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Abstract—Thanks to the definition of the new IEEE 802.11bf

standard, the development of Wi-Fi sensing applications is gain-
ing momentum in the research community. In this regard, several
studies have shown that learning-based approaches that leverage
the frequency response of the Wi-Fi channel in the sub-7GHz
bands can reach high accuracy in different classification tasks,
such as activity recognition, or person identification. Instead,
more fine-grained applications – e.g., human localization and
tracking, or respiration and heartbeat monitoring – require
implementing model-based approaches to estimate the Wi-Fi
multi-path parameters and analyze the time evolution of the paths
associated with specific targets (the human body or chest). In
this paper, we investigate the performance of six super-resolution
algorithms for sub-7GHz multi-path parameter estimation. Our
extensive evaluation indicates that the estimation accuracy that
can be achieved through commercial devices allows implementing
human localization and tracking strategies but is insufficient to
effectively design human vital signs monitoring applications due
to the limited frequency and spatial diversity. We pledge to release
our implementations for further investigations.1

Index Terms—Wi-Fi sensing, multi-path, CFR, IEEE 802.11.
I. INTRODUCTION

Wireless sensing through commercial Wi-Fi devices has
been extensively studied in recent years, leading to the de-
velopment of several applications, among which active and
passive localization, vital sign monitoring, and activity/gesture
recognition [1]. The main intuition behind Wi-Fi sensing is to
study the multi-path signal propagation to obtain information
about static and moving targets that irradiate radio waves (ac-
tive sensing) or act as signals reflectors, diffractors or scatterers
(passive sensing). In turn, the Wi-Fi channel state information
(CSI) has been extensively leveraged by researchers over the
last decade for active and passive contactless sensing.

A key advantage of Wi-Fi-based systems with respect to
systems based on cameras or radar is that they allow reusing
devices already deployed for communication purposes without
the burden of installing additional hardware. This aroused the
interest of the industrial community that is currently working
on the standardization of a new amendment to the IEEE 802.11
Wi-Fi standard, named IEEE 802.11bf, that will enable the
joint provisioning of the communication and the sensing ser-
vices [2]. IEEE 802.11bf will enable sensing in both the sub-
7GHz and the millimeter wave (mmWave) spectrum (60GHz
bands) by properly modifying the physical and medium access
control layers of the Wi-Fi protocol stack [3]. The choice of
the sensing frequency band depends on the sensing scenario

1https://github.com/francescamen/Wi-Fi-multipath-parameter-estimation

and the required sensing accuracy since the wireless channel at
sub-7GHz and mmWave frequencies have different radio wave
propagation characteristics. On the one hand, sub-7GHz fre-
quencies allow implementing sensing applications that require
a through-the-wall view or the collection of a huge number
of multi-path components. This is not possible on the 60GHz
spectrum as the propagation of a mmWave signal is completely
blocked by obstacles in the environment and the mmWave
channel is much more sparse than the sub-7GHz channels.
On the other hand, mmWave bands enable a higher sensing
granularity given the higher available bandwidth.

In this paper, we focus on passive Wi-Fi sensing on the sub-
7GHz bands – as they are currently supported by commercial
Wi-Fi devices on the market. Several learning-based and
model-based algorithms have been proposed over the year
to properly leverage the Wi-Fi CSI for different applications.
Learning-based algorithms are used when a coarse estimation
of the variability in the propagation environment is sufficient
to associate the CSI traces to specific classes of situations.
Examples of applications enabled by this approach are person
identification [4], and human activity recognition [5]. Model-
based algorithms are instead adopted when an accurate es-
timation of the multi-path propagation is needed, e.g., for
localization and tracking [6]. In this respect, multi-path profil-
ing algorithms have been developed to estimate the param-
eters of the multi-path components and obtain information
about the single objects in the environment acting as reflec-
tors/diffractors/scatterers for the Wi-Fi signal [6]. Localization
approaches infer the physical position of the target from the
multi-path estimation. Hence, tracking is performed by associ-
ating the estimates over subsequent time instants by proximity.
In this paper, we aim at understanding whether multi-path
parameter estimation approaches can be leveraged for more
fine-grained applications such as respiration and heartbeat
monitoring. The challenge is that, differently from tracking,
the association should be performed directly on the multi-path
components instead that on the inferred physical position. This
would enable implementing radar-like applications that obtain
the vital sign traces by collecting the phase of a single multi-
path component in time [7]. Existing approaches for Wi-Fi-
based vital sign monitoring rely on the analysis of the complete
CSI and thus require the users to remain still during the exper-
iment [1]. Considering a single multi-path component would
instead allow compensating for small human movements. We



conduct a comparative analysis considering three approaches
from the literature, i.e., mD-Track [6], SpotFi [8] and UbiLo-
cate [9], together with three other approaches we designed and
implemented for this task based on compressive sensing. The
analysis is performed by simulating the Wi-Fi channel for a
single transmission link, by changing the respective positions
(distance and orientation) of the transmitter and the receiver.
The results show that even using recent super-resolution multi-
path parameter estimators, the achievable estimation accuracy
is not sufficient to effectively develop vital signs monitoring
applications based on single multi-path components. Overall,
our evaluation provides a clear view of the limits of sub-7GHz
Wi-Fi sensing, providing other researchers with useful hints
for the development of new passive sensing applications to be
integrated into next-generation IEEE802.11bf Wi-Fi networks.

II. WI-FI MULTI-PATH CHANNEL MODEL

We consider a single-input, multi-output (SIMO) system
where the transmitter has a single antenna and the receiver
has a uniform linear array of N antennas spaced apart by
half of the carrier wavelength. The extension to the case of
a multi-input, multi-output (MIMO) system can be done by
considering multiple SIMO systems, one for each transmitting
antenna. Wi-Fi devices operating on the sub-7GHz bands, i.e.,
following the IEEE 802.11n/ac/ax standards, leverage the or-
thogonal frequency-division multiplexing (OFDM) or orthogo-
nal frequency-division multiple access (OFDMA) modulation
schemes to transmit the signal over K partially overlapping
sub-channels with center frequencies spaced apart by ∆f .
The signal propagates through the radio channel following
P different paths (multi-path propagation phenomenon) that
combine at the receiver device, as depicted in Fig. 1. Each
path is characterized by a signal amplitude attenuation γp, an
angle of arrival (AoA) at the receiver θrx,p, and a propagation
delay (or time of arrival (ToA) at the receiver) τp with
P ∈ {0, P − 1}. The way the different components combine
in the signal measured at the receiver is described next [10].
Propagation delay (or ToA) τp. The propagation delay
depends on the path length and reflects, in the frequency
domain, in a phase shift [ψ(τp)]k for each OFDM sub-channel
k, expressed as

[ψ(τp)]k = e−j2πk∆fτp . (1)

Angle of arrival (AoA) θrx,p. The AoA introduce a phase
shift ([ϕ(θrx,p)]n) in the frequency domain between signals
collected by each different receiving antenna n. Specifically,
assuming that the antenna spacing is half of a carrier wave-
length, the phase shift for the pth path is given by

[ϕ(θrx,p)]n = e−jπn sin(θrx,p) . (2)

Multi-path signal. Considering all the K OFDM sub-channels
and the N receiving antennas, the vectors collecting the phase
shifts associated with the ToA and AoA are respectively

ψ(τp) =
[
[ψ(θp)]0, ..., [ψ(τp)]K−1

]
, and (3)

ϕ(θrx,p) =
[
[ϕ(θrx,p)]0, ..., [ϕ(θrx,p)]N−1

]
. (4)

Hence, being s the frequency domain representation of the
transmitted signal, and w white Gaussian noise, the received

Fig. 1: Multi-path propagation of a Wi-Fi signal through three
paths: the line of sight (LoS) and two reflected paths.

signal is obtained (in the frequency domain) as y = Hs+w
where H is the N × K-dimensional channel frequency re-
sponse (CFR) matrix. Considering the above contributions to
the phase shift of the collected signal, H is formulated as

H =

P−1∑
p=0

γpϕ(θrx,p)ψ(τp) . (5)

The time domain representation of the CFR is referred to as
channel impulse response (CIR) and is indicated as h in the
following. The CIR is the combination of P impulses each
characterized by amplitude γp, ToA τp and AoA θrx,p.
A. Channel Frequency Response-based Wi-Fi Sensing

The CFR is the most widely used data for sensing as it con-
tains individual channel contributions of different objects in
the environment and provides frequency and spatial diversity.
The vast majority of the sensing approaches in the literature
obtain information about the environment by analyzing small
perturbations in the CFR caused by the changes in the multi-
path propagation. This approach allows designing qualitative
learning-based methods that recognize human activities, hand
gestures, and person identities, among others [1]. The de-
sign of Wi-Fi sensing applications that require quantitative
estimation of the Wi-Fi channel is instead more challenging.
Examples of such applications are passive person localiza-
tion and tracking, and human vital signs monitoring. These
applications require obtaining precise information about the
multi-path associated with the reflecting/diffracting/scattering
objects in the environment to track their changes in time. To
this end, the parameters of the multi-path components need to
be estimated based on the CFR matrix collected at the sensing
station in order to separate the contribution of every obstacle.
B. Challenges of Path Parameter Estimation at sub-7 GHz.

The most straightforward approach to obtain the CIR h is
by computing the inverse discrete Fourier transform (IDFT)
of the CFR H over the OFDM sub-channels and the receiving
antennas dimensions. Using this approach, the accuracy in the
multi-path parameter estimation is constrained by the CFR
diversity in the frequency and spatial domains. Specifically,
the ToA nominal resolution ∆τp is linked with the available
bandwidth B as ∆τp = 1/B, and the AoA nominal resolution



is associated with the number of monitoring antennas N as
∆θrx,p = 360/(πN) degrees. Current IEEE 802.11 devices
offer up to a maximum of 160MHz of bandwidth and, in turn,
the nominal resolution is about 6 ns meaning that paths with a
length difference smaller than 1.8 meters cannot be properly
separated. Moreover, the number of antennas available in
commercial Wi-Fi devices is limited to 4 for each band thus
providing low spatial diversity. Super-resolution algorithms
can be used to deal with these limitations and obtain more
precise estimates by leveraging the sparse nature of the Wi-Fi
channel in the ToA and AoA domains as discussed next.

III. WI-FI MULTI-PATH PARAMETER ESTIMATION:
PROBLEM FORMULATION

Based on the sparse nature of the Wi-Fi channel, the multi-
path parameter estimation can be formulated as a sparse
recovery problem as it entails obtaining a sparse vector h –
representing the CIR – by leveraging the multi-path propa-
gation information in the CFR. In the following, h is a P ′-
dimensional vector, where P ′ represents the number of can-
didate multi-path components specified by specific ToA and
AoA. Among these, only the P < P ′ components associated
with reflectors/diffractors/scatterers in the environment are
different from zero. The sparse recovery problem is formulated
as a constrained minimization of the L0-norm of h as

P1 : h = argmin
h̃

∥h̃∥0, subject to H = Th̃ (6)

where T is a (K × N) × P ′ matrix describing how the P ′

candidate paths combine at each of the K OFDM sub-channels
and N receiving antennas. The matrix T is user-defined and
depends on the selected ToA and AoA granularity. When
dealing with noisy data, the equality constraint in Eq. (6) has
to be relaxed to an inequality one as ∥H−Th̃∥22 < ϵ where
ϵ>0 is the parameter defining the tolerable error. Hence, P1
can be reformulated as

P2 : h =argmin
h̃

∥H−Th̃∥22, (7)

subject to ∥h̃∥0 < m , (8)

where m is the (user-defined) number of non-zero components
of the sparse vector h̃, i.e., the number of elements in the
support set of h̃.

In the following, we present and analyze the performance of
six multi-path parameter estimation algorithms based on sparse
recovery investigating the trade-off between accuracy and
complexity. Three of the considered approaches are specifi-
cally designed for this purpose and are presented in Section IV.
The remaining three are instead based on two compressive
sensing reconstruction strategies and are detailed in Section V.

IV. AD-HOC APPROACHES FOR WI-FI MULTI-PATH
PARAMETER ESTIMATION

Here we present SpotFi, mD-Track and UbiLocate, being
three state-of-the-art approaches for Wi-Fi multi-path param-
eter estimation, respectively presented in [8], [6], and [9].

SpotFi approach. SpotFi is an active Wi-Fi localization sys-
tem proposed in [8]. The algorithm is based on the joint angle

and delay estimation (JADE) algorithm. JADE was proposed
in [11] as an extension of the multiple signal classification
(MUSIC) algorithm in [12] for concurrently estimating the
ToA and AoA parameters. JADE estimates the h matrix
through the following steps. First, the CFR H is decom-
posed through eigendecomposition. Hence, the eigenvectors
are grouped into a signal and a noise sub-space. The signal
sub-space contains the eigenvectors representing the incident
signal, i.e., associated with eigenvalues higher than a certain
user-defined threshold. The remaining eigenvectors define the
noise sub-space and their concatenation into a matrix is here
referred to as E. From the orthogonality of the eigenvectors, it
follows that the signal and the noise sub-spaces are orthogonal.
In turn, being T(τ, θrx) the element of the matrix T associated
with ToA τ and AoA θrx, the P peaks in the S(τ, θrx)
spectrum defined as

S(τ, θrx) =
1

T†(τ, θrx)EE†T(τ, θrx)
, (9)

provide the estimates of the signal multi-path parameters τp
and θrx,p for p ∈ {0, P−1}. The † symbol in Eq. (9) indicates
the hermitian operator.
mD-Track approach. mD-Track is a Wi-Fi passive localiza-
tion system that can jointly estimate the angle of arrival and
departure, the path delay and the Doppler parameters of the
multi-path components of the signal [6]. To compare mD-
Track with the other approaches, in this paper we consider
the two-dimensional version of the algorithm that estimates the
ToA and AoA parameters based on two phases. The first phase
consists in obtaining a coarse estimation of the parameters of
the multi-path signal by iteratively estimating the strongest
multi-path component and removing it from the signal by
signal subtraction. During this phase, mD-Track also obtains
an estimate of the background noise. The second phase is a
refinement step built upon the space-alternating generalized
expectation maximization (SAGE) iterative algorithm [13].
The SAGE algorithm splits the estimation of the parameters
of the multi-path components into multiple estimates of the
parameters of a single component. Specifically, in mD-Track,
the process proceeds iteratively by re-estimating every single
path found in the preliminary phase by continuously updating
the background noise estimate. In each of the two phases, the
mD-Track algorithm finds the strongest path at each iteration
by solving problem P2 in Eq. (7) setting m = 1, i.e., h
has only one non-zero component which value indicates the
amplitude of the multi-path component while the position in
the P ′×1 dimensional vector indicates the path ToA and AoA.
UbiLocate approach. UbiLocate is an active Wi-Fi-based
localization system proposed in [9]. The algorithm is designed
to provide high accuracy in non line of sight (NLoS) settings.
To do so, UbiLocate proposes a high-resolvability multi-path
parameter estimation algorithm based on two steps. In the
first step, UbiLocate performs a greedy matching projection
to iteratively estimate the multi-path parameters following the
same general idea of mD-Track. Specifically, h is obtained
from H through an oversampled inverse discrete Fourier trans-
form, i.e., T, in this case, represents the matrix of the Fourier



transformation. The strongest component in the resulting h
is hence removed from H and the process iterates to find
the estimate of all the multi-path components in the signal.
In the second phase, UbiLocate performs a refinement of the
estimates through a Nelder-Mead search that minimizes Eq. (7)
starting from the estimates obtained through the first phase.

V. COMPRESSIVE SENSING RECONSTRUCTION-BASED
APPROACHES FOR MULTI-PATH PARAMETER ESTIMATION

The use of compressive sensing reconstruction algorithms
for multi-path parameter estimation was first analyzed in [14],
[15]. Here we focus on three greedy algorithms that solve
the approximate minimization problem P2. Greedy algorithms
proceed iteratively making local optimal choices and are
categorized into greedy pursuit and thresholding-based. Next
we present and evaluate the orthogonal matching pursuit
(OMP) and the iterative hard thresholding (IHT) methods, that
respectively belong to the former and latter classes [16].

Orthogonal Matching Pursuit (OMP). Greedy pursuit al-
gorithms generate an estimate of h starting from a zero
vector and iteratively adding new components whose value
is optimized based on the minimization of the cost function
in Eq. (7) [16]. Specifically, at each iteration, OMP finds the
column of T most correlated with the current residual and
adds it to a set denoted as active columns. Then, it estimates
a solution to Eq. (7) through the least squares method restricted
to the active columns only. The process is iterated until the
residual, i.e., ∥H−Th̃∥22 is smaller than a threshold.

Iterative Hard Thresholding (IHT). Thresholding methods
first find an h that minimizes the cost function and hence
prune it based on thresholding strategies that maintain only the
m most significant elements of h [16]. Based on this general
idea, IHT iterates by updating a candidate solution h̃ following
the direction of decreasing gradient of the reconstruction
error ∥H − Th̃∥22. Specifically, the gradient is obtained as
g = TT (H − Th̃) – where T is the transpose operator –
and an update coefficient µ > 0 is defined to implement
the update. After every update, a nonlinear projection (called
thresholding function) is applied to the candidate solution
to approximate it with its m most significant terms while
setting the remaining elements to zero. To maximally reduce
the reconstruction error at each iteration, µ is optimally
selected based on the value of the gradient. The process
continues until the difference between the h̃ estimated in
two consecutive iterations becomes smaller than a certain
threshold. For the purpose of Wi-Fi multi-path parameter
estimation, we designed a customized thresholding function
that considers the physical meaning of the elements in h,
i.e., the Wi-Fi propagation paths. Specifically, we selected
the entries to be retained through the thresholding function
by performing a peak search in the candidate h̃ signal and
retaining the elements associated with the stronger peaks. This
allows forcing a lower bound regarding the distance between
the selected elements thus obtaining a solution for h in line
with its physical interpretation.

Wi-Fi multi-path parameters

ToA first path 1× 10−8 s
ToA second path ∈ [1.02, . . . , 2]× 10−8 s
ToA step 2× 10−10 s
AoA first path ∈ [−90, . . . , 90] deg
AoA second path ∈ [−90, . . . , 90] deg
AoA step 1 deg 1st - 2 deg 2nd

TABLE I: Multi-path propagation parameters.
Iterative Hard Thresholding (IHT) with Refinement. As
another solution to perform parameter estimation, we im-
plemented IHT including an additional iterative refinement
step that takes inspiration from the mD-Track approach. The
process starts by detecting the most powerful path in h̃,
and reconstructing and removing it from H. Next, the IHT
algorithm presented above is executed again to obtain a new
estimate of h. Hence, the strongest path in the new h̃ is
extracted and removed from H and the process continues until
the power of the detected strongest path is below a threshold.

VI. NUMERICAL RESULTS AND COMPARISON

To quantitatively evaluate and compare the performance
of the six approaches for multi-path parameter estimation
described above, we simulated a Wi-Fi channel with a two-
ray model, where the first path is the LoS while the second
represents a reflected/diffracted/scattered signal from an object
in the environment. Each ray is characterized by a propagation
delay (ToA), an AoA at the receiver, and a unitary amplitude
as described in Section II. Note that previous evaluations in
the literature, e.g., [6], only considered a fixed value for the
AoA of the LoS signal. This limits a thorough evaluation
of the approaches as they only consider a specific respective
orientation of the transmitter and receiver antenna arrays. In
this work, we deepen the analysis by considering different val-
ues for the LoS AoA, thus representing different orientations
of the antenna arrays at the transmitting and the receiving
Wi-Fi devices. To do that, we changed the AoA of the LoS
from −90 deg to 90 deg in our evaluations. Hence, several
ToA/AoA combinations have been considered for the second
path, as summarized in Table I. In the following, we present
the results obtained when using the algorithms described in
Sections IV-V to estimate the multi-path parameters in the
signal. Specifically, we want to understand the minimum ToA
and AoA differences that two paths should have in order to be
properly recognized as two distinct contributions to the CFR
– i.e., be resolvable – and associated with accurate estimates
for the ToA and AoA. The resolvability, and ToA and AoA
error heatmaps presented next have been obtained by averaging
the results over all the simulations for the same ToA and
AoA difference between the two paths obtaining 91 different
terms for each average. For the execution time, the average is
computed considering all the 823 550 simulations obtained for
each setting, i.e., (181 AoA for the 1st path) × (91 AoA for
the 2nd path)× (50 ToA for the 2nd path) (see Table II). The
algorithms have been executed on an Intel™ Xeon™ Gold
5118 CPU in single threads using eight cores each.2

2The code of the implementations is available at https://github.com/
francescamen/Wi-Fi-multipath-parameter-estimation
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Fig. 2: mD-Track ToA estimation error for the first (left) and
the second (right) paths changing the ToA grid granularity.

ToA grid [ns] time [×10−2 s]

1× 10−2 15.2
1.0× 10−1 2.1
5.0× 10−1 1.2
1.00 0.9

method time [×10−2 s]

mD-Track 1.2
SpotFi 72.9
UbiLocate 2.3
IHT 113.8
IHT enhanced 140.3
OMP 235.9

TABLE II: Average execution time for the multi-path param-
eter estimators in Sections IV-V. The execution time of mD-
Track varying the ToA grid granularity is on the left.

Hyper-parameters selection. The multi-path parameter esti-
mation approaches rely on a matrix of candidate paths, referred
to as T in Section III. Such T matrix is defined through a set of
candidate ToA and AoA which combinations generate the P ′

candidate paths following Eq. (5). Ideally, P ′ should contain
an infinite number of candidate paths to properly estimate the
multi-path parameters. However, this would imply performing
matrix multiplications with huge matrices that would be com-
putationally prohibitive. Moreover, even if the super-resolution
algorithms described above can increase the ToA and AoA
resolutions, the physical limitations linked with the bandwidth
and the number of antennas do not allow increasing it indefi-
nitely with respect to the nominal resolution (see Section II-B).
In turn, the grid granularity needs to be properly selected. In
Fig. 2 we evaluate how the ToA grid granularity affects the
performance of the mD-Track path parameter estimator. We
fix the AoA grid granularity to 0.5 deg and change the grid
for the ToA in {1×10−11, 1×10−10, 5×10−10, 1×10−9} s.
The computation time for the estimation of the two multi-path
components is reported in Table II on the left. The results
confirm that as the ToA grid became denser, the accuracy
in the path ToA estimation increases at a cost of a higher
computing time. As a tradeoff between accuracy and execution
time, we fix the ToA grid granularity for all the approaches
to 5× 10−10 s. The AoA grid granularity is set to 0.5 deg.

Computational complexity and paths resolvability. To prop-
erly evaluate and compare the algorithms, both the execution
time and the accuracy in the parameter estimation have to be
considered. In Table II on the right we report the average
execution time for the resolvability of the two multi-path
components of the signal for the different approaches. To
evaluate the path resolvability, we consider an approach similar
to the one adopted in [6]. We fix the maximum tolerable
ToA and AoA errors to 5 × 10−9 s and 40 deg respectively
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Fig. 3: Path resolvability considering a maximum tolerable
ToA and AoA errors of 5× 10−9 s and 40 deg respectively.

and we analyze the probability of successfully estimating the
ToA and AoA parameters of both the paths in the signal. The
resolvability index for the six multi-path parameter estimators
is reported in Fig. 3, where a value of one means that the
paths are completely resolvable while zero means that they
are merged into a single path or the parameter estimates are
not accurate. The results indicate that, as a tradeoff between
execution time and accuracy, the approaches that should be
preferred are the three ad-hoc ones (see Section IV).

ToA and AoA estimation errors. In Figs. 4-5 we respectively
evaluate the absolute error in the estimation of the ToA and
AoA for the first (left plots) and the second (right plots)
multi-path components. Previous work in the literature only
showed the distribution of the errors through the cumulative
density function, without indicating how the errors change
based on the ToA and AoA difference between the multi-
path components. In our analysis, we found out that such a
difference has an impact on the estimation error of both the
multi-path components as depicted in Figs. 4-5. Note that the
evaluation of the errors can be performed only when the path is
recognized, i.e., the errors are smaller than the ToA and AoA
tolerances introduced above. The results in Fig. 4 indicate that
the ToA error is maximum when the paths are close in the AoA
domain. At small ToA differences the error in the first path
is close to zero because the two paths cannot be separated
(see Fig. 3) and are merged together in a single path that is
correctly estimated. The same reasoning applies to the results
in Fig. 5 regarding the AoA error. The results indicate that the
approach that performs better in the estimation is SpotFi but its
execution time is respectively 60 and 30 times the mD-Track
and UbiLocate algorithms that can provide sufficient path
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and second (right) paths. The colors indicate the error in deg.

parameter estimation accuracy for localization as presented
in [6], [9]. The compressive sensing-based approaches perform
similarly to mD-Track but require higher execution times.

Overall, the results show that multi-path parameter estima-
tion approaches are hardly applicable to vital signs monitoring.
Such applications require separating and tracking the contri-
bution of closely spaced paths generated by different body
parts, i.e., with almost the same AoA and a ToA difference
smaller than 1.6 ns – corresponding to a space displacement of
less than 50 cm. To achieve the required radar-like accuracy,
a higher number of antennas and a higher communication
bandwidth would be needed. In this respect, the novel IEEE
802.11ay standard provides support for the mmWave spectrum
where channels with higher bandwidth can be leveraged for
sensing. The new technology is therefore expected to be
suitable for multi-path decomposition-based vital signs mon-
itoring. However, commercial devices implementing the new
standard are not yet available in the market.

VII. CONCLUDING REMARKS

Different super-resolution multi-path parameter estimation
strategies have been presented in the literature so far. In
this paper, we investigated whether they can be applied to
separate the multi-path components for precise human sensing
applications. The results show that the estimation errors do not
allow properly separating and tracking contributions associated
with reflections closely spaced in the ToA/AoA domain like
the ones that are generated by the different body parts of
a subject. This limits the development of fine-grained Wi-
Fi-based human sensing applications, such as vital signs
monitoring, on the below 7GHz spectrum. Future research
avenues include analyzing the performance of the presented
multi-path separation algorithms considering higher bandwidth
channels (in the mmWave) and devices with more antennas.
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