from version 9,10,11,12 vendor devices,
using method-wise diffing.

Figure 5.4: Android JSSE removed methods characterized into their JSSE classes.

53

5.1. JSSE Customizations

Figure 5.4 shows some of the detected JSSE classes with removed methods in Alps,
Sprd, Samsung and Amlogic devices. I discuss a few cases of interest next, using the
information provided in the oracle OpenJDK documentation along with the Android
documentation:

• The javax.net.ssl.SSLParameters is heavily altered by these vendors. This
class holds a key role in TLS security as it allows configurations for secure
communication such as defining the accepted cipher suites and also endpoint
identification algorithms for the SSL/TLS handshake, server name indications,
protocol list that is allowed in SSL/TLS communication etc.

• Up to 11 public methods are removed from the class javax.crypto.Cipher
class. This class is fundamental for providing functionalities for cryptographic
ciphers, specifically encrypting and decrypting operations. In fact, this class
sets the foundation for the JCE framework.

In order to trace method removal, Figure 5.5 shows the removed methods in the final
leaf node, while the parent nodes depict the javax.net or javax.crypto class paths
leading to the discarded functionalities.

The color of the leaf node interpret the number of unique vendor and versions with
the removed functionality. Their corresponding usage or purpose are described in
Table 5.2. Some of the functionalities removed are critical for secure communica-
tion establishment through TLS/SSL. Among others, these methods allow developers
to set prioritized algorithms and providers, while trusted server names are meant
to provide app developers with mechanisms to strengthen the security of network
communication.

Javax class path Removed method Removed method functionality Vendor:Version

clone
create copies of the sslparameter object which can be modified
without altering the original sslparameter object.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getAlgorithmConstraints
returns the cryptographic algorithm constraints that are set by
the developer, this includes ciphersuites,
signature algorithms, key sizes.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getApplicationProtocols
returns an array of prioritized application layer protocols that
can be used to negotiate during
SSL/TLS protocols.

alps:10.0
amlogic:10.0

getEndpointIdentificationAlgorithm
returns the endpoint identification algorithm, which specifies
how the client device (android device)
should verify the server hostname.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getSNIMatchers
returns the list of rules for server name indication matching
that occurs during the SSL/TLS handshakes.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getServerNames
returns the servers names (server name indications) set for
SSL/TLS connections. These are the host names
desired by the clients for SSL/TLS connection.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getUseCipherSuitesOrder
returns a boolean value indicating if the enabled cipher suites
order is followed SSL/TLS handshake.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

setAlgorithmConstraints

set the algorithm constraints for the SSL/TLS handshake,
these could be additional to the constraints set
during runtime.
These constraints include cryptographic algorithms, key
, key size and if not set then no validation will be
carried out during the handshake.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

setApplicationProtocols

sets the list of prioritized application layer protocols
that can be used to negotiate during SSL/TLS protocols.
The protocols configured using this method are compared to
what the target device sends.
If the protocols are not matched with any of the set ones,
then alternative actions are taken or the connection is
terminated.

alps:10.0
amlogic:10.0

setEndpointIdentificationAlgorithm

sets the endpoint identification algorithms for the
SSL/TLS handshakes which is by default https.
This functionality is critical for preventing man-in-the-middle
attacks. If not set then the host name verifier will use the
predetermined algorithms provided by the
SSL/TLS implementation.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

54

Results and Discussion

Javax class path Removed method Removed method functionality Vendor:Version

setSNIMatchers

sets the server name indication matchers (patterns)
used for establishing the SSL/TLS connection.
This allows the client to provide the hostname rules when
it’s trying to connect to during the handshake, therefore allowing
the server to present the digital certificate for the matching
hostname.This function is important when a server hosts
multiple services (for example websites) with different domain
names but through the same IP address. If the SNI matchers
are not presented then the server wouldn’t recognize which
digital certificate to present.
This could lead to potential certificate mismatches.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

setServerNames

sets the list if host names (server names) that the client
Android device is expecting to match during the
SSL/TLS handshake. Although similar to setting SNI matchers
this allows the explicit specification of server names.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.net.ssl.SSLParameters

setUseCipherSuitesOrder
sets whether the list of prioritized ciphersuites order should be
followed, the list of ciphersuites are set using the
setCipherSuites() function.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

toString
Converts the SSLSocket object to a string, this is mostly used
for logging and debugging purposes.

alps:10.0
alps:9.0
alps:9.1
amlogic:10.0
amlogic:9.0
samsung:9.0
sprd:9.0
yestel:9.0

getHandshakeSession

returns the SSL/TLS handshake currently being established.
The results include the negotiated cipher suites and
protocol versions and can be retrieved before the handshake is
fully completed.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getApplicationProtocol

returns the application protocol value negotiated for the
current connection, if there are any protocol-specific
logic to be implemented then this string output is valuable
to the developer,these also include the protocol
prioritization list and how it is processed.

alps:10.0
amlogic:10.0

getHandshakeApplicationProtocol

returns the application protocol which is negotiated during the
SSL/TLS handshake before it is completed,
the outputs can be run against the prioritized application
protocol list.

alps:10.0
amlogic:10.0

getHandshakeApplicationProtocolSelector
returns the application protocol selector which is responsible
for selecting the application protocol
that is to be used during the handshake to be established.

alps:10.0
amlogic:10.0

javax.net.ssl.SSLSocket

setHandshakeApplicationProtocolSelector

allows to customize the protocol selection logic of the SSL/TLS
handshake. This can be used to override the
SSLParameter.setApplicationProtocols.
The resulting string is either the application protocol name or
an empty string or a null. The list parameter of this
method allows the configuration of the application protocol names.

alps:10.0
amlogic:10.0

toString
converts the SSLServerSocketobject to a string;
this inclides local address and the port number
of the socket.

alps:10.0
alps:9.0
alps:9.1
amlogic:10.0
amlogic:9.0
samsung:9.0
sprd:9.0
yestel:9.0

setSSLParameters
sets the SSL/TLS parmeters for the new connection,
the SSL parameters include; getCipherSuites(), getProtocols(),
getNeedClientAuth(), getServerNames() and getSNIMatchers().

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.net.ssl.SSLServerSocket
getSSLParameters returns the SSL/TLS parameters for the new connection.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getHandshakeSession
returns the information on the ongoing SSL session.
This is useful when the protocols being negotiated
during the initialization needs to be accessed.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getApplicationProtocol

returns the application protocol value negotiated for the
current connection, if there are any protocol-specific logic
to be implemented then this string output is valuable to the
developer,these also include the protocol prioritization
list and how it is processed.

alps:10.0
amlogic:10.0

getHandshakeApplicationProtocol

returns the application protocol which is negotiated during the
SSL/TLS handshake before it is completed,
the outputs can be run against the prioritized application
protocol list.

alps:10.0
amlogic:10.0

getHandshakeApplicationProtocolSelector
returns the application protocol selector which is
responsible for selecting the application protocol that is to be
used during the handshake to be established.

alps:10.0
amlogic:10.0

javax.net.ssl.SSLEngine

setHandshakeApplicationProtocolSelector

allows to customize the protocol selection logic of the
SSL/TLS handshake. This can be used to override the
SSLParameter.setApplicationProtocols. The resulting string is
either the application protocol name or an empty string or a
null. The list parameter of this method allows the configuration
of the application protocol names.

alps:10.0
amlogic:10.0

getSecurityProperty

not a defined method by Java SE. Google’s implementation of
SSL Socket Factory to extract the security property of
ssl.SocketFactory.provider which includes the set
SSLSocketFactory to be used.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

55

5.1. JSSE Customizations

Javax class path Removed method Removed method functionality Vendor:Version

javax.net.ssl.SSLSocketFactory log used for debugging the SSL socket connection being estab-
lished.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.net.ssl.SSLContextSpi getDefaultSocketsetDefault
added by Google for retrieving the default socket in the source
code, this is a private method used for obtaining the
parameters for the SSL socket created.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.net.ssl.SSLServerSocketFactory log
marked as ’android-added’ in the Google AOSP code,
for debugging purposes.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.net.SocketFactory setDefault
marked as ’android-added’ in the Google AOSP code,
for testing purposes. Requires developers to remove it
during the final build.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

checkCipherState

validates the state of the cipher in order to successfully carry
out update or final encryption or decryption
operations. The cipher should be successfully initialized
and in either ENCRYPT_MODE or DECRYPT_MODE.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

checkOpmode

checks the operation mode of the cipher, the op mode could be
either ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE
or UNWARP_MODE.
Used for initializing the cipher object with logical conditions
based on the op mode.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

chooseProvider

chooses the provider that is able to support the ongoing
cryptographic operation based on the op mode, key,
and algorithm parameters.
This is significantly important given that Java applications can
iterate over the available providers to find the best fit for their
requirements.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

createCipher returns the cipher that fulfills the required transformation.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getAlgorithmParameterSpec

returns an AlgorithmParameterSpec object containing the
maximum cipher parameter value according to the jurisdiction
policy file, which is used to verify the algorithm parameters
associated with a cryptographic object.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getOpmodeString
defined in the AOSP source code but it is a private method that
is not called inside the class.
Potentially added for testing purposes.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

tokenizeTransformation
performs the cryptographic transformation of the string using
the algorithm name, feedback technique, and padding.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.crypto.Cipher

updateProviderIfNeeded
if the provider selection using the first provider is not upto date
and can’t perform the required operations then the
registered provider is updated or a compatible alternative is set.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.crypto.CipherSpi getTempArraySize
used by the bufferCrypt functionality to determine the array
size to hold the temporary data during the data transformation.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

disableFailover
disables any failover mechanisms or re-initialization processes,
used when the provider is set successfully.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.crypto.KeyGenerator nextSpi
updates the current active cryptographic service provider
interface and return the next available spi incase of failover
extending the usability of other Spi providers.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.crypto.spec.PBEParameterSpec getParameterSpec

returns the password-based encryption (PBE) operation’s cipher
algorithm parameter specifications such as the salt value
and iteration count.
The results can be used to configure the PBE algorithms to
perform additional security measures.

alps:10.0
alps:9.0
alps:9.1
amlogic:10.0
amlogic:9.0
samsung:9.0
sprd:9.0
yestel:9.0

javax.crypto.CipherInputStream getMoreData
used to read the data from the input stream and process it
using the Cipher object set and then store the transformed
data in an output buffer.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.crypto.SecretKeyFactory nextSpi
updates the current active cryptographic service provider
interface and return the next available spi in case of
failover extending the usability of other Spi providers.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

Table 5.2: The JSSE functionalities removed by different vendors based on method
names.

56

Results and Discussion

Figure 5.5: JSSE functionalities removed by vendors classified into each class. The
colorscale depicts the number of unique vendor:versions these removals are detected
in.

This analysis also reported methods not present on AOSP, so presumably added by
the vendors. Section 5.1.2 discusses the additional functionalities detected through

57

5.1. JSSE Customizations

the method-wise diffing technique. Examining the added functionalities brings an
opportunity to detect if removed functionalities are caused by typos or renames. My
analysis shows that 6 methods that are flagged as removals through my pipeline are
actually replaced by alternative methods in Alps and Sprd devices, these findings are
futher discussed in subsection 5.1.2.

5.1.2 Added JSSE functionality

Figure 5.6 depicts the overall number of methods added by the vendors compared to
their corresponding baseline AOSP build. Similar to the results shown in the removed
methods analysis (Section 5.1.1) Alps and Sprd vendors both show deviations from
the rest of the Android vendors by incoporating 12 additional methods to their JSSE
classes. In terms of the original JSSE classes they belong to, the altered class distri-
bution (Figure 5.7) in terms of additional functionality shows that javax,crypto.Cipher
is mostly altered in Alps version 10 and Sprd version 9 devices.

Figure 5.6: Android JSSE methods added for version 9,10,11,12 vendor devices,
using method-wise diffing.

In order to further analyze this behavior of vendors and to verify whether the added
methods compensate for the removed functionalities, I use the method-wise logic
comparison approach. Figure 5.8 shows the methods and the JSSE path which are
added by the vendors. The color of the leaf node interpret the number of unique

58

Results and Discussion

Figure 5.7: Android JSSE added methods characterized into their JSSE classes.

vendor and versions with added functions. Their corresponding usage or purpose are
described in Table 5.3.

Figure 5.8: JSSE functionalities added by vendors classified into each class. The
colorscale depicts the number of unique vendor:versions the additions are detected
in.

Unfortunately, since none of the added methods is documented, the usage analysis
forced me to manually reverse the vendor-added functions to identify their purpose.
The result of the manual analysis (Table 5.3) suggests that, while some of the lost
functionalities due to method removals are compensated with the addition of alter-
native methods, some critical features such as endpoint verification, hostname veri-

59

5.1. JSSE Customizations

fications are missing from vendor TLS/SSL stacks entirely.

Javax class path Added method Added method functionality Vendor:Version

checkInputOffsetAndCount

This method is taken from ’libcore/luni’ which includes Android’s
implementation and is incorporated into the OpenJDK’s
class file. This is used to check for the input stream
length and validates the offset value.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

checkMode
Similar to the above function, this is adapted from the
Android’s implementation of secure communication.
Serves the same purpose as checkOpmode.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

checkTransformation
checks the transformation string for algorithm, mode and
padding similar to tokenizeTransformation, again adapted
from Android secure communication implementation

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getCipher
returns the instance of javax,crypto.Cipher using the
trasnformation string and provider. This is a similar
to getCipher in AOSP javax.crypto.Cipher class.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

getSpi
performs actions similar to the AOSP method
updateAndGetSpiAndProvider.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0javax.crypto.Cipher

invalidTransformation
provides an exception handling for the checkTransformation.
Completes the functionality provided by AOSP
tokenizeTransformation

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.crypto.CipherInputStream fillBuffer
stores the transformed data from the cipher operation in the
output buffer similar to the getMoreData() in AOSP

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

shutdownInput
used to indicate that the input stream should be
be shut down due to unsupported it being an operation,
potentially implemented to avoid compatibility issues

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.net.ssl.SSLSocket shutdownOutput
used to indicate that the output stream should be
be shut down due to unsupported it being an operation,
potentially implemented to avoid compatibility issues

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

javax.net.ssl.SSLContextSpi createSSLParameters
uses the as-is ciphersuites and protocols from the SSLSocket
and sets them as the SSLParameters.

alps:10.0
alps:9.0
alps:9.1
sprd:9.0

Table 5.3: The JSSE functionalities added by vendors based on method names and
their functionalities.

The methods added into the javax.crypto.Cipher and CipherInputStream classes
in Alps and Sprd devices are carried over from the libcore/luni folder. These were
included in the Google implementation of the javax classes, but these classes have
been replaced by the OpenJDK sourced javax classes since the release Android 7.0
releases [2, 3]. This could be an indication of these vendors using old JSSE class
implementations that they used for their older Android releases (Android version 7
and earlier). From a developer point of view, these additonal methods are not part
of the official API documentations provided by Oracle, OpenJDK or Google. There-
fore application developers might not be aware of their existence, which could cause
program malfunctioning and degraded security.

5.1.3 Functionality and Security Loss Overview

This subsection puts in context both method removal and additions. The diffing
results on the JSSE API level (Tables 5.2 and 5.3) show that the methods used to
validating and identifying the endpoints such as setAlgorithmConstraints, setEnd-
pointIdentificationAlgorithm, setSNIMatchers, setServerNames, and setUseCipher-
SuitesOrder are not found in Alps and Sprd devices. I will discuss the importance of
these missing methods and the impact of removing them below.

• Algorithm constrainst and configurations: Method setAlgorithmConstraints
is intended to set algorithm constraints for certificate validations, removal of this

60

Results and Discussion

functionality limits the ability to improve the security of the SSL/TLS commu-
nications by enforcing specific cryptographic algorithms or key sizes for certifi-
cates.
End point algorithms defined through the setEndpointIdentificationAlgorithm
method are used to determine how the hostname presented in the digital certifi-
cate is verified against the actual hostname of the server. Disabling this ability
weakens end-point security by preventing it from performing hostname verifica-
tion. Consequently, it increases the risk of successful man-in-the-middle (MITM)
attacks. When this functionality is not used as intended by the Operating Sys-
tem, the default endpoint identification algorithm provided by the SSL/TLS pro-
tocol implementation is used (implemented by the JCA providers). This default
algorithms might not provide the acceptable level of security as a customized,
more meticulous algorithm. This weakened point within the TLS/SSL hand-
shake process could provide an external entity (observer) the opportunity to in-
tercept the communication between the client and the servers and then present
different certificates that are not valid for the actual hostname. In other words,
it allows performing man-in-the-middle (MITM) attacks by, for example, state
surveillance agents. This could lead the Android client relying on the default
stack to open a communication channel with the attacker’s man-in-the-middle
point or a malicious target, which compromises the confidentially of the client
communication.

• Hostname verifications: The absence of the setServerNames and the setSNIMatchers
prevents the client from performing additional verifications during the TLS hand-
shake. Setting server name indications (SNIs) gives client the control over host-
name verification based on the server SNI extension and setEndpointIdentifi-
cationAlgorithm server names provide the security mechanisms to specify the
expected hostnames explicitly. If the target host is part of a virtual hosting
system where multiple hostnames are hosted on the same IP address, the iden-
tification of the exact target will rely on the SNI extension. If SNI patterns are
not set then server might not be able to properly select the correct certificate to
present therefore resulting in certificate mismatches but also give the ability to
present fraudulent certificates leading to unauthorized access.

• Ciphersuites prioritizations: The order of the client preferred ciphersuites is
key to enhance the security of TLS communications.[77] In the JSSE API, this
is invoked through the setUseCipherSuitesOrder method. Clients can decide
the order and remove ciphersuites that can be potentially vulnerable [77], to
enhance the security of their programs by invoking the setUseCipherSuitesOr-
der functionality. Otherwise, the default ciphersuites (and order) will be used.
Removing this functionality prevents developers from selecting their preferred
ciphersuites for enhancing the security of their communications with the cloud.

These removals can have a significant impact on popular TLS security mechanisms
such as certificate pinning. This is an additional security mechanism taken by app
developers to enhance the security of their encrypted communications on the end-
point. Pinning enables developers to validate server certificates during the client-
server communication establishment [88]. Traditionally, the Android client will rely
on the chain of trust through the CAs to perform the certificate validation, many of
which can be potentially malicious or forged. Yet, certificate pinning gives the appli-
cation an additional opportunity to specify a set of trusted certificates or public key

61

5.2. JCA Providers Customizations

hashes. Removing methods such as setEndpointIdentificationAlgorithm, setServer-
Names and setSNIMatchers prevents Android developers from performing this action
using default Android APIs. This platform fragmentation and the lack of trust on An-
droid vendors is one of the driving forces pushing mobile app developers to integrate
third-party TLS libraries on their code.

5.2 JCA Providers Customizations

Android manufacturers and vendors also have the freedom to chose their preferred
cryptographic provider like OpenSSL or BoringSSL. These providers offer low-level
protocol implementations and cryptographic primitives that are later used by proto-
col implementations. The customizations done on this layer begins with the addition
of the native source code into the appropriate folder within the source code. Usually
this location is either the external/ folder or the vendor/ folder, and the C/C++
source should be accompnied by the Makefile or a CMake file. The vendor is free to
incorporate any changes to the existing code by AOSP or add an alternative provider
in place of BoringSSL. The build system (Section 2.4) then compiles the source code,
which converts the native code into objects files which are then linked with the de-
pendency object files to create shared objects. After a successful compilation, the
vendors can use the customized provider or the alternate provider shared objects
(in system/lib or vendor/lib) exist as the source of cryptographic primitives and
protocols.

As mentioned in Section 4.3.3, the source of each shared object (i.e., libssl.so and
libcrypto.so) can be used to infer and study which open-source implementation or
derivative of OpenSSL is used as the cryptographic provider in a given device. It is im-
portant to note that some devices may include more than one cryptographic provider
on their firmware, either for extending their functionality or for application compat-
ibility reasons. For example, due to the minimal approach followed by BoringSSL,
vendors might gravitate towards using OpenSSL as a secondary provider [40].

5.2.1 Provider Choice

The choice of cryptographic provider of a vendor can depend on their required use
cases. In order to detect the usage of different cryptographic providers in the Android
ecosystem, I conduct the source analysis on the provider shared objects libssl.so
and libcrypto.so (Section 4.3.3.1). The source analysis of the shared objects shows
that, while the majority of libssl.so and libcrypto.so shared objects within the
collected dataset are compiled using BoringSSL, some devices still rely on OpenSSL
as their default cryptographic providers as shown in Figure 5.9. The default OpenSSL
implementation has had its share of severe vulnerabilities over the years such as
Heartbleed [47] and DROWN [84]. Heartbleed was a critical vulnerability discovered
in OpenSSL during 2014. This weakness allowed attackers to exploit a flaw in the
heartbeat extension in the SSL/TLS protocol. By sending a malicious heartbeat re-
quest, the attacker got exposed to the sensitive information such as private keys,
username indicators and passwords. This caused a major switch in the Android se-
cure communication implementation, given that AOSP started the replacement pro-
cess of OpenSSL with BoringSSL after the disclosure of Heartbleed. Since 2014,
OpenSSL is still the subject of many vulnerabilities, with 13 vulnerabilities being dis-

62

Results and Discussion

losed in the year 2023 alone. Therefore if OpenSSL is used in place of BoringSSL, it
pivotal that vendors follow proper maintainance on their OpenSSL repository.

Figure 5.9 provides the overview of the results from the provider source analysis.
Each vendor and their versions are mapped to the cryptographic providers detected
in their SSL/TLS stacks. Within the firmware images included in the dataset, I found
three cryptographic providers; BoringSSL (indicated in blue), OpenSSL (indicated in
green) and Libgcrypt (indicated in pink). Figure 5.9 covers Android versions span-
ning from version 7 to the latest android version. The OpenSSL to BoringSSL switch
occurred during the release of Android 7, therefore this provides with an opportu-
nity to navigate the success of the Google’s initiative to switch their own derivative
of OpenSSL. Next, I discuss in depth vendors’ cryptographic provider choices for
Libgcrypt and OpenSSL.

Figure 5.9: Android TLS/SSL provider distribution by vendor and version.

Libgcrypt

Figure 5.9 shows that LG electronics (South korean Android device manufacturer),
Metro (a North American virtual MNO owned by T-mobile), HTC (chinese manufac-

63

5.2. JCA Providers Customizations

turer which provides ODM services to Google) incorporate libgcrypt.so into their
TLS/SSL stack, which is another OpenSSL alternative that hasn’t removed as much
functionalities from the original OpenSSL compared to BoringSSL.

According to the analysis results, Libgcrypt and BoringSSL are both used in LGE from
versions 7 to 13. This combination could be attributed to Libgcrypt offering a specific
feature that is not present in BoringSSL but is required by the vendor. Metropcs and
HTC devices running on Android 7 and 8, solely rely on Libgcrypt as their crypto-
graphic provider. Libgcrypt has demonstrated a higher level of security compared to
alternatives such as OpenSSL. Notably, the last publicly disclosed vulnerabilities in
Libgcrypt date back to 2021, with only three identified vulnerabilities, none of which
were classified as severe [25].

OpenSSL

Five of the 55 Android vendors considered in our analysis include OpenSSL as their
cryptographic provider. Lava (Android ceritified vendor, manufactured in India), Sprd,
and Mito (manufactured in Indonesia) vendors include OpenSSL as their default cryp-
tographic provider while Alps and Oppo use OpenSSL along with BoringSSL.

The dependency of Android developers on OpenSSL may be reasoned with their need
to maintain compatibility. However, this dependency leads to some severe vulnerabil-
ities being introduced into Android SSL/TLS stack. Table 5.4 lists the vulnerabilities
that are publicly disclosed for each for the OpenSSL versions found in Android de-
vices.

The latest Android vendor device utilizing OpenSSL is Alps, operating on Android
10. Considering that Android 10 was released in 2019, it can be inferred that the
OpenSSL version used by Alps is OpenSSL 1.1.1a or a later release [86]. This in-
dicates that the OpenSSL distribution integrated into the Alps network stack was
released 6 years prior to the device’s release. Furthermore, according the vulner-
baility disclosure dates, most of the vulnerabilities were publicly announced in years
2015 and 2016. This implies that the manufacturing team at Alps had more than
three years to update their OpenSSL version. These findings highlight the significance
of timely updating OpenSSL distributions to ensure end-user security and maintain
vendor reputation.

For example CVE-2016-2182 is a high severity vulnerability that is resulted from
improper validation of division results that could result in denial of service attacks
on the device running vulnerable versions of OpenSSL. 1 All the vendor devices using
OpenSSL as their cryptographic provider, is potentially vulnerable to this threat. As
a reference, while OpenSSL shows an alarming number of highly and medium severe
vulnerabilities, BoringSSL has only resulted in one public CVE since it’s release in
2007 (CVE-2018-12440; CVSS score: 1.9).

1CVE-2016-2182. The BN_bn2dec function includes in the crypto/bn/bn_print.c in OpenSSL before
releases 1.1.0 does not properly validate the division results, therefore showing potential threat of
remote attackers causing denial of service.

64

Results and Discussion

OpenSSL version Vendor Vulnerabilities (CVEs)

OpenSSL 1.0.1e 11 Feb 2013
Alps

Sprd

CVE-2016-2182
CVE-2016-2842
CVE-2016-0705
CVE-2016-6303
CVE-2016-0799
CVE-2016-2177
CVE-2016-6304
CVE-2016-2181
CVE-2016-2183
CVE-2016-2180
CVE-2016-2105
CVE-2016-0798
CVE-2015-3194
CVE-2015-1789
CVE-2016-6302
CVE-2016-0800

OpenSSL 1.0.1j 15 Oct 2014

Alps

Oppo

Mito

Lava

CVE-2016-2182
CVE-2016-6303
CVE-2016-2177
CVE-2016-0799
CVE-2016-2842
CVE-2016-0705
CVE-2015-1789
CVE-2015-3194
CVE-2016-0798
CVE-2016-0797
CVE-2016-2105
CVE-2016-2180
CVE-2016-2183
CVE-2016-6302
CVE-2016-2179
CVE-2016-6304
CVE-2016-6306
CVE-2016-0704
CVE-2016-0800
CVE-2016-2178

OpenSSL 1.0.2e 3 Dec 2015 Alps

CVE-2016-2182
CVE-2016-2177
CVE-2016-0799
CVE-2016-2842
CVE-2016-0705
CVE-2016-6303
CVE-2016-2176
CVE-2016-2105
CVE-2015-3193
CVE-2015-3194
CVE-2016-0797
CVE-2016-2109
CVE-2016-0798
CVE-2016-2106
CVE-2016-2180
CVE-2016-2183
CVE-2016-6302
CVE-2016-2179
CVE-2016-2181
CVE-2016-6304
CVE-2017-3731

Table 5.4: OpenSSL vulnerabilities disclosed for each OpenSSL version found within
the dataset.

5.2.2 Functionality Changes

The differential technique using the function-wise removals and additions shows an
significant amount of functionalities being both removed and added. We examine
the addition or removal of functionalities in the libssl.so object with respect to the

65

5.2. JCA Providers Customizations

baseline AOSP cryptographic provider.2

To infer the purpose of the removed functions, I manually analyze the AOSP source
code, and the official documentation of both BoringSSL and OpenSSL. However, my
ability to examine the purpose of added functions is limited due to the unavailability
of cryptographic providers’ source code. As a result, I cannot precisely determine the
purpose of added methods and the reason why they exist.

(a) Functions removed from vendors (b) Functions added by vendors

Figure 5.10: Libssl functionalities removed and added by vendors.

115 unique functions in total were flagged as removed across 25 vendors like Sam-
sung, Zebra, Xiaomi, JGE and Alldocube while the same of set vendors add new
functions which are invokable by app developers. Asus devices running on Android 9
shows a high number of additional functionalities, while Alps, Xiaomi and Samsung
devices also include a significant number of new functions, but also removed ones

2libssl is responsible for SSL/TLS protocol implementations is examined against the baseline
AOSP cryptographic providers.

66

Results and Discussion

for Android version 9 as it can be observed in Figure 5.10: 50 libssl functions are
not found in their libssl shared object. Similarly, Xiaomi and Asus devices running
on Android 10,11,12 have around 40 removed functionalities. Some of the removed
functions, which are listed in Table 5.5, are responsible for critical security aspects
of SSL/TLS protocols. Therefore, their absence can alter the intended performance
and security guarantees of the protocol, as well as impairing their standard behavior
and compatibility.

Xiaomi: Xiaomi version 11 and 12 devices shows that a significant number of func-
tionalities differ when compared to the intended design from the Google AOSP. Specif-
ically, Xiaomi 12 shows that most of the OpenSSL functions adapted by BoringSSL—
starting with OPENSSL_lh_—have been replaced with lh_ in their libcrypto imple-
mentations. These lh_ functionalities are defined functions in the hash table imple-
mentation class implementation by OpenSSL. This example shows how vendors use
a combination of OpenSSL and BoringSSL methods in order to achieve and increase
the functionalities that they require. Also, the non-usage of EVP_HPKE_ function in
Xiaomi version 11 and 12 indicates that the vendor isn’t utilizing the HPKE (Hybrid
Public Key Encryption) protocol [62]. Although HPKE is known to carry performance
overhead above other alternative cryptographic protocols such as the ANSI ECIES
(Eliptic Curve Integarted Encryption), in terms of security it strengthens overall se-
curity of the SSL/TLS communication by helping to prevent eavesdropping, MITM,
and other potential compromises that could lead to decrypting past communications
through long-term secret keys. Although EVP_HPKE_ functions are not implemented,
Xiaomi has used EVP_HPKE_get_aead to retirve information regarding the HPKE con-
text of the input stream in order retrieve the authenticated encryption with the as-
sociated data in Android 12. Xiaomi devices also has not utilized X509_VERIFY_
functionalities that supports the X509 certificate verification process. By removing
these supporting functions the target process might not be properly enforce, making
the commnication vulnerable.

Samsung: The analysis of Samsung devices running on Android 10, shows that
through the vendor modifications additonal cryptographic primitives being called by
libssl to be used for protocol implementations. EVP_aead_aes_256_cbc_sha256_tls,
EVP_aead_aes_128_cbc_sha256_tls which call upon authenticated encryption using
AES256 in CBC(cipher block chaining) with SHA256 message authentication and
AES128 in CBC(cipher block chaining) with SHA256 message authentication are
widely accepted and approved algorithm due to their strong security properties, there-
fore these additions might increase the security of the target communication. The
addition of EVP_aead_rc4_sha1_tls which is a SHA1 message authentication method
using the RC4 steam cipher, which is comparatively old and known to be vulner-
bale [61] could be due to support required By legacy systems. Samsung 9 shows an
addition of a deprecated class of cryptographic operations including diffie-hellman
implementations (detected through the existence of dh_ functions). The deprecation
was performed by the Google Android team in the year 2017 [55] but the Samsung
devices that were relased in 2018, still includes these cryptographic implementa-
tions, this could be due to the requirement of providing support for legacy systems
and implementations.

Alps: As we have seen for the JSSE implementation, Alps’ cryptographic providers
also show significant deviations from the baseline, specially in older Android device
running on Android 9 and 10 platform releases. This behavior is apparent if we ana-

67

5.2. JCA Providers Customizations

lyze the low-level layers of the SSL/TLS stack, as seen on Table 5.6. In this case, the
vendor has removed vulnerable and legacy implementations for SSL v3, and replaced
them with the recommended [22] EVP_aead_aes_128_gcm_tls13 functionality. The
vendor has also incorporated HRSS_ functions which are used to implement post-
quantum cryptographic algorithms which are secure against attacks from quantum
computers as well as normal computers. Also the added lh_ and sk_functions for
hash tables and stacks shows the possibility of developers depending on original
OpenSSL methods, similar to Xiaomi. Yet, the removal of critical functions for secur-
ing TLS communications at the JSSE level can undermine the security improvements
introduced by Alps at the JCA layer.

Removed function Purpose of the removed functionality Vendor:Version

SSL_export_early_keying_material

Used to export early mathematical materials
that are used for cryptographic operations.
This could impact the secure key generation due to
not being able to validate the materials being used.
This could weaken the overall security of the SSL/TLS
connection being established.

Asus:9
Samsung:9
Zebra:10

SSLv3_server_method
SSLv3_method
SSLv3_client_method

upon examining the SSLv3, this could be an
improvement in terms of security. SSL v3 is vulnerable
to attacks such as POODLE.

Alps:9
Asus:10
Asus:9

SSL_set_tls13_variant
SSL_CTX_set_tls13_variant

sets the TLS 1.3 variant for the SSL/TLS connection.
Since TLS 1.3 introduced significant security improvements,
the non-existent of this function could weaken the security.

Alps:9
Asus:10
Asus:9

bssl::OpenRecord
Open and process the SSL/TLS records. The inability
to decrypt incoming streams and perform security checks
could result in insecure information being sent.

Alldocube:10
Alps :9
Asus:10 -12
Beista:10
Blackview:9
Blu:9
Cat:11
Conquest:9
Coolpad:10
Firefly:12
LGE:9 -11
Motorola:10-11
Oneplus:11
Oppo:10
Poco:11
Redmi:11
Samsung:9-13
SG:10-11
Sony:10
TCL:11
Unihertz:10
Vivo:10-12
Xiaomi:11-12

68

Results and Discussion

bssl::SealRecordSuffixLen
bssl::SealRecordPrefixLen

handle the process of appending additional data to the
beginning and the end of the encrypted records before being
transmitted. Used to ensure the integrity and authenticity of
the data. These include MAC, Padding and Initialization vectors,
record length, etc.

Alldocube:10
Alps :9
Asus:10 -12
Beista:10
Blackview:9
Blu:9
Cat:11
Conquest:9
Coolpad:10
Firefly:12
LGE:9 -11
Motorola:10-11
Oneplus:11
Oppo:10
Poco:11
Redmi:11
Samsung:9-13
SG:10-11
Sony:10
TCL:11
Unihertz:10
Vivo:10-12
Xiaomi:11-12

SSL_CTX_set_ed25519_enabled
enables support for Ed25519 signature algorithm, this was
added to BoringSSL in 2017 due to being considered superior
to DSA.

Asus:9
Oneplus:11
Poco:11
Xiaomi:12

SSL_set_verify_algorithm_prefs
sets the preferred algorithms to be used for signature verification,
when removed the lack of prioritization could affect the
verification process.

Asus:10
Xiaomi:11

SSL_CTX_set1_ech_keys
SSL_ECH_KEYS_add
SSL_marshal_ech_config
SSL_set1_ech_config_list
SSL_set_enable_ech_grease
SSL_ECH_KEYS_free
SSL_ECH_KEYS_new
SSL_ECH_KEYS_has_duplicate_config_id
SSL_ECH_KEYS_marshal_retry_configs
SSL_ECH_KEYS_up_ref
bssl::ssl_is_valid_ech_public_name
SSL_get0_ech_retry_configs
SSL_ech_accepted
SSL_get0_ech_name_override

sets and configures the ability to perform client-side ECH
(Encrypted Client Hello), introduced in TLS 1.3 this prevents
outsiders from observing the clear-text information about the
the connection being established such as the server name
indication.

Xiaomi:11
Xiaomi:12

SSL_CTX_set_rsa_pss_rsae_certs_enabled
enables the use of the RSA-PSS signature scheme for the
authentication of TLS connections. This provides enhanced
security compared to RSA in cases such as collision attacks.

Asus:9
Oneplus:11
Poco:11
Xiaomi:12

Table 5.5: security significant functionalities removed from Android vendors and their
functionalities

As shown by the Table 5.5, the unaccessible functionalities in some Android SSL/TLS
stacks are critical to Android secure communication. While vendors such as Xiaomi
failed to include extensive security functionalities provided by BoringSSL such as
ECH and stronger key generation algorithms into their SSL/TLS stack, simple Bor-
ingSSL functions that ensures integrity of the messages (sealing records) have been
overlooked by 25 vendors.

The above analysis examines the unavailability of critical protocol configuration and
implementation functionalities in Android vendors due to the Android supply chain.
In order to complement the analysis on vendor protocol implementation, the vendor
usage of cryptographic primitive implementations through libcrypto is studied.

69

5.2. JCA Providers Customizations

Android
vendor

Android
version

libcrypto functions
not used by libssl

libcrypto functions
additonally used by
libssl

Samsung 9

OPENSSL_realloc
EVP_AEAD_CTX_zero
CBB_add_asn1_bool
CRYPTO_chacha_20
OPENSSL_free
CBS_get_asn1_bool
CBB_add_asn1_octet_string
OPENSSL_malloc
EVP_PKEY_set1_RSA
EVP_AEAD_CTX_aead
EVP_AEAD_CTX_tag_len
CRYPTO_tls1_prf
X509_STORE_CTX_zero

BN_num_bytes
DH_num_bits
DH_new
BIO_push
DH_size
DH_compute_key
DH_free
BIO_s_connect
DH_generate_key
EVP_aead_rc4_sha1_tls
EVP_aead_rc4_sha1_ssl3
DHparams_dup
BIO_f_buffer
HMAC_CTX_copy_ex
ERR_add_error_data
RSA_up_ref
BN_clear_free
CBS_get_last_u8
EVP_PKEY_assign_RSA

Alps 9

EVP_md5
EVP_PKEY_sign
ASN1_d2i_bio
ASN1_i2d_bio
sk_pop_free
EVP_PKEY_CTX_free
BIO_free_all
OPENSSL_cleanse
EVP_PKEY_CTX_new
EVP_PKEY_verify_init
EVP_aead_des_ede3_cbc_sha1_ssl3
EVP_PKEY_sign_init
EVP_aead_aes_256_cbc_sha384_tls
EVP_aead_aes_128_cbc_sha256_tls
EVP_aead_aes_256_cbc_sha256_tls’
CRYPTO_chacha_20
EVP_aead_null_sha1_ssl3
EVP_aead_aes_256_cbc_sha1_ssl3
OPENSSL_realloc
EVP_aead_aes_128_cbc_sha1_ssl3
EVP_MD_CTX_size
EVP_PKEY_verify
CBS_stow

HRSS_encap
sk_pop_free_ex
sk_sort
BN_num_bytes
HRSS_generate_key
EVP_CIPHER_iv_length
HRSS_parse_public_key
HRSS_marshal_public_key
BIO_read_asn1
sk_dup
BIO_write_all
EVP_aead_aes_128_gcm_tls13
EVP_aead_aes_256_gcm_tls13
lh_retrieve_key
HRSS_decap
sk_delete

Zebra 10 EVP_MD_type

Samsung 10

EVP_aead_aes_256_cbc_sha256_tls
EVP_aead_aes_128_cbc_sha256_tls
BIO_push
EVP_aead_rc4_sha1_tls
BIO_s_connect
BIO_f_buffer

Poco 11

OPENSSL_memdup
CBS_get_asn1_int64
BIO_get_retry_flags
CBB_add_asn1_int64
BIO_set_flags
BIO_set_retry_reason
EVP_HPKE_get_aead

BIO_copy_next_retry

70

Results and Discussion

Xiaomi 11

OPENSSL_memdup
CBS_get_asn1_int64
BIO_get_retry_flags
CBB_add_asn1_int64
BIO_set_flags
BIO_set_retry_reason
EVP_HPKE_get_aead
OPENSSL_lh_free
X509_STORE_CTX_free
EVP_MD_CTX_move
CBB_add_zeros
EVP_HPKE_AEAD_id
OPENSSL_lh_retrieve
X509_STORE_CTX_get1_chain
X509_STORE_CTX_get_error
EVP_hpke_aes_128_gcm
EVP_HPKE_KEY_copy
EVP_HPKE_CTX_setup_recipient
EVP_HPKE_CTX_aead
X509_STORE_CTX_new
EVP_HPKE_CTX_cleanup
EVP_HPKE_KEM_id
EVP_hpke_hkdf_sha256
EVP_HPKE_KEY_cleanup
EVP_HPKE_KEY_public_key
EVP_hpke_chacha20_poly1305
OPENSSL_lh_new
EVP_HPKE_CTX_seal
OPENSSL_lh_num_items
EVP_HPKE_CTX_setup_sender
EVP_HPKE_CTX_zero
EVP_HPKE_CTX_open
X509_VERIFY_PARAM_set_hostflags
EVP_HPKE_KEY_kem
EVP_hpke_x25519_hkdf_sha256
OPENSSL_lh_doall_arg
X509_VERIFY_PARAM_set1_host
EVP_HPKE_CTX_kdf
OPENSSL_lh_delete
EVP_HPKE_AEAD_aead
OPENSSL_lh_insert
EVP_marshal_public_key
EVP_HPKE_KEY_zero
EVP_HPKE_KDF_id
OPENSSL_lh_retrieve_key
EVP_hpke_aes_256_gcm

BUF_memdup
BIO_copy_next_retry
BUF_strdup
lh_retrieve
X509_STORE_CTX_cleanup
lh_free
lh_doall_arg
lh_num_items
lh_insert
lh_new
lh_delete
lh_retrieve_key
X509_STORE_CTX_zero

71

5.3. JCE customizations

Xiaomi 12

BIO_copy_next_retry
OPENSSL_lh_free
X509_STORE_CTX_free
EVP_MD_CTX_move
CBB_add_zeros
EVP_HPKE_AEAD_id
OPENSSL_lh_retrieve
X509_STORE_CTX_get1_chain
X509_STORE_CTX_get_error
EVP_hpke_aes_128_gcm
EVP_HPKE_KEY_copy
EVP_HPKE_CTX_setup_recipient
EVP_HPKE_CTX_aead
X509_STORE_CTX_new
EVP_HPKE_CTX_cleanup
EVP_HPKE_KEM_id
EVP_hpke_hkdf_sha256
EVP_HPKE_KEY_cleanup
EVP_HPKE_KEY_public_key
EVP_hpke_chacha20_poly1305
OPENSSL_lh_new
EVP_HPKE_CTX_seal
OPENSSL_lh_num_items
EVP_HPKE_CTX_setup_sender
EVP_HPKE_CTX_zero
EVP_HPKE_CTX_open
X509_VERIFY_PARAM_set_hostflags
EVP_HPKE_KEY_kem
EVP_hpke_x25519_hkdf_sha256
OPENSSL_lh_doall_arg
X509_VERIFY_PARAM_set1_host
EVP_HPKE_CTX_kdf
OPENSSL_lh_delete
EVP_HPKE_AEAD_aead
OPENSSL_lh_insert
EVP_marshal_public_key
EVP_HPKE_KEY_zero
EVP_HPKE_KDF_id
OPENSSL_lh_retrieve_key
EVP_hpke_aes_256_gcm

OPENSSL_memdup
CBS_get_asn1_int64
BIO_get_retry_flags
CBB_add_asn1_int64
BIO_set_flags
BIO_set_retry_reason
EVP_HPKE_get_aead
X509_STORE_CTX_cleanup
lh_free
lh_doall_arg
lh_num_items
lh_insert
lh_new
lh_delete
lh_retrieve_key
X509_STORE_CTX_zero
lh_retrieve

Table 5.6: libcrypto functionalities utlized and non-utilized by libssl.

5.3 JCE customizations

The Java Cryptographic Extension (JCE) serves as a Java wrapper for the native
providers within the Android network stack. JCE plays a central role in determining
which JCA provider functionalities are accessible to developers during an application
or service execution. My focus is on examining the JCE with regard to the provider
functionalities that vendors restrict access to, as well as any additional functionalities
they may expose to the application layer.

The main analysis of the JCE packages includes the functionality modifications done
by the vendors on the default Conscrypt provided by Google through the AOSP. The
analysis of Conscrypt’s modification shows the set of SSL/TLS functions available for
user-space app developers through the JSSE API, as in which JCA functionalities are
extended through JCE and available for JSSE APIs. (Section 2.3, Figure 2.2)

72

Results and Discussion

5.3.1 Conscrypt Customizations

Figure 5.11 renders the set of Conscrypt functionalities that are both available and
unavailable (i.e., likely removed) across devices with regards to their corresponding
AOSP baseline. The analysis on Conscrypt classes shows that 6 vendors, namely
Alps, Amlogic, Allwinner, yestel, Samsung and Huawei have made removals as well
as additions to the default Conscrypt implementation.

However, vendors Alps, Huawei and Allwinner have made significant modifications
to the Conscrypt original implementation with an average of 250 functionalities re-
moved. Vendor like Amlogic, Samsung and Yestel are also responsible for a non-
negligible number of deviations in both JSSE API and JCA layers if compared to their
AOSP equivalent. Even if the JCA provider has been left untouched, if the JCE func-
tionality is missing then app developers will not be able to access it.

(a) Functions removed from vendors (b) Functions added by vendors

Figure 5.11: Conscrypt functionalities unavailability and availability through vendor
SSL/TLS stacks.

73

5.3. JCE customizations

As in the case of the JCA analysis, I cannot infer the purpose of these customiza-
tions due to Google’s Conscrypt documentation being limited on the prupose of each
class and function. To overcome this limitation, I manually analyzed the code, al-
lowing me to assess the impact of these customizations. For time considerations, I
focus my analysis on the 20 most customized classes using differential code analysis
techniques at the smali level. According Google, the team responsible for Conscrypt
is selective when choosing the primitives to provide [23]. They focus on the most
widespread and secure algorithms. Therefore, it will be important to detect which
default Conscrypt operations are not useful from a vendor perspective.

Figure 5.12 shows the distribution of vendor removed Conscrypt methods (in x-axis)
in regards to their class (in y-axis). Table 5.7 complements Figure 5.12 and lists some
of the most critical functions that have being removed by vendors. However, it is
possible that these removals could be due to dependencies on older Conscrypt imple-
mentations of Conscrypt, or because they rely on a third-party Conscrypt distribution
instead of using Google’s official one. As we can see, the most altered class is Na-
tiveCrypto class. This class connects the BoringSSL cryptographic implementation to
the Java layer of the Android OS. Among the vendor devices being analyzed, 137 na-
tive cryptographic functions are missing in Yestel, Samsung, Huawei, Amlogic, Alps
and Allwinner vendor implementations. The Conscrypt platform class implemented
by Google 3, offers app developers an opportunity to invoke various security-related
APIS to customize the default Android platform TLS configuration when opening TLS
sockets. For example, the SSLParameterImpl class allows developers to encapsulate
all the information on enabled TLS protocols offered by the JCA provider, and the
set and order of ciphersuites. Additionally, they also allow performing checks on
the operation mode of the SSL socket during connection establishment (Table 5.2,
javax.net.SocketFactory - checkOpmode). Another example is the TrustManagerImpl
class, which handles certificate chain validations, certificate revocations status, and
self-signed root certificates. These also deviate from the baseline AOSP for vendors
Huawei, Allwinner and Alps.

3Conscrypt platform class - org.conscrypt.Platform

74

Results and Discussion

Figure 5.12: Conscrypt classes with the most removed functions compared to the
AOSP.

Conscrypt functionality Impact on perfromance and security Vendor:Versions
org.conscrypt.NativeCrypto

ECDSA_sign
ECDSA_size
ECDSA_verify

these elliptic curve digital signature algorithm
are now deprecated in OpenSSL but not in
BoringSSL.
This might be an indication that some vendors
follow the updates done by OpenSSL compared
to BoringSSL due to the limited functionalities.

Samsung:9
Yestel:9
Amlogic:9
Huawei:9
Allwinner:9
Alps:10

EC_KEY_marshal_curve_name
EC_KEY_get1_group
EC_GROUP_new_arbitrary
EC_KEY_parse_curve_name

eclliptic curve-based serialization functions
defined by BoringSSL are not defined in these
vendor Conscrypt source.

Samsung:9
Yestel:9
Amlogic:9
Huawei:9
Allwinner:9
Alps:10

ENGINE_SSL_do_handshake
ENGINE_SSL_force_read
ENGINE_SSL_read_BIO_direct
ENGINE_SSL_read_BIO_heap
ENGINE_SSL_read_direct
ENGINE_SSL_shutdown
ENGINE_SSL_write_BIO_direct
ENGINE_SSL_write_BIO_heap
ENGINE_SSL_write_direct

ENGINE_SSL functionalities were added by
Google in order to extract information on the
TLS connection established and extend
the raw JCA implementation. SSL_shutdown
function offers secure shutdown which
could prevent incomplete connection terminations
ultimately leading to an inconsistent state.

Samsung:9
Yestel:9
Amlogic:9-10
Huawei:9
Allwinner:10
Alps:10

EVP_aead_aes_128_gcm
EVP_aead_aes_256_gcm

support provided by TLS 1.3 cipher suites is not
available for these devices. This behavior was also
displayed by the analysis done on JCA providers.

Huawei:9
Allwinner:10
Alps:10

asn1_read_init
asn1_read_oid
asn1_read_sequence
.... (all asn1_ implementations)

these are marked as deprectaed and advised not to
be used according to BoringSSL and OpenSSL.
The removal could have a positive impact given
that these functions are described as "buggy".

Samsung:9
Yestel:9
Amlogic:9-10
Huawei:9
Allwinner:10
Alps:10

75

5.3. JCE customizations

setLocalCertsAndPrivateKey

according to the Google source, this extension is
used insetting local certificate chains and private
key for a SSL/TLS connection. This supports the
developers in providing a specific certificate chain
that they expect for a certain connection.

Samsung:9
Yestel:9
Amlogic:9-10
Huawei:9
Allwinner:10
Alps:10

org.conscrypt.Platform

blockGuardOnNetwork

this fuction activate the StrictMode for network
operation performed by Conscrypt which is a
debugginng functionality that analyzed performance
issues that arises from network related tasks.

Huawei:9
Allwinner:10
Alps:10

closeGuardClose
closeGuardGet
closeGuardOpen
closeGuardWarnIfOpen

checks for unclosed streams and marks them as
closed or issues a warning in case they are still open.
Helps in preventing potential resource leaks.

Huawei:9
Allwinner:10
Alps:10

isCTVerificationRequired

invokes certificate transparency verification, which
can be useful when detecting rogue or misused
certificates.
CT improves security and transparency of certificates
issuers by publicly logging certificates.

Samsung:9
Yestel:9
Amlogic:9-10
Huawei:9
Allwinner:10
Alps:10

org.conscrypt.TrustManagerImpl
checkTrustedRecursive

uses:

findAllTrustAnchorsByIssuerAndSignature
verifyChain
sortPotentialAnchors
checkBlacklist

Recursively builds a certificate chain until the
end result is a valid chain or until all possible
paths are exhausted.
all the defined methods which are called upon by
this method are also unavailable. This could
indicate a change in the traditional trust verification
process by these vendors.

Huawei:9
Allwinner:10
Alps:10

Table 5.7: Critical conscrypt functions which are unavailable from vendor stacks.

5.3.2 Vendor adaptation of Okhttp and BouncyCastle

The unpacking of the OkHttp and BouncyCastle packages found within the Android
devices in the dataset shows that vendors have embedded different releases and
derivatives of these third party packages into their SSL/TLS stack. This section of the
analysis will examine the exsitence of different releases of the JCE providers in the
wild. During the analysis, distribution of OkHttp from the Android ROM developer
Xiaomi, showed its existence within all the devices that include their Miui customiza-
tion layer. These distributions are found within the following vendor (as shown in
Table 5.8) in the dataset.

Vendor Android version
Xiaomi 9-12
Redmi 9-11
Poco 10-12

Table 5.8: miui-okhttp distribution

Another such vendor that modifies the default OkHttp release to fit their require-
ments in Samsung. This modification includes adding a specific classes to sup-
port their Knox security and management framework’s VPN implementation. These
classes serve the purpose of checking for local proxy ports and managing the proxy
credentials.

BouncyCastle which is slowly deprecated by Android, has several releases due to the
compatibility and security issues. BouncyCastle has had two main derivatives avail-

76

Results and Discussion

able within the Android eco-system; SpongyCastle and StripyCastle as discussed in
section 2.3.1.3. The source code level analysis on Bouncycastle files found within
the dataset, shows that many devices include the default BouncyCastle distribu-
tion, while Zebra android devices running on version 10 showed the inclusion of
StripyCastle. According to bouncycastle documentation, StripyCastle which is the
FIPS-enabled version of the package supports Android devices upto version 8. The
usage of the a deprecated, unmaintained distribution could affect the functionality
and security of these devices.

77

Chapter 6

Conclusion

This dissertation presents the first large-scale study of the impact of device vendor
modifications to the Android SSL/TLS stack, and it’s implication to end users’ and
application’s network security. The extensibility and openness of the Android ecosys-
tem provides Android device vendors and OEMs the convenience of building Android
images that suites their requirements and their hardware. However, the lack of guide-
lines and controls on such customizations and the whole Android supply chain could
introduce security and privacy threats on the devices, and the changes on the An-
droid SSL/TLS stack are no exception.

Utilizing a combination of manual and automated reverse engineering methods—
specifically automatic static analysis and code diffing techniques—this study detects
and characterizes at scale the customizations that hundreds of device vendors have
implemented on three crucial components of the Android SSL/TLS stack. Specifi-
cally: (i) the Java secure socket extension API layer, (ii) Java cryptography architec-
ture providers, and (iii) the Java cryptographic extension. In order to obtain a global
perspective of vendor customizations on the TLS networking stack, I applied my static
analysis pipeline on a dataset of 48,250 different Android images from hundreds of
OEMs (dataset overview in Table 4.1). In order to conduct a fair and accurate anal-
ysis, I defined a baseline using AOSP versions to detect such vendor customizations
automatically.

My findings unveiled a worrying trend of poor vendor practices, as majority of the
vendors do not incorporate the latest AOSP changes into their SSL/TLS stack, and
that the vendors are slow to incorporate new functionalities and patches. I also
found that the vendors are quick to deprecate functionalities, even before the AOSP
does. Natively, several vendors use outdated OpenSSL distribution as their default
cryptographic provider, instead of BoringSSL which is the default Google-maintained
cryptographic provider in the AOSP. In fact, the usage of outdated OpenSSL distri-
butions is a cause for concern as they make devices vulnerable to attacks such as
Heartbleed and DROWN. I also find empirical evidence of missing methods that play
a critical role in allowing app developers securing TLS flows such as host name verifi-
cation, certificate validation, and prioritized ciphersuites in the TLS stacks of vendors
such as Alps, Sprd, Amlogic.

Overall, my analysis shows that Android device vendors are not consistent in their
practices and that there is a significant fragmentation in the Android ecosystem that

79

6.1. Discussion

not only have an impact on users’ security but also on user-space application’s need-
ing strong security guarantees. My results call for the urgent need for conducting
deeper analysis of the TLS implementations and for tighter controls and guidelines to
prevent vendor-induced vulnerabilities.

6.1 Discussion

The issues identified within Android vendor SSL/TLS stacks may have various un-
derlying root causes. One possible reason is that vendors may be using an older
platform relase by Google, which lacks the latest best-effort practices added in or-
der strengthen the Android secure communication. Also, some deprecations and
removals from the SSL/TLS stack are not reflected in vendor stacks, even after mul-
tiple platform releases. This could be due to the compatibility issues vendors might
face, as removing these methods from their stacks might break their Android OS
functionalities. I also discover common links between vendor supply chains such
as partnerships with MNOs and agreements with software interoperatibilty initiative
such as OSSii, which impose specific OS structure among the vendirs. Although ben-
eficial to vendors and also to end users, the extent of modifications raises concern.

To address the negative impact of vendor modifications on secure communication ca-
pabilities, I propose the following recommendations. It is important to enhance exist-
ing certifications and compliance frameworks to specifically address secure commu-
nication issues. This can be achieved by expanding their scope to include evaluation
criteria for TLS/SSL implementations and network security practices.

Android certified vendors/ODMs Android certified vendors/ODMs are those who
have acquired the Play Protect Certification by Google. This certification allows them
pre-load Google app suites in their devices and adhere to the CDD and the CTS pro-
grams provided by Google (Section 2.2.1). Despite the documentation on CDD and
CTS tests providing an overview of the classes that are tested under the unit tests
and the compatibility tests for java extension or javax classes, these do not measure
Conscrypt compatibility directly through their test cases. Specifically, as identified
in my analysis of the JSSE API, JCE and JCA layers, even some vendors which are
categorized under the Android certified such as Samsung, Xiaomi, Zebra, Oneplus,
Cat, Alldocube, Blu, Oppo and Motorola seem to lack security functionalities that
should be part of the vendor network stacks as defined by AOSP. For example, cer-
tain Samsung devices lack the support for certificate transparency and validation
that certify and revoke server certificates. Similarly, some vendors like Xiaomi do not
integrate modern TLS features such as encrypted client hello (ECH) which encrypts
all the privacy-sensitive parameters during a TLS handshake from in-path observers.
Integrating test suites to validate device’s TLS implementation on Android’s certi-
fication program may be an effective approach to ensure that vendors’ implement
state-of-the-art security measures on their products, while also preventing platform
fragmentation and potential compatibility issues.

Third-party certification The ioXt [42] platform is a global standard for IoT secu-
rity and privacy that is based on the industry best practices and is developed by a
group of industry experts that are applicable for all connected devices 1. ioXt security
and privacy guidelines for android currently enforces the devices manufacturers to

1ioXt Android Profile

80

https://static1.squarespace.com/static/5c6dbac1f8135a29c7fbb621/t/6011d9eaaed13c5aba8a9511/1615504578633/ioXt_Android_Profile.pdf

Conclusion

comply with Google Mobile service certification [32] and FIPS ensured cryptographic
implementations. However, these certification platforms currently overlook many of
the security vulnerabilities and implementation flaws that I identified. For exam-
ple, the ioXt certification platform does not enforce the support for certificate trans-
parency and validation that detect mis-issued certificates and revoked certificates.
IoxT, nonetheless, offers a good opportunity to enable independent device certifica-
tion, and for pushing vendors to implement basic and state-of-the-art TLS security
mechanisms on their products.

Regulatory compliance On a regional level, establishments such as the EU Cyber
Resilience Act (CRA) [26] can be an enabler for Android vendors to obtain aforesaid
certifications and to push the industry to comply with the highest security standards.
According the CRA documentation, the Android operating system falls under critical
elements which requires the involvement of a third-party during the conformity as-
sessment (including the CE marking) and has given an importance to the low-level of
cybersecurity which applies to the mobile ecosystem as well. The CRA could prevent
the Android vendors from abroad who are manufacturing non-compliant products
from entering the extended EU single market, therefore strengthening the Android
device security within the EU.

6.2 Future work

This dissertation is the first to provide a comprehensive threat analysis of the vendor-
led customization Android SSL/TLS implementations in the wild. The scope pre-
sented includes the Google endorsed networking components such as Conscrypt,
BoringSSL and Open-sourced component such as the OpenJDK used to implement
JSSE APIs. Yet, this dissertation opens a new research direction to analyze in depth
the security threats associated with the lack of control over the Android supply chain
at lower-layers, and beyond the network stack.

Analysis of third-party componets of the network stack In order to characterize
the entire vendor supply chain, differential techniques should be applied to third-
party components, OkHttp and BouncyCastle. Although these libraries are not im-
perative to the functionalities provided by the Android networking stack, they are
used to provide additional functionalities and capabilities to the Android developers.
A differential analysis where the vendor adaptations of these layers are compared to
the Google’s adaptations could provide insight into these extended capabilities and
their usage within Android handsets in the market.

Vendor usage of OpenSSL as default cryptographic provider A significant finding
within this study is the discovery of OpenSSL usage within some vendor Android
devices. The definite reason behind this incorporation and the preference over Bor-
ingSSL is yet unclear, though it could be a consequence of compatibility requirements
that needs to maintained. BoringSSL has specifically narrowed down the original
source from OpenSSL to include all the necessary functionalities required by an An-
droid device or any derivative, therefore these findings needs to be further clarified
in future research. The outcomes also display that the OpenSSL versions which
were cloned during the builds are not the latest version available by the time of the
Android releases. When depending on a vulnerability prone source such as the orig-
inal OpenSSL, it is pivotal that the latest release of the distribution is incorporated.

81

6.2. Future work

These restrained actions from the Android manufacturers need to be further analyzed
to narrow down the reasoning through future research.

Variation of ciphersuites per OS versions The method-wise diffing conducted on
the Java Cryptography Architecture (JCA) providers, presents the possibility to an-
alyze the ciphersuites utilized by different vendors. In response to the increasing
security threats in network communication, Google has prioritized the inclusion of
only the safest ciphersuites in their cryptographic providers. Monitoring the evo-
lution of ciphersuites used by each vendor’s SSL/TLS stacks can provide valuable
insights into their ability to adapt to changes in the Android ecosystem. This allows
for the classification of vendors as either reliable or unreliable based on the security
of the ciphersuites they employ.

Vendor usage of older BoringSSL distributions While the incorporation of Bor-
ingSSL is a positive indicator of developer’s following best security efforts, there might
exist cases where the incorporated source is not the latest distribution released by
Google. With the rigorous maintaining done by Google team on BoringSSL, it is vital
that the Android derivatives also carry the latest, most secure version of BoringSSL
within their networking stacks. The detection of outdated networking fundamentals,
can provide insight into the developer best practices and or the lack there of regards
to critical SSL.TLS components.

The dissertation provides preliminary findings and methodology for analyzing the
customization of critical components by vendors in the Android ecosystem. While
this study focuses on critical networking components (specifically on the SSL/TLS
stack components), it’s important to note that Android’s core system components,
such as package manager, location manager, and telephony manager, also play a
significant role. Conducting a thorough analysis of these core components can shed
light on the fragmentation resulting from vendor variations within the supply chains.

The framework presented in this dissertation will be extended during my Ph.D. stud-
ies at IMDEA Networks. In fact, this work is being extended for a planned research
paper submission for the upcoming Network and Distributed System Security Sym-
posium(NDSS).

82

Bibliography

[1] Amazon– App store. https://www.amazon.com/mobile-apps/b?ie=UTF8&
node=2350149011. [Accessed 29-May-2023].

[2] Android 6.0 - platform/libcore - Git at Google — android.googlesource.com.
https://android.googlesource.com/platform/libcore/+/refs/tags/
android-6.0.1_r81/luni/src/main/java/javax/, . [Accessed 04-Jul-2023].

[3] Android 7.0 - platform/libcore - Git at Google — android.googlesource.com.
https://android.googlesource.com/platform/libcore/+/refs/tags/
android-7.0.0_r1, . [Accessed 04-Jul-2023].

[4] Android 8.1 Features and APIs | Android Developers — developer.android.com.
https://developer.android.com/about/versions/oreo/android-8.1, .
[Accessed 04-Jul-2023].

[5] Build a Compatible Android Device | Android Open Source Project —
source.android.com. https://source.android.com/docs/compatibility, .
[Accessed 01-Jun-2023].

[6] Building Android | Android Open Source Project — source.android.com. https:
//source.android.com/docs/setup/build/building, . [Accessed 17-Jun-
2023].

[7] Android – Certified — android.com. https://www.android.com/certified/, .
[Accessed 29-May-2023].

[8] Codenames, Tags, and Build Numbers | Android Open Source Project
— source.android.com. https://source.android.com/docs/setup/about/
build-numbers, . [Accessed 17-Jun-2023].

[9] Configuring ART | Android Open Source Project — source.android.com. https:
//source.android.com/docs/core/runtime/configure, . [Accessed 02-Jun-
2023].

[10] java.net | Android Developers — developer.android.com. https://developer.
android.com/reference/java/net/package-summary, . [Accessed 02-Jun-
2023].

[11] java.security | Android Developers — developer.android.com. https:
//developer.android.com/reference/java/security/package-summary, .
[Accessed 02-Jun-2023].

[12] javax.net | Android Developers — developer.android.com. https://

83

https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://android.googlesource.com/platform/libcore/+/refs/tags/android-6.0.1_r81/luni/src/main/java/javax/
https://android.googlesource.com/platform/libcore/+/refs/tags/android-6.0.1_r81/luni/src/main/java/javax/
https://android.googlesource.com/platform/libcore/+/refs/tags/android-7.0.0_r1
https://android.googlesource.com/platform/libcore/+/refs/tags/android-7.0.0_r1
https://developer.android.com/about/versions/oreo/android-8.1
https://source.android.com/docs/compatibility
https://source.android.com/docs/setup/build/building
https://source.android.com/docs/setup/build/building
https://www.android.com/certified/
https://source.android.com/docs/setup/about/build-numbers
https://source.android.com/docs/setup/about/build-numbers
https://source.android.com/docs/core/runtime/configure
https://source.android.com/docs/core/runtime/configure
https://developer.android.com/reference/java/net/package-summary
https://developer.android.com/reference/java/net/package-summary
https://developer.android.com/reference/java/security/package-summary
https://developer.android.com/reference/java/security/package-summary
https://developer.android.com/reference/javax/net/package-summary
https://developer.android.com/reference/javax/net/package-summary
https://developer.android.com/reference/javax/net/package-summary

BIBLIOGRAPHY

developer.android.com/reference/javax/net/package-summary, . [Ac-
cessed 02-Jun-2023].

[13] javax.net.ssl | Android Developers — developer.android.com. https:
//developer.android.com/reference/javax/net/ssl/package-summary, .
[Accessed 02-Jun-2023].

[14] Android Open Source Project — source.android.com. https://source.
android.com/, . [Accessed 29-May-2023].

[15] Platform architecture | Android Developers — developer.android.com. https:
//developer.android.com/guide/platform, . [Accessed 30-Jun-2023].

[16] SDK Platform Tools release notes | Android Studio | Android Developers —
developer.android.com. https://developer.android.com/tools/releases/
platform-tools, . [Accessed 01-Jun-2023].

[17] Apache HttpClient Overview — hc.apache.org. https://hc.apache.org/
httpcomponents-client-5.2.x/. [Accessed 04-Jul-2023].

[18] Baidu– App store. https://shouji.baidu.com/. [Accessed 29-May-2023].

[19] GitHub - bcgit/bc-java: Bouncy Castle Java Distribution (Mirror) — github.com.
https://github.com/bcgit/bc-java. [Accessed 29-Jun-2023].

[20] platform/bionic - Git at Google — android.googlesource.com. https://
android.googlesource.com/platform/bionic/. [Accessed 01-Jun-2023].

[21] BoringSSL - Headers — commondatastorage.googleapis.com. https:
//commondatastorage.googleapis.com/chromium-boringssl-docs/
headers.html. [Accessed 04-Jun-2023].

[22] BoringSSL - cipher.h — commondatastorage.googleapis.com. https:
//commondatastorage.googleapis.com/chromium-boringssl-docs/
cipher.h.html. [Accessed 28-Jun-2023].

[23] Conscrypt Capabilities — android.googlesource.com. https://android.
googlesource.com/platform/external/conscrypt. [Accessed 04-Jun-
2023].

[24] CVE-2018-12440 : BoringSSL through 2018-06-14 allows a memory-cache side-
channel attack on DSA signatures, aka the Return Of the Hidden N — cvede-
tails.com. https://www.cvedetails.com/cve/CVE-2018-12440/, . [Accessed
05-Jun-2023].

[25] Gnupg Libgcrypt : CVE security vulnerabilities, versions and detailed re-
ports — cvedetails.com. https://www.cvedetails.com/product/25777/
Gnupg-Libgcrypt.html?vendor_id=4711, . [Accessed 05-Jul-2023].

[26] Cyber Resilience Act — digital-strategy.ec.europa.eu. https://
digital-strategy.ec.europa.eu/en/library/cyber-resilience-act.
[Accessed 02-Jul-2023].

[27] openssl/README-FIPS.md at master · openssl/openssl — github.com. https:
//github.com/openssl/openssl/blob/master/README-FIPS.md. [Accessed
06-Jun-2023].

84

https://developer.android.com/reference/javax/net/package-summary
https://developer.android.com/reference/javax/net/package-summary
https://developer.android.com/reference/javax/net/package-summary
https://developer.android.com/reference/javax/net/ssl/package-summary
https://developer.android.com/reference/javax/net/ssl/package-summary
https://source.android.com/
https://source.android.com/
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://developer.android.com/tools/releases/platform-tools
https://developer.android.com/tools/releases/platform-tools
https://hc.apache.org/httpcomponents-client-5.2.x/
https://hc.apache.org/httpcomponents-client-5.2.x/
https://shouji.baidu.com/
https://github.com/bcgit/bc-java
https://android.googlesource.com/platform/bionic/
https://android.googlesource.com/platform/bionic/
https://commondatastorage.googleapis.com/chromium-boringssl-docs/headers.html
https://commondatastorage.googleapis.com/chromium-boringssl-docs/headers.html
https://commondatastorage.googleapis.com/chromium-boringssl-docs/headers.html
https://commondatastorage.googleapis.com/chromium-boringssl-docs/cipher.h.html
https://commondatastorage.googleapis.com/chromium-boringssl-docs/cipher.h.html
https://commondatastorage.googleapis.com/chromium-boringssl-docs/cipher.h.html
https://android.googlesource.com/platform/external/conscrypt
https://android.googlesource.com/platform/external/conscrypt
https://www.cvedetails.com/cve/CVE-2018-12440/
https://www.cvedetails.com/product/25777/Gnupg-Libgcrypt.html?vendor_id=4711
https://www.cvedetails.com/product/25777/Gnupg-Libgcrypt.html?vendor_id=4711
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://github.com/openssl/openssl/blob/master/README-FIPS.md
https://github.com/openssl/openssl/blob/master/README-FIPS.md

BIBLIOGRAPHY

[28] GitHub - fesh0r/fernflower: Unofficial mirror of FernFlower Java decompiler (All
pulls should be submitted upstream) — github.com. https://github.com/
fesh0r/fernflower, . [Accessed 10-Jun-2023].

[29] GitHub - google/smali — github.com. https://github.com/google/smali, .
[Accessed 10-Jun-2023].

[30] GitHub - pxb1988/dex2jar: Tools to work with android .dex and java .class files
— github.com. https://github.com/pxb1988/dex2jar, . [Accessed 10-Jun-
2023].

[31] GitHub - testwhat/SmaliEx: A wrapper to get de-optimized dex from
odex/oat/vdex. — github.com. https://github.com/testwhat/SmaliEx, .
[Accessed 10-Jun-2023].

[32] Android – Google Mobile Services — android.com. https://www.android.com/
gms/. [Accessed 02-Jul-2023].

[33] The GNU Privacy Guard — gnupg.org. https://gnupg.org/index.html, . [Ac-
cessed 06-Jun-2023].

[34] GnuTLS — gnutls.org. https://www.gnutls.org/, . [Accessed 06-Jun-2023].

[35] boringssl - Git at Google — boringssl.googlesource.com. https://boringssl.
googlesource.com/boringssl, . [Accessed 04-Jun-2023].

[36] Firmware Scanner - Apps on Google Play — play.google.com. https:
//play.google.com/store/apps/details?id=org.imdea.networks.iag.
preinstalleduploader&hl=en&gl=US, . [Accessed 09-Jun-2023].

[37] Google Pixel Phones — store.google.com. https://store.google.com/
category/phones?hl=es, . [Accessed 01-Jun-2023].

[38] Volley overview — google.github.io. https://google.github.io/volley/, .
[Accessed 04-Jul-2023].

[39] refs/heads/master - platform/libcore - Git at Google — an-
droid.googlesource.com. https://android.googlesource.com/platform/
libcore/+/refs/heads/master, . [Accessed 01-Jun-2023].

[40] Porting from OpenSSL to BoringSSL — boringssl.googlesource.com. https://
boringssl.googlesource.com/boringssl/+/HEAD/PORTING.md, . [Accessed
05-Jul-2023].

[41] Java Obfuscator and Android App Optimizer | ProGuard — guardsquare.com.
https://www.guardsquare.com/proguard. [Accessed 10-Jun-2023].

[42] ioXt - The Global Standard for IoT Security — ioxtalliance.org. https://www.
ioxtalliance.org/. [Accessed 02-Jul-2023].

[43] LibreSSL — libressl.org. https://www.libressl.org. [Accessed 06-Jun-2023].

[44] nm(1) - Linux manual page — man7.org. https://man7.org/linux/
man-pages/man1/nm.1.html, . [Accessed 04-Jul-2023].

[45] objdump(1) - Linux manual page — man7.org. https://man7.org/linux/
man-pages/man1/objdump.1.html, . [Accessed 04-Jul-2023].

85

https://github.com/fesh0r/fernflower
https://github.com/fesh0r/fernflower
https://github.com/google/smali
https://github.com/pxb1988/dex2jar
https://github.com/testwhat/SmaliEx
https://www.android.com/gms/
https://www.android.com/gms/
https://gnupg.org/index.html
https://www.gnutls.org/
https://boringssl.googlesource.com/boringssl
https://boringssl.googlesource.com/boringssl
https://play.google.com/store/apps/details?id=org.imdea.networks.iag.preinstalleduploader&hl=en&gl=US
https://play.google.com/store/apps/details?id=org.imdea.networks.iag.preinstalleduploader&hl=en&gl=US
https://play.google.com/store/apps/details?id=org.imdea.networks.iag.preinstalleduploader&hl=en&gl=US
https://store.google.com/category/phones?hl=es
https://store.google.com/category/phones?hl=es
https://google.github.io/volley/
https://android.googlesource.com/platform/libcore/+/refs/heads/master
https://android.googlesource.com/platform/libcore/+/refs/heads/master
https://boringssl.googlesource.com/boringssl/+/HEAD/PORTING.md
https://boringssl.googlesource.com/boringssl/+/HEAD/PORTING.md
https://www.guardsquare.com/proguard
https://www.ioxtalliance.org/
https://www.ioxtalliance.org/
https://www.libressl.org
https://man7.org/linux/man-pages/man1/nm.1.html
https://man7.org/linux/man-pages/man1/nm.1.html
https://man7.org/linux/man-pages/man1/objdump.1.html
https://man7.org/linux/man-pages/man1/objdump.1.html

BIBLIOGRAPHY

[46] Cryptographic Module Validation Program | CSRC |
CSRC — csrc.nist.gov. https://csrc.nist.gov/projects/
cryptographic-module-validation-program/certificate/3753, . [Ac-
cessed 04-Jun-2023].

[47] NVD - cve-2014-0160 — nvd.nist.gov. https://nvd.nist.gov/vuln/detail/
cve-2014-0160, . [Accessed 05-Jul-2023].

[48] OpenJDK — openjdk.org. https://openjdk.org, . [Accessed 29-May-2023].

[49] platform/external/openssl - Git at Google — android.googlesource.com. https:
//android.googlesource.com/platform/external/openssl, . [Accessed 04-
Jun-2023].

[50] SSLContext. https://docs.oracle.com/javase/9/docs/api/javax/net/
ssl/SSLContext.html, . [Accessed 04-Jul-2023].

[51] SSLParameters setciphersuites. https://docs.oracle.com/en/java/
javase/20/docs/api/java.base/javax/net/ssl/SSLParameters.html#
setCipherSuites(java.lang.String%5B%5D), . [Accessed 04-Jul-2023].

[52] SSLParameters setservernames. https://docs.oracle.com/javase/8/docs/
api/javax/net/ssl/SSLParameters.html#setServerNames-java.util.
List-, . [Accessed 04-Jul-2023].

[53] SSLParameters setsnimatchers. https://docs.oracle.com/javase/8/docs/
api/javax/net/ssl/SSLParameters.html#setSNIMatchers-java.util.
Collection-, . [Accessed 04-Jul-2023].

[54] Botan: Crypto and TLS for Modern C++. https://botan.randombit.net. [Ac-
cessed 06-Jun-2023].

[55] boringssl.googlesource.com. https://boringssl.googlesource.com/
boringssl.git/+/7e06de5d2d1b53c57c0c81e8d6ba4122b64cf626. [Accessed
28-Jun-2023].

[56] git-repo - Git at Google — gerrit.googlesource.com. https://gerrit.
googlesource.com/git-repo. [Accessed 17-Jun-2023].

[57] GitHub - rtyley/spongycastle: Spongy Castle - a repackage of Bouncy Castle for
Android (which ships a crippled version of BC) — github.com. https://github.
com/rtyley/spongycastle. [Accessed 29-Jun-2023].

[58] Retrofit — square.github.io. https://square.github.io/retrofit/. [Ac-
cessed 04-Jul-2023].

[59] ssdeep - Fuzzy hashing program — ssdeep-project.github.io. https://
ssdeep-project.github.io/ssdeep/index.html. [Accessed 19-Jun-2023].

[60] Android Dumps · GitLab — dumps.tadiphone.dev. https://dumps.tadiphone.
dev/dumps. [Accessed 10-Jun-2023].

[61] Nadhem J AlFardan, Daniel J Bernstein, Kenneth G Paterson, Bertram Poetter-
ing, and Jacob CN Schuldt. On the security of rc4 in tls. In USENIX Security
Symposium, volume 2013, 2013.

86

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3753
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3753
https://nvd.nist.gov/vuln/detail/cve-2014-0160
https://nvd.nist.gov/vuln/detail/cve-2014-0160
https://openjdk.org
https://android.googlesource.com/platform/external/openssl
https://android.googlesource.com/platform/external/openssl
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLContext.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLContext.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/javax/net/ssl/SSLParameters.html#setCipherSuites(java.lang.String%5B%5D)
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/javax/net/ssl/SSLParameters.html#setCipherSuites(java.lang.String%5B%5D)
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/javax/net/ssl/SSLParameters.html#setCipherSuites(java.lang.String%5B%5D)
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLParameters.html#setServerNames-java.util.List-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLParameters.html#setServerNames-java.util.List-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLParameters.html#setServerNames-java.util.List-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLParameters.html#setSNIMatchers-java.util.Collection-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLParameters.html#setSNIMatchers-java.util.Collection-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLParameters.html#setSNIMatchers-java.util.Collection-
https://botan.randombit.net
https://boringssl.googlesource.com/boringssl.git/+/7e06de5d2d1b53c57c0c81e8d6ba4122b64cf626
https://boringssl.googlesource.com/boringssl.git/+/7e06de5d2d1b53c57c0c81e8d6ba4122b64cf626
https://gerrit.googlesource.com/git-repo
https://gerrit.googlesource.com/git-repo
https://github.com/rtyley/spongycastle
https://github.com/rtyley/spongycastle
https://square.github.io/retrofit/
https://ssdeep-project.github.io/ssdeep/index.html
https://ssdeep-project.github.io/ssdeep/index.html
https://dumps.tadiphone.dev/dumps
https://dumps.tadiphone.dev/dumps

BIBLIOGRAPHY

[62] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A.
Wood. Hybrid Public Key Encryption. RFC 9180, February 2022. URL https:
//www.rfc-editor.org/info/rfc9180.

[63] Eduardo Blázquez, Sergio Pastrana, Álvaro Feal, Julien Gamba, Platon Kotzias,
Narseo Vallina-Rodriguez, and Juan Tapiador. Trouble over-the-air: An analysis
of fota apps in the android ecosystem. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1606–1622. IEEE, 2021.

[64] Jenny Blessing, Michael A Specter, and Daniel J Weitzner. You really shouldn’t
roll your own crypto: An empirical study of vulnerabilities in cryptographic li-
braries. arXiv preprint arXiv:2107.04940, 2021.

[65] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An
empirical study of cryptographic misuse in android applications. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security,
pages 73–84, 2013.

[66] Mohamed Elsabagh, Ryan Johnson, Angelos Stavrou, Chaoshun Zuo,
Qingchuan Zhao, and Zhiqiang Lin. Firmscope: Automatic uncovering of
privilege-escalation vulnerabilities in pre-installed apps in android firmware. In
Proceedings of the 29th USENIX Conference on Security Symposium, pages 2379–
2396, 2020.

[67] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. Why eve and mallory love android: An anal-
ysis of android ssl (in) security. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 50–61, 2012.

[68] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. Stack overflow considered harmful? the
impact of copy&paste on android application security. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 121–136. IEEE, 2017.

[69] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan Tapiador, and
Narseo Vallina-Rodriguez. An analysis of pre-installed android software. In 2020
IEEE Symposium on Security and Privacy (SP), pages 1039–1055. IEEE, 2020.

[70] Julien Gamba, Álvaro Feal, Eduardo Blazquez, Vinuri Bandara, Abbas Raza-
ghpanah, Juan Tapiador, and Narseo Vallina-Rodriguez. Mules and permis-
sion laundering in android: Dissecting custom permissions in the wild. IEEE
Transactions on Dependable and Secure Computing, pages 1–18, 2023. doi:
10.1109/TDSC.2023.3288981.

[71] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. Androidleaks:
Automatically detecting potential privacy leaks in android applications on a
large scale. In Trust and Trustworthy Computing: 5th International Conference,
TRUST 2012, Vienna, Austria, June 13-15, 2012. Proceedings 5, pages 291–307.
Springer, 2012.

[72] Michael C Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic detection
of capability leaks in stock android smartphones. In NDSS, volume 14, page 19,
2012.

87

https://www.rfc-editor.org/info/rfc9180
https://www.rfc-editor.org/info/rfc9180

BIBLIOGRAPHY

[73] David Sounthiraraj Justin Sahs Garret Greenwood and Zhiqiang Lin Latifur
Khan. Smv-hunter: Large scale, automated detection of ssl/tls man-in-the-
middle vulnerabilities in android apps. In Network and Distributed System Secu-
rity Symposium (NDSS). Internet Society, San Diego, CA, pages 1–14, 2014.

[74] Qinsheng Hou, Wenrui Diao, Yanhao Wang, Xiaofeng Liu, Song Liu, Lingyun
Ying, Shanqing Guo, Yuanzhi Li, Meining Nie, and Haixin Duan. Large-scale
security measurements on the android firmware ecosystem. In Proceedings of
the 44th International Conference on Software Engineering, pages 1257–1268,
2022.

[75] Soo Hyeon Kim, Daewan Han, and Dong Hoon Lee. Predictability of android
openssl’s pseudo random number generator. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 659–668,
2013.

[76] Jozef Kostelanský and L’ubomír Dedera. An evaluation of output from current
java bytecode decompilers: Is it android which is responsible for such quality
boost? In 2017 Communication and Information Technologies (KIT), pages 1–6,
2017. doi: 10.23919/KIT.2017.8109451.

[77] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G Paterson,
Narseo Vallina-Rodriguez, and Juan Caballero. Coming of age: A longitudinal
study of tls deployment. In Proceedings of the Internet Measurement Conference
2018, pages 415–428, 2018.

[78] Jaeho Lee and Dan S Wallach. Removing secrets from android’s tls. In NDSS,
2018.

[79] Douglas J Leith. Mobile handset privacy: Measuring the data ios and android
send to apple and google. In Security and Privacy in Communication Networks:
17th EAI International Conference, SecureComm 2021, Virtual Event, September
6–9, 2021, Proceedings, Part II 17, pages 231–251. Springer, 2021.

[80] Douglas J Leith. What data do the google dialer and messages apps on android
send to google? In Security and Privacy in Communication Networks: 18th EAI
International Conference, SecureComm 2022, Virtual Event, October 2022, Pro-
ceedings, pages 549–568. Springer, 2023.

[81] Haoyu Liu, Paul Patras, and Douglas J Leith. Android mobile os snooping by
samsung, xiaomi, huawei and realme handsets. Trinity College Dublin, Tech.
Report, 2021.

[82] Zane Ma, James Austgen, Joshua Mason, Zakir Durumeric, and Michael Bailey.
Tracing your roots: exploring the tls trust anchor ecosystem. In Proceedings of
the 21st ACM Internet Measurement Conference, pages 179–194, 2021.

[83] Lucky Onwuzurike and Emiliano De Cristofaro. Danger is my middle name:
experimenting with ssl vulnerabilities in android apps. In Proceedings of the 8th
ACM Conference on Security & Privacy in Wireless and Mobile Networks, pages
1–6, 2015.

[84] Inc. OpenSSL Foundation. Guide to DROWN - OpenSSL Blog —
openssl.org. https://www.openssl.org/blog/blog/2016/03/01/
an-openssl-users-guide-to-drown/, . [Accessed 05-Jul-2023].

88

https://www.openssl.org/blog/blog/2016/03/01/an-openssl-users-guide-to-drown/
https://www.openssl.org/blog/blog/2016/03/01/an-openssl-users-guide-to-drown/

BIBLIOGRAPHY

[85] Inc. OpenSSL Foundation. /index.html — openssl.org. https://www.openssl.
org, . [Accessed 29-May-2023].

[86] Inc. OpenSSL Foundation. /news/openssl-1.1.1-notes.html — openssl.org.
https://www.openssl.org/news/openssl-1.1.1-notes.html, . [Accessed
05-Jul-2023].

[87] Andrea Possemato, Simone Aonzo, Davide Balzarotti, and Yanick Fratantonio.
Trust, but verify: A longitudinal analysis of android oem compliance and cus-
tomization. In 2021 IEEE Symposium on Security and Privacy (SP), pages 87–102.
IEEE, 2021.

[88] Amogh Pradeep, Muhammad Talha Paracha, Protick Bhowmick, Ali Dava-
nian, Abbas Razaghpanah, Taejoong Chung, Martina Lindorfer, Narseo Vallina-
Rodriguez, Dave Levin, and David Choffnes. A comparative analysis of certificate
pinning in android & ios. In Proceedings of the 22nd ACM Internet Measurement
Conference, pages 605–618, 2022.

[89] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Johanna Amann, and Phillipa Gill. Studying tls usage in android
apps. In Proceedings of the 13th International Conference on emerging Networking
EXperiments and Technologies, pages 350–362, 2017.

[90] Inc. Square. Overview - OkHttp — square.github.io. https://square.github.
io/okhttp. [Accessed 29-May-2023].

[91] Inc. http://www.synopsys.com/ Synopsys. Heartbleed Bug — heartbleed.com.
https://heartbleed.com. [Accessed 04-Jun-2023].

[92] Vasant Tendulkar and William Enck. An application package configuration ap-
proach to mitigating android ssl vulnerabilities. arXiv preprint arXiv:1410.7745,
2014.

[93] Narseo Vallina-Rodriguez, Johanna Amann, Christian Kreibich, Nicholas
Weaver, and Vern Paxson. A tangled mass: The android root certificate stores. In
Proceedings of the 10th ACM International on Conference on emerging Networking
Experiments and Technologies, pages 141–148, 2014.

[94] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li Li,
Juan Tapiador, Jingcun Cao, and Guoai Xu. Beyond google play: A large-scale
comparative study of chinese android app markets. In Proceedings of the Internet
Measurement Conference 2018, pages 293–307, 2018.

[95] wolfSSL. wolfSSL Embedded SSL/TLS Library. https://www.wolfssl.com/
products/wolfssl/. [Accessed 06-Jun-2023].

[96] Daoyuan Wu, Debin Gao, Rocky KC Chang, En He, Eric KT Cheng, and Robert H
Deng. Understanding open ports in android applications: Discovery, diagnosis,
and security assessment. 2019.

[97] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The im-
pact of vendor customizations on android security. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 623–634,
2013.

89

https://www.openssl.org
https://www.openssl.org
https://www.openssl.org/news/openssl-1.1.1-notes.html
https://square.github.io/okhttp
https://square.github.io/okhttp
https://heartbleed.com
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/wolfssl/

BIBLIOGRAPHY

[98] Min Zheng, Mingshen Sun, and John CS Lui. Droidray: a security evaluation
system for customized android firmwares. In Proceedings of the 9th ACM sym-
posium on Information, computer and communications security, pages 471–482,
2014.

[99] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. The peril of fragmentation: Security hazards in android device driver
customizations. In 2014 IEEE Symposium on Security and Privacy, pages 409–
423. IEEE, 2014.

90

	List of abbreviations
	Introduction
	Knowledge gap and Dissertation Objectives
	Contributions

	Background
	Android Open Source Project (AOSP)
	The Android OS Architecture
	Building an Android Image

	The SSL/TLS Protocol Stack
	Android TLS/SSL implementation
	Java Secure Socket Extension (JSSE) API
	Java Cryptography Providers (JCA providers)
	Java Cryptographic Extensions (JCE)
	Android HTTPS Providers

	Android Root Store

	Compiling the Android source code

	Literature Review
	Characterizing Android OEM/vendor customizations
	Android network security

	Research Methodology
	Data Collection
	Firmware Scanner
	Android Dumps

	Extracting SSL/TLS packages
	Java Secure Socket Extension (JSSE) packages
	Java Cryptographic Architecture (JCA) providers
	Java Cryptographic Extension (JCE) packages
	Android HTTPS providers

	Detecting Vendor Customizations
	Establishing the Baseline
	Java Secure Socket Extension (JSSE) packages
	Edit Distance for JSSE packages
	Method-based Diffing

	Java Cryptographic Architecture (JCA) providers
	Source of Cryptographic Providers
	Vendor Modifications on TLS/SSL Protocol Implementations
	Vendor Usage of Cryptographic Primitives

	Java Cryptographic Extension (JCE) packages

	Results and Discussion
	JSSE Customizations
	Removed JSSE functionality
	Added JSSE functionality
	Functionality and Security Loss Overview

	JCA Providers Customizations
	Provider Choice
	Functionality Changes

	JCE customizations
	Conscrypt Customizations
	Vendor adaptation of Okhttp and BouncyCastle

	Conclusion
	Discussion
	Future work

	Bibliography

