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Abstract

Aiding the ground cellular network with aerial base stations carried by drones has experienced an intensive raise of

interest in the past years. Reconfigurable air-to-ground channels enable aerial stations to enhance users’ access links

by means of seeking good line-of-sight connectivity while hovering in the air. In this article, we propose an analytical

framework for the 3D placement of a fleet of coordinated drone relays. This framework optimizes network performance in

terms of user throughput fairness, expressed through the α-fairness metric. The optimization problem is formulated as a

mixed-integer non-convex program, which is intractable. Hence, we propose an extremal-optimization-based algorithm,

Parallelized Alpha-fair Drone Deployment (PADD), which solves the problem online, in low-degree polynomial time.

We evaluate our proposal by means of numerical simulations over the real topology of a dense city. We discuss the

advantages of integrating drone relay stations in current networks and test several resource scheduling approaches in

both static and dynamic scenarios, including with progressively larger and denser crowds.
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1. Introduction

The infrastructure of cellular networks is evolving towards flexible and reconfigurable solutions, able to cope with

the highly variable densities of users. Specifically, the current generation of cellular communications, namely 5G [2],

embeds new transmission techniques as well as novel communication paradigms, including smart and flexible relay-

ing [3]. Besides, wireless relaying with mobility of relays is possible thanks to precise beamforming and highly efficient5

cooperative transmission techniques, which makes it possible to operate broadband wireless backhaul links [4]. Without

such mature technological tools, many attempts toward mobile relaying have failed in the past, since the advent of

broadband wireless data networks [5].

It is therefore currently possible to mount mobile relays on, e.g., transport vehicles and drones, which brings the

possibility of moving the network with the users and position relays where the fixed infrastructure cannot sustain the10

user demand [6, 7]. However, there exist serious concerns on the practicality of mobile relaying, due to interference

management problems. For instance, Guo and O’Farrel [8] have derived the capacity of OFDMA cellular networks (like

LTE-A, but also in 5G) in the presence of relays reusing cellular frequencies, and showed that relays need to be operated

onto orthogonal frequencies. Besides, it is known that using orthogonal frequencies gives additional advantages in terms

of simplified resource allocation control [9]. Thus, we study the case of relay drones and base stations (BSs) transmitting15

on orthogonal frequencies. Specifically, we tackle the optimization of 3D positions for a fleet of coordinated drone relays

aiding a set of ground BSs, as depicted in Figure 1, aiming at a fair throughput distribution among users.

We base the optimization on the throughput as evaluated by means of an α-fairness metric [10], which is a high-level

generalization of fairness metrics, meant to trade-off between pure fairness (i.e., counteracting unequal distribution of
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Figure 1: Reference scenario: multi-drone-aided network with people moving from a train station to a football stadium.

individual rewards) and global utilization on a Pareto-efficient curve [11]. The parameter α can be tuned to analytically20

target, e.g., maximum throughput, proportional fairness or max-min fairness with a single framework and hence find the

proper balance between fairness and utilization of resources. In the analysis, we account for the behavior of standard

3GPP networks and user access protocols, and model transmission technology details like the random variations of

signal quality received by users over time, the interference caused by relays and BSs, the use of slotted time-frequency

resources, the wireless backhaul attachment, and cell selection and resource allocation procedures. Specifically, we25

adopt stochastic models for path-loss and availability of line-of-sight (LoS) and non-LoS (NLoS) links, and cast our

problem into an OFDMA-like resource allocation scheme with several constraints.

The problem of finding the exact optimal drone positions is NP-complete. In particular, our analysis unveils that the

role of interference caused by drones and the stochastic characterization of LoS between drones and ground users make

the optimization problem intractable. However, is the problem really intractable in practice? To answer this question30

we analyze the drone-positioning problem under the perspective of a fair maximization of the network throughput

provided to mobile users, and unveil its structure, which allows us to find efficient paths towards the computation of

near-optimal solutions with low time complexity. Moreover, we show that the most critical part of the problem can be

efficiently addressed by leveraging Extremal Optimization (EO) algorithms, which are a class of algorithms specifically

designed for polynomial time optimization with intertwined variables [12]. The EO operation is based on picking the35

“least fit” element of a finite set and change its configuration parameters to improve a global utility function. EO offers

a lightweight solution to problems otherwise intractable, and for which researchers proposed genetic algorithms. It is

also more reliable than machine learning approaches–e.g., reinforcement learning schemes–since it does not require any

training, which would instead be quite heavy and which does not scale with the number of drones to control (the state

space in which to train the machine learning algorithm would quickly become unsustainable). We therefore formulate40

a suitable utility function, targeting α-fair user throughput across the network, and design PADD: a Parallelized Alfa-

fair Drone Deployment Algorithm. By using an EO algorithm, PADD iteratively updates the position of the least fit

drone, i.e., the drone relay that contributes the least to the utility function. We validate our algorithm and evaluate

its performance by means of simulations of realistic static and dynamic scenarios. As an illustration of dynamic cases,

we evaluate the performance of our algorithm when customers move towards a stadium before a sport event, so that45

their density grows over time. Beside illustrating the advantages offered by PADD over state of the art algorithms,

our numerical results show that optimizing network throughput without considering fairness is not beneficial in dense

environments since drones serving the same area generate too much interference.

The contributions of this article are summarized as follows:

• We propose an analytical framework for the 3D placement of a fleet of coordinated drone relays in cellular networks.50

• We propose an aerial cellular infrastructure that combines standard 3GPP tools, beamforming techniques, wireless
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backhauling and fair resource allocation.

• We show that the analyzed problem is NP-Complete.

• We formulate the 3D placement optimization problem in terms of the α-fairness metric to guarantee fair distribution

of resources and access link throughputs.55

• We propose PADD as an extremal-optimization-based algorithm to solve the problem near-optimally.

• We deterministically solve optimally, in polynomial time, the α-fair resource allocation problem for ground-plus-aerial

cellular networks.

• We assess and validate our proposal by means of comprehensive numerical results.

The rest of the article is structured as follows. Section 2 discusses related work. Section 3 presents the system model,60

while Section 4 derives the framework for optimizing drone positions under the α-fairness metric. Section 5 describes

the design of our optimization algorithm. Section 6 provides numerical results. Section 7 discusses the findings of this

article and possible practical implementation issues. Section 8 summarizes and concludes the article.

2. Related work

2.1. Relay Alternatives65

Mobile and non-terrestrial relays have been investigated in several forms and considering several technologies. For

instance, the usage of satellite networks [13] emerged several years ago and is part of 3GPP strategies for evolving

cellular networks [14]. However, while satellites serve huge areas, users can only achieve relatively low rates. Moreover,

satellites cannot adjust to the user’s topology, and service incurs high costs. In contrast, drone relays may move

dynamically at low altitudes and serve smaller target regions on demand, where the ground network cannot sustain the70

high demand from dense spots, so that a swarm of drones is able to rapidly act for aerial connectivity assistance.

Drone relays are also different from fixed relays and Device-to-Device (D2D)-based approaches [15, 16]. In fact,

unlike those cases, drone communications are neither fixed nor opportunistic, and the channel propagation is impacted

by the probability of communicating with LoS, as we account for in our analysis. That behavior is properly described

in [17], where the authors highlight a number of factors that affect the air-to-ground communications.75

Thus, in general, satellites, balloons or terrestrial relays cannot face scenarios as the ones studied in this article.

In fact, connectivity requirements used to design protocols for satellites, balloons and D2D communications, as well as

technology constraints and signal propagation, are radically different from our case. An overview of the recent advances

in drone communications, with an emphasis on integrating drones into the fifth-generation of cellular networks can be

found in [18].80

2.2. Drone Position Optimization

In the recent years there have been various studies that optimize drone relay placement mainly focusing on coverage

in static and oversimplified assumptions, as for instance neglecting inter-drone interference [19] or ignoring fairness

issues in resource allocation [20]. With that, the resulting problem formulation is simple enough, typically quadratic,

yet less realistic than what we derive in this article. In our previous work, we have presented OnDrone, a lightweight85

multi-drone coverage framework that maximizes the number of users covered. In there, we consider Quality-of-Service

thresholds and show how to design flying paths for fast repositioning and augmented coverage over time [21]. A similar

approach has been followed in [22], where the authors propose the deployment of drones for video surveillance, obtaining

a suitable topology (in terms of achieving zero blind spots) with minimum number of drones. However, they assume

a region that lacks cellular infrastructure. A different approach is taken in [23], where a Q-learning solution is used to90

solve the deployment and movement of the drones that maximizes the Quality of Experience [24], although it requires

explicit feedback from ground users and protocol changes in the way cells form. Galkin et al. [25] use a stochastic
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model to analyze the coverage when drones act as access points for users in urban areas. They demonstrate how the

density of the drones determines whether drones should position closer to user hotspots to improve the received signal

strength, or further away from one another to mitigate interference. In [26], the authors investigate moving networks95

of UAVs to extend connectivity and guarantee data rates in the 5G by analyzing possible hovering locations based

on limitations such as flight time and coverage. They derived analytic bounds in terms of connectivity and discover

two regimes, in function of the existing infrastructure. Furthermore, they identified in which regime the deployment

of UAVs is desirable. In [27], the authors propose a communications framework for HetNets composed by macrocells,

microcells and communication drones. Although their application scenario is similar to the one of this article, we find100

remarkable and fundamental differences: they consider only a finite and small set of aerial locations for drones, ignore key

communication features such as throughput or coverage and base decisions on minimizing network energy consumption.

The use of drones for the optimization of communication throughput has been explored in recent studies related to

various kinds of networks. Here we just mention a few key examples out of an increasingly richer list of publications

sprouting in these years.105

Hua et al. [28] describe how drones can increase the throughput of backscatter networks with their physical presence.

Wang et al. [29] propose to use drones to support wireless sensor networks optimally by coordinating drone trajectories

and by scheduling sensor transmissions. Liang et al. [30] model the repositioning of unmanned aerial vehicles (UAV)

relays meant to maximize the throughput of mobile communication pairs, with a drone assigned to each pair of devices.

Mignardi et al. [31] focus on latency and throughput performance of drones using narrowband IoT communications110

without the presence of terrestrial base stations, whereas Yin and Yu [32] propose resource allocation and trajectory

optimization for UAVs that assist cellular networks. However, they do not consider the integration of drone cells and

terrestrial base stations, thus solely focusing on drone cell optimization, which is pursued by means of a reinforcement

learning algorithm. Indeed, differently from our work, many existing studies do not account for the interaction between

drones and ground wireless points of access (e.g., base stations, gateways or relays) and the internal network connectivity115

bottlenecks (e.g., backhauling and transport limitations).

Some other works do tackle integrated terrestrial and aerial networks. For instance, Liu et al. [33] study how to

jointly adjust the coverage radius of UAVs and terrestrial base stations by playing with antennas and positions of UAVs,

although the main goal of their work consists in maximizing coverage while minimizing coverage overlap and thus reduce

the number of required UAVs. Chiaraviglio et al. [34] show that solar-energy-supplied UAVs like drones can be also120

used to assist terrestrial base stations in order to better distribute their resources geographically. They show that the

presence of UAVs can significantly increase throughput and reduce energy consumption from the grid. Similar to our

work, they assume that UAVs serve users by means of a dedicated frequency, which does not interfere with terrestrial

base station transmissions. However, differently from our work, they do not consider relay—as UAVs form independent

cells—neither they take into account backhauling constraints, assuming instead that UAVs and terrestrial base station125

do not compete for resources. Iranmanesh et al. [35] consider a drone-logistics network and repurpose drone trajectories

to assist the cellular network while performing their primary task (i.e., parcel delivery). They suggest to use D2D to

enable drone relay from ground users (uplink) in a congested cell to another ground base station which is not suffering

congestion. That work considers the interference between base stations and drones, and assumes that user devices can

talk to drones without interfering with base stations because they can use different frequencies. Our work is different,130

not only because we do not have drone deliveries to take into account, but also because we focus on the downlink rather

than uplink, and include backhaul constraints in the problem formulation. The optimization of the relay throughput

that a drone can offer is studied in [36], with a single drone providing wireless access in case of disaster, without having

to account for interference and other network bottlenecks. The disaster recovery case of multiple drones connected to a

single wideband base station in addressed in [37], without optimizing drone positions but rather focusing on the MAC135

protocol, which is optimized using a matching game.

In [38], the authors tackle the problem of unbalanced traffic distribution in cellular networks by using a UAV-
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Figure 2: System Model.

assisted wireless network in which the UAV acts as an aerial relay to divert some traffic from the overloaded cell to

its adjacent underloaded cell. They jointly optimize UAV position, user association, spectrum allocation, and power

allocation to maximize the sum-log-rate of all users in two adjacent cells. First, they design a genetic-based algorithm140

to optimize the UAV position. Then, they propose an iterative power allocation algorithm based on the sequential

convex approximation theory. The authors in [39] investigate the scenario where multiple UAVs cooperatively fly over

heterogeneous ground users and collect data without a central controller. They jointly optimize the trajectories of

UAVs and the ground users associations to maximize total throughput and energy efficiency, taking into account both

signal-to-interference-and-noise ratio and fairness among users. By means of simulations, they demonstrate that the145

proposed algorithm outperforms commonly adopted schemes, in terms of fair throughput and energy consumption.

Although all these works provide valuable contribution and foundational results, they do not shed light on problems

like capacity optimization with fairness targets when a fleet of drones is deployed to assist a cellular network with

realistically coupled access and backhaul resources, which is our goal in this article. Neither they provide a realistic

framework to integrate drone relay stations into current cellular networks, whereas we show that our practical approach150

accounts for integration. In the conference version of this article [1], we address this problem from a quite simple ap-

proach: in there, we relax critical constraints like wireless backhaul and backbone bottlenecks, and air-space constraints

where drones can be located. Such simplifications allow for the design of a simpler system model and less complex

algorithms and optimizations, yet bring the risk of being inaccurate. In this article, instead, we provide a fully general,

realistic, precise and tractable model for an aerial network integrated in a cellular infrastructure.155

Besides, here we use EO in a novel way. EO algorithms took relevance on fields as biology or physics, and have

been also applied to network science, e.g., to optimize transport in complex networks [40]. EO has been thought and

used so far as a form of centralized static optimization. Instead, in this article we use EO to design an algorithm that

works in parallel threads and dynamically, as the system evolves.

3. System Model160

Our goal is to derive an analytical framework that finds optimal 3D locations of drone relays, given the position of

users and ground stations, so as to optimize downlink communications. We target α-fair instantaneous user throughput.

To this aim, jointly with path-loss and interference in both access and backhaul, we address how users perform cell

selection and get resources allocated. The modelled system is a plain 3GPP cellular system comprising access and

backhaul networks, with drones acting as standard 5G relays [41].165

In order to illustrate the system model and parameters involved in the network, we show the main components in

Figure 2 and describe the meaning of the parameters in Table 1.
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Table 1: System model parameters

Parameter Description

α Fairness level

Ag Maximum number of aBSs that gBS g can serve

A Set of aBSs

B Set of BSs, i.e., set of aBSs and gBSs jointly

G Set of gBSs

γAa,u SINR of aerial access link (a, u)

γBg,a SINR of aerial backhaul link (g, a)

γGg,u SINR of ground access link (g, u)

IAa,u Interference from aBS a to UE u

IBg,a Interference from gBS g to aBS a

IGg,u Interference from gBS g to UE u

LA(a, u) Loss of air-to-ground channel from aBS a to UE u

LB(g, a) Loss of ground-to-air channel from gBS g to aBS a

LG(g, u) Loss of ground-to-ground channel from gBS g to UE u

φg,a Angle from main lobe of gBS g to aBS a

PLoS(a, u) LoS-likelihood of link (a, u)

Umax Maximum number of UEs a BS can serve

WA Available bandwidth of aerial access channels

Wmin
A Minimum bandwidth guaranteed to aerial access links

WB Available bandwidth of aerial backhaul channels

Wmin
B Minimum bandwidth guaranteed to aerial backhaul links

WG Available bandwidth of ground access channels

Wmin
G Minimum bandwidth guaranteed to ground access links

τg Backbone capacity of gBS g

3.1. Reference Scenario

We consider a flat ground surface S where a set G of G ground base stations (gBS) provide cellular service. The

position of each gBS g is denoted as Πg = (Xg, Y g). We assume that every gBS g is wired to the internet with a170

backbone capacity τg. We consider that a set U of U user equipments (UEs) is on the ground, requesting cellular

service. We denote the position of each user u as πu = (xu, yu). The network disposes of a fleet A of A aerial base

stations (aBS) that act as mobile relays. Each aBS is mounted on a drone (for ease of readability, we may refer just

as “drone” to an aBS). We assume that the system operator disposes of two frequency bands to offer user access: the

first band is used by gBSs to provide both cellular access to ground users and backhaul connectivity to aBSs; and the175

second band is used by aBSs to provide cellular access to ground users. This assumption mimics the common scenario in

which an operator deploys different types of base stations and equip them with different frequencies to simplify network

management. Indeed, it is common that an operator disposes of multiple licenses to use more than one cellular band. It

is also common practice to coordinate transmissions from different base stations, especially in case of mixed deployments

with macro and small cells. Frequency reuse is one of the possible and simplest schemes to use for coordination, which180

is what we adopt for simplicity. Nonetheless, please note that the analysis carried out in this article can be extended

to the case of using a single frequency for all transmissions or any arbitrary number of frequencies (e.g., one per aerial

and ground base station, in the most extreme case).

Under our assumptions, users connected to drones suffer no interference from gBSs. Similarly, users connected

to ground base stations are not interfered by drone transmissions. Drones fly in the air space, so that we denote as185
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Πa = (Xa, Ya, ha) the 3D position of drone a. We denote as B = G ∪ A the set of all the base stations (gBSs jointly

with aBSs) that form the whole network.

We assume that gBSs reuse the downlink spectrum used for the gBS–UE access links in order to provide backhaul

wireless service to aBSs. Usually, gBSs dispose of three antenna sectors pointing mainly to the ground in order to provide

cellular coverage to users. In addition to these antennas, we assume that gBSs dispose of an additional full dimensional190

antenna array that performs 3D-beamforming over clear LoS links in order to establish gBS–aBS links for backhauling,

as suggested and studied in [42]. Hence, gBS–UE and gBS–aBS links do not practically interfere. Moreover, 3D antenna

arrays allow gBSs to relay traffic to several drones, by alternating transmissions every few milliseconds. Therefore, we

assume that each gBS can set backhaul wireless links with more than one aBS, and we also assume that a minimum

backhaul bandwidth Wmin
B is guaranteed, which implies that only a limited number of drones can stay connected to a195

single ground base station.

In order to analyze a realistic network configuration, differently from what we assume for BSs talking to each

other, we do not assume that transmissions to users can benefit from beamforming, therefore, we account for inter-cell

interference for the groups of users connected to the same type of BS, be it aBS or gBS. We do so because beamforming

to users requires non-negligible overheads to track the position of erratically moving users, and to fine tune the beam200

within potentially narrow spaces crowded with users. Instead, aBSs and gBS can easily have precise information about

their positions at any time, and do not risk to stay packed in small spaces. Having said that, our analysis can be

straightforwardly simplified to apply also to the ideal case in which all transmissions can be interference-free due to

beamforming, should that possibility become reality, as foreseen for future 3GPP networks and other cellular systems.

Another important aspect to consider in drone-assisted missions is the energy consumption management of drones.205

Ths is generally enforced by means of a recharge strategy and with additional backup drones. In this article, we

assume that A drones are guaranteed to be operational in a desired position when the optimization is run. Hence, we

assume that there is a parallel recharge scheduling strategy that uses a minimum number of extra drones to guarantee

a persistent communications service with A aBSs at any moment. This parallel mechanism can certainly be achieved,

as we have already proposed and demonstrated in [43].210

3.2. Channel Modelling

We assume that the network operator disposes of two orthogonal frequency bands. One band is assigned to gBSs

to provide access service to ground users as well as aerial backhaul service to aBSs, with a fixed bandwidth WG and

WB, respectively. The other band is assigned to aBSs for aerial user access and it has a fixed bandwidth WA. Hence,

we model three different kinds of channels: (i) air-to-ground and (ii) ground-to-ground channels in the access network,215

and (iii) ground-to-air channels in the backhaul network.

To optimize the network and compute link throughputs we need to compute the signal strength of each wireless

channel, measured as the SINR. In order to compute the SINR, we study path-loss and fading of channels, as well as

suffered interference. Then, throughputs will be estimated with the well-known Shannon formula.

The notation of each parameter of the channel model can be found in Table 1, and the mathematical details of the220

modelling of each kind of channel can be found in separate sections of Appendix A.

Air-to-ground access channels. The loss of these channels differs notably depending on whether links are free

of obstacles [44]. Hence, this loss depends on the LoS-likelihood [45] of links. As aBSs serve users in OFDMA channels,

these users do not interfere among themselves. However, users suffer aggregated interference from other aBSs serving

other users. We denote the loss from aBS a to UE u as LA(a, u).225

Ground-to-ground access channels. The loss of these channels follows the well-known path-loss model with

slow fading [46]. As gBSs serve users in OFDMA channels, there is no intra-cell interference. However, we account for

inter-cell interference from neighbor ground cells. We denote the loss from gBS g to UE u as LG(g, u).

Ground-to-air backhaul channels. Since backhaul links follow directional beams in LoS, the loss of these

channels also follows the well-known path-loss model with slow fading [46]. Backhaul links reuse the spectrum from the230
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Table 2: Optimization variables & parameters.

Variable Description

Bg,a Binary variable for the existence of backhaul link (g, a)

Ca,u Binary variable for the existence of access link (a, u)

Cguu Binary variable for the existence of access link (gu, u)

Πa Aerial position of aBS a

Sa Air space restricted to aBS a

Tb,u Throughput allocated to access link (b, u)

T g,a Throughput allocated to backhaul link (g, a)

Wb,u Bandwidth allocated to access link (b, u)

W g,a Bandwidth allocated to backhaul link (g, a)

ground access channels. However, gBSs perform 3D beamforming for backhauling and hence there is no interference

between ground access and aerial backhaul. Still, other gBSs might serve other aBSs in a beamforming direction such

that served aBSs suffer interference (attenuated depending on the radiating angle). We account for such interference.

We denote the loss from gBS g to aBS a as LB(g, a).

3.3. Cell Selection and Resource Allocation235

BSs cannot provide service to unlimited numbers of users because (i) available radio resources are limited and (ii)

it is necessary to guarantee a minimum set of radio resources to each connected user, to guarantee signaling exchange

with the BS; this is needed to schedule data transmissions to and from the BS. Of course, the number of devices is

also limited by the minimum bandwidth that the system aims to guarantee to each user. Therefore, in general, the

maximum number of users that can be simultaneously served is limited, and we denote by Umax such number.240

Cell Selection. We assume that users perform cell selection as in currently operational 3GPP networks: first,

UEs select the BS with strongest Signal-to-Noise Ratio (SNR); if the request is rejected because channel conditions

deteriorate or the BS runs at maximum capacity, then the UE performs cell re-selection, and tries to attach to the BS

with next strongest SNR, and so on until the user gets attached [47].

Resource Allocation. We assume that gBSs and aBSs schedule cellular users according to an OFDMA system.245

Today’s BSs use an OFDMA system and dispose of a finite set of physical resource blocks organized in subframes, which

repeat to form frames lasting a few milliseconds (1 to 10 ms in 3GPP-compliant networks). A physical resource block

is the smallest unit of time-frequency resources that can be allocated to a user. Thus, we assume that the minimum

bandwidth allocated to a user is the bandwidth corresponding to one resource block and the scheduler guarantees that

each user receives, on average, at least one block per subframe in each OFDMA frame. We denote as Wmin
G and Wmin

A250

the minimum bandwidth that a gBS or an aBS can allocate to a single user.

Backhaul links also use an OFDMA system, although aBSs select a gBS according to a global network optimization

criterion, rather than based on SNR. Moreover, gBSs can serve Ag aBSs at most, and each backhaul link (g, a) disposes

of a minimum bandwidth Wmin
B , to relay traffic.

4. Optimization255

Here we derive an analytic framework for the 3D positions of aBSs, to optimize throughputs based on α-fairness [10].

We seek optimal aBS positions and BS–UE associations, and also optimal backhaul association and optimal allocation

of physical resources. We formally present the optimization problem addressed in this article:

Throughput Problem TTT : Given a set G of G fixed gBSs, a fleet A of A relay aBSs hovering at heights in the range

[hmin, hmax], a set U of U ground UEs that may connect to either a gBS or an aBSs, each of which can serve Umax UEs260
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max
Πa,Ca,u,Wb,u,
Bg,a,W g,a

Uαthr=


∑
u∈U

(∑
b∈B

Tb,u

)1−α

· 1
1−α , α 6=1;∑

u∈U
log

(∑
b∈B

Tb,u

)
, α=1;

s.t.:
gBS–aBS association constraints:∑
g∈G

Bg,a = 1,
∑
a∈A

Bg,a ≤ Ag, ∀g ∈ G,∀a ∈ A;

gBS–aBS capacity constraints:
Wmin
B ·Bg,a ≤W g,a ≤WB ·Bg,a, ∀g ∈ G,∀a ∈ A;∑

a∈A
W g,a ≤WB, ∀g ∈ G;

T g,a ≤W g,a log2

(
1 + γBg,a

)
, ∀g ∈ G,∀a ∈ A;

gBS backbone constraint:∑
a∈A

T g,a +
∑
u∈U :
g=gu

Tg,u ≤ τg, ∀g ∈ G;

BS–UE association constraints:
Cguu +

∑
a∈A

Ca,u = 1, ∀u ∈ U ;∑
u∈U :
g=gu

Cgu ≤ Umax,
∑
u∈U

Ca,u ≤ Umax, ∀g ∈ G,∀a ∈ A;

gBS–UE capacity costraints:
Wmin
G · Cguu ≤Wgu,u ≤WG · Cguu , ∀u ∈ U ;∑

u∈U
Wg,u ≤WG , ∀g ∈ G;

Tgu,u ≤Wgu,u log2

(
1 + γGgu,u

)
, ∀u ∈ U ;

aBS–UE capacity constraints:
Wmin
A · Ca,u ≤Wa,u ≤WA · Ca,u, ∀a ∈ A,∀u ∈ U ;∑

u∈U
Wa,u ≤WA, ∀a ∈ A;

Ta,u ≤Wa,u log2

(
1 + γAa,u

)
, ∀a ∈ A,∀u ∈ U ;∑

u∈U
Ta,u ≤

∑
g∈G

T g,a, ∀a ∈ A;

Air space constraint: Πa ∈ Sa, ∀a ∈ A.

Figure 3: Fair Throughput Optimization Program.

at most, find the optimal position of each aBS a ∈A, the optimal user association, the optimal backhaul association

and the optimal user resource allocation so to maximize the α-fair throughput utility function.

We formulate the drone positioning problem as a Mixed-Integer Non-Convex Program (MINCP) in Figure 3. The

meaning of all the optimization variables is shown in Table 2.

On the access network side, we denote as Ca,u∈{0, 1} the decision variable that tells whether u connects to aBS a.265

Similarly, Cguu ∈ {0, 1} tells whether u connects to gBS gu. Decision variables Wb,u and Tb,u denote bandwidth and

throughput allocated to link (b, u). Throughput is a decision variable and not directly computed with the Shannon

formula, since, in addition to bandwidth limitations we must account for access, backhaul and backbone bottlenecks.

On the backhaul network side, we denote as Bg,a∈{0, 1} the decision variable that tells whether aBS a is attached

to gBS g. Variables W g,a and T g,a denote bandwidth and throughput of the backhaul link (g, a), respectively.270
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Network utility and constraints

The utility function of the optimization problem in Figure 3 corresponds to the α-fairness metric. This utility

function is additive in terms of utilities conveyed by single BSs. Depending on the value of α ≥ 0, known as the

α-fairness level, the metric captures different fairness criteria such as proportional fairness (α= 1), max-min fairness

(α→+∞) or the maximum capacity (α = 0). Specifically, as derived in [10], a system with rates T is proportionally fair275

if for any other system of rates T ′, the aggregate proportional change in the rates is negative, while a system with rates

T is said to be max-min fair if any rate Ti cannot be increased without decreasing some smaller Tj . However, it might

be controversial what is a fair rate allocation for a given network, since the network needs to find a balance between

fairness and utilization of resources. In order find a desired trade-off between utilization of resources and maximum

fairness, the tunable parameter α generalizes all fairness metrics in the following sense: if α = 1, the α-fairness metric280

is proportionally fair, hence prioritizing the utilization of resources, but as long as α becomes larger, more priority is

given to fairness. In general, for any choice of α ≥ 0, the larger α the higher the importance of fairness over utilization

in the resulting utility metric [11], and an α-fair system of rates T is that system in which for any other system of rates

T ′, the aggregate of the changes of rates relative to the α-power of T is negative. Optimizing for different values of α

corresponds to assign different levels of importance to individual fairness over global utilization goals. In particular,285

α = 0 leads to optimize the global utility only, while as α increases the relative importance of fair distribution of utilities

grows monotonically until, as α→∞, the utilization plays no role in the optimization.

Constraints in Figure 3 correspond to the following restrictions:

gBS–aBSgBS–aBSgBS–aBS association constraints state that every aBS must associate with one gBS to set a wireless backhaul

link, and that every gBS can serve at most Ag aBSs.290

gBS–aBSgBS–aBSgBS–aBS capacity constraints impose guarantees on bandwidth and throughput allocation on backhaul links.

The gBSgBSgBS backbone constraint restricts every gBS to provide connected aBSs and connected users with an aggre-

gated throughput not higher than the capacity τg of the backbone link that serves that gBS.

BS–UE association constraints state that each user can associate only to one BS, either a ground station or a

drone, and that the maximum allowed number of UEs served by each BS is limited to Umax.295

gBSgBSgBS–UE capacity constraints impose guarantees on bandwidth and throughput allocation on gBS–UE links.

aBSaBSaBS–UE capacity constraints impose guarantees on bandwidth and throughput allocation on aBS–UE links, while

at the same time the throughput of a user cannot exceed the backhaul link capacity and the aggregate user throughput

cannot exceed the backhaul throughput.

The Air space constraint delimits the 3D air space within which an aBS can be moved, Sa, and which is a ball300

centered in the current position of the drone with a radius equal to the distance that the drone can fly within a fixed

time (i.e., time itself is the real constraint).

Modeling air-to-ground connections brings unavoidable non-convex functions, so that the formulated problem is not

tractable with currently available optimizers, which are able to deal only with problems that are convex.

Feasibility and NP-Completeness305

Here we remark that the formulated optimization problem in Figure 3 always admits a feasible solution. We just

have to place each aBS a∈A randomly in each Sa, attach each UE and aBS to a random gBS, allocate to each UE and

aBS the minimum allocable bandwidth and assign null throughputs to every link in the network. This naive network

setting is always a feasible solution of the problem.

Moreover, the problem of finding the exact optimal drone positions is NP-Complete. Indeed, the NP-Complete310

Minimum-Geometric Disk-Cover (MGDC) problem [48] can be reduced, in polynomial time, to a special instance of

the problem in which users get 1 bps if a drone serves them and 0 bps otherwise. This result is a direct consequence of

the NP-Completeness proof of the Coverage Problem that we have presented in [21], because coverage can be seen as

a particularly simplified throughput problem using an on/off, SINR-threshold-based, throughput function.
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Initial system setting.
Performance: Uαthr,0

Select a0 ∈A as the
least fit aBS (see §5.5)
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Performance: Uαthr

yes no

no
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Figure 4: Flow diagram of PADD operation.

5. Extremal Optimization315

The optimization framework proposed in Section 4 is non-convex and mixed-integer, hence not solvable with any

off-the-shelf optimizer [49]. The problem is hard to solve because any change in a decision variable (e.g., a position of

a drone) affects backhaul and user association, as well as interference and resource allocation for all users. Due to the

intertwined nature of the decision variables of the problem, this is the kind of problems EO has been thought for.

To find time-efficient and near-optimal solutions, we propose a Parallelized Alfa-fair Drone Deployment (PADD)320

algorithm, based on a typical EO operation. We base the design of PADD on decoupling the problem in the four

main decisions that the optimization framework must make: (i) the 3D positions of the fleet of aBSs; (ii) the sets of

users attached to each gBS and aBS; (iii) gBS–aBS backhaul association; (iv) bandwidth allocation to backhaul links

gBS–aBS as well as to access links from each gBS or aBS to their attached users.

In what follows, we formally describe the PADD operation and provide details of each step that PADD takes.325

The algorithm iteratively solves four steps, as pictured in Figure 4 as a flow-chart: after deriving an initial feasible

system setting, the least fit aBS a0 is selected in order to locally probe non-searched positions that improve the current

network performance. While probed positions do not provide a relative improvement of δ ≥ 0 over the current network

performance, new local non-searched positions are probed. In case a probed position improves performance, aBS a0 is
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max
Bg,a

Uαbhl =


∑
g∈G

∑
a∈A

(
|Ua|

|Ug
⋃
Ua| log2

(
1+γBg,a

))1−α
·B

g,a

1−α , α 6=1;∑
g∈G

∑
a∈A

log
(
|Ua|

|Ug
⋃
Ua| log2

(
1+γBg,a

))
·Bg,a, α=1;

s.t.:∑
a∈A

Bg,a ≤ Ag, ∀g∈G;∑
g∈G

Bg,a = 1, ∀a∈A.

Figure 5: Backhaul Association Optimization Program.

moved to such position and the current system performance is updated. In case this new performance provides a relative330

improvement higher than ε ≥ δ, the new least fit aBS is selected and the process begins again. Otherwise, the algorithm

converges and outputs the decided system setting. Specifically, the convergence of PADD is guaranteed because the

algorithm only accepts new system configurations if the utility improves by at least ε > 0, and stops otherwise. Since

the utility is bounded by the value reached at the optimum, which is a finite value obtained as a finite sum of finite

quantities, our algorithm cannot keep upgrading the utility by a constant improvement of ε indefinitely, so that PADD335

eventually must converge. We next formalize the operation of PADD more in detail.

5.1. Initial System Setting

Initially, we consider a naive drone positioning. For instance, any random placement of drones provides a feasible

solution that could be iteratively improved. However, we more efficiently select those locations that are closer to gBSs–so

to guarantee good backhaul links–and those locations that are above densely populated regions–which are regions that340

potentially need drone relay assistance. This initial drone setting yields utility Uαthr,0. However, in order to compute

Uαthr,0, we need to know also user association, backhaul association and resource allocation. These decisions are made

as described in the following subsections.

5.2. BS–UE Association: Best-Signal Policy

For fixed positions of the drones, the BS–UE association is performed individually by each user according to the345

best-signal policy described in Section 3.3, which is at most linear in the number of base stations |B|, with B = G ∪A.

However, before association, we need to compute |B| SNR values for each UEs, and sort them in decreasing order, which

goes with |B| log |B|. The complexity of user association is therefore O(|B| log |B|) comparisons, for each user.

In the following, the set of users attached to a gBS g ∈ G and the set of users attached to an aBS a ∈ A are denoted

as Ug and Ua, respectively.350

5.3. gBS–aBSgBS–aBSgBS–aBS Backhaul Association: GAP-Knap Heuristic

For fixed drone positions and given BS–UE association, the backhaul association is solved by assuming that the

bandwidth WG is proportionally shared among users connected to a gBS and to the aBSs to be connected to that gBS.

Specifically, the backhaul throughput is computed with the Shannon formula, using a fraction of bandwidth pro-

portional to the number of users attached to the drone, and with the SINR resulting from current position of drone355

and the fixed position of gBS. Maximizing the α-fairness of such throughput values for all drones, translates into a

generalized assignment problem (GAP) [50]. With the notation used in Figure 3, in which γBg,a is the backhaul SINR

of link (b, a) and Bg,a denotes the binary decision variable that tells wether gBS g associates with aBS a, we show the

backhaul association optimization in Figure 5.

The first constraint states that each gBS can provide backhaul service to at most Ag aBSs. The second constraint360

states that each aBS a must be associated with one gBS.
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max
wa,wu,Tu

Uαcvx,g =



∑
u∈

⋃
b∈Bg
Ub

(Tu)
1−α · 1

1−α , α 6= 1;

∑
u∈

⋃
b∈Bg
Ub

log (Tu) , α = 1;

s.t.:
wa ≥Wmin

B , ∀a∈Ag;∑
a∈Ag

wa = WB;

T a≤wa log2

(
1+γBg,a

)
, ∀a ∈ Ag;

wu ≥Wmin
G , ∀u∈Ug;∑

u∈Ug
wu = WG ;

wu ≥Wmin
A , ∀u∈

⋃
a∈Ag
Ua;∑

u∈Ua
wu = WA, ∀a∈Ag;

Tu≤wu log2(1+γb,u), ∀(b, u)∈Bg×
⋃

b′∈Bg
Ub′ | u∈Ub;∑

u∈Ua
Tu≤ T a, ∀a∈Ag;∑

u∈Ug
Tu+

∑
a∈Ag

T a ≤ τg.

Figure 6: Bandwidth Allocation Optimization Program.

GAP is an NP-hard MILP [51]. Hence, although the GAPs that PADD needs to solve have a small size and

could be optimally solved by means of standard methods as a Branch&Bound search [52], such an approach would not

lead to a polynomial-time algorithm. Hence, multiple heuristics have been proposed in literature to find near-optimal

solutions to the GAP [53, 51]. In particular, we perform a simple heuristic based on an approximation to the 0-1365

knapsack problem [54] by means of dynamic programming [55]. The resulting heuristic results into a 2-approximation

heuristic [51], and hence its performance is theoretically bounded (although, in practice, we have observed an average

approximation factor of 1.0021 and of 1.0222 in the worst case, hence showing a near-optimal performance). We name

this heuristic as GAP-knap, which has a polynomial complexity of O(|G|·|A|·Ag). The complexity of GAP-knap is linear

with the sizes of G and A and the maximum number of aBSs allowed to attached to gBSs, Ag.370

5.4. Optimal Bandwidth Allocation: Convex Program

For fixed drone positions, BS–UE association and gBS–aBS backhaul association, the optimal bandwidth allocation

is solved by each gBS in parallel, with a convex program.

Each gBS must perform bandwidth allocation to split backhaul resources among the served aBSs, split gBS–UE

access resources among the attached users Ug, and the attached aBSs a must split aBS–UE access resources among the375

users attached to each aBS a, Ua. Since all these bandwidth allocations are intertwined (aBS–UE allocation depends on

the backhaul bottleneck, gBS–aBS allocation depends on the number of attached aBSs to the same gBS and the number

of final users of each aBS, and gBS–UE access resources depend also on the backbone service that the gBS gets from

the internet), we formulate the bandwidth allocation optimization as a convex program in Figure 6.

In the program, wa is the share of total bandwidth that gBS g allocates to aBS a, T a is the backhaul throughput380

for aBS a, wu is the share bandwidth that BS b allocates to user u, and Tu is the access service throughput for user

u. Ag is the set of aBSs attached to gBS g, and Bg = {g}∪Ag is the set of gBS g jointly with Ag. Uαcvx,g is the utility

function of gBS g, which is based on the α-fairness metric.

The problem is convex, hence it is optimally solvable in polynomial time by means of standard interior-point

methods [56]. However, these methods run in cubic time with respect to the number of users, i.e., the complexity is385

O(|U|3) [57]. This cubic complexity might soon become prohibitive for real-time applications such as drone-aiding and
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fast repositioning in wireless networks (especially for big populations), as addressed in this article. Nevertheless, our

convex problem can be analytically solved, as we show in a more comprehensive technical report addressing various

aspects of throughput optimization with drone coverage [58]. In there, we apply KKT conditions [59] and show that

finding the exact solution for each gBS g is linear with respect to the number of users and aBSs attached to gBS g, i.e.,390

O(Umax ·Ag).

5.5. Least Fit Drone Selection

PADD iteratively improves the utility until convergence. The algorithm uses the idea behind EO algorithms. It

selects the least fit element and re-sets its parameters in order to improve system performance. In our case, an aBS is

selected and a new location is probed.395

The choice of which aBS is the least fit is made based on the consideration that there are two factors that cause

sub-optimality of aBS positions: (i) the aBS has a bad backhaul connectivity, hence it provides a worse service to

users than what the access channel conditions allow, i.e., access resources are wasted; or (ii) the aBS offers bad access

connectivity to users due to inter-drone interference, even though it has a good backhaul service, so that backhaul

resources are wasted. Accordingly, we derive two indicators of sub-optimality as the relative difference between the400

aggregate utility from aBS-served users (namely Uαthr,a) and the following quantities: (i) the utility of the aBS assuming

infinite backhaul capacity, namely Uα,B∞
thr,a ; and (ii) the utility of the aBS assuming no inter-drone interference, namely

Uα,SNRthr,a . Eventually, we pick as least fit aBS the drone a0 that provides the higher value of all sub-optimality indicators:

a0=argmax
a∈A

(
max

(∣∣∣∣∣U
α,B∞
thr,a −Uαthr,a

Uα,B∞thr,a

∣∣∣∣∣,
∣∣∣∣∣U

α,SNR
thr,a −Uαthr,a

Uα,SNRthr,a

∣∣∣∣∣
))

. (1)

Computing utilities for aBS a needs O(Umax) sums and powers (logarithms for α=1). Hence, finding the maximum

shown in Eq. (1) has complexity O(|A|·Umax) powers (or logarithms), the sums incurring negligible extra complexity.405

Having identified a0, PADD selects a new random position within the allowed 3D ball space around the current

position of the drone.

5.6. Complexity of PADD

In this section we provide the complexity of PADD. The algorithm consists of sequential steps, involving: user

association with BSs; the backhaul association solved with the GAP problem of Figure 5; the resource allocation of410

each gBS solved with the convex optimization of Figure 6; the system utility evaluation with the α-fairness metric; and

the least fit drone selection of the EO operation. Specifically, at each iteration, we have:

Step 1 User association. This can be implemented on parallel threads: one thread per UE ranks the candidate list

of BSs to attach to, then a separate thread computes the association in at most as many rounds as the number of

BSs, as seen in Section 5.2. With |U| parallel threads, the complexity required for this step to rank the list of BSs is415

O
(

1
2 log2 |B| log |B|

)
sums and comparisons.

Step 2 Backhaul association. The next step consists in solving the GAP-knap problem for backhaul association, which

must be done with a single thread, as shown in Section 5.3. The complexity of combining dynamic programming and

the knapsack problem to solve this step is analyzed in [50] and it is O (2Ag|G||A|) sums or comparisons.

Step 3 Resource allocation. This requires a thread per each gBS for which we need to solve the convex problem of420

Figure 6, as shown in Section 5.4. The time needed to complete this step is therefore the time needed to solve a single

problem. In [58], it can be found an exhaustive and detailed solution to this single convex optimization problem in

an exact way. Hence, here we remark that the complexity of the costliest case is O (4AgUmax) simple operations (e.g.,

sums), as discussed in [58].
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Figure 7: Topology of Leganés (Spain) and gBSs placement.

Step 4 Utility evaluation. The current configuration is evaluated in terms of α-fair utility, which has the cost of |U||B|425

sums or comparisons (for α→∞) plus |B| power operations (for α 6= 0, 1) or logarithms (for α = 1). As discussed at

the beginning of this section and depicted in Figure 4, the current configuration can be discarded and a new position

is probed for the current least fit drone (back to Step 1).1

Step 5 Least fit selection. Eventually, the algorithm computes the least fit drone with a single thread, with complexity

O(4|A|Umax) operations, as two kinds of additional different utilities need to be computed in Eq. (1) of Section 5.5.430

As a result, the overall PADD’s complexity is O
(
N
(

0.5
log2 |B|log |B|+2Ag|G||A|+4AgUmax+|U||B|

))
simple operations

(e.g., sums or comparisons) and O (N |B|+ 4|A|Umax) complex operations (e.g., powers or logarithms). This means

that PADD’s complexity is low-order polynomial, linear with respect to the number of mobile users and log-linear with

respect to the number of BSs.

Moreover, PADD’s iterations converge very fast (we have observed no more than a hundred iterations) and our435

algorithm implemented on Matlab took at most about 800 billion floating-point operations to optimize drone positions,

which requires, e.g., about 10 s on a linux machine with an Intel Xeon E5-2670 processor at 2.6 GHz with a processor

performing 32 flops/cycle with 64-bit operations.

6. Numerical Simulations

Here we present the numerical evaluation of the α-fair cellular capacity optimization in both static and dynamic440

scenarios. All our simulations are performed over the real topology of an operational network deployed in a dense city:

150,000 inhabitants in a 10 km2 area (Leganés, south of Madrid, Spain) [60]. The area is covered by 10 gBSs using the

same LTE band, as shown in Figure 7.

As there are several operators in Spain providing LTE service over multiple bands, and we only consider one operator

in one band, we use a number of 1000 UEs that request service at the same time, unless otherwise specified.445

First, we numerically validate our proposed PADD in comparison with optimal results approximated by means of

Monte-Carlo (MC) simulations in static networks with limited population: We perform 107 MC runs per instance where

aBSs are placed in feasible random positions. Then, we optimize the network for each run and save the best setting

as the approximated optima. Second, we analyze the robustness of the system model in order to prove that assuming

perfect knowledge about user positions has limited impact on performance. Eventually, we study three significant static450

and dynamic scenarios:

1When the optimization problem is initialized, there is no least fit drone yet; thus, the first iteration executes Step 1-Step 4 only once,
then it moves to Step 5 to make the first least fit selection.
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Table 3: Evaluation Parameters

Parameter Value

ξLoS , ξNLoS , β1, β2 1.6 dB, 23 dB, 12.08, 0.11
Carrier frequencies, fG , fA 1815.1 MHz, 2.63 GHz

Bandwidths, WG , WA 18 MHz, 18 MHz
Tx power, P gTx, P aTx 44 dBm, 25 dBm

Thermal Noise Power -174 dBm/Hz
Ground path loss exponent, ηBS 3

Height range, [hmin, hmax] [40, 300] m
Urban area, |S| 10 km2

Average walking speed 2.5 m/s
Monte-Carlo runs per instance 107

Instances of simulations 1000

• Poisson Point Process (PPP): we statically place UEs on the city map according to a Poisson point process [61].

• Stadium: we statically place 60% of the UEs in the surroundings of a stadium, and the rest like in PPP.

• Event: 40% of the population of UEs moves according to the random way-point model, whereas other UEs keep

arriving at an official scheduled rate of a train station and move towards the stadium.455

For each scenario, we study drone placement, utility and throughput achieved, and system fairness measured with the

Jain’s index [62].

Table 3 reports the evaluation parameters used in our simulations. We take a carrier bandwidth of 20 MHz for both

gBS and aBS channels (out of which, we consider that 10% is for guard bands, so we only use 18 MHz [47]). The carrier

frequency of cellular links is 1815.1 MHz, while for air-to-ground links we use 2630 MHz. These are two commonly used460

LTE bands [60]. The transmission power of aBSs is 25 dBm, notably lower than the 44 dBm power transmission of the

ground gBSs. In addition, probed aerial positions arise from a lattice that spans equal-volume subspaces.

To position our proposal, we consider the performance without drones as baseline (Ground in the figures). Moreover,

to compare PADD to state of the art drone-position optimization frameworks, we have implemented and tested the

Repulsion-Attraction scheme (RA) [63].465

Although our analysis holds for generic values of α, we present results for three specific and most interesting cases:

(i) For α = 0, we obtain the maximum throughput achievable (MaxThr in the figures).

(ii) For α = 1, we optimize the proportional fairness network metric (PropFair in the figures).

(iii) For α→∞, we optimize the max-min fairness network metric (MaxMin in the figures).

We study these three metrics for the following reasons. The MaxThr metric provides the maximum achievable network470

capacity, without fairness. The PropFair metric takes into account the network capacity but it also does not let fairness

decay. The mathematical design of this metric, which optimizes the aggregation of logarithms of user throughputs,

allows for finding a trade-off between a high system capacity and high fairness values. The MaxMin metric only targets

fairness of the weakest customer, which comes at the cost of providing lower aggregate throughput. Both the PropFair

and MaxMin have been adopted in the implementation of real telecommunication systems [64] as well as in many research475

works [65, 66].

We have simulated every analyzed use-case 1000 times using Matlab R2020a and show average results. Error bars

in the figures are 95% confidence intervals.

6.1. Validation of PADD Operation

Here we compare PADD results and optima (approximated by means of MC, since there are no computationally480

feasible alternatives) in the PPP scenario, and comment on the basic properties of our approach.
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Figure 8: Utility validation for
α ∈ {0, 1,∞}. G = 10, U = 1000.
Scenario: PPP.

Figure 9: Network capacity validation for
α ∈ {0, 1,∞}. G = 10, U = 1000. Sce-
nario: PPP.

Figure 10: Robustness validation for α =
1. aBSs placement error. G = 10, A = 5,
U = 1000. Scenario: PPP.

In Figure 8, we present a utility comparison between the Ground scheme, optima results from MC and our proposal

PADD with the three main metrics studied in this article (MaxThr, PropFair and MaxMin). Note that different values of

α make utility values very different, so we cannot compare utilities across fairness metrics. So, we will compare PADD

and the existing schemes on a per-metric basis.485

We observe that the difference between utilities achieved with PADD and MC is negligible, below 1% in all cases. This

shows that our proposal PADD is able to achieve close-to-optimal results with a much lower complexity. Furthermore,

PADD matches very well also the throughput achievable in the optimal case, as illustrated in Figure 9. This shows that

PADD is able to pursue the optimal system configuration, not just an operational configuration that is near-optimal

according to the chosen utility metric.490

The figures show that, in the PPP scenario, utility and throughput increase with fleet size. This is because user’s

density is homogeneous over the entire area, so that drones are spaced apart, and inter-drone interference constraints

do not kick in. Note also that the gain in terms of utility and throughput with respect to the Ground configuration is

remarkable under all considered metrics, which confirms that coordinated drone relays have huge potential.

6.2. Robustness of PADD495

In the system model described in Section 3, we have assumed that the positions of users are known. However,

it might be not realistic to estimate user locations with negligible error unless GPS is enabled or many drones are

available [67]. For instance, using a trilateration on the signal strength at the base station, the error on the position is

normally below 50 m [68]. Hence, here we consider the PPP scenario to numerically analyze the robustness of PADD

by introducing uncertainty in the position of the ground users, uniformly at random, within 50 m.500

In Figure 10, we observe that the position of drones selected by PADD is similar with and without localization

errors. Indeed, we have quantified an average utility relative loss below 5% (see Appendix B for further details). The

reason of such robust behavior stands in the fact that the optimization of drone positions is done based on many users

and in relatively large areas, so that multiple errors in user positions are not so important, whereas the presence of a

distributed mass of users in a given area is what actually catalyzes the presence of a drone.505

Next, we analyze non-homogeneous user topologies in static and dynamic cases.

6.3. Performance Evaluation in the Static Stadium Case

The Stadium scenario allows to study network performance when the ground network cannot sustain the UE’s

demand.

In Figure 11 we show the average performance experienced by all users in the overall, city-wide, scenario, while510

in Figure 12 we focus on the performance of users in and nearby the stadium. We observe that PADD with MaxThr

benefits of the presence of drones (see Figure 11, top), although adding drones is negative for users by the stadium (see
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Figure 13: Throughput of stadium users
for α ∈ {0, 1,∞}. G = 10, U = 1000.
Scenario: Stadium with Ud = 600.

Figure 14: Network state at t = 25 min.
G = 10, A = 5, U = 640. Scenario:
PropFair, Event.

Figure 15: Network state at t = 60 min.
G = 10, A = 5, U = 880. Scenario:
PropFair, Event.

Figure 16: Drone trajectories during
75 minutes. G = 10, A = 5, U = [400,
. . . , 1000]. Scenario: PropFair, Event.

Figure 12, top). In fact, adding aBSs introduces more capacity and connectivity opportunities, hence the benefit at

aggregate city level. However, PADD with MaxThr seeks for drone positions where they are less impaired by interference,

so to generate a few good-quality channels. This behavior results into having only one or two aBSs at most located near515

the stadium. More aBSs would interfere too much. Hence, as long as aBSs are added, PADD with MaxThr positions

them apart from the stadium, yet they generate some interference, which progressively worsens the performance of

users by the stadium.

PADD with PropFair behaves completely different. It brings drones where it favors users otherwise served below

the average, so to increase the system’s log utility. This results in deploying aBSs by the stadium, where the density of520

users in the presence of limited radio resources hinders performance more than radio channel quality issues.

With MaxMin, PADD positions drones where users would otherwise suffer the worst connection quality, irrespective

of their closeness to densely populated areas. Therefore the aggregated throughput is lower than with PropFair, which

in turn is much lower than with MaxThr.

If we now consider only users by the stadium, Figure 13 illustrates how using PropFair can clearly outperform525

MaxThr in terms of throughput. This is due to the fact that the optimization of throughput requires positioning drones

where they interfere less, which is not necessarily by the stadium. Indeed, due to interference, users by the stadium

could incur a loss by increasing the number of drones even in the case of using MaxMin, as shown in the figure.

As a result of the previous numerical analysis, we observe that using aBSs can be beneficial to help the ground

cellular network in dense spots, except it cannot help in purely maximizing throughput (e.g., with MaxThr). Drones530

cannot either “rescue” all users with bad channel conditions, as PADD would seek with MaxMin and PropFair. However,

PADD can always provide fairness and large throughput gain with respect to the Ground case. Besides, the version of
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PADD with PropFair results to be quite effective in case of dense masses of users.

6.4. Performance Evaluation in the Dynamic Event Case

The last scenario we consider is dynamic and allows us to study the evolution of network performance while the535

density of users increases. Moreover, it shows the importance of designing a fast and reactive algorithm to re-position

drones as the user topology changes.

In the Event scenario, small masses of 40 users arrive periodically to the train station of the city every 5 minutes.

The initial population is 400 users and keeps growing during 75 minutes up to 1000 users. There are 5 aBSs hovering

the area in this example. Upon a train arrival, the new mobile users walk towards the stadium, located 1.5 km away540

from the train station. The fleet is repositioned every 5 simulated minutes, using as initial condition the positions of

the 5 drones in the previous optimization epoch.

We first illustrate how the network evolves over time in Figs. 14 and 15, using PADD with PropFair. After 25

minutes (Figure 14) some people are already at the stadium, while many others keep arriving and are walk towards it.

At that point in time, 3 aBSs are getting prepared to serve the users nearby the stadium and also the smaller groups545

on their way from the train station to the stadium. We see how drones adapt their positions after other 35 minutes, in

Figure 15, when much more users have reached the stadium. By that time, one more drone has been dispatched as well,

to serve the stadium. The trajectories of the drones for a 75-minute simulation instance are shown in Figure 16, where

the red drones represent the source position of aBSs. In the figure, we can see that aBS 5 is not required to assist the

dense stadium spot, while aBSs 1 and 2 are always hovering between the train station and the stadium. Also, aBSs 3550

and 4 keep moving back and forth within different regions, to fairly supply the demand of users.

As concerns performance, Figure 17 illustrates utility as it evolves over time. Here, in addition to PADD with the

three selected values of α, we also compare the Repulsion-Attraction (RA) scheme. With RA, aBSs are attracted by

UE’s inverse SNR, and repulsed by proximity to gBSs to avoid interference. RA does not target any fairness metric,

so we quantify its impact with the same utility functions used for PADD computed for users arriving over time (the555

attendance).

As time passes by, and more people reach the stadium, Figure 17 shows a significant utility raise under the adoption

of either MaxThr or PropFair schemes. With MaxThr, the gain of PADD over RA and Ground schemes is high, although

it saturates quickly. Instead, with PropFair, PADD exhibits a smoother behavior, as its gain keeps increasing.

Under the MaxMin scheme, PADD performs better than RA, although now we observe a decay of performance over560

time, for all schemes. This is due to the fact that, with more attendance, the minimum per-user achieved rate will have

to decrease, unless more drones where deployed.
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Clearly, the RA scheme is not able to opportunistically take advantage of user’s diversity and improve utility because

it does not target a throughput-based metric, unlike PADD. This permits PADD to optimize the network with much

better guarantees in terms of throughput and fairness.565

7. Lessons learnt and discussion

The performance assessment carried in this article shows the importance of integrating a fleet of drone relay stations

in a cellular network. It also unveils that optimizing drone positions to maximize throughput, without taking into

account fairness, has little relevance in the presence of dense spots or ground users. Instead, a fair metric like PropFair

provides notable throughput and utility improvements.570

The fact that PADD is fast, allows to design an almost continuous reconfiguration of positions in realistic networks,

as shown in this article. In turn, our scheme is fast because we have designed it by segmenting the problem into a few

phases: we use EO for optimizing drone positions, while wireless backhaul attachment, BS selection and distributed

resource allocation are sequentially solved optimally and analytically for each drone deployment topology.

The actual implementation of PADD requires the exchange of signaling information between drones and a centralized575

orchestrator, as well as the implementation of a mechanism to track users. Signaling incurs some limited overhead to

instruct drones and to gather user positions and interference reports (which are however already collected by current

BSs), depending on the frequency of reconfigurations. However, we have seen that PADD is robust to imprecise tracking

of user’s positions, which can be therefore strongly simplified, so that the additional overhead due to PADD will mostly

be due to controlling drones.580

Finally, we comment on drone mechanicals. Current commercial drones can carry small BSs and access points,

although they cannot fly for long time due to battery limitations (around 30 minutes at most). They can easily move

at the reasonable speed of 15 m/s. Therefore, it is possible to derive a repositioning scheme that accounts for replacing

drones that go back to the charging station if the drones do not fly too far from it. For the case considered in Section 6.4,

the routes flown by drones in 5 minutes are short enough, and it is easy to hover a city district in a few minutes. Thus,585

notwithstanding the intricacies of the analysis, the performance evaluation discussed in this article is quite relevant for

realistic systems.

8. Conclusions

In this article we have proposed an analytic framework to optimize drone-aided cellular networks in terms of an

α-fair throughput utility function, under realistic stochastic models. Specifically, we have studied the integration of590

a coordinated fleet of aerial base stations carried by drones and relaying traffic for ground base stations by means

of 3D-beamforming wireless backhaul connections. Due to the complexity of the studied problem, we have proposed

PADD, an optimization algorithm based on extremal optimization that works in parallel threads. PADD provides near-

optimal solutions in low-degree polynomial time, with a linear dependency on all parameters but for the number of

base stations, which causes a sub-quadratic dependency. This makes PADD suitable for implementation in dynamically595

changing environments. The performance evaluation presented in the article shows that PADD brings significant gain

and outperforms existing approaches. It also unveils that using fairness is key to get benefit from coordinated yet

interfering drone relay stations.
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Appendix

A. Channel Modelling745

We assume that the network operator disposes of two orthogonal frequency bands. One band is assigned to gBSs to

provide access service to ground users as well as aerial backhaul service to aBSs. The other band is assigned to aBSs for

aerial user access. Hence, we model three different channel types: (i) air-to-ground and (ii) ground-to-ground channels

in the access network, and (iii) ground-to-air channels in the backhaul network.

Indeed, the access network communication channels between BSs and UEs differ much depending on whether users750

connect to a gBS or to an aBS. While the ground-to-ground channel attenuation for gBS–UE links follows conventional

path-loss modeling based on slow and fast fading, air-to-ground channels (aBS–UE links) suffer additional attenuation

depending on the LoS—or NLoS—state of the channel. Such additional attenuation is referred to in the literature

as an excess attenuation [44]. Moreover, antennas used for the access network differ from backhaul network antennas

performing 3D-beamforming, which directly affects the interference suffered in each case. In the following sections, we755

detail these features for each type of modelled channel.

A.1. Air-to-Ground Channels

Depending on whether links between aBSs and UEs are free of obstacles (e.g., buildings, traffic, etc.), the attenuation

differs notably [44]. The LoS-likelihood is a complex function of the elevation angle between UE u ∈ U and aBS a ∈ A:

PLoS(a, u) =
1

1 + β1 · exp
(
−β2

(
180
π arctan

(
ha
ra,u

)
− β1

)) , (2)

where the elevation of a is ha, while β1 and β2 are parameters depending on the number of large signal obstructions per760

unit area, building’s height distribution, ratio of built-up area and clean surfaces, etc., as derived in [45], based on ITU

recommendations [69]. In Eq. (2), θa,u=arctan(ha/ra,u) is the elevation angle. θa,u approaches π
2 when the aBS a hovers

just above the user u, i.e., when the LoS likelihood reaches its maximum. The elevation angle θa,u is characterized by

the aBS height and the ground distance between the user and the aBS, that is ra,u = |(Xa, Ya)− (xu, yu)|. Since safety,

legislation and technology constraints allow drones to fly only at low altitudes—a few hundreds of meters at most—the765

ground distance can be of the same order of the drone’s elevation, so that the argument of the arctan function in Eq. (2)

can vary sensibly with user and drone positions, and so can LoS likelihood. This means that drone positions, including

their elevation, play an important role on air-to-ground channel conditions.

In particular, the average attenuation (in dB units) of an air-to-ground channel between drone a and user u depends

on the LoS likelihood, with the following expression [45]:770

LA(a, u) = 20 log10

(
4πfA
c
·
√
h2
a + r2

a,u

)
+ PLoS(a, u) · (ξLoS − ξNLoS) + ξNLoS , (3)

where ξLoS , ξNLoS are the excess attenuation components in LoS/NLoS conditions; fA is the carrier frequency in Hz;

and c is the speed of light in m/s.

Since gBSs and aBSs operate onto orthogonal bands, there is no interference between drone-served users and cellular

users, which is commonly the main limiting factor in aided cellular networks, as, e.g., inband D2D networks [15]. With

the above, the experienced SINR for air-to-ground access links (a, u) is:775

γAa,u =
P aTx ·10−LA(a,u)/10

Na,u + IAa,u
, (4)

where P aTx is the transmission power of an omnidirectional antenna in the aBSs a ∈ A; Na,u is thermal noise according

to the allocated bandwidth; and IAa,u is the interference level that user u suffers from other aBSs. However, note that

the 3D position of an aBS is a decision parameter that directly affects interfering signals received by user u, i.e.:
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IAa,u =
∑

a′∈A\{a}

P aTx ·10−LA(a′,u)/10, ∀a ∈ A, (5)
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where LA(a′, u) depends on the 3D position of aBSs a′∈A, as shown in Eq. (3).

A.2. Ground-to-Ground Channels.

Connections in the access network between gBSs and users experience an attenuation based on a well-known path-loss

model with slow fading (in dB units):

LG(g, u) = 10ηG log10

(
4πfG
cl
· |Πg − πu|

)
+N (0, σ2

G), (6)
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where ηG > 2 is the path-loss exponent in ground communications; fG is the operating carrier frequency of the gBSs;

and σG is the standard deviation of the Gaussian random variable N (0, σ2
G), modelling the effects of shadowing.

As mentioned above, since there is no interference between cellular users and drone-served users, the SINR for access

links (g, u) is:

γGg,u =
P gTx ·10−LG(g,u)/10

Ng,u + IGg,u
, (7)
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where P gTx is the transmission power of an omnidirectional antenna integrated in the gBSs g∈G; Ng,u represents thermal

noise according to the allocated bandwidth; and most importantly, IGg,u is the interference level that user u suffers from

other gBSs.

A.3. Ground-to-Air Channels

The aerial network relays traffic from the gBSs by means of LoS backhaul wireless links. Hence, the attenuation of795

a gBS–aBS link (g, a) is the following:

LB(g, a) = 10ηB log10

(
4πfB
c
·|Πg−Πa|

)
+N

(
0, σ2
B
)
, (8)

where ηB ≈ 2 is the path-loss exponent in LoS; fB is the operating carrier frequency of the backhaul wireless links; and

σ2
B is the standard deviation of the Gaussian random variable N

(
0, σ2
B
)
, modeling the effects of shadowing.

Backhaul links operate on the bandwidth shared with user access to gBSs. However, as backhaul links perform 3D-800

beamforming pointing to the air (where aBSs hover), the interference between gBS-served users and backhaul-served

aBSs is very limited. Although the majority of the gBS radiating power is focused in one direction towards the air

thanks to the adoption of 3D-beamforming, non-ideal beam-patterns also radiate energy in other directions. Therefore,

the SINR experienced by an aBS a∈A depends also on the direction in which other gBSs transmit to other aBSs. The

SINR experienced by a gBS–aBS link (g, a) is:805

γBg,a =
P gTx ·Gg ·10−LB(g,a)/10

Ng,a + IBg,a
, (9)

where P gTx is the transmission power of the gBS g; Gg is the antenna gain over the main lobe of the beam-pattern of

gBS g; Ng,a is the thermal noise; and IBg,a is the interference coming from the remaining backhaul links of the network.

Backhaul links reuse the spectrum used for ground cellular connections, although using beam-patterns pointing to

the air, while antennas that provide service to ground users are pointing mainly to the ground. Hence, we assume that810

the interference suffered by a backhaul link (g, a) is dominated by the interference from other backhaul links. Hence,

the interference suffered by a backhaul link (g, a) is:
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IBg,a =
∑

g′∈G\{g}

P g
′

Tx ·Gg′(φg′,a)·10−LB(g′,a)/10, (10)

where φg′,a is the angle between the main lobe direction of the antenna of g′ and the position of aBS a. In case a gBS

g′ does no set any backhaul wireless link, this gBS will not affect interference, and P g
′

Tx will be considered as zero.815

B. Robustness of PADD

Figure 18 depicts the CDF of the relative loss due to erroneous user position estimation, i.e., the relative loss of

utility due to optimizing drone positions according to erroneous user positions. The figure also shows the error in terms

of throughput and fairness separately. The loss is below 10% in all cases, and below 3% for utility and throughput in

more than half of the cases, while the average loss is below 5%.820
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Figure 18: Robustness validation for α ∈ {0, 1,∞}. CDF of the relative loss. G = 10, A = 5, U = 1000. Scenario: PPP.
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