
Compressive Spectral Video Sensing Using The Convolutional Sparse
Coding Framework CSC4D

Crisostomo Barajas-Solanoa, Juan-Marcos Ramirezb, José Ignacio Mart́ınez Torrec, Henry Arguelloa,∗

aUniversidad Industrial de Santander, Colombia
bInstituto IMDEA Networks, Spain

cUniversidad Rey Juan Carlos, Spain

Abstract

Spectral Videos (SV) contain a scene’s spatial-spectral-time information. Just as with Spectral Im-

ages, SVs require expensive sensing hardware, storage plus high frame ratios. Although Super Resolution

techniques improve the quality of low-resolution SVs, Compressive Spectral Video Sensing (CSVS) senses

high-quality SVs by extending the Compressive Sensing Image (CSI) techniques. CSI uses the universal

Sparse Signal Representation (SSR) model for SVs and SIs despite the limited quality of the recovered sig-

nals. On the other hand, dictionaries synthesis models are used successfully for representing SIs, SVs, and in

CSI. This work proposes the 4D convolutional sparse representation (CSC4D) for recovering full-resolution

SV from CSVS measurements. It is based on a multidimensional formulation of the CSC model, profiting

from its robustness without additional optical flow information. Extensive numerical simulations (two CSI

architectures and noise models) show that the proposed CSC4D+CSVS improves the state-of-the-art in both

quality and border sharpness by up to 1.5dB.

Keywords: Compressive spectral video sensing, convolutional sparse coding, sparse representation,

spectral videos.

2010 MSC: 00-01, 99-00

1. Introduction

Spectral Images (SI), 3D datasets which contain information about the 2D spatial features within a scene

plus the reflectance at specific electromagnetic wavelengths of such features, have found great acceptance

in fields such as medical diagnosis [1], remote sensing [2] and military operations [3], just to mention a few

examples. State-of-the-art works have included an additional dimension to the 3D array of an SI: discrete-5

time variation. This is, we obtain a collection of SIs within a time frame, separated by a discrete time period.

⋆This work was developed under the Doctorate Scholarship Colciencias 785 (Colombia).
∗

Email address: henarfu@uis.edu.co (Henry Arguello)

Preprint submitted to Journal of visual communication and image representation January 19, 2023

Also known as Spectral Videos (SV), have found great acceptance in object or human tracking [4, 5, 6],

cancer detection [7], bile duct inspection [8], and several types of surgery [9].

In an SV, a full SI must be captured within a small time-frame to capture the time variations of interest

within the observed scene [10]. However, techniques such as push-broom [11] or optical band-pass filters10

[12] require a considerable sensing time to capture a single spectral frame. These limitations in the available

technologies and time restrictions lead to one of two scenarios: either we resort to faster and more expensive

sensing equipment to capture the desired SVs within the time limits; or we use available, and not too

expensive, technology to capture SVs with low spatial, spectral and/or temporal resolution, within the time

limits. In this regard, solutions such as super-resolution techniques [13, 14] offer to recover a high-resolution15

version of an SV from low-resolution measurements.

A more compelling approach is the application of the Compressive Sensing Imaging (CSI) framework to

the SV case, also known as Compressive Spectral Video Sensing (CSVS). CSI states that a full 3D SI can

be recovered from a set of 2D encoded projections. This is, a SI is simultaneously scanned and compressed,

reducing both the scanning time and storage requirements [15, 16, 17, 18]. CSVS proposes to compress20

sensing, consecutively, a collection of spectral frames using a collection of 2D coding apertures per spectral

frame, and to recover the full SV using an extended version of the Sparse Signal Representation (SSR)

model. In [10, 19] they propose to extend the Kronecker basis proposed by Arce et. al. [20], which follows

the SSR model, by adding the Discrete Cosine Transform (DCT) for temporal compression.

Previous works on CSI as shown that the SSR analytical model can be improved using a synthesis model25

[21][22][23]. It is possible to learn a collection of features directly from an SI, instead of using a fixed

orthonormal basis, to represent it and to improve the reconstruction quality. The Convolutional Sparse

Coding (CSC) framework [24] proposes to represent a signal using an overcomplete collection of convolutional

dictionary elements and sparse coefficient maps. The former contains the features within the signal, and the

latter indicates the position and contributions for each feature. The sum of all the convoluted pair dictionary-30

coefficient results in a recovered version of the signal of interest. This convolutional representation has an

intrinsic local shift-invariant structure and invariance to deformation, robustness to noise and improved

border sharpness. In [22] we proposed an extension of the CSC model to represent SIs and to recover them

from compressed measurements, the 3D Convolutional Sparse Coding (CSC3D) framework.

For the case of SVs, in [25] we proposed to take the CSC model even further to include the spatial,35

spectral, and temporal correlations within a moving scene. The result is the CSC4D framework, which uses

a single 4D convolution operator for sparsely representing an SV. The previous statement becomes important

when reviewing the state-of-the-art. Correa et. al. [10] proposed to compress sensing and reconstructing

each spectral frame consecutively but independently, missing the temporal correlations between frames;

while Lopez et. al. [19] proposed to include an additional optical flow term in the reconstruction process to40

include the temporal variation. The single 4D convolution in CSC4D maintains much of an SV’s features and

2

reduces the necessity of additional terms in the reconstruction problem. Initially, we developed the CSC4D

framework to address the super-resolution (SR) problem by increasing the spatial resolution of spectral videos

[25]. However, the CSVS problem’s compression matrix includes both the spatial and spectral dimensions,

increasing complexity.45

Nonetheless, this work’s main contribution is to use the CSC4D framework within a CSVS framework for

recovering high-resolution SVs from compressed measurements, replacing the SSR model as sparsifying basis

and profiting on CSC’s properties mentioned above. This proposal profits from CSC’s properties of local

shift-invariant structure, invariance to deformation, robustness to noise, and improved border sharpness.

This research work includes extensive numerical simulations to evaluate the performance of the CSC4D50

model at recovering SVs from compressed measurements, at different compression levels, and in the presence

of noise. The CSC4D model was compared to the SSR model and exhibits competitive performance with

respect to the reference method at high compression ratios and noise levels. However, it outperforms the

SSR model at mid-level compression ratios and noise levels. A modified acquisition scheme, based on a side-

information scheme [26, 27], is used for recovering viable versions of SVs from compressive measurements55

using CSVS architectures with dispersive elements. Overall, the proposed CSC4D+CSVS model improves

the recovery quality with respect to the state-of-the-art SSR method, where the recovered frames preserve

the edges and textures of the spectral video frames.

This work is organized as follows: Section 2 presents previous work in CSVS, SSR, and CSC for both

3D and 4D. Section 3 includes the integration of the CSC4D framework within a CSVS recovery scheme60

and the proposed numerical solution. Section 4 presents the performance evaluation and results. Finally,

Section 5 includes conclusions and future work.

2. Preliminary Background

2.1. Notation

Table 1 presents a detailed list of the particular notation to be used within this research work:65

2.2. Compressive Spectral Video Sensing (CSVS)

SVs consist essentially of a collection of SIs captured during a time frame, SSS = {SSSt, t = 1, ..., T | SSSt ∈

RM×N×L}. This implies that SV sensing has the same limitations and shortcomings as those found in SI

sensing [28]. Furthermore, SVs require high-speed sensing. Current state-of-the-art approaches propose an

extension of Compressive Sensing Imaging (CSI) to SVs, known as Compressive Spectral Video Sensing70

(CSVS), to reduce the need for expensive spectral sensing equipment.

CSI states that the spatial-spectral information of a SI can be sensed as a set of 2D encoded projections.

A typical CSI architecture encodes the 3D spatial-spectral information using a 2D coded aperture, which

3

Notation Description
M , N , L, T , d, Md, α, β, γ, ρ, λ, σ real scalars.
x 1D arrays.
X 2D arrays.
XXX 3D and 4D arrays.
∥x∥0 ℓ0 pseudo-norm, calculated as the number of non-zero entries of the

vector x.
∥x∥p = (

∑
|x|)1/p ℓp norm for 1 ≤ p ≤ 2.

⊗ Kronecker product.
n∗ n-dimensional cyclic convolution operation.
⊙ Hadamard product.
at t− th temporal index.
a(j),a(j+1) iteration step.
aT and aH transpose and conjugated transpose, respectively.
am as a single sub index, denote the m-th element of a collection.
ai,j and ai+u,j+v as a pair of sub indices, denote spatial coordinates.
[.] horizontal concatenation of two arrays.
vec(.) rearrangement of an N-dimensional array into a 1D array.
diag(x) creation of a diagonal matrix with the array x ∈ RN as its main

diagonal.

X̂XX = FND(XXX) and XXX = F−1
ND(X̂XX) ND-dimensional Fourier transform and its inverse, respectively.

Table 1: Detailed list of the particular notation to be used within this research work.

is then captured by an intensity detector (see Figure 1). Typically, the coded apertures are block–unblock

lithographic masks or spatial light modulators (SLM) that offer good optical sensing properties. Black-or-75

white, or color-coded, apertures allow or block certain wavelengths of light at specific spatial locations. This

process is synthesized in a sensing matrix H ∈ RK×MNL, with K ≪ MNL. The sensing matrix can be

expressed as H = SDΓ , where S is the integration matrix, D is the dispersion matrix and Γ is the coding

matrix [15].

Different CSI architectures generate different sensing matrices H, containing the setting of each CSI80

system. For CSI architectures with dispersive elements, as CASSI and C-CASSI [20], the matrix D accounts

for the dispersive phenomenon (see Figure 1); while for front-sensing architectures as 3D-CASSI [29] D = I

(see Figure 2). Matrix Γ is a diagonal matrix whose entries are the spectral responses of the optical filters

in the coded apertures, which can be black-or-white or color coded. Finally, the matrix S performs the

integration of the encoded and dispersed source. The 2D encoded projections, or compressive spectral85

measurements, are represented as y = Hs where y ∈ RK and s = vec(SSS) ∈ RMNL.

CSVS senses compressively each spectral frame as an independent SI, obtaining only a few measurements

per spectral frame. Then, a full version of the SV is recovered from the compressed measurements using

a spatial-spectral-temporal orthonormal basis, Ψ, following the sparse signal representation model (SSR).

Correa-Pugliese et. al. in [10] proposes to sparsely represent an SV using the Kronecker basis [20] along90

with the discrete cosine transform (DCT) for temporal compression, as Ψ = 2D Wavelet ⊗DCT ⊗DCT .

4

Figure 1: CASSI CSI architecture shceme. Source [15]

Figure 2: 3D-CASSI CSI architecture scheme. Source [30]

Then, s = Ψθ, where θ ∈ RMNLT are the sparse coefficients.

The sensing matrix H for CSVS is a block diagonal concatenation of independent sensing matrices{
Ht, t = 1, ..., T | Ht ∈ RK×MNL,K ≪ MNL

}
, as [19]

y1

...

yt

...

yT

=

H1 0 · · · 0 0

. . .

... Ht
...

. . .

0 0 · · · 0 HT

s1

...

st

...

sT

, (1)

where H ∈ RKT×MNLT and y ∈ RKT . The recovery of an SV from compressed measurements had been

typically addressed as the minimization problem

argmin
θ

1

2
∥HΨθ − y∥22 + λ ∥θ∥1 , (2)

where λ is a regularization constant that controls the trade-off between the data-fitting term and the sparsity-

5

inducing term [20]. To improve the performance of the SSR recovery model, Lopez et. al. [19] recently

proposed to include an additional regularization term based on the optical flow as

argmin
θ

1

2
∥HΨθ − y∥22 + λ ∥θ∥1 + β ∥∆∥22 , (3)

where β is a regularization term and ∆ = Λ(f̄w)i,j − Λ(f̄z)i+u,j+v is expressed in terms of the horizontal

and vertical changes estimated from two upsampled and contiguous frames f̄w and f̄z, obtained from a

low-resolution reconstructed version of the original SV.95

2.3. Convolutional Sparse Coding (CSC)

The CSC is a synthesis framework for sparsely representing signals using a collection of convolutional

dictionary elements and sparse coefficient maps, both learned directly from the signal of interest [31]. This

signal specificity allows for higher reconstruction qualities. CSC states that a given signal s ∈ RN can be

represented as the sparse combination of a collection of dictionary elements {dm, m = 1, ...,Md | dm ∈ Rd}

and its corresponding sparse coefficient maps {xm, m = 1, ...,Md | xm ∈ RN}, as

s =

Md∑
m=1

dm
1∗ xm + ω, (4)

where ω denotes a reconstruction error. It is worth noting that the sparse coefficient maps have the same

dimension as s, while the dictionary elements are much smaller, d ≪ N . The structure of the convolution

operation makes the representation framework robust to noise, shifting, and deformation of the features

within the represented signal. These properties make CSC a useful framework for denoising and machine100

learning [32].

Wohlberg et al. [33] proposes to use the CSC framework for representing gray-scale images s ∈ RM×N

using a collection of dictionary elements (features) {Dm, m = 1, ...,Md | Dm ∈ RdM×dN } with d ≪ M,N ,

and sparse coefficient maps (abundances) {Xm, m = 1, ...,Md | Xm ∈ RM×N}. However, considering the

nature of the overcomplete collection of dictionary elements, the collection of sparse coefficient maps cannot

be obtained by a direct inversion of the dictionary collection, but utilizing the minimization scheme

argmin
{Xm}

1

2

∥∥∥∥∥
Md∑
m=1

Dm
2∗Xm − s

∥∥∥∥∥
2

2

+ λ

Md∑
m=1

∥Xm∥1 . (5)

From this point it is easy to extend to color images where an RGB image is treated as a stack of gray-scale

images, S ∈ RM×N×3. Wohlberg et al. proposed the convolutional basis pursuit denoising (CBPDN) [34]

as a low computational cost alternative for the convolutional representation of a stack of gray-scale images

6

by solving

argmin
{Xc,m}

1

2

3∑
c=1

∥∥∥∥∥
Md∑
m=1

Dm
2∗Xc,m − Sc

∥∥∥∥∥
2

F

+ λ

3∑
c=1

Md∑
m=1

∥Xc,m∥1 + µ ∥Xc,m∥2,1 , (6)

where {Xm,c, m = 1, ...,Md , c = 1, 2, 3 | Xm,c ∈ RM×N} are the sparse coefficient maps for each dictionary

element indexed by m and the cth channel of the RGB image; while {Dm, m = 1, ...,Md | Dm ∈ RdM×dN }

is a collection of dictionary elements. CBPDN represents the spatial correlation within each color channel

in an RGB image but misses the correlation between channels.105

For the case of SIs, SSS ∈ RM×N×L datasets with both spatial and spectral correlations, we proposed

the CSC3D framework in [22], which uses a single 3D convolution operation to include the spatial-spectral

correlations as

SSS =

Md∑
m=1

DDDm
3∗XXXm +Ω, (7)

where {DDDm, m = 1, ...,Md | DDDm ∈ RdM×dN×dL} is a collection of 3D convolutional dictionary elements,

{XXXm, m = 1, ...,Md | XXXm ∈ RM×N×L} is a collection of 3D sparse coefficient maps, and Ω represents the

reconstruction error.

To include Eq. (7) within a minimization scheme, we proposed to express it as the single linear operation

s = vec(SSS) = D̄x+ ω, (8)

where D̄ = [D̄1...D̄Md
] ∈ RMNL×MNLMd is the concatenation of the equivalent convolutional matrices D̄m ∈

RMNL×MNL and x = [vec(XXX 1)
T ...vec(XXXMd

)T]T ∈ RMNL is the vertical concatenation of the vectorized

coefficient maps. Then, we formulate the minimization scheme as

argmin
x

1

2

∥∥D̄x− s
∥∥2
2
+ λ ∥x∥1 . (9)

This new and extended CSC framework has found applications in denoising [21] SIs and CSI, outper-

forming the SSR model [23]. Now, considering the versatility of the CSC model for representing 1D signals,

grayscale and RGB images, and recently 3D SIs, then it leads us to think of a general model for representing

multidimensional signals as

SSS =

Md∑
m=1

DDDm
N∗ XXXm +Ω, (10)

where SSS ∈ RL1×...×LN , {DDDm, m = 1, ...,Md | DDDm ∈ Rd1×...×dN } and {XXXm, m = 1, ...,Md | XXXm ∈

RL1×...×LN }, with di ≪ Li.110

Equation (10) is the basis for the formulation of the CSC4D proposed in [25], a 4D CSC model for

representing SV’s spatial-spectral-temporal correlations within a single operation. SVs can be considered

7

as 4D datasets SSS ∈ RM××N×L×T containing the 3D spatial-spectral information for each spectral frame

SSSt ∈ RM×N×L, alongside the time variation t = 1, ..., T . The CSC formulation for SVs can then be

expressed as

SSS =

Md∑
m=1

DDDm
4∗XXXm +Ω, (11)

where {DDDm, m = 1, ...,Md | DDDm ∈ RdM×dN×dL×dT }, is a collection of 4D convolutional dictionary elements

containing the collection of features within SSS, {XXXm, m = 1, ...,Md | XXXm ∈ RM×N×L×T } is a collection of

4D sparse maps representing the spatial-spectral-temporal contributions for each feature, Ω represents the

reconstruction error, and dM , dN , dL, dT ≪ M,N,L, T respectively.

Just as in the 3D case, the sum of 4D convolutions profit from the commutativity property of the

convolution operation to rewrite it as a linear operator

s = vec(SSS) =
Md∑
m=1

D̄mxm =

Md∑
m=1

X̄mdm = D̄x = X̄d ∈ RMNLT , (12)

where D̄m, X̄m ∈ RMNLT×MNLT are equivalent convolutional matrices; dm = vec(D̄m) and xm = vec(x̄m) ∈115

RMNLT are their corresponding vectorizations. Operators D̄,X̄ ∈ RMNLT×MNLTMd are linear opera-

tors equivalent to the sum of 4D cyclic convolutions and x,d ∈ RMNLTMd are vectorizations. We cre-

ate the equivalent linear operators as horizontal concatenations, i.e. D̄ = [D̄1 ... D̄Md
], of linear con-

volutional equivalents; while the vectorizations are vertical concatenations of the Md vectorizations, i.e.

x = [vec(XXX 1)
T ... vec(XXXMd

)T]T.120

3. CSC4D in a CSVS Framework

The linear representation of CSC4D proposed in [25] can be included within the CSVS recovery mini-

mization in Eq. (2), replacing the SSR model with the CSC model as a representation basis, as

argmin
x

1

2

∥∥HD̄x− y
∥∥2
2
+ λ ∥x∥1 . (13)

Equation 13 aims to learn a set of sparse coefficient maps x from compressed measurements y, given a fixed

convolutional dictionary D̄ and a CSVS sensing matrix H. Considering the specificity of the CSC model, the

dictionary elements D̄ must also be learned from the compressed measurements by solving the minimization

problem

argmin
d

1

2

∥∥HX̄d− y
∥∥2
2
+ ιCZ

(d). (14)

Eq. (13) and (14) are formulated in a similar and complementary fashion. Eq. (13) is formulated as a

ℓ2-linear restriction and learns a collection of sparse coefficient maps from a fixed collection of dictionary

8

elements; while Eq. (14) is formulated as a ℓ2 - linear restriction, and learns a collection of dictionary

elements from a fixed collection of sparse coefficient maps. The linear restriction in Eq. (13) is the ℓ1 norm,125

while the linear restriction in Eq. (14) is an indicator function based in a constraint set (see Section 3.2.).

Both Eq. (13) and (14) are known as the CSC4D+CSVS model and are solved alternately to recover a

full version of the SV of interest from compressed measurements. It is worth noting that D̄ and X̄ should not

be considered, under any circumstances, as bases. Due to its rectangular size, its inverse must be obtained

through a minimization scheme. Note that the proposed CSC4D+CSVS does not require estimating a low-130

resolution version of the original SV to include the optical flow information, as in Eq. (3), proposed by

Lopez et. al. [19]. Having fewer elements in the mathematical formulation simplifies its solution.

Creating the operators D̄ and X̄ is computationally expensive and non-optimal, requiring a more con-

venient alternative as explained in [23]. Due to the general N-dimensional CSC model in Eq. (10), Eqs.

(13) and (14) are similar to the formulation of CSC3D in [23]. However, the new proposed operators D̄135

and X̄ in Eq. (12) contain four dimensions instead of the three dimensions used in CSC3D. The additional

dimension taxes heavily the numerical cost of the CSC4D+CSVS formulation, requiring new optimization

routines instead of simply scaling up CSC3D’s routines. Subsections 3.1 and 3.2 expand on the analytical

solution of Eq. (13) and (14), respectively.

The compress sensing matrix H in CSC4D+CSVS seems similar to the decimation matrix in CSD4D+SR140

[25]. However, there are some considerations to take into account which differentiate one formulation from

the other, to mention:

• About the domain of operation, the SR decimation matrix operates only on the spatial dimension,

with H ∈ RMsNsLT×MNLT , Ms = M/α, Ns = N/α and α ∈ N∗ being a decimation factor; while the

CSVS sensing matrix can operate over both spatial and spectral dimensions, according to the CSVS145

architecture used, with H ∈ RKT×MNLT and K ≪ MNL.

• About the compression size, the SR case was tested successfully for α = 2, which results in H’s rows

being a quarter of the number of columns; this means a compression of 25%. For the CSVS case, the

compression was tested successfully for as low as 18.75%.

• About the mathematical properties, for the CSVS case we can profit on HHT = I, which is not true150

for the SR case.

Matrix H is the main difference between both CSC4D+SR and CSC4D+CSVS formulations, though

they seem similar on paper. Matrix H is responsible for generating either the low resolution SV ṡ or the

compressed measurements y, respectively, which are the second main difference between both formulations.

These two elements force to change half the solutions presented bellow.155

9

3.1. Reconstruction Update Problem (RU)

Eq. (13) is called the Reconstruction Update problem (RU) and aims to learn the spatial-spectral-

temporal contributions of each one of the elements in a given convolutional dictionary collection. Considering

the nature and size of the product HD̄, we propose to solve it using the alternating directions multiplier

method, ADMM [35], by introducing two auxiliary variables as

argmin
x,u,v

1

2
∥Hu− y∥22 + λ ∥v∥1 ,

s.t.: u = D̄x,

v = x.

(15)

Considering the model for the N-dimensional CSC framework in Eq. (10), we propose to profit on CSC3D

formulation [23] and extend it on the required update steps. Then, considering the augmented Lagrangian

for Eq. (15) given by

L{x,u,v, f ,g} =
1

2
∥Hu− y∥22 + λ ∥v∥1 +

ρ

2

∥∥D̄x− u+ f
∥∥2
2
+

ρ

2
∥x− v + g∥22 , (16)

we obtain the update steps

x(j+1) := argmin
x

ρ

2

∥∥∥D̄x− u(j) + f (j)
∥∥∥2
2
+

ρ

2

∥∥∥x− v(j) + g(j)
∥∥∥2
2
, (17)

u(j+1) := argmin
u

1

2
∥Hu− y∥22 +

ρ

2

∥∥∥D̄x(j+1) − u+ f (j)
∥∥∥2
2
, (18)

v(j+1) := argmin
v

ρ

2

∥∥∥x(j+1) − v + g(j)
∥∥∥2
2
+ λ ∥v∥1 , (19)

f (j+1) = f (j) + D̄x(j+1) − u(j+1), (20)

g(j+1) = g(j) + x(j+1) − v(j+1), (21)

where f and g are the so called dual variables, and the super indexes (j) and (j + 1) refer to the iteration

steps.

Solutions to Eqs. (17) to (19) are presented bellow according to the derivations presented in Appendix

A to Appendix C

x̂(j+1) =

[
b̂− ˆ̄DH

(
I+ ˆ̄D ˆ̄DH

)−1
ˆ̄Db̂

]
, (22)

u(j+1) =
1

ρ

[
b−

(
1

ρ+ 1

)
HTHb

]
, (23)

v(j+1) = Sλ
ρ

(
x(j+1) + g(j)

)
. (24)

10

3.2. Feature Extraction Problem (FE)160

Just as the sparse coefficient maps, the collection of convolutional dictionary elements is also learned from

the compressed measurements by solving the minimization in Eq. (14) called the Feature Extraction problem

(FE). However, instead of the ℓ1 restriction, FE aims to obtain a collection of 1-norm small dictionary

elements using the indicator function ιCZ
, as explained in Appendix D. Given the nature and size of the

product HX̄, Eq. (14) is also solved using ADMM by introducing two auxiliary variables

argmin
d,p,q

1

2
∥Hp− y∥22 + ιCZ

(q),

s.t.: p = X̄d,

q = d,

(25)

with augmented Lagrangian

L{d,p,q, r, t} =
1

2
∥Hp− y∥22 + ιCZ

(q) +
σ

2

∥∥X̄d− p+ r
∥∥2
2
+

σ

2
∥d− q+ t∥22 , (26)

and updates

d(j+1) := argmin
d

σ

2

∥∥∥X̄d− p(j) + r(j)
∥∥∥2

2
+

σ

2

∥∥∥d− q(j) + t(j)
∥∥∥2

2
, (27)

p(j+1) := argmin
p

1

2
∥Hp− y∥22 +

σ

2

∥∥∥X̄d(j+1) − p+ r(j)
∥∥∥2

2
, (28)

q(j+1) := argmin
q

σ

2

∥∥∥d(j+1) − q+ t(j)
∥∥∥2
2
+ ιCZ

(q), (29)

r(j+1) = r(j) + X̄d(j+1) − p(j), (30)

t(j+1) = t(j) + d(j+1) − t(j). (31)

where r and t are the so called dual variables, and the superindexes j and j + 1 refer to the iteration step.

Solutions to Eqs. (27) to (29) are presented bellow according to the derivations presented in Appendix

E to Appendix G

d̂(j+1) =

[
b̂− ˆ̄XH

(
I+ ˆ̄X ˆ̄XH

)−1
ˆ̄Xb̂

]
. (32)

p(j+1) =
1

σ

[
b−

(
1

σ + 1

)
HTHb

]
, (33)

q(j+1)
m =

ZpZ
T
p (d

(j+1)
m + t

(j)
m)∥∥∥ZpZT

p (d
(j+1)
m + t

(j)
m)
∥∥∥
2

, (34)

11

3.3. Proposed CSC4D+CSVS Algorithm

The CSC framework achieves improved reconstruction qualities by learning both collections of features

and spatial-spectral-temporal contributions directly from one desired signal. The State-of-the-art SSR model165

uses a predefined analysis model, limiting the versatility range of the recovered signals; CSC4D solves this

limitation by solving both RU and FE problems alternately, with one’s updates feeding the other.

Algorithm 1 Convolutional Spectral Coding for Compressive Spectral Video Sensing - CSC4D+CSVS

Require: {XXX (0)
m ∈ RM×N×L×T } as zeros and {DDD(0)

m ∈ RdM×dN×dL×dT } as random ∀m = 1, ...,Md; M,N,

L, T,Md, dM , dN , dL, dT , ρ0, λ and σ0.170

1: Set j = 0.

2: Set {VVV(j)
m } = {XXX (j)

m } and build the vectorization v(j).

3: Set {QQQ(j)
m } = {DDD(j)

m } and build the vectorization q(j).

4: Solve SSS(j) =
∑Md

m=1DDD
(j)
m

4∗XXX (j)
m .

5: Set UUU (j) = PPP(j) = SSS(j) and build the respective vectorizations u(j) and p(j).175

6: Set f (j) = g(j) = r(j) = t(j) = zeros

7: Build D̄ and ˆ̄D from {DDD(j)
m }.

8: Build x̂(j) from {XXX (j)
m }

9: Set ρ(j) = ρ0 and σ(j) = σ0

10: repeat180

RU

11: Solve x̂(j+1) using Eq. (22) and build xj+1 from x̂(j+1)

12: Solve u(j+1) using Eq. (23)

13: Solve v(j+1) using Eq. (24)

14: Update f (j+1) and g(j+1) using Eq. (20) and (21), respectively185

15: Update ρ(j+1) according to [35], section 3.3

16: Fold v(j+1) into {VVV(j+1)
m } and build X̄ and ˆ̄X from it.

FE

17: Solve d̂(j+1) using Eq. (E.1) and build dj+1 from d̂(j+1)

18: Solve p(j+1) using Eq. (33)190

19: Solve q(j+1) using Eq. (34)

20: Update r(j+1) and t(j+1) using Eq. (30) and (31), respectively

21: Update σ(j+1) according to [35], section 3.3

22: Fold q(j+1) into {QQQ(j+1)
m } and build D̄ and ˆ̄D from it

23: until a stopping criteria is satisfied195

24: return Collection of sparse coefficient maps {V(j+1)
m } and convolutional dictionary elements {Q(j+1)

m }.

12

3.4. Estimated Numerical Complexity

We will now estimate the numerical complexity of the more complex subproblems in RU and FE. Sub-

problem (19)’s solution, Eq. (24), is obtained from a soft-thresholding problem, and subproblem (29)’s

solution, Eq. (34), is akin to a hard-thresholding problem. Both complexities are negligible.200

Subproblems (18) and (28) have the same solution structure where the inversion of HTH + αI ∈

RMNLT×MNLT represents the highest complexity. According to Appendix A of [23], their complexity can

be reduced from O((MNLT)3) to O(M̃T (MNLT)2), with M̃ ≪ MNL and H ∈ RM̃T×MNLT , by profiting

from H’s block diagonal structure and HHT = I.

One of the main sources of numerical complexity is the 4D convolutional operation, with complexity205

O((MNLT)2), considering that the dictionary elements are zero-padded to match the dimensions of the

sparse coefficient maps. The 4D convolution complexity is reduced to a fraction by expressing it as a

Hadamard product, profiting from the Discrete Fourier Transform (DFT) Theorem, reducing the cost to

O(MNLT log(MNLT)).

Finally, the greatest source of numerical complexity is the inversions in Eqs. (A.3) and (E.1), as210

solutions to subproblems (17) and (27). Again, the canonical complexity for inverting ÂHÂ + αI ∈

RMNLTMd×MNLTMd is O((MNLTMd)
3). However, by profiting on the concatenated diagonal structure

of ˆ̄D and ˆ̄X and the dimensions rearrangement exposed in Appendix B of [23], the inversion complexity

falls to O(MNLTMd). Table 2 summarizes the different complexities for the stated subproblems and their

solutions.215

Eq. Complexity Solution
(19) and (29) Negible Implemented
(18) and (28) O((MNLT)3) Original

(23) and (33) O(M̃T (MNLT)2) Implemented
(17) and (27) O((MNLTMd)

3) Original
(A.3) and (E.1) O(MNLTMd) Implemented

Table 2: Complexity review of the proposed CSC4D+CSVS algorithm.

For the SSR case, the complexity is set by the matrix Ψ = 2D Wavelet ⊗ DCT ⊗ DCT . The com-

plexity of the 2D wavelet transform can be estimated, in the worst-case scenario for a whole set of filters

and levels, as O((MN)2). The spectral DCT has complexity O(Llog(L)) and the temporal DCT has

complexity O(T log(T)). The numerical complexity of the whole Kronecker product can be estimated as

O((MN)2LT log(L)log(T)).220

The complexity of CSC4D+CSVS is determined by the solutions to Eqs. (23) and (33)O(M̃T (MNLT)2),

plus the fact that the CSC framework demands the solution of two (2) minimization schemes instead of one

(1) for the SSR case. However, experimental results evidence that, although being more complex to solve,

the proposed CSC4D+CSVS converges quicker to a viable solution.

13

4. Performance Evaluation225

This research work tested the performance of the proposed CSC4D in CSVS following a two-step scheme:

1. Recovery quality from compressed measurements: The first step was to assess the recovery quality

of the CSC4D from compressed measurements. For this case we use two collections of independent

sensing matrices from two CSI architectures, 3D-CASSI [29] and C-CASSI [20], without the presence

of noise, and compared to the SSR model. Specifically, we compared CSC4D to the classical CSVS230

recovery model, without the additional optical flow regularization term, considering that CSC4D does

not use the optical flow information either.

2. Robustness to acquisition noise: The second step was to assess the recovery quality of the CSC4D from

compressed measurements in the presence of noise. We use two noise models, Gaussian white noise

and Poisson noise, at different intensities, the latter to simulate sensing noise. Again, we compared235

the performance of the proposed CSC4D to the classical CSVS model.

The quality of the sparse representation of SVs using a 4D CSC model was tested successfully in [25],

improving by up to 20dB PSNR the SSR model at sparsity levels below 10%, as shown in Figure 3. For this

reason, this research work does not include that particular performance evaluation.

Cajas Chiva

Figure 3: Reconstruction quality performance (PSNR) for various levels of sparsity (NNZ), for the proposed CSC4D
and SSR model. Taken from [25].

The two-step test scheme was conducted using two laboratory-captured spectral videos, Cajas and Chiva240

[19] (see Fig 4). Both data sets have spatial resolution 128× 128, 16 spectral bands, and 8 frames. Consid-

ering that convolutional dictionaries have a low performance for representing low-frequency components of

multidimensional signals [36], this work uses the high-frequency versions of the original datasets, which are

obtained by performing a high-pass filtering stage to the image data. For illustrative purposes, we add the

low-frequency components to evaluate visually the recovered SVs.245

14

(a)

(b)
Figure 4: False RGB of the test datasets (a) Cajas and (b) Chiva SVs.

The CSC approach is compared against the state-of-the-art SSR approach in all three steps of the

performance test using the following metrics:

• the peak signal-to-noise ratio (PSNR) for measuring the overall reconstruction quality,

• the structural similarity index (SSIM) for edge sharpness, and

• the percentage of non-zero elements (NNZ) for measuring sparsity.250

Considering that the convolutional coefficient maps are a collection ofMd sparse tetrahedrons ∈ RM×N×L×T ,

compared to the single sparse tetrahedron of the SSR model, then the sparsity of the convolutional coefficient

maps will be measured as

sparsity = maxMd
m=1

∥XXXm∥0
MNLT

. (35)

This is, the sparsity of the convolutional solutions will be the maximum sparsity of the individual coefficient

maps. Following a series of previous experimental results, the sizes for the dictionary collection were fixed

to dM = dN = dL = 8, dT = 3, and Md = 30, for the entire scheme test.

4.1. Performance Using Noiseless Measurements from the 3D-CASSI and C-CASSI CSI Architecture

The first step of the test scheme is to assess the performance of CSC4D at recovering full versions255

of compressed sensed SVs. First, we test CSC4D’s using compressed measurements obtained using the

3D-CASSI CSI architecture. For this experiment we create collections of independently generated sensing

matrices
{
Ht, t = 1, ..., 8 | Ht ∈ RK.128.128×128.128.16

}
, whereK = {3, 4} are the number of shots per spectral

15

frame, resulting in a compression of 18.75% and 25% respectively for both scenarios. Then, the sensing

matrix can be defined as H ∈ RK.128.128.8×128.128.16.8, according to Eq. (1). Table 3 presents the results for260

both the CSC4D+CSVS and the SSR model. CSC4D outperforms the SSR model at all compression ratios

with both datasets.

Dataset K Metric CSC4D+CSVS SSR

Cajas 3 PSNR 36,30 35,00
SSIM 0,960 0,929

4 PSNR 36,53 35,58
SSIM 0,961 0,943

Chiva 3 PSNR 51,83 50,76
SSIM 0,996 0,974

4 PSNR 54,60 52,91
SSIM 0,997 0,994

Table 3: Mean PSNR and mean SSIM of the reconstructed datasets using the 3D-CASSI, for both CSC4D+CSVS
and SSR framework, and two compression ratios. The standard deviations for five repetitions were well bellow 1%
for both mean PSNR and mean SSIM, for this reason they are not shown.

Figures 5 and 6 show some example reconstructed frames as false RGB from compressed measurements

taken with K = 4. Figures 7 and 8 show the error between the original SVs and the reconstructed versions

from both models. Note the overall errors of the SSR model at recovering both textures and border details;265

while the frames recovered by the CSC4D+CSVS framework exhibit a higher overall quality and increased

border sharpness, although still exist some missing specific details.

Second, we test the performance of the proposed CSC4D at recovering SVs from compressed mea-

surements sensed using the C-CASSI CSI architecture. Again, we create a collection of independently

generated sensing matrices
{
Ht, t = 1, ..., 8 | Ht ∈ RK.128.(128+16−1)×128.128.16

}
, where K = {3, 4} are the270

number of shots per spectral frame, giving a compression of 20.94% and 27.92%, respectively, for both

scenarios, according to γ = KM(N + L − 1)/MNL [20]. Then, the sensing matrix can be defined as

H ∈ RK.128.(128+16−1).8×128.128.16.8, according to Eq. (1). Preliminary experiments showed that CSC4D

performed poorly when integrated with the C-CASSI CSI architecture. We observed the same behavior

with the CSC3D framework and the C-CASSI [23].275

An exhaustive analysis of the minimization routines yielded one possible cause: the interaction between

the C-CASSI sensing matrix and the linear operators D̄ and X̄. Both linear operators are matrix repre-

sentations of the cyclic convolution operation, therefore they have very defined structures which include

the circular shifting effect. Consider the band-shifting structure of a single C-CASSI sensing matrix HT ,

depicted in Figure 9, and the circular shifting effect of matrix D̄. When interacting with the optical dis-280

persion element represented in C-CASSI’s sensing matrix, the circular shifting effect of the equivalent cyclic

convolutional matrices is replicated off-site, as shown in Figure 10, adding noise to the recovery routine.

To solve this issue, we recreated the side information scheme used in [23]. The proposed side information

system creates a gray-scale version of the original SV and replicates each gray-scale image at each band,

16

O
ri
g
in
a
l

C
S
C
4
D
+
C
S
V
S

(a)

S
S
R

O
ri
g
in
a
l

C
S
C
4
D
+
C
S
V
S

(b)

S
S
R

Figure 5: Example recovered frames from 3D-CASSI compressed measurements, at K = 4, with the CSC4D and
SSR methods for the dataset (a) Cajas and (b) some close-up details.

O
ri
g
in
a
l

C
S
C
4
D
+
C
S
V
S

(a)

S
S
R

O
ri
g
in
a
l

C
S
C
4
D
+
C
S
V
S

(b)

S
S
R

Figure 6: Example recovered frames from 3D-CASSI compressed measurements, at K = 4, with the CSC4D and
SSR methods for the dataset (a) Chiva and (b) some close-up details.

O
ri
g

in
a

l
C

S
C

4
D

+
C

S
V

S
 E

rr
o

r

0

0.5

1

(a)

S
S

R
 E

rr
o
r

0

0.5

1

O
ri
g
in

a
l

C
S

C
4
D

+
C

S
V

S
 E

rr
o
r

0.2

0.4

0.6

0.8

1

(b)

S
S

R
 E

rr
o
r

0.2

0.4

0.6

0.8

1

Figure 7: Reconstructed error frames recovered from 3D-CASSI compressed measurements, at K = 4, with the
CSC4D and SSR methods for the dataset (a) Cajas and (b) some close-up details.

17

O
ri
g

in
a

l

0.5

C
S

C
4

D
+

C
S

V
S

 E
rr

o
r

0

1

(a)

S
S

R
 E

rr
o

r

0

0.5

1

O
ri
g

in
a

l
C

S
C

4
D

+
C

S
V

S
 E

rr
o

r

0.2

0.4

0.6

0.8

1

(b)

S
S

R
 E

rr
o

r

0.2

0.4

0.6

0.8

1

Figure 8: Reconstructed error frames recovered from 3D-CASSI compressed measurements, at K = 4, with the
CSC4D and SSR methods for the dataset (a) Chiva and (b) some close-up details.

MN (1st band) MN (2nd band)

N
2N

MN (3rd band)

Figure 9: Detail of the band shifting for a single C-CASSI sensing matrix Ht. Taken from [23]

Figure 10: Product HD̄ for the C-CASSI CSI architecture, and closeup. Note the off-site replicas on the right side
of the closeup.

18

C-CASSI CSC4D

CSC4D
m

m

Figure 11: Side information scheme. Taken from [23]

Dataset K Metric CSC4D SSR
Cajas 3 PSNR 36,21 34,30

SSIM 0,935 0,905
4 PSNR 36,45 35,49

SSIM 0,957 0,919
Chiva 3 PSNR 45,53 39,11

SSIM 0,974 0,928
4 PSNR 46,75 41,69

SSIM 0,981 0,951
Table 4: Mean PSNR of the reconstructed datasets using the C-CASSI, for both CSC4D and SSR framework and
two compression ratios. The standard deviations for five repetitions were well bellow 1% for both mean PSNR and
mean SSIM, thus are not shown.

so S̃SS ∈ RM×N×L×T . Note that S̃SS contains all the spatial patterns, structures, and correlations of the285

original SV, but no spectral information. This additional information helps overcome the noise generated

by the dispersive element in C-CASSI. Optimal initial collections
{
D̃DDm

} {
X̃XXm

}
are created from S̃SS and

used as initializations for recovering SSS1, as shown in Figure 11. The results of recovering both datasets

using C-CASSI plus the proposed side information scheme are shown in Table 4, where the CSC4D model

outperforms the state-of-the-art model.290

4.2. Robustness to acquisition noise

The last step in the two-step test scheme is to assess the performance of the CSC4D algorithm in the

presence of noise. This research work used two noise models: Gaussian white noise and Poisson noise, the

latter representing acquisition noise. We added three different noise levels to the compressed measurements:

10dB, 20dB, and 30dB PSNR for Gaussian; 18dB, 23dB, and 28dB for Poisson. Again, both CSI architectures295

were used, with two compression ratios, for both SVs. The side information scheme was coupled again with

the C-CASSI architecture. The results of the performance tests are shown in Figures 12, 13 and Tables 5

to 8.

Just as in the CSC3D framework, the CSC4D model down-performs in the presence of excessive noise

(10dB Gaussian and 18dB Poisson), matching the performance of the SSR model. However, it outperforms300

the state-of-the-art model at medium and low noise levels, at all compression ratios, up to 4dB. On the other

hand, the SSIM values for the CSC4D model are higher than SSR’s SSIM values at almost all compression

19

Cajas CSC K=3 Cajas CSC K=4 Chiva CSC K=3 Chiva CSC K=4Cajas SSR K=3 Cajas SSR K=4 Chiva SSR K=3 Chiva SSR K=4

Gaussian Noise

C
-C

A
S

S
I

3
D

-C
A

S
S

I

Poisson Noise

(a)

(c) (d)

(b)

10 20 30

Noise (dB)

30

35

40

45

50

55

P
S

N
R

 (
d
B

)

18 23 28

Noise (dB)

30

35

40

45

50

55

P
S

N
R

 (
d
B

)

10 20 30

Noise (dB)

30

35

40

45

50

55

P
S

N
R

 (
d
B

)

18 23 28

Noise (dB)

30

35

40

45

50

55

P
S

N
R

 (
d
B

)

Figure 12: PSNR comparison for the Cajas (solid line) and Chiva (dotted line), CSC framework (blue line), SSR
framework (red line), K=3 (□) and K=4 (◦), for two CSVS techniques and two noise types.

Cajas CSC K=3 Cajas CSC K=4 Chiva CSC K=3 Chiva CSC K=4Cajas SSR K=3 Cajas SSR K=4 Chiva SSR K=3 Chiva SSR K=4

Gaussian Noise

C
-C

A
S

S
I

3
D

-C
A

S
S

I

Poisson Noise

(a)

(c) (d)

(b)

10 20 30

Noise (dB)

0.8

0.85

0.9

0.95

1

S
S

IM

18 23 28

Noise (dB)

0.8

0.85

0.9

0.95

1

S
S

IM

18 23 28

Noise (dB)

0.8

0.85

0.9

0.95

1

S
S

IM

10 20 30

Noise (dB)

0.8

0.85

0.9

0.95

1

S
S

IM

Figure 13: SSIM comparison for the Cajas (solid line) and Chiva (dotted line), CSC framework (blue line), SSR
framework (red line), K=3 (□) and K=4 (◦), for two CSVS techniques and two noise types.

20

Dataset Noise (dB) K Metric CSC4D SSR
Cajas 10 3 PSNR 32,27 33,31

SSIM 0,815 0,875
4 PSNR 32,39 33,48

SSIM 0,822 0,896
20 3 PSNR 35,67 34,99

SSIM 0,941 0,928
4 PSNR 35,87 35,24

SSIM 0,947 0,914
30 3 PSNR 36,22 35,31

SSIM 0,957 0,928
4 PSNR 36,46 35,48

SSIM 0,963 0,944
Chiva 10 3 PSNR 41,41 42,41

SSIM 0,937 0,944
4 PSNR 41,84 42,50

SSIM 0,941 0,951
20 3 PSNR 48,90 47,83

SSIM 0,989 0,973
4 PSNR 49,78 48,18

SSIM 0,991 0,985
30 3 PSNR 51,43 50,65

SSIM 0,995 0,991
4 PSNR 53,92 52,70

SSIM 0,997 0,993

Table 5: Mean PSNR and SSIM of the reconstructed
datasets using the 3D-CASSI in presence of Gaussian
white noise, for both CSC4D and SSR framework
and two compression ratios.

Dataset Noise (dB) K Metric CSC4D SSR
Cajas 18 3 PSNR 35,33 35,00

SSIM 0,945 0,927
4 PSNR 35,53 35,09

SSIM 0,951 0,935
23 3 PSNR 36,56 35,29

SSIM 0,964 0,927
4 PSNR 36,80 35,31

SSIM 0,966 0,936
28 3 PSNR 36,60 35,29

SSIM 0,967 0,934
4 PSNR 36,61 35,31

SSIM 0,971 0,940
Chiva 18 3 PSNR 47,67 47,53

SSIM 0,989 0,973
4 PSNR 48,82 47,73

SSIM 0,992 0,982
23 3 PSNR 49,92 48,24

SSIM 0,993 0,976
4 PSNR 51,54 48,60

SSIM 0,996 0,989
28 3 PSNR 51,27 49,85

SSIM 0,995 0,992
4 PSNR 53,90 51,71

SSIM 0,997 0,994

Table 6: Mean PSNR and SSIM of the reconstructed
datasets using the 3D-CASSI in presence of Poisson
noise, for both CSC4D and SSR framework and two
compression ratios.

Dataset Noise (dB) K Metric CSC4D SSR
Cajas 10 3 PSNR 31,60 31,83

SSIM 0,817 0,802
4 PSNR 31,88 32,27

SSIM 0,835 0,816
20 3 PSNR 33,67 33,45

SSIM 0,918 0,886
4 PSNR 34,20 33,51

SSIM 0,939 0,918
30 3 PSNR 36,19 34,30

SSIM 0,930 0,904
4 PSNR 36,41 35,43

SSIM 0,949 0,919
Chiva 10 3 PSNR 40,89 37,81

SSIM 0,925 0,877
4 PSNR 40,93 38,32

SSIM 0,927 0,893
20 3 PSNR 44,47 39,65

SSIM 0,969 0,924
4 PSNR 45,18 41,51

SSIM 0,972 0,950
30 3 PSNR 45,47 39,80

SSIM 0,972 0,927
4 PSNR 46,50 41,71

SSIM 0,979 0,951

Table 7: Mean PSNR and SSIM of the reconstructed
datasets using the C-CASSI in presence of Gaussian
white noise, for both CSC4D and SSR framework
and two compression ratios.

Dataset Noise (dB) K Metric CSC4D SSR
Cajas 18 3 PSNR 32,52 32,95

SSIM 0,819 0,879
4 PSNR 33,05 33,17

SSIM 0,842 0,916
23 3 PSNR 33,80 33,52

SSIM 0,927 0,898
4 PSNR 34,39 34,10

SSIM 0,951 0,918
28 3 PSNR 36,26 34,28

SSIM 0,930 0,902
4 PSNR 36,46 35,40

SSIM 0,950 0,943
Chiva 18 3 PSNR 44,29 39,21

SSIM 0,965 0,918
4 PSNR 44,77 41,22

SSIM 0,970 0,946
23 3 PSNR 44,94 39,67

SSIM 0,968 0,924
4 PSNR 45,58 41,23

SSIM 0,974 0,951
28 3 PSNR 45,19 39,73

SSIM 0,970 0,927
4 PSNR 45,93 41,58

SSIM 0,976 0,951

Table 8: Mean PSNR and SSIM of the reconstructed
datasets using the C-CASSI in presence of Poisson
noise, for both CSC4D and SSR framework and two
compression ratios.

The standard deviations for five repetitions, in Tables 3 to 7, were well bellow 1% for both mean PSNR and mean SSIM, thus
are not shown.

21

O
ri
g

in
a

l
C

S
C

4
D

+
C

S
V

S

(a)

S
S

R

O
ri
g

in
a

l
C

S
C

4
D

+
C

S
V

S

(b)

S
S

R
Figure 14: Example reconstructed frames recovered from 3D-CASSI compressed measurements, at K = 4 and 20dB
SNR Gauss, with the CSC4D and SSR methods for the dataset (a) Cajas and (b) and some close-up details.

O
ri
g
in
a
l

C
S
C
4
D
+
C
S
V
S

(a)

S
S
R

O
ri
g
in
a
l

C
S
C
4
D
+
C
S
V
S

(b)

S
S
R

Figure 15: Example reconstructed frames recovered from 3D-CASSI compressed measurements, at K = 4 and 20dB
SNR Gauss, with the CSC4D and SSR methods for the dataset (a) Chiva and (b) and some close-up details.

O
ri
g

in
a

l
C

S
C

4
D

+
C

S
V

S

(a)

S
S

R

O
ri
g

in
a

l
C

S
C

4
D

+
C

S
V

S

(b)

S
S

R

Figure 16: Example reconstructed frames recovered from C-CASSI compressed measurements, at K = 4 and 23dB
SNR Poisson, with the CSC4D and SSR methods for the dataset (a) Cajas and (b) some close-up details.

22

O
ri
g
in
a
l

C
S
C
4
D
+
C
S
V
S

(a)

S
S
R

O
ri
g
in
a
l

C
S
C
4
D
+
C
S
V
S

(b)

S
S
R

Figure 17: Example reconstructed frames recovered from C-CASSI compressed measurements, at K = 4 and 23dB
SNR Poisson, with the CSC4D and SSR methods for the dataset (a) Chiva and (b) some close-up details.

0 5 10 15 20 25 30
Iterations

0

10

20

30

40

50

60

70

F
co

st

100 realizations
Mean

Figure 18: Mean behavior of the cost function after 100 realizations.

0.4 0.5 0.6 0.7 0.8
Fcost

0

10

20

30

40

50

Figure 19: Histogram of the cost function at random initializations

23

and noise levels. This means that, although CSC4D fails to recover all the SV’s spatial-spectral-temporal

features in the presence of noise, the recovered SV has sharper and more defined borders than the SSR

model.305

Figures 14 to 17 show some example reconstructed frames as false RGB, recovered from compressed

measurements taken with K = 4 and 20dB SNR Gauss and 23dB SNR Poisson noise, respectively. Note the

overall quality of the recovered individual spectral frames, and the border sharpness, of the CSC4D model

when compared to the SSR model.

4.3. Algorithm Convergence310

To illustrate the good convergence of Algorithm 1, we selected the evolution of the cost function (13) as

function of the number of iterations. Considering that the indicator function in (14) only has values 0 or ∞,

it is not included in the estimation of the cost function. The high-frequency version of the Cajas dataset was

used for this experiment, and the compressive measurements were simulated with the 3D-CASSI system,

with 20dB SNR white Gaussian noise and K = 4. Fig. 18 confirms the convergence of the algorithm to a315

critical point of the objective function.

To analyze the sensitivity to initialization, we ran the proposed algorithm with 100 different random

initializations for the collection of dictionary elements, and all-zero coefficient maps. The histogram of the

corresponding values of the objective function is shown in Fig. 19, presenting a single mode, confirming the

convexity of the proposed algorithm. The mode of the objective function histogram corresponds to a PSNR320

of 35.61dB.

5. Conlusions

The proposed Convolutional Sparse Coding (CSC4D) was successfully integrated within a CSVS recovery

scheme, giving as result the CSC4D+CSVS algorithm. The proposed algorithm was tested using two different

CSI SV architectures. When integrated with a 3D-CASSI CSVS architecture, the CSC4D+CSVS model325

is able to match and outperform the state-of-the-art approach at different compression ratios and noise

levels, for a couple of test SVs. On the other hand, when the CSC4D+CSVS model is integrated with the

C-CASSI CSVS architecture, it is not able to unmix the C-CASSI band-shifting; it requires a better initial

set of convolutional dictionary elements for preserving spatial features. With the suggested C-CASSI Side

Information approach, the CSC4D+CSVS model is able to outperform the state-of-the-art SSR approach330

at various compression ratios and noise levels. The CSC4D+CSVS algorithm proved to be robust when

dealing with Poisson acquisition noises, improving the state-of-the-art SSR model.

6. Acknowledgements

Ph.D. (c) Crisostomo Barajas-Solano is supported by the MINCIENCIAS scholarship #785.

24

References335

[1] G. Lu, B. Fei, Medical hyperspectral imaging: A review, J. Biomed. Opt 19 (2014) 10901.

[2] G. A. Shaw, H. K. Burke, Spectral imaging for remote sensing, Lincoln laboratory journal 14 (2003) 3–28.

[3] D. Manolakis, D. Marden, G. A. Shaw, Hyperspectral image processing for automatic target detection applications, Lincoln

Lab. J 14 (2003) 79–116.

[4] S. Y. Cheng, S. Park, M. M. Trivedi, Multi-spectral and multiperspective video arrays for driver body tracking and activity340

analysis, Comput. Vis. Image Underst. 106 (2007) 245–257.

[5] H. Van-Nguyen, A. Banerjee, R. Chellappa, Tracking via object reflectance using a hyperspectral video camera, 2010, pp.

44–51.

[6] A. Banerjee, P. Burlina, J. Broadwater, Hyperspectral video for illumination-invariant tracking, 2009.

[7] R. Leitner, M. De-Biasio, T. Arnold, C. V. Dinh, M. Loog, R. P. W. Duin, Multi-spectral video endoscopy system for the345

detection of cancerous tissue, Pattern Recognition Letters 34 (2013) 85–93.

[8] K. J. Zuzak, S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, E. Livingston, Intraoperative bile duct visualization

using nearinfrared hyperspectral video imaging, 2013, pp. 145–150.

[9] D. Yi, L. Kong, F. Wang, F. Liu, S. Sprigle, A. Adibi, Instrument an off-shelf ccd imaging sensor into a handheld

multispectral video camera, Photonics Technology Letters, IEEE 23 (2011) 606–608.350

[10] C. V. Correa, C. A. Hinojosa, G. R. Arce, H. Arguello, Multiple snapshot colored compressive spectral imager, Optical

Engineering 56 (2016) 041309:1–041309:10.

[11] R. G. Sellar, G. D. Boreman, Classification of imaging spectrometers for remote sensing applications, Opt. Eng. 44 (2005)

013602–1 – 013602–2.

[12] N. Gat, Imaging spectroscopy using tunable filters, 2000, pp. 50–64.355

[13] B. Buttingsrud, B. K. Alsberg, Superresolution of hyperspectral images, Chemometrics and Intelligent Laboratory Systems

84 (2006) 62–68. doi:10.1016/j.chemolab.2006.04.014.

[14] C. Kwan, J. H. Choi, S. Chan, J. Zhou, B. Budavari, Resolution enhancement for hyperspectral images: A super-resolution

and fusion approach, 2017, pp. 6180–6184. doi:10.1109/ICASSP.2017.7953344.

[15] C. V. Correa, H. Arguello, G. R. Arce, Snapshot colored compressive spectral imager, JOSA A 32 (2015) 1754–1763.360

[16] H. Arguello, G. R. Arce, Rank minimization code aperture design for spectrally selective compressive imaging, IEEE

Transactions on Image Processing 22 (2013) 941–954. doi:10.1109/TIP.2012.2222899.

[17] A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, I. Pippi, Compressive sensing and hyperspectral imaging,

2012, p. 105642Z.

[18] Y. Wang, Q. Yao, J. T. Kwok, L. M. Ni, Scalable online convolutional sparse coding, IEEE Transactions on Image365

Processing 27 (2018) 4850–4859. doi:10.1109/TIP.2018.2842152.

[19] K. M. Leon-Lopez, L. V. G. Carreno, H. A. Fuentes, Temporal colored coded aperture design in compressive spectral

video sensing, IEEE Transactions on Image Processing 28 (2019) 253–264. doi:10.1109/TIP.2018.2867171.

[20] G. R. Arce, D. J. Brady, L. Carin, H. Arguello, D. S. Kittle, Compressive coded aperture spectral imaging: An introduction,

IEEE Signal Processing Magazine 31 (2014) 105–115. doi:10.1109/MSP.2013.2278763.370

[21] C. Barajas-Solano, J. M. Ramirez, H. Garcia, H. Arguello, Tridimensional convolutional sparse coding of spectral images,

Vol. 2019, 2019. doi:10.1364/hise.2019.htu3b.5.

[22] C. Barajas-Solano, H. Garcia, H. Arguello, Convolutional basis pursuit denoising of spectral images using a tri-dimensional

sparse representation, IEEE, 2019, pp. 1–5. doi:10.1109/STSIVA.2019.8730285.

[23] C. Barajas-Solano, J.-M. Ramirez, H. Arguello, Convolutional sparse coding framework for compressive spectral imaging,375

Journal of Visual Communication and Image Representation 66 (2019) 1–15. doi:10.1016/j.jvcir.2019.102690.

URL https://doi.org/10.1016/j.jvcir.2019.102690

25

http://dx.doi.org/10.1016/j.chemolab.2006.04.014
http://dx.doi.org/10.1109/ICASSP.2017.7953344
http://dx.doi.org/10.1109/TIP.2012.2222899
http://dx.doi.org/10.1109/TIP.2018.2842152
http://dx.doi.org/10.1109/TIP.2018.2867171
http://dx.doi.org/10.1109/MSP.2013.2278763
http://dx.doi.org/10.1364/hise.2019.htu3b.5
http://dx.doi.org/10.1109/STSIVA.2019.8730285
https://doi.org/10.1016/j.jvcir.2019.102690
http://dx.doi.org/10.1016/j.jvcir.2019.102690
https://doi.org/10.1016/j.jvcir.2019.102690

[24] V. Papyan, Y. Romano, J. Sulam, M. Elad, Theoretical foundations of deep learning via sparse representations: A

multilayer sparse model and its connection to convolutional neural networks, IEEE Signal Processing Magazine 35 (2018)

72–89.380

[25] C. Barajas-Solano, J.-M. Ramirez, H. A. Fuentes, Spectral video compression using convolutional sparse coding, 2020.

[26] L. Galvis, D. Lau, X. Ma, H. Arguello, G. R. Arce, Coded aperture design in compressive spectral imaging based on side

information, Applied Optics 56 (2017) 6332–6340.

[27] X. Yuan, T. han Tsai, R. Zhu, P. Llull, D. Brady, L. Carin, Compressive hyperspectral imaging with side information,

IEEE Journal of Selected Topics in Signal Processing 9 (2015) 964–976. doi:10.1109/JSTSP.2015.2411575.385

[28] C. V. Correa, H. Arguello, G. R. Arce, Compressive spectral imaging with coloredpatterned detectors, 2014, pp. 7789–7793.

[29] X. Cao, T. Yue, X. Lin, S. Lin, X. Yuan, Q. Dai, L. Carin, D. J. Brady, Computational snapshot multispectral cameras:

Toward dynamic capture of the spectral world, IEEE Signal Process. Mag. 33 (2016) 95–108.

[30] C. Hinojosa, J. Bacca, H. Arguello, Coded aperture design for compressive spectral subspace clustering, IEEE Journal of

Selected Topics in Signal Processing 12 (2018) 1589–1600.390

[31] A. M. Bruckstein, D. L. Donoho, M. Elad, From sparse solutions of systems of equations to sparse modeling of signals

and images, SIAM Review 51 (2009) 34–81.

[32] V. Papyan, J. Sulam, M. Elad, Working locally thinking globally: Theoretical guarantees for convolutional sparse coding,

IEEE Transactions on Signal Processing 65 (2017) 5687–5701. doi:10.1109/TSP.2017.2733447.

[33] B. Wohlberg, Efficient algorithms for convolutional sparse representations, IEEE Transactions on Image Processing 25395

(2016) 301–315.

[34] B. Wohlberg, Convolutional sparse representation of color images, 2016, pp. 57–60.

[35] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating

direction method of multipliers, Foundations and Trends in Machine Learning 3 (2010) 1–122.

[36] B. Wohlberg, Boundary handling for convolutional sparse representations, 2016, pp. 1833–1837.400

[37] H. V. Henderson, S. R. Searle, On deriving the inverse of a sum of matrices, Siam Review 23 (1981) 53–60.

[38] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

Appendix A. Coefficients Maps Update

It should be noted that solving Eq. (17) requires the costly creation of operator D̄ ∈ RMNLT×MNLTMd ,

and its transpose. By profiting on the Discrete Fourier Transform (DFT) theorem for the 4D case

Md∑
m=1

DDDm
4∗XXXm = F−1

4D

(
Md∑
m=1

F4D(DDDm)⊙F4D(XXXm)

)
, (A.1)

we propose to solve Eq. (17) in the Fourier domain as

x̂(j+1) := argmin
x̂

ρ

2

∥∥∥ ˆ̄Dx̂− ẑ(j)
∥∥∥2
2
+

ρ

2

∥∥∥x̂− ŵ(j)
∥∥∥2
2
, (A.2)

by performing the following transformations:

• x ∈ RMNLTMd is folded into X = {Xm, m = 1, ...,Md | Xm ∈ RM×N×L×T }, calculate the collection405

of Fourier transforms {X̂m} = {F4D(Xm)} and vectorized as x̂ = [vec(X̂ 1)
H ... vec(X̂Md

)H]H ∈

26

http://dx.doi.org/10.1109/JSTSP.2015.2411575
http://dx.doi.org/10.1109/TSP.2017.2733447

CMNLTMd .

• w(j) = v(j)−g(j) ∈ RMNLTMd is folded into W = {Wm, m = 1, ...,Md | Wm ∈ RM×N×L×T }, calcu-

late the collection of Fourier transforms {Ŵm} = {F4D(Wm)} and vectorized as ŵ = [vec(Ŵ1)
H ...

vec(ŴMd
)H]H ∈ CMNLTMd .410

• z(j) = u(j) − f (j) ∈ RMNLT is folded into Z(j) ∈ RM×N×L×T , calculate its Fourier transform Ẑ
(j)

=

F4D(Z(j)) ∈ CM×N×L×T , and vectorized ẑ(j) = vec(Ẑ
(j)

) ∈ CMNLT .

• Calculate the collection of Fourier transforms {D̂m} = {F4D(Dm)}, create a collection of diagonal

matrices { ˆ̄Dm ∈ CMNLT×MNLT } = {diag(vec(D̂m))} and build the horizontal concatenation ˆ̄D =

[ˆ̄D1 ... ˆ̄DMd
] ∈ CMNLT×MNLTMd .415

The original D̄ operator must be created as a concatenation of equivalent convolutional matrices with

defined structure; while the operator ˆ̄D can be created as the concatenation of diagonal matrices, which is

much easier to build. Although there is an associated cost of O(MNLT log(MNLT)) for each 4D Fourier

Transform, the memory savings and simplicity of operating simple diagonal matrices make up for this cost.

Finally, Eq. (A.2) has closed solution

x̂(j+1) =
(
ˆ̄DH ˆ̄D+ I

)−1 (
ˆ̄DHẑ(j) + ŵ(j)

)
. (A.3)

Eq. (A.3) resembles Eq. (21) in [23], but with higher dimensions. We propose to extend Appendix B in

[23], profiting on Woodbury’s matrix identity [37]

(A+UCV)
−1

= A−1 −A−1U
(
C−1 +VA−1U

)−1
VA−1, (A.4)

by rearranging Eq. (A.3) as

x̂(j+1) =
(
I+ ˆ̄DH ˆ̄D

)−1

b̂, (A.5)

with b̂ = ˆ̄DHẑ(j) + ŵ(j) ∈ CMNLTMd , and solution

x̂(j+1) =

[
b̂− ˆ̄DH

(
I+ ˆ̄D ˆ̄DH

)−1
ˆ̄Db̂

]
. (A.6)

Eq. (A.6) can be solved using the dimensions rearrangements proposed in Appendix B of [23], minding420

the increase in the dimensions. Finally, x̂(j+1) ∈ CMNLMd is folded into {X̂XX
(j+1)

m , m = 1, ...,Md | X̂XX
(j+1)

m ∈

CM×N×L×T }, we calculate the collection of inverse 4D Fourier transforms {X (j+1)
m } = {F−1

4D (X̂
(j+1)

m)} and

the update is the vectorization x(j+1) = [vec(X (j+1)
1)T ... vec(X (j+1)

Md
)T]T ∈ RMNLTMd .

27

Appendix B. Temporal Recovery From Compressed Measurements Update

Eq. (18) has closed solution in the spatial domain as

u(j+1) =
(
HTH+ ρI

)−1
(
HTy + ρz(j)

)
, (B.1)

and can also be solved using Woodbury’s matrix identity as

u(j+1) =
1

ρ

[
b−HT

(
ρI+HHT

)−1
Hb
]
, (B.2)

with b = HTy + ρz(j). Considering that HHT = I, then the update u(j+1) can be factorized as

u(j+1) =
1

ρ

[
b−

(
1

ρ+ 1

)
HTHb

]
. (B.3)

Eq. (B.3) can be solved optimally by performing the products right-to-left. This is, start by solving425

the matrix-to-vector product Hb, and continuing left wise, instead of solving the matrix-to-matrix product

HTH first.

Appendix C. Sparse Coefficient Maps Update

Eq. (19), has a closed form solution via soft thresholding [38] as

v(j+1) = Sλ
ρ

(
x(j+1) + g(j)

)
. (C.1)

Appendix D. Indicator Function for Dictionary Size Restriction

Using the previously defined zero-padding operator Zp and its transpose, we define the constraint set

CZp
=
{
x ∈ RMNLT : (I− ZpZ

T
p)x = 0, ∥x∥2 = 1

}
, (D.1)

which guarantees the desired dictionary elements. Besides, we introduce an indicator function of the con-

strained set as

ιCZ
(x) =

 0 if x ∈ CZp

∞ if x /∈ CZp

, (D.2)

and applied over each vectorized individual convolutional element dm ∈ RMNL. For simplicity, the notation430

will be applied over the whole collection of dictionary elements.

28

Appendix E. Convolutional Dictionary Update

Eq. (27) and Eq. (17) have analog structures, thus based on the mathematical development of Appendix

A to solve Eq. (27) as

d̂(j+1) =
(
ˆ̄XH ˆ̄X+ I

)−1 (
ˆ̄XHẑ(j) + ŵ(j)

)
, (E.1)

where

• d ∈ RMNLTMd is folded into D = {Dm, m = 1, ...,Md | Dm ∈ RM×N×L×T }, calculate the collection

of Fourier transforms {D̂m} = {F4D(Dm)} and vectorized as d̂ = [vec(D̂1)
H ... vec(D̂Md

)H]H ∈435

CMNLTMd .

• w(j) = q(j)− t(j) ∈ RMNLTMd is folded into W = {Wm, m = 1, ...,Md | Wm ∈ RM×N×L×T }, calcu-

late the collection of Fourier transforms {Ŵm} = {F4D(Wm)} and vectorized as ŵ = [vec(Ŵ1)
H ...

vec(ŴMd
)H]H ∈ CMNLTMd .

• z(j) = p(j) − r(j) ∈ RMNLT is folded into Z(j) ∈ RM×N×L×T , calculate its Fourier transform Ẑ
(j)

=440

F4D(Z(j)) ∈ CM×N×L×T , and vectorized ẑ(j) = vec(Ẑ
(j)

) ∈ CMNLT .

• Calculate the collection of Fourier transforms {X̂m} = {F4D(Xm)}, create a collection of diagonal

matrices { ˆ̄Dm ∈ CMNLT×MNLT } = {diag(vec(X̂m))} and build the horizontal concatenation ˆ̄X =

[ˆ̄X1 ... ˆ̄XMd
] ∈ CMNLT×MNLTMd .

The same numerical rearrangements from Appendix B in [23] also apply, minding the increase in the

dimensions. Eq. (E.1) has closed solution

d̂(j+1) =

[
b̂− ˆ̄XH

(
I+ ˆ̄X ˆ̄XH

)−1
ˆ̄Xb̂

]
. (E.2)

with b̂ = ˆ̄XHẑ(j) + ŵ(j) ∈ CMNLTMd . Finally, d(j+1) is built from d̂(j+1) just as x(j+1) is built from445

x̂(j+1).

Appendix F. Temporal Recovery From Compressed Measurements Update

Eq. (28) is analog to Eq. (18), thus based on the mathematical development of Appendix B to solve

Eq. (28) as

p(j+1) =
1

σ

[
b−

(
1

σ + 1

)
HTHb

]
, (F.1)

where b = HTy + σz(j) and z(j) = X̄d(j+1) + r(j).

29

Appendix G. Desired Convolutional Dictionary Update

Eq. (29) can be solved via proximal for each m-4D dictionary element as

q(j+1)
m =

ZpZ
T
p (d

(j+1)
m + t

(j)
m)∥∥∥ZpZT

p (d
(j+1)
m + t

(j)
m)
∥∥∥
2

, (G.1)

30

	Introduction
	Preliminary Background
	Notation
	Compressive Spectral Video Sensing (CSVS)
	Convolutional Sparse Coding (CSC)

	CSC4D in a CSVS Framework
	Reconstruction Update Problem (RU)
	Feature Extraction Problem (FE)
	Proposed CSC4D+CSVS Algorithm
	Estimated Numerical Complexity

	Performance Evaluation
	Performance Using Noiseless Measurements from the 3D-CASSI and C-CASSI CSI Architecture
	Robustness to acquisition noise
	Algorithm Convergence

	Conlusions
	Acknowledgements
	Coefficients Maps Update
	Temporal Recovery From Compressed Measurements Update
	Sparse Coefficient Maps Update
	Indicator Function for Dictionary Size Restriction
	Convolutional Dictionary Update
	Temporal Recovery From Compressed Measurements Update
	Desired Convolutional Dictionary Update

