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Abstract

Federated learning is a distributed machine learning approach developed to guarantee the privacy

and security of data stored on local devices. In healthcare, specifically in diseases of public health

interest such as dengue, it is necessary to develop strategies that guarantee such data properties.

Therefore, the aim of this work was to develop three federated learning approaches for fuzzy cog-

nitive maps for the prediction of mortality and the prescription of treatment of severe dengue. The

validation of the approaches was performed on severe dengue datasets from two dengue endemic

regions in Colombia. According to the results, the use of federated learning significantly improves

the performance of models developed in centralized environments. Additionally, the use of fed-

erated learning allows guaranteeing the privacy and security of each client’s data due to the local

training of the models. Federated learning is a useful tool in healthcare because it guarantees the

privacy and security of patient data. Our results demonstrated the ability of aggregated models to

predict mortality and prescribe treatment for severe dengue.
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1. Introduction1

Dengue is a febrile disease caused by a virus of the Flaviviridae family, and is transmitted2

by the bite of female Aedes mosquitoes [1]. It causes a clinical picture ranging from asymp-3

tomatic processes to severe disease; with a wide spectrum of clinical manifestations such as fever,4

headache, retro-ocular pain to severe signs such as shock, severe bleeding, multi-organ failure and5

death [2]. Based on severity, World Health Organization (WHO) categorized the disease into three:6

i) dengue without alarm signs, ii) dengue with alarm signs, and iii) severe dengue (SD), which in-7

cludes dengue shock syndrome [3]. The latter category is an important cause of mortality and has8

reached a rate of 44% [4]. Dengue infection has spread globally, being endemic in more than 1209

countries worldwide, mainly in Africa, Western Pacific, Southeast Asia and the Americas, gener-10

ating a high epidemiological, economic and social impact [5]. According to the WHO, more than11

3.8 billion people are at risk of infection and approximately 100 to 400 million infections occur12

annually worldwide, with approximately 25% of them showing some type of symptom [6].13

Diagnosis and treatment of dengue are the main components of the clinical management of the14

disease. Diagnosis is made by interpreting signs and symptoms to classify the patient according to15

the severity of the clinical picture, which can be challenging for health personnel due to the vari-16

ability of clinical manifestations present in infected patients. Additionally, dengue presents similar17

clinical manifestations to other febrile diseases such as Zika, chikungunya and leptospirosis, with18

which a differential diagnosis should be made [7]. On the other hand, laboratory tests such as19

detection of dengue antigens, antibodies against the virus and viral isolates, allow confirmation of20

the disease, but may cause delays in areas that do not have all the health services [8]. There is cur-21

rently no specific antiretroviral treatment for dengue available in developing countries. Therefore,22

available treatment focuses on alleviating signs and symptoms and avoiding complications leading23

to death, and clinical management of dengue remains a challenge for health professionals [9].24

One way to address the problem of clinical management is through the development of computer-25

aided approaches that use predictive modeling for diagnosis and prescriptive modeling for treat-26

ment. The development of such methods can support medical decision-making in relation to the27

course of disease, which could have an impact on reducing mortality rates due to timely classifi-28
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cation and appropriate treatment [10].29

The validation of models, approaches and methodologies for the diagnosis and treatment of30

dengue is quite widespread. However, the works reported in the literature present some limitations.31

First, the published studies focus on developing complex models that are not very understandable32

for the medical professional, who is interested in knowing how the model classifies patients ac-33

cording to their severity. Moreover, they maximize predictive performance by compromising the34

interpretability of predictor variables in different situations or scenarios. Second, there are few35

studies focused on the clinical management of dengue in a comprehensive manner. Most of the36

studies only emphasize one of the two components: diagnosis or treatment; however, it is cru-37

cial to integrate both processes to optimize medical decision-making aimed at improving health38

care. Third, the reported works use the traditional machine learning (ML) approach, which gath-39

ers dengue data in one place for training. This may raise issues with respect to the privacy and40

security of the data used. Transporting and sending the data from one place to another can cause41

loss, damage and violate laws related to personal data protection.42

Therefore, it would be of great clinical utility to generate decision support approaches for43

the diagnosis and treatment of dengue that provide understandable and explainable results for44

clinicians. It would also be of clinical interest to develop systems that, in addition to predicting an45

outcome, also allow treatment to be prescribed according to the specific patient scenario. Finally,46

the use of distributed learning approaches such as federated learning that guarantee data security47

and privacy would be a great added value.48

In this sense, the main contributions of our work are the definition of three approaches as med-49

ical support tools for the diagnosis and treatment of dengue, specifically SD. These approaches are50

characterized by using federated learning with fuzzy cognitive maps (FCMs) and optimization al-51

gorithms for the generation of predictive and prescriptive models. The first approach implemented52

is based on the similarity of the feature space among the participating clients or sites where the53

signs and treatment options of SD are identical. The second is based on the objective, where the54

only feature in common among all clients or parties is a decision variable (for our application55

domain, it was SD mortality). Each client or party has different characteristics related to mortality56

and treatment of SD. Finally, the third approach uses parameter learning transfer to send informa-57
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tion from one site/party to another. Specifically, the implemented approach transmits the learned58

parameters from SD treatment to mortality prediction. The novelties proposed in the present study59

are focused on several aspects: i) the generation of federated learning approaches with a different60

architecture (approaches 1 and 2) from that reported in the literature; ii) the application domain,61

since to date there are no reports on the implementation of federated learning with FCMs for the62

diagnosis and treatment of dengue; iii) the combination of predictive and prescriptive models in a63

single architecture that allows integrated support for decision-making with respect to the diagnosis64

and treatment of dengue.65

This paper is organized as follows: Section 2 shows the related works about the last trends in66

FCMs for prediction and prescription. Also, it presents the main studies about federated learning67

for medical environments. Section 3 describes the methodology used to develop the federated68

learning approaches, and Section 4 describes the experiments to validate them. Section 5 shows69

the results for each approach and discusses them. Finally, Section 6 concludes the paper.70

2. Related work71

In this section, we present the main works related to the use of FCMs for prediction and72

prescription. Additionally, we present the main studies about federated learning for healthcare.73

2.1. FCMs74

FCMs are computational intelligence algorithms that allow modeling complex systems using75

concepts and relationships between them [11, 12]. In the following, we present a literature review76

on the implementation of this type of algorithm for prediction and prescription.77

2.1.1. FCMs for prediction78

FCMs use inference functions to make predictions based on the interconnection among the79

concepts [13]. The development of clinical decision support systems for prediction with FCMs80

has increased in recent years due to the simplicity of construction and ease of interpretation of81

results. In previous work, we developed a clinical decision support system for dengue diagnosis82

based on FCMs [14]. We used the knowledge and experience of clinical experts in dengue to83
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construct the FCM with signs, symptoms, and laboratory test results. The constructed FCM model84

had the ability to classify dengue severity (dengue with and without warning signs, and SD) with85

89% accuracy and the additional ability to assess the behavior of severity-related variables. In86

addition, we developed another previous work with SD prediction models using FCMs trained87

with the particle swarm optimization algorithm [15]. The models were trained using historical88

data from two endemic cities in Colombia and their peak performance reached 74% accuracy due89

to small sample sizes.90

FCMs have also been widely used for predicting the risk of outbreaks or epidemics of viral91

diseases such as dengue [16, 17]. For example, Pelaez [16] proposed a model based on FCMs to92

predict the risk of presenting tropical viral diseases such as dengue. The authors trained FCMs with93

unsupervised learning to represent causal relationships and knowledge related to environmental94

conditions, symptoms, and historical data related to tropical viral diseases. The historical data for95

training the FCMs corresponded to seasonal outbreaks and epidemics in Ecuador. The proposed96

model had the potential to improve the chances of early forecasting of seasonal diseases related97

to tropical regions. Jayashree et al [17] used FCMs using expert knowledge to build a system that98

classified the risk of dengue outbreak in tropical regions of Southern India. The results showed99

that the performance of FCM was superior when compared to other techniques such as Bayesian100

classifier, decision tree, support vector machines, and multilayer perceptron. The classification of101

risk into low, moderate and high allows health authorities to establish prevention strategies in the102

regions to prevent the spread of the disease.103

2.1.2. FCMs for prescription104

FCMs have now started to be used to prescribe actions leading to desired outcomes in complex105

modeled systems. Reported work in the literature using FCMs to support decision-making related106

to dengue treatment is scarce. However, they have been used for the treatment of other diseases107

such as urinary tract infections and cancer. Papageorgiou [18] developed a computational tool108

based on FCMs for treatment management of urinary tract infections. The results of the evaluation109

of the software on a small sample of diseased patients demonstrated its capability for classification110

and recommendation of suggested treatments.111
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For cancer treatment, several studies have been performed for treatment management using ra-112

diotherapy [19, 20]. Papageorgiou [19] used FCMs for computational modeling of the complexity113

of the clinical radiation procedure to calculate the final dose that should be administered in cancer114

patients. The model was built with a combination of expert knowledge and fuzzy rule extraction115

from the data. The system was able to handle uncertainty, is simple, and is less complex than116

other previously reported models. Papageorgiou and Stylios [20] determined the success of the117

radiation therapy process by implementing FCMs as a modeling technique. The proposed system118

had a hierarchical structure to simulate and evaluate the radiation therapy process. The developed119

model was evaluated in point scenarios to demonstrate its performance with prior determination120

of treatment variables by the medical professional.121

According to our literature review, only one work has used FCMs for dengue treatment pre-122

scription. Hoyos et al [15] developed an extension of FCMs with optimization algorithms for123

the generation of prescriptive models. The proposed algorithm uses a genetic algorithm to op-124

timize prescriptive variables leading to desired system values. The methodology was tested in125

the treatment of SD. The evaluation of the generated model showed a good performance yield-126

ing accuracies between 81% and 100% accuracy for recommending treatment options for SD,127

which constitutes an excellent tool to support decision-making for the treatment of SD and reduce128

mortality rates.129

2.2. Federated learning in medical environments130

Federated learning is a distributed ML approach developed by Google [21]. This approach131

allows training models with distributed data anywhere in the world, such that local models are132

trained with their data and its parameters are shared in a federated server to build a global model.133

The main feature of this approach is that the data never leave their original location. This type134

of methodology is useful to attack the problem of guaranteeing data security and privacy, mainly,135

in clinical environments [22]. Federated learning in recent years has attracted the attention of the136

scientific community due to its interesting ability to generate global models avoiding data sharing137

between involved parties [23]. This distributed ML approach has been widely used in healthcare138

due to the security and privacy of data in this domain. Additionally, this approach can be used to139
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transfer learning from one healthcare institution to another [24].140

Several surveys and literature reviews have provided comprehensive reviews of the work re-141

ported in the literature on architectures, approaches, use, and application of federated learning142

for healthcare [25–28]. For example, Antunes et al [25] present a systematic literature review143

where they discuss the main problems of federated learning, possible solutions and the most fre-144

quently used ML methods. Additionally, they propose an architecture based on the results of the145

systematic review. A survey by Nguyen et al [26] presents the main advances and requirements146

for a correct implementation of federated learning with the internet of medical things. The au-147

thors review several current researches and analyze different aspects such as medical imaging,148

remote health monitoring and data management. Prayitno et al [27] provide a systematic review149

of current advances in federated learning for healthcare applications with a data-centric perspec-150

tive. The review evaluates the use of reference datasets, data protection strategies, data partitioning151

and distribution properties. Finally, Xu et al [28] conducted a survey presenting a general review152

on federated learning, specifically, issues related to data privacy, system challenges, and possible153

solutions to statistical challenges in implementing federated learning in medical environments.154

According to our literature review, there are no papers that have implemented federated learn-155

ing for dengue analysis. However, different works on federated learning have been reported for156

other events of interest in public health. This type of work can be classified into two main groups157

based on the types of data used: i) federated training for unstructured data, mainly the use of158

biomedical images; and ii) federated training for structured data. In the following, we will show159

some relevant works developed in each group.160

2.2.1. Federated learning for unstructured data161

Unstructured data are those that do not have a defined structure. Within this group, we find162

images, text and audio. In clinical environments, the most commonly used data type to implement163

federated learning approaches are medical images such as X-ray images, CT scans, nuclear mag-164

netic resonance and histopathological images. Thus, several works have been developed to detect165

COVID from chest X-ray images [29], brain tumor detection [30], and histopathological image166

analysis [31]. Feki et al [29] proposed a federated collaborative learning approach with deep167
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learning for COVID-19 screening in several healthcare institutions without sharing data among168

them. The authors used two pre-trained convolutional neural network architectures, VGG16 and169

ResNet50. The accuracy of the models in the federated approach was similar for both VGG16170

and ResNet50 when compared to the centralized approach. Sheller et al [30] compared a feder-171

ated learning approach with collaborative data sharing learning. The study was conducted across172

several institutions storing brain tumor images. The models developed with federated learning173

were able to achieve superior performance to the data sharing approach with the additional value174

of ensuring privacy and confidentiality of the data used. Adnan et al [31] proposed a differentially175

private federated learning approach for medical image analysis, specifically, histopathological im-176

ages across multiple healthcare institutions. Although models with federated learning performed177

well, learning with centralized data obtained better accuracy values.178

2.2.2. Federated learning for structured data179

Structured data are those composed of data frames where the columns correspond to patient180

variables or characteristics and the rows represent the records of each patient. This type of data181

has been widely used in building federated learning approaches and models [32–36]. For exam-182

ple, Brisimi et al [32] developed an algorithm to generate federated predictive models with sparse183

Support Vector Machine to predict hospitalizations due to cardiac diseases. The results showed184

the ability of federation to generate a global model with local models trained on several hospi-185

tals, however, the global model did not perform superior to the local models. Dang et al [33]186

implemented mortality prediction models in intensive care units of several hospitals in a federated187

environment using two aggregation algorithms (FedAvg and FedProx) and two training approaches188

(local and centralized). Of all the approaches implemented, FedProx performed the best, however,189

there was no significant difference between centralized training and federated training. Rahman et190

al [34] developed regression models in a federated environment to predict the length of hospital191

stay of patients in ten hospitals. The models were evaluated and the results showed that the per-192

formance of the models increases when the number of aggregated clients in the federated server193

increases. Kerkouche et al [35] proposed a federated learning approach that preserves data privacy194

for the prediction of in-hospital mortality. The authors found a relationship between model per-195
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formance and patient-level privacy. Increasing the level of privacy decreases prediction accuracy.196

Finally, Salmeron & Arevalo [36] developed an approach based on FCMs for breast cancer diag-197

nosis, and additionally, preserve data privacy. The development of this approach allowed obtaining198

performance of federated global models superior to the local models and the model trained with199

centralized data.200

3. Methodology201

In this section, we describe the general methodology of the present study. First, we show a202

global workflow where we schematically represent the activities performed in our research for203

the development of models under the federated approach and the traditional ML approach. Then,204

we present the techniques used to build the predictive models (data-driven PSO-FCM) and pre-205

scriptive models (PRV-FCM). Finally, we describe the federated learning approaches reported in206

the literature and the proposed approaches. Fig. 1 shows a schematic representing the workflow207

of this research. Initially, 80% of the data is used for training and validation of the models. We208

use 5-fold cross-validation to tune hyperparameters and select the best predictive and prescriptive209

models. The evaluation of these models was done with the remaining 20% of the data. Specif-210

ically, for the proposed federated approaches, predictive and prescriptive models are trained and211

tested on local datasets. The parameters of these models are aggregated to build a global model.212

For the traditional approach, the data were pooled to obtain a single dataset to perform training213

and testing on the corresponding data. At the end, we performed a comparison of all the predictive214

and prescriptive models obtained.215

3.1. Data-driven PSO-FCM216

Predictive models were generated using FCMs due to their simplicity of construction, and217

inference and interpretability skills. An FCM is a computational intelligence technique that simu-218

lates human reasoning with concepts and relationships [11, 37]. Concepts correspond to variables219

within a system and relationships are the influence between those concepts. An FCM can be rep-220

resented by a matrix that shows the relationships among the concepts. For example, Eq. 1 shows a221
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Fig. 1. Flowchart representing the main activities performed in this research.

matrix for five concepts and five relationships among them, represented by the values of wi j. Fig. 2222

shows a schematic representation of the FCM defined in the matrix of Eq. 1.223

W =

C1 C2 C3 C4 C5



C1 0 0 0 0 w15

C2 0 0 0 0 w25

C3 0 w32 0 0 w35

C4 0 0 0 0 w45

C5 0 0 0 0 0

(1)

FCMs have been mainly used for description, prediction, and lately, they have been used for224

prescription. These three aspects are developed using inference rules that allow an initial state225

vector to reach a stable state. For the construction of the predictive models, we used the data-226

driven PSO-FCM technique. This technique uses the particle swarm optimization algorithm on227
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C1
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C2

W15

W25

W32

W45

W35

Fig. 2. Example of an FCM with five variables and five relationships.

datasets to find an FCM that describes relationships between the variables. The data-driven PSO-228

FCM algorithm is defined by:229

vi(t + 1) = vi(t) + s1r1 · (Wbest
i –Wi(t)) + s2r2 · (W

gbest
i –Wi(t)) (2)

Wi(t + 1) = Wi(t) + vi(t) (3)

where vi is the particle velocity; r1 and r2 are random values with uniform distribution; s1 is230

the cognitive coefficient, responsible for the particle tending to move towards the position where it231

has obtained the best results so far; s2 is the social component, also known as collective behavior,232

it is responsible for the particle tending to move towards the best position found by the swarm233

so far; Wbest
i is the best position obtained by a specific particle, while Wgbest

i is the best position234

obtained by any particle in the swarm. For this case, each particle i is an FCM, while the position235

is a candidate matrix to build each FCM.236

3.2. Prescriptive-FCM237

The generation of prescriptive models was developed with the PRV-FCM methodology [38].238

This methodology uses the inference process of FCMs and optimization algorithms to find optimal239
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values of prescriptive variables that lead to the desired results to the concepts of the system. PRV-240

FCM first characterizes variables depending on their nature into prescriptive or action variables241

and system variables. Prescriptive variables are actions that a decision maker can perform to242

solve a problem, while system variables are those related to the system to be modeled. After243

initializing the system with desired values, an optimization algorithm is used to find the values of244

the prescriptive variables that lead to the desired values to the system variables.245

3.3. Federated learning246

Federated learning is a distributed ML approach developed in 2017 [21]. Federated learning247

allows to collaboratively generate a shared ML model by keeping all training data at its place of248

origin or collection, decoupling the ability to do ML from the need to store the data in the cloud.249

Federated learning works like this: one party downloads the current model, improves it by learning250

from local data, and then summarizes the changes as a small update. Only this model update is251

sent to the cloud, via encrypted communication, where it is immediately averaged with updates252

from other parties to improve the shared model. All training data remains in its original location,253

and no individual updates are stored in the cloud.254

To date, three main approaches have been developed, known as horizontal federated learning,255

vertical federated learning, and federated learning with transfer learning. Fig. 3 shows a schematic256

representation of each. A brief explanation of each follows.257

Data from client 1

Data from client 2

Ho
riz

on
ta
l

Fe
de

ra
te
d

Le
ar
ni
ng

Data from client 1

Data from client 2

Vertical Federated Learning Target

Target

Datos de A

Data from client 2

Data from client 1

Target

Transfer learning

A B C

Fig. 3. Schematic representation of federated learning approaches reported in the literature. A y B

represents horizontal and vertical federated learning, respectively, while C represents federated learning

with transfer learning.
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3.3.1. Horizontal federated learning258

Scheme A in Fig. 3 shows horizontal federated learning. This type of federated learning is suit-259

able in the case where the features/variables of the two datasets overlap a lot, but the records/data260

overlap little. Horizontal federated learning consists of splitting the datasets horizontally (by the261

dimension of the records), and then, extracting the part of the data where the features/variables are262

the same but the records are not exactly the same [39].263

3.3.2. Vertical federated learning264

Vertical federated learning is shown in Scheme B in Fig. 3. Vertical federated learning is suit-265

able in the case where the features/variables of the two datasets overlap little, but the records/data266

overlap a lot. Vertical federated learning consists of splitting the datasets vertically (by the dimen-267

sion of the features/variables), and then, extracting the part of the records that are the same, but268

the features or variables are not exactly the same [40].269

3.3.3. Federated transfer learning270

A representation of federated learning with transfer learning is shown in Scheme C in Fig. 3.271

In the case where the records and variables in the two datasets rarely overlap, the data is not272

segmented, but transfer learning is used to overcome the missing data or labels. In this approach,273

models are trained on one dataset and applied to another dataset from another related domain.274

[41].275

3.4. Our proposed approaches276

In this section, we describe each of our federated learning approaches. Fig. 4 shows schematic277

representations of each of the approaches.278

3.4.1. Total federated FCM279

Scheme A in Fig. 4 shows this approach. We call this approach total federated learning be-280

cause all the variables in client 1 have the same characteristics/features as those in client 2. A clear281

example is all the signs, symptoms, laboratory tests and classification of dengue in different cities282

in Colombia.283
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Data from client 1 Transfer learning

C

Fig. 4. Schematic representation of our federated learning approaches. A represents total federated

learning; B represents target-based federated learning; and C represents federated learning with transfer

learning.

For this case, the local models are trained by generating a weight matrix W l
i , where i is the284

model number and l indicates that the model is local. Each local model sends the parameters to285

the server and this calculates an updated matrix by aggregating the information using the arithmetic286

average. Subsequently, the updated matrix WG
i j is sent to each of the parties so that the updated287

model is used everywhere. The aggregation of the parts is performed with the average using the288

following equation:289

WG
i j =

1
n

n∑
c=1

Wc
i j (4)

Where WG
i j is the global matrix aggregated with the two local model matrices, n is the number290

of clients used, and c is the client/site number.291

3.5. Federated target-based FCM292

In target-based federated learning, only one characteristic is common among the parties in-293

volved, and it corresponds to the target (see Scheme B in Fig. 4). This case is focused on pre-294

dictive models. For example, one city has signs, another city symptoms, and finally, another city295

laboratory tests. In our problem, the only common variable is the label or target for the diagnosis296

or prediction of mortality due to SD. From that, a global model is constructed that includes all the297

variables from all the cities. Since in this case, there are no common concepts, simply the weights298

corresponding to the concepts of the different parts of the architecture are added. At the end, each299

city has a global model with all the characteristics to be used. The aggregation process is done300
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according to the following equation:301

WG =

 0 Wi j

Wkl 0

 (5)

Where WG is the global matrix, Wi j is the local matrix of local model 1, and Wkl is the local302

matrix of local model 2.303

3.6. Federated FCM with transfer learning304

The federated FCM with learning transfer is useful for the development of prescriptive models.305

Scheme C in Fig. 4 shows the design of this approach. For this variant, the concepts are divided306

into system and action. In one part are the action concepts that act on the system concepts. For307

example, treatment concepts that influence signs or symptoms. In another part are the system con-308

cepts that influence the prediction. The aggregation process is done using Eq. 5. In that particular309

case, the predictive model of the second party is previously trained/built, and then, it is transferred310

for the second party to use to build the predictive model.311

4. Experiments312

In this section, we describe the experiments to validate the proposed approaches. First, we313

describe the datasets used. Then, we show the statistical validation process using 5-fold cross-314

validation. Subsequently, we present the evaluation metrics, and finally, we present a brief de-315

scription of the experimental setup for the generation of local and global models in each proposed316

approach.317

4.1. Datasets318

For the validation of our approaches, we used two datasets from two dengue endemic regions319

in Colombia: Medellı́n and Córdoba. According to data from the National Institute of Health,320

this municipality and department are endemic because of the dengue incidence rates they show321

annually of 161-745 and 51-503 per 100,000 inhabitants for Medellı́n and Córdoba, respectively322

[42]. The selected datasets correspond to dengue mortality. Dataset 1 corresponds to the city323

of Medellı́n with 400 records collected between January 2008 and December 2019. Dataset 2324
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corresponds to the department of Córdoba and contained 398 records collected between January325

2010 and December 2021. Table 1 shows the variables included in the datasets. The first variables326

define SD and were selected according to WHO guidelines for the diagnosis of this type of dengue.327

The variables related to SD and its mortality are: extravasation, shock, bleeding and organ failure.328

The variables related to the treatment of this type of dengue are: blood transfusion, crystalloid329

solutions, colloid solutions and access to intensive care units. Finally, the decision/target variable330

was mortality due to SD, where 0 means that the patient recovered while 1 indicates that the patient331

died. The preprocessing of these datasets is described in [43].332

Table 1

Brief description of the variables included in the datasets used for the experiments.

Concept Variable type Variable name Description
C1 Sign Extravasation It is characterized by serous spills at the level of various cavities.
C2 Sign Shock Manifestation of severity evidenced by cold skin, thready pulse,

tachycardia and hypotension.
C3 Sign Bleeding Blood leaks from the arteries, veins or capillaries through which it

circulates, especially when it is produced in very large quantities
C4 Sign Organ failure Affectation of several organs due to the extravasation of liquids.
C5 Prescriptive Blood transfusion Routine medical procedure in which the patient receives donated

blood in a vein in the arm.
C6 Prescriptive Crystalloid solutions Solutions containing water, electrolytes and/or sugars in different

proportions.
C7 Prescriptive Colloid solutions Solutions with high molecular weight particles capable of increasing

plasma oncotic pressure and retaining water in the intravascular space.
C8 Prescriptive ICU Intensive care unit
C9 Target Mortality Dengue mortality

4.2. Statistical validation333

Eighty percent of the data was used for training and validation. During this process, the hy-334

perparameters were tuned to select the best model with 5-fold cross-validation. The best model335

was evaluated on the testing set corresponding to the remaining 20% of the data. The evaluation336

process on the test set was repeated 100 times to perform a mean or median comparison test to337

determine if there were significant differences between the performances of the developed mod-338

els. Before performing the comparison test between models of the same approach, the distribution339
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of the data was determined using the Lilliefors test [44]. For this statistical test, we defined the340

following hypotheses:341

• H0: the data come from a normal distribution.342

• H1: the data do not come from a normal distribution.343

According to the result of the Lilliefors test, we use Student’s t-test because the data follows344

a normal distribution. The hypotheses for the comparison between two groups can be defined as345

follows:346

• H0 : µ̄local = µ̄global347

• H1 : µ̄local , µ̄global348

In this way, it was possible to test the ability of the models to predict and prescribe on pre-349

viously unseen data. Additionally, it was possible to test whether the difference in model per-350

formance was statistically significant. For all experiments, we defined the significance level at351

0.05.352

4.3. Evaluation of the models353

We evaluated the models developed using classification metrics due to the categorical nature354

of the variables included in the datasets. In the following, we present the three metrics used with355

a brief description and their corresponding equation.356

• Accuracy: percentage of correctly classified examples among the total number of classified357

examples.358

Accuracy =
T P + T N

T P + FN + FP + T N
(6)

where T P are the true positives, T N are true negatives, FN are false negatives, and T N are359

true negatives.360
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• Sensitivity: it measures the ability of the classifier to predict positive cases to those actually361

positive.362

S ensitivity :
T P

T P + FN
(7)

• Specificity: it measures the ability of the classifier to predict negative cases to those actually363

negative.364

S peci f icity :
T N

T N + FP
(8)

4.4. Total federated FCM365

Fig. 5 shows the architecture for this approach. In this first approach, the variables are exactly366

the same in all clients/sites. Here, we see that both the local models and the global model present367

the same variables (blue = concepts related to prediction, green = concepts related to prescription,368

red = target). In the following, we explain the local and global training of the models; as well as369

their evaluation.370

4.4.1. Local training on clients371

For this first case, the local training was carried out with all the variables related to the prescrip-372

tion to avoid mortality in patients with SD. The training was performed on each dataset of each373

client/site, separately. The training of the FCMs was carried out with the data-driven PSO-FCM374

technique, which has demonstrated its excellent performance for the optimization of matrices that375

generate FCMs. Subsequently, the prescriptive modeling technique PRV-FCM was used to find376

the optimal values of prescriptive variables. Each of these clients/sites shares the parameters, in377

this case, the weights matrix corresponding to the relationships between the modeled variables.378

4.4.2. Global training on the federated server379

After all the clients, in our case cities, train their models, the FCM construction parameters are380

shared to a global server, where a global model is created using the aggregation method defined in381

Eq. 4. One of the advantages of this approach is that the sample size of the training is increased382

because the patients in one client are different from those in the other clients. In this way, we383

increase the sample size for training. This global model is then sent to all clients, and the trained384

model is updated so that it can be used by each client.385
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Fig. 5. Architecture of total federated FCM (the blue and green concepts are related to prediction and

prescription, respectively. The red concept corresponds to the target).
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4.5. Federated FCM based on the target386

Fig. 6 shows the architecture for this approach. In this approach, only the target (this variable387

is represented in red color in Fig. 6) is common across all client data. In the following, we briefly388

explain the configuration of local and global training.389

4.5.1. Local training on clients390

In this case, the common variable is the prediction class or target. To simulate this case,391

we eliminate variables in the Medellin and Cordoba dataset. In each client/site, we leave two392

different variables so that only the target is repeated. In this way, a different predictive model of393

SD mortality is created for each client. The training is developed using the PSO algorithm to find394

the optimal weight matrix to build the FCM.395

4.5.2. Global training on the federated server396

The aggregation process on the federated server is a little different from the first approach.397

In this case, we do not use averaging to aggregate the models because the relationships between398

the concepts and the target are not repeated. Therefore, it is only sufficient to aggregate the two399

matrices into one, adding the weights of each of the clients. This process is done using Eq. 5 to400

create the global model. At the end, a global model is obtained that represents the information401

of all clients/sites. This model is updated for each of the clients so that it can be used to predict402

mortality from SD.403

4.6. Federated FCM with transfer learning404

Fig. 7 shows the architecture of the federated FCM with transfer learning. In the latter ap-405

proach, learning will be transferred from one client to another because the target is located at a406

single client/site (see Fig. 4). For this approach, we used parameter-based transfer learning because407

the sample size in the two clients was approximately similar. In addition, the sign/symptom-related408

variables were common across the participating clients in the federation. We were interested in409

transfer learning because of the possibility of learning in one domain and making predictions or410

prescriptions in a different but related test domain. In healthcare, it is common to find healthcare411

institutions with treatment-related data and other institutions that collect only diagnosis-related412
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data. Specifically, training local models with data that represent the therapeutic process of dengue,413

and that the extracted knowledge can be transferred to other settings, which would be of great414

utility to support clinical decision-making. To achieve this goal, two processes were performed:415

i) a local training of the prescription model (see local model 1 in Fig. 7) and its subsequent eval-416

uation; ii) the second step consisted of a retraining of the predictive model (see local model 2 in417

Fig. 7) leaving constant the parameter values of the initial prescriptive model. Next, we explain418

the training of the variables at the local level and their update in the global model.419

4.6.1. Local training on clients420

The local training of each client will be different due to the presence of different variables. For421

example, client 1 has the prescriptive variables acting on the diagnostic variables, while client 2422

has only the diagnostic variables with the target variable. For the first case (client 1), the PRV-423

FCM algorithm was used to build the prescriptive models (local model 1), while for the second424

step (client 2) the data-driven PSO-FCM algorithm was used to train the predictive model and425

generate local model 2.426

4.6.2. Global training on the federated server427

The creation of the global model was performed using the aggregation process defined in428

Eq. 5. This process is responsible for integrating the prediction and prescription FCMs to generate429

a federated global model.430

5. Results and discussion431

In this article, we aimed to develop and implement three federated learning approaches for432

FCMs to support clinical decision-making in dengue, specifically SD. In this section, we show433

the results obtained from the implementation of each of the proposed approaches on the described434

datasets. Then, we will discuss each of the results obtained in each approach. Finally, we compare435

our work with previous studies.436
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Table 2

Performance of the models developed with the total federated FCM approach. * indicates the average for

all prescriptive variables. NA = not applicable.

Data type Model Data configuration Task Accuracy Sensitivity Specificity

Signs, treatment options and target

Local 1 Local data from Medellı́n
Prediction 0.68 0.68 0.50

Prescription 0.87* 0.75* 1.00*

Local 2 Local data from Córdoba
Prediction 0.74 0.77 0.51

Prescription 0.86* 0.89* 0.81*

Global federated NA
Prediction 0.76 0.85 0.67

Prescription 0.96* 0.92* 0.97*
Global non-federated Centralized data Prescription 0.88* 0.83* 0.94*

5.1. Total federated FCM437

Table 2 shows the results of the local models and the global models applied to the previously438

described datasets. Fig. 8 shows the result of 100 simulations performed during the evaluation439

process of the models with a total federated learning approach. Additionally, it shows the sta-440

tistical comparison of the performance of the predictive and prescriptive models. Both Local 1441

and Local 2 models obtained good results for prescription with accuracy values of 0.87 and 0.86,442

respectively. However, it can be seen that the global federated predictive and prescriptive models443

were superior to all the local models, including the model with centralized data. Regarding sensi-444

tivity and specificity, the results showed the same trend of accuracy where federated global models445

performed better than local and centralized models.446

Total federated learning consisted of a federated learning approach where all client variables447

are common. In this way, local models can be trained with different data and the sample size can448

be increased to improve prediction or prescription performance. The results of the local predictive449

models showed the ability to predict SD mortality. The results were acceptable, with accuracies450

between 0.68 and 0.74. Federated learning improved these results with 0.76. This demonstrates the451

ability to increase the sample size with federated learning. The same was true for the prescriptive452

models. The federated global model performed better than local models perhaps because the453

sample size was larger.454

Although this accuracy is good, we only used a few variables for SD. The use of only 4 system455

variables and 4 prescriptive variables is too few to develop more robust models. Additionally, the456
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Table 3

Performance of the models developed with the target-based approach. * indicates the average for all

prescriptive variables. NA = not applicable.

Model Data configuration Data type Task Accuracy Sensitivity Specificity

Local 1 Local data from Medellı́n Two signs, two treatment options and target
Prediction 0.71 0.76 0.48

Prescription 0.75* 0.67* 0.80*

Local 2 Local data from Córdoba Two signs, two treatment options and target
Prediction 0.69 0.66 0.61

Prescription 0.85* 0.78* 0.85*

Global federated NA All signs, treatment options and target
Prediction 0.76 0.90 0.66

Prescription 0.95* 0.91* 0.96*
Global non-federated All data centralized All signs, treatment options and target Prescription 0.88* 0.83* 0.94*

sample size is small, which is a limitation of the models to generalize. It is necessary to increase457

the sample size by adding other cities in Colombia and integrating new variables to explain their458

influence on mortality from SD.459

5.2. Target-based federated FCM460

Table 3 shows the accuracy, sensitivity and specificity of the models based on target-based fed-461

erated FCM. Fig. 9 shows the result of 100 simulations performed during the evaluation process462

of the models with a total federated learning approach. Additionally, it shows the statistical com-463

parison of the performance of the predictive and prescriptive models. In this approach, the target464

is the only variable in common between the clients. As in the first approach, the results showed465

that the federated global model performs better than the local models and the centralized model.466

One of the methodological novelties of the present work is the federated FCM approach based on467

the target variable. On many occasions, we have data in different locations and their only common468

feature is the target. This approach allows building global models where features are not repeated469

between datasets in different locations.470

The results show the ability of our approach to predict in local environments with few variables.471

Local models 1 and 2 use two prescriptive variables and two diagnostic variables. Despite the small472

number of variables, the performance of the models is satisfactory. Additionally, the federated473

global model has the ability to predict and prescribe better than a model with centralized data. The474

sensitivity and specificity of the federated global models developed in this approach had higher475

performance, however, the predictive models are better able to classify positive cases than negative476
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Table 4

Performance of the models developed with the transfer learning federated approach. * indicates the

average for all prescriptive variables. NA = not applicable.

Model Data configuration Data type Task Accuracy Sensitivity Specificity
Local 1 Local data from Medellı́n Signs and treatment options Prescription 0.95* 0.94* 0.93*
Local 2 Local data from Córdoba Signs and target Prediction 0.69 0.71 0.50

Global federated NA Signs, treatment options and target
Prediction 0.73 0.86 0.61

Prescription 0.98* 0.96* 0.99*
Global non-federated All data centralized Signs, treatment options and target Prescription 0.88* 0.83* 0.94*

cases (see Table 3). It is clear that the performance could be improved, either by increasing the477

size of the data used or by adding variables that explain the influence on dengue severity and478

mortality. The results of applying this approach to the data demonstrated that the use of clinical479

and treatment data are useful for predicting mortality and prescribing treatment to prevent death.480

The presence of warning signs established by the WHO has been shown to influence the severity481

and can be used as predictors of mortality from SD. Adding these types of variables to the models482

could improve their performance to obtain more robust models.483

5.3. Federated FCM with transfer learning484

Table 4 shows the accuracy, sensitivity and specificity of the models based on target-based485

federated FCM. Fig. 10 shows the result of 100 simulations performed during the evaluation pro-486

cess of the models with a total federated learning approach. Additionally, it shows the statistical487

comparison of the performance of the predictive and prescriptive models. In this latter learning488

approach, we can observe the ability of the federated global model to predict and prescribe with489

excellent performance outperforming the local models and the non-federated centralized model. In490

this case, as in the two previous approaches, the accuracy, sensitivity and specificity of the models491

were superior in the federated global model. The implementation of federated learning to transfer492

learning from prescription to prediction allows the integration of diagnosis and treatment of SD.493

The federated FCM approach with transfer learning is an approach, which can be used to494

transfer learning from one domain to another. In our case, we were able to transfer learning from495

SD treatment to the mortality prediction domain.496

Of the three approaches, this was the one that gave the best results for the prescription. It is497
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true that the division of the data in this approach allowed separating the domains, and only left the498

important variables in each part of the architecture. In the client with prescriptive variables and499

clinical manifestations, the relationship between treatment and the defining signs of SD is evident.500

Predicting SD mortality with only the defining variables remains a challenge. Using only four501

variables to predict mortality from this type of dengue is not enough to have models with excellent502

performance.503

Finally, the statistical tests performed, whose significance values (p-values) are inserted in504

Fig. 8, Fig. 9 and Fig. 10 for the three approaches show that there are significant differences505

between the models developed.506
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Fig. 8. Boxplots to compare the models’ performance in a total federated learning approach. A and B

correspond to the predictive and prescriptive models, respectively. Abbreviations: LM1 = local model 1,

LM2 = Local model 2, GM = global model, CE = centralized approach.
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Fig. 9. Boxplots to compare the models’ performance in a target-based federated learning approach. A and

B correspond to the predictive and prescriptive models, respectively. Abbreviations: LM1 = local model 1,

LM2 = Local model 2, GM = global model, CE = centralized approach.

5.4. Comparison with previous work507

In this section, we compared the results of the present work with previously developed ap-508

proaches published in the literature. Initially, we performed a qualitative comparison with other509

federated learning approaches that have been implemented in medical settings. On the other hand,510

since this is the first paper to propose federated learning approaches for FCMs for the clinical man-511

agement of SD, we compared our results with prediction and prescription models for the clinical512

management of SD with centralized approaches.513
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Fig. 10. Boxplots to compare the models’ performance in federated transfer learning. A and B correspond

to prescriptive and predictive models, respectively. Abbreviations: LM1 = local model 1, LM2 = Local

model 2, GM = global model, CE = centralized approach.

5.5. Qualitative comparison514

We performed a qualitative comparison of our work with other studies due to the lack of515

research implementing federated learning for SD. We used qualitative criteria defined in Table 5516

for comparison with other approaches reported in the literature. The first criterion is related to517

the use and implementation of artificial intelligence techniques for the generation of predictive518

models for diagnosis. The second criterion evaluates the use and implementation of prescriptive519

models for disease treatment. The third criterion evaluates the ability of proposed systems to have520

an integration of predictive and prescriptive models in the federated learning environment. Finally,521

the last criterion indicates the ability of the approach to be intuitive and easily adaptable.522
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Table 5

Qualitative comparison between previous studies and our work.

Qualitative criteria
Work
[36] [45] [46] [47] Our work

AI models with FL for diagnosis
AI models with FL for treatment
Integration of AI models with FL for diagnosis and treatment
Ease of use and adaptability

Federated learning has been widely implemented in different fields of medical application523

[36, 45–47]. For example, Salmeron and Arevalo [36] developed a federated learning approach524

using computational intelligence techniques such as PSO and FCM for cancer diagnosis. The au-525

thors implemented an identical structure of FCMs across all clients or federation participants and526

demonstrated the ability of the federated approach to generate models with higher performance527

than local models. However, this work does not integrate prescriptive models with federated learn-528

ing, nor does it integrate disease diagnosis and treatment. The proposed system is intuitive and529

easily adaptable. Another work developed by Li et al [45] supports decision-making in colorectal530

cancer prognosis by using random forests to build multi-center predictive models. The approach531

proposed by Li et al is easy to use, adaptable to any medical institution and is aimed at supporting532

decision-making with respect to diagnosis, guarantees the privacy of patient data, but does not gen-533

erated treatment-oriented actions. Liu and Yang [46] trained a robot with deep learning to support534

physicians with the treatment of patients with depression. The work developed by Liu and Yang535

is novel and ensures privacy of patient data with federated learning. However, this approach only536

focuses on treatment and does not support decision-making for a depression diagnosis. Finally,537

a work developed by Li et al [47] preserved data privacy using a federated learning approach for538

Alzheimer’s disease detection. The developed system used classification models and performed539

well in diagnosing the disease. Moreover, it can be adapted for the aggregation of new features to540

increase prediction performance.541

In contrast to the previously presented work, we implemented three federated learning ap-542

proaches with different architectures for predictive and prescriptive model generation. These ap-543
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proaches use different configurations to support decision-making in the diagnosis and treatment544

of SD using AI techniques. The integration of predictive and prescriptive models for diagnosis545

and treatment could be more useful than generating models only for diagnosis or only for treat-546

ment. The systems generated in each of our proposed approaches are also intuitive and their easy547

adaptation would allow the addition of other important variables for the analysis of SD.548

5.6. Quantitative comparison549

Although the availability of data regarding SD mortality remains scarce, which has led to the550

development of models based on the expertise of experts [14], our models performed well for551

both predicting and prescribing when compared to previous work based on data reported in the552

literature. For example, Hoyos et al [43] developed prediction models for SD mortality using553

the same dataset used in the present study. The authors developed the models with FCMs with554

average accuracies of 0.74. Another similar work is developed by Chattopadhyay et al. [48]555

where they developed classification models to predict dengue death with a maximum performance556

of 0.72 of accuracy in a smaller sample size (100 patients). Regarding prescriptive models, the557

PRV-FCM methodology yielded excellent results due to its ability to find optimal values using558

the FCM inference process and optimization algorithms. Our results confirm the results reported559

by several previous studies where the prescriptive capability of PRV-FCM in medical settings has560

been demonstrated.561

6. Conclusions562

We set out to develop three federated learning approaches for FCMs to support clinical decision-563

making in dengue, specifically SD. Each approach consisted of clients/sites with different/equal564

data depending on their settings. For each approach, predictive and prescriptive models were built565

using FCMs and optimization algorithms. The results showed that the three federated learning566

approaches with FCMs outperform local models trained on private data. Additionally, the feder-567

ated approach outperforms models trained with centralized data. Finally, it is shown that federated568

learning approaches are useful for fields of science where data security and privacy must be guar-569

anteed.570
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This work has some limitations. For example, the approaches are distributed but centralized,571

because a single federated server does the aggregation process. If this server has problems or is572

unavailable due to some circumstances, then the global model cannot be updated. For this reason,573

it is necessary to develop decentralized federated models. For example, an aggregation process574

can be performed in all the nodes of the system, so that if one node stops working, the others have575

a backup of the information and the aggregation information is not lost.576

Another limitation of the present study is the number of clients used for the simulations. In577

this case, we only used two clients due to data availability. It is recommended to apply these578

approaches on larger clients to analyze the predictive and prescriptive capabilities of both local and579

global models. Finally, the approaches were not validated in licensed clinical institutions. Strict580

validation of these approaches in hospitals or clinics in Colombia would be useful to understand581

its usefulness in decision-making in clinical settings.582
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