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Abstract—Nowadays, Machine learning (ML) plays a significant
role in Industrial Analytics. It enables predictive analytics,
and helps uncovering essential insights to transform industries.
As a result, real-time data analytics has become an essential
requirement for industrial engineering jobs. Edge computing
enables local intelligence and real-time analytics that are key
for industry processes to take autonomous decisions locally at
the edge of the network. However, outages in edge datacenters
can jeopardize the whole plant security. In this paper, we
proposed a practical approach to effectively handling service and
data migration of ML-based applications in Industrial Analytics
scenarios in the presence of a lack of computing resources at the
edge. We argue that in this context the value of data is inversely
proportional to their age and is very important to work with
fresher data. In this paper, we describe our architectural approach
for service and data handoff and show a predictive diagnostics
case study deployed in an edge-enabled IIoT infrastructure. We
evaluate our proposed approach in terms of drop of accuracy
in a well-known edge computing emulator, i.e., openLEON. The
experimental results show the benefit of our solution with respect
to standard techniques.

Index Terms—Edge computing, Computation Offloading, Ser-
vice Migration, Industrial Analytics

I. INTRODUCTION

The Industrial Internet of Things (IIoT) aims at connecting
industrial assets and machines (i.e., things) to enterprise infor-
mation systems, business processes, and people who operate
and use them. Advanced analytics is at the core of this next-
generation level of integration and, when applied to machine
and process data, provides new insights and intelligence to
optimize decision-making significantly and enable intelligent
operations leading to transformational business outcomes and
social value [1]. Machine learning (ML) plays a significant
role in Industrial Analytics, enabling predictive analytics, and
uncovering essential insights to transform industries. With
the technological advances of computing and communication
technologies, ML enables data analytics on massive quantities
of data such as those produced by an IIoT-based system and
can use the extracted knowledge (e.g., trained models, uncover
patterns) to aid real-time decision-making in complex situations.
Fault detection and isolation in industrial processes [2], real-
time quality monitoring in additive manufacturing [3], and
automatic fruit classification [4] are examples of using ML in
IIoT-based Industry 4.0 systems.

In the recent years, edge computing has been considered
an important enabler for the industry scenario [5]. A number
of new applications have emerged all calling for stringent
requirements such as intensive computation and tight latency
conditions imposed by Industrial Analytics scenario. Edge
computing is key to meet such stringent constraints by pooling
computing resources closer to the end user and not in the
cloud. Such concept resulted into various paradigms, including
fog computing, mist computing [6], and Multi-Access Edge
Computing (MEC) [7]. The latter was standardized by the
European Telecommunications Standards Institute (ETSI) [8]
and is specifically tailored as an enabler for the 5th Generation
(5G) mobile networks and beyond.

In this paper, we consider a sub-problem of the service and
data migration. Specifically, we tackle the problem of moving
computation and data of ML processes upon failures in an edge
datacenter. Especially, we considered the migration of ML tasks
for pre-trained models in order to provide intelligence services
for the Industry scenario. Unlike in our previous work that
proposed efficient service migration strategies [9], in this work
we focused on the accuracy of the ML tasks during handoff.
The proposed solution has the following primary innovation
elements and features.
• First, we present the system architecture that enables ML-
based tasks migration applied to shop floor data retrieved from
processes, resources, and products for process optimization,
quality inspection, and preventive diagnostics.
• Second, in our migration model data is moved in a reactive
way to guarantee that fresher data are moved during the handoff
process. This allows reaching a satisfactory level of accuracy
because working with the latest data is very important in this
scenario [10].
• Third, ML-based services and pre-trained models are proac-
tively migrated to neighbor edge datacenters thanks to standard
orchestrator tools like Kubernetes.
• Fourth, the handoff triggering works in a proactive way and
could be based on different metrics such as memory or CPU
consumption.
• Finally, we present a real use case for predictive diagnostics
based on an open-source dataset for a chemical detection
platform which is considered a hot topic for IIoT applications.
To demonstrate the benefits of the proposed service and data
migration system for ML-based tasks we quantitatively evaluate
the accuracy of the processing predictive diagnostics during978-1-6654-3540-6/22 © 2022 IEEE



the handoff in the case of the edge datacenter outage.
In a nutshell, the flow of the paper is as follows. First,

we provide our motivation for this study and related works
(Section II). Then, we present our service and data handoff
system that are applicable to tasks that are sensitive to fresher
data like predictive maintenance in IIoT scenarios (Section III)
and its implementation details (Section IV). Moreover, we
benchmark the proposed migration system with openLEON
emulator [11] (Section V). Finally, we summarize and conclude
our work (Section VI).

II. RELATED WORK AND MOTIVATION

This section provides background information for the in-
volved technologies and paradigms and briefly introduces
the research directions of the literature in the areas of edge
computing service migration at the edge. Finally, we provide
motivations for service and data migration in the Industry
Analysis scenario.

A. Related Work

Service Relocation. In the last decade, with the rise of the
edge computing paradigm, the problem of service relocation
has been studied in the literature from different angles. The aim
of service placement is to reduce service access delay, reduce
communication delay, and achieve less network latency [12].
Work in [13] studied the service relocation issue with the goal
to optimize the Quality-of-Service (QoS). Different approach
in [14] that addressed the same problem with the aim at
reducing energy consumption. For a most recent and very
comprehensive survey on service placement please refer at [15].

Our work is related to the service relocation problem
specifically designed for ML-based services. In recent years,
the use of ML at the edge of the network led to the advent of
Edge Intelligence (EI) [16]. The idea behind EI is to design
models that cost less in terms of resources because edge
infrastructures have limited resource capabilities [17]. Few
works have been started to explore service relocation in this
field. The work proposed in [18] investigated the tradeoff
between accuracy and latency for offloading decisions regarding
deep learning services for ensuring optimal QoS. Other works
investigated the service placement problem specifically for EI
models. Zehong et al. [19] studied the problem of optimally
placing EI services with the objective of optimizing energy
consumption and service completion time. Our work departs
from the literature in that we focus on EI service migration
where an intelligence service has to be relocated at new host
due to a handoff. To the best of our knowledge, this is the first
work to do so.

ML and Service Migration. Here we discuss the works
related to exploit ML to optimize service migration and how
to migrate services in ML pipelines.

ML can be used to optimize service migration in its
entirety, including placement or selecting the best migration
algorithm [20]. Several works have been studied in the literature
for predicting node failure using ML techniques. Farahnakian
et al. [21] proposed a Linear Regression ML technique to

migrate virtual machines (VMs) by predicting future CPU
usage of physical nodes based on usage history. Furthermore,
they proactively trigger migration in case of foreseen resource
shortage and Service Level Agreement violations. Other works
used Decision Tree Learning to predict future host states, for
instance, the work proposed by Li et al. [22] leverages a
classifier based on a Binary Decision Tree to perform VM
migration and reduce energy consumption. On the contrary,
Jeong et al. [23] analyzed application logs to detect failure
events. Specifically, they proposed a proactive migration
algorithm for virtual Evolved Packet Core based on a pre-
trained model for failure prediction. Deep Learning was used to
train the model and Long short-term memory to predict failures
in advance and proactively trigger the migration. As described,
several works have been proposed in the literature that leverage
ML for service migration issues. However, to the best of our
knowledge, none of them have started focusing on the migration
of ML-based tasks that should be treated differently compared
to the standard services. Moreover, ML techniques also should
be focused on analyzing service runtime and data in order to
help detect content that should be transmitted early or as later
as possible.

B. Motivation

Device Layer (shop floor)
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Figure 1. An example of edge-enabled architecture for Industrial Analytics

We illustrate the need for service and data migration in
Industrial Analytics scenario with the example shown in Fig. 1.
Devices need to run heavy computations and decide to execute
ML tasks at the edge layer by leveraging computing resources
that it provides. Note that the edge datacenters are all at the
same level behind the same 5G base station. The proximity
between mobile devices and edge datacenters allows for low
latency and better reliability, especially, in the IIoT environment.
Specifically, ML tasks and/or online training models need
99,9999% of service availability to properly work [24]. After
some time, edge datacenter1 consumes all resources (i.e., CPU
and memory) and is no longer able to provide services. In order
to guarantee a reasonable level of accuracy, the infrastructure
should be able to transparently migrate service/data components
from the edge datacenter1 to the new edge datacenter2, which
is considered more unloaded.

In this work, we focused on the Industrial Predictive
analytics scenario. Specifically Predictive analytics identify
expected behaviors or outcomes of machines and systems
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Figure 2. Service and Data Handoff System Architecture

based on predictive modeling using statistical and ML tech-
niques, e.g. capacity demand/usage prediction, material/energy
consumption prediction, and component/system wear and
fault predictions [1]. Moreover, the analytics results can be
applied automatically to the machines and systems, or used
to support human decisions to enhance human understanding
and generate confidence in a decision. Industrial analytics has
unique challenges as an engine driving IIoT transformation
because the results can alter the operation and safety of
things in the physical world. These effects may be undesirable
or harmful, inadvertently affecting the safety of people or
damaging property and the environment.

Back to our use case example, production or assembly lines
send real-time data streams to the edge datacenters and receive
feedback from them. When an alert appears, the operator may
recalibrate key parameters of the machines. A problem may
occur if an edge datacenter is going to fail, for instance, of the
exhaustion of the CPU. The problem that we want to tackle
is the re-location of ML tasks to guarantee a high level of
accuracy. This means trying to lose as fewer data as possible
during the service interruption.

III. SERVICE AND DATA HANDOFF ARCHITECTURE

This section introduces our solution for service and data
migration tailored for Industrial Analytics scenarios and edge
computing systems. Our work focuses on the innovation
potential of a large set of industrial scenarios that make use
of edge-enabled ML-based services. That is typically the case
for predictive maintenance and production optimization in
manufacturing and for management optimization of large scale
facilities.

Fig. 2 presents the architecture of our AI/ML Service and
Data Handoff (AMSDH) for the industrial scenario that consists
of a set of components that are deployed at the service layer
and enable our handoff process. Our proposed architecture
consists of four modules: i) a trigger module that takes decisions
regarding the moment when migration should be triggered;
ii) a decision module that applies migration strategies when
the handoff is started; iii) an execution module that executes
previous strategies; iv) a data manager module that manages
data for ML-based tasks (i.e., predictive maintenance and
production optimization).

Triggering Module. The goal of this component is to
select the best time window to perform the handoff according
to several metrics. As outlined in the previous section, we
claim the importance of timely detecting an edge datacenter

outage. Indeed, this module works in a proactive way in
order to trigger the Decision Module for service migration
purpose. Several metrics could be taken into consideration
for monitoring, for instance, the CPU consumption of edge
datacenters. Specifically, when the CPU consumption is above
a given threshold, the handoff is started.

Decision Module. This module contains a set of strategies
that are used to determine service and data mobility. Specifi-
cally, it proactively selects neighbor edge datacenters to provide
the service functionalities of the ML task. Therefore, data have
to be moved in a reactive way in order to guarantee better
accuracy. Indeed, this module selects proper data (i.e., fresher
data) to move to the new edge datacenter.

Execution Module. This module executes the handoff
process. Moreover, it offers a set of common APIs that enable
the interactions between involved distributed entities and the
handoff system. However, it works in two different fashion: in
a proactive way for the service migration concern, and in a
reactive way for the data migration concern.

Data Manager. This module manages the data part of the
ML task. Specifically, it manages the trained model and the
historical data generated by the ML application for industrial
purposes. Moreover, it selects the appropriate data structure
to manage the historical data such as a circular buffer or a
FIFO queue. Finally, it creates a smart backup of the data, that
are considered essential for the working principle of the ML
task, that are moved during the service handoff without losing
precision.

IV. USE CASE & IMPLEMENTATION DETAILS

This section presents a real case study in order to show the
gain in terms of accuracy for ML tasks in the case of handoff.
Specifically, this use case aims at leveraging the intelligence
at the edge of a chemical detection platform by performing
inference tasks for predictive maintenance. To do this we
used a public dataset that represents a chemical detection
platform 1. Specifically, the dataset contains information about
CO concentration (ppm), humidity (% r.h.), temperature (ºC),
flow rate (mL/min), heater voltage (V), and the resistance of
14 different gas sensors. In addition, the dataset is organized
of 4 million instances separated into 13 text files, where each
file contains 300 000 rows. Finally, the sample frequency is
3.5 Hz.

To emulate the use case, in our testbed, we use the flow
rate (mL/min) value due to its non-constant trend (it presents
spikes). The simulated sensors read data from the dataset and
send a unique packet composed of 50 samples to the edge
server for processing. The packet send frequency is 1s. The
edge processing calculates the predicted next value at time t+1.
The value as being interpreted as the next average value of the
flow rate. To do this, the inference task at the edge leverages
the historical data value of the flow rate measurements. Then,
the predicted value is further processed at the edge for decision.

1Available at: https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+
temperature+modulation



Specifically, if the predicted value is in a dangerous range an
alarm signal is sent back from the edge to the industry plant.

A. Implementation Details

As stated before, our testbed consists of User Equipment
(UE) that acts as a group of sensors and two edge datacenters
(EDCs). The UE is connected to the base station (eNB)
and sends data to the EDCs for processing Ml-based tasks
such as inference and decision tasks. Furthermore, the UE
communicates with EDCs via 4G LTE wireless communication.
Finally, the pre-trained model is distributed among the EDCs
and is always available.

The sensor uses a part of the dataset, in particular a single
csv file that contains 300 000 rows. Specifically we created
a python script named sensors.py that reads data from the
open-source csv file and sends 50 samples every second.

sensors.py
1 file_name = './gas-sensor-file.csv'
2 df = pd.read_csv(file_name, delimiter=',')
3 number_of_rows = len(df.index)
4 n_packets = int(number_of_rows / line) + 1
5 for i in range(n_packets):
6 df1 = df.iloc[i*line:(i+1)*line]
7 in_file_name = 'row' + str(i) + '.zip'
8 df1.to_pickle(in_file_name, compression='zip')
9 rep = client.sendpacket(in_file_name)

10 time.sleep(1)

On the other side, the EDC retrieves data from sensors and
performs inference and decision tasks. To predict the next
value, the EDC leverages a pre-trained model formatted in a
h5 file format. Then, it saves historical data in a FIFO queue
composed of 10 different files. In the following snippet code
inference.py, we highlighted the major features of the inference
task.

inference.py
1 model = load_model('model/gas-sensor-model.h5')
2 # make a prediction
3 yhat = model.predict(test_X)
4 arr_yhat=[]
5

6 for i in range(0,len(yhat)):
7 arr_yhat.append(yhat[i])
8

9 inv_arr = []
10 for i in range (0,len(arr_yhat)):
11 inv_arr.append(arr_yhat[i]*std + mean)
12

13 fifo_file_name = 'o' + str(fifo_file) + '.txt'
14 fifo_file = fifo_file + 1
15 o_file = open('knowledge/'+fifo_file_name,'w')
16 for row in inv_arr:
17 np.savetxt(o_file, row)

In parallel, we presented the significant parts of the design of
our AMSDH solution. Specifically we designed the triggering
and the decision modules to work in a proactive way except
for the data migration.

triggering module
1 #!/bin/bash
2 while true
3 do
4 CPU=$(sar 1 5 | sed 's/^.* //')
5 CPU=$( printf "%.0f" $CPU )
6

7 if [ "$CPU" -lt 19 ]; then
8 echo "CPU usage is high! Handoff"
9 sh ./handoff.sh

10 break
11 fi
12 done

As can be appreciated from the above code, the triggering
module triggers the handoff when the remaining CPU percent-
age is below 19%. The subsequent script handoff.sh is part of
the Decision Module that proactively migrates the client from
EDC1 to EDC2 but only reactively moves data among them. To
instantiated the service to the new EDC2, we leveraged Docker
Container technology and Kubernetes (Kube). The latter is one
of the key enabler for ensuring proactive service migration.
Specifically with Kube is possible to instantiate a Pod (a new
Docker Container instance) to a new node (i.e., host).

Data Handoff execution
1 #EDC1 part
2 dirpath = 'knowledge/'
3 shutil.make_archive('fifo', 'zip', root_dir=dirpath)
4 client = lib.FileClient(EDC2_IP)
5 rep = client.upload("handoff.zip")
6

7 #EDC2 part
8 def decompress(filename):
9 dir = "knowledge/"

10 format = "zip"
11 shutil.unpack_archive(filename, dir, format)
12 return 1

Finally, to guarantee the data migration, we proposed two
different python scripts that work in a reactive way. Specifically
they start execution only when the handoff is started. The first
part of the script (named EDC1 part), creates a zip archive
composed of the entire FIFO queue and sends it to the EDC2
via gRPC network protocol. We claim that if we move data
as late as possible, we can ensure a high level of accuracy of
the ML task. This because we guarantee the ML task to work
with fresher data. On the contrary, the second part of the script,
decompresses the FIFO queue and restart the data gathering
and the ML task at the EDC2.

V. EXPERIMENTAL RESULTS

This section provides an evaluation of the AMSDH solution
discussed in previous sections. We first discuss the experimental
setup of openLEON [11] and next we discuss the set of
comprehensive results.

A. Experimental Environment

Fig. 3 shows the openLEON setup. To run the data center
network emulated with Containernet [25] and the core network
(srsEPC application from srsLTE version 19.0.6) we use a
laptop equipped with an Intel i7-4600U processor at 2.1 GHz, 8
GB RAM and Linux Ubuntu 16.04 LTS. Then, to run the the BS
application (srsENB application from srsLTE version 19.0.6),
we use a desktop computer equipped with an Intel i7-6700
processor running at 3.4 GHz, 16 GB RAM and Linux Ubuntu
16.04 LTS. The physical BS is an Ettus B210 USRP connected
with USB 3.0 to the desktop computer. The UE as well uses a
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Ettus B210 USRP and it is connected to a laptop with an Intel
i7-4600U processor up to 2.1 GHz and 8 GB of RAM that
executes the UE application (srsUE application from srsLTE
version 19.0.6). All results obtained in the emulation are an
average of about 30 runs and have exhibited a limited variance,
i.e., below 5%.

To assess the accuracy level of our proposed migration
system, we devise an Industry 4.0 application aligned with
one of the Industry Analytics use cases, such as predictive
maintenance. Specifically, we focus a scenario where a group
of sensors in a factory are connected to the 5G infrastructure
to perform decentralized decision-making. To emulate this,
we have created a virtualized network with the Containernet
simulation tool which creates the network topology and the
edge datacenters. Fig. 4 shows the architecture topology that we
implement in openLEON for preliminary tests: no migration is
enforced here. The figure provides an intuition of the network
setup that is required to operate such a edge scenario. Our
AMSDH system is external to the EDCs and manages the two
simulated EDCs. For the predictive maintenance application,
we used python and its well know ecosystem for ML purposes.

B. Experimental Results

With the experiments, we analyzed the gain in terms of
accuracy of a ML-based task in Industry scenario by using an
approach based on AMSDH during service and data migration.
Specifically, we measured the average prediction error in
presence of peaks during a handoff. We first analyzed values
in the dataset in order to study its trend and check the number
of peaks and they related values. A summary of important
metrics of the dataset is presented in Table I. Furthermore,
Fig. 5 represents a visual view of the trend of the flow rate
metric in the dataset. In that figure, we can appreciate that in

Table I
DATASET ANALYSIS
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Figure 5. A visual view of the trend of 10000 samples about flow rate metric
in the analyzed dataset

the analyzed dataset there are few peaks, precisely, two peaks
in around 10000 samples. However, this definitely represents
a problem if we lose one of these detection for our prediction
maintenance system.

Then, we measured the gain in accuracy by comparing our
AMSDH solution with two different cases such as a standard
service migration solution and no migration solution. In order
to calculate the accuracy drop, we evaluated the inference value
in presence of peaks in the dataset during a handoff. Figure 6
shows the average drop in accuracy of the three different cases
in form of a cumulative distribution function. The first case,
Fig. 6a, shows that our proposed AMSDH solution in the worst
case loses an absolute value average of 0.8 from the real value.
The second case, Fig. 6b, loses an average of 1.5 from the real
value. Finally, the last case, Fig. 6c, loses an average of 40
from the real value.

VI. CONCLUSIONS

The paper proposed a Service and Data Handoff system
capable of handling migration of ML-based tasks. Specifically,
its architecture leverages standard solution for service migration
such as Kubernetes. Then, we evaluated the proposed solution in
the openLEON emulator under conditions of limited resources
at the edge nodes. The results show that the proposed solution
can reduce the loss of accuracy during the service migration
compared to standard solutions.

Encouraged by these preliminary results, we are now explor-
ing new research directions. On the one hand, are working on
mathematical models to manage efficiently the handoff process
for ML-based tasks. On the other hand, we are assessing the
performance of the proposed migration mechanisms in wide-
scale scenarios by carrying out service and data migration
experiments over real testbed environments.
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