
Simulation of Tele-Operated Driving over 5G
Using CARLA and OMNeT++

Valerio Cislaghi1, Christian Quadri1, Vincenzo Mancuso2, and Marco Ajmone Marsan2
1Computer Science Department, Università degli Studi di Milano, Milan, Italy

2IMDEA Networks Institute, Madrid, Spain

Abstract—Tele-Operated Driving (ToD) allows a remote oper-
ator to drive a vehicle through the services provided by a mobile
radio network. ToD can replace on-board driving in many dif-
ferent occasions, such as dangerous environments, but can also
provide assistance to autonomous driving systems in difficult
and unexpected situations. ToD is a bandwidth-demanding and
latency-sensitive service, which requires transmitting a large
amount of sensor data from vehicle to operator, and driving
instructions from operator to vehicle. The data exchange must
comply with strict real-time requirements. The low latency
and high bandwidth offered by 5G Radio Access Networks
(RANs) open new opportunities for an effective deployment
of ToD services in different contexts. However, the rapidly
changing channel quality and network conditions can raise many
challenges in meeting bandwidth and latency requirements.

In this paper, we report on the development of an elabo-
rate simulation framework combining the realism of vehicle
dynamics simulated by CARLA and the detailed network models
provided by OMNeT++. We demonstrate the capabilities of the
simulation framework by describing results about the feasibility
of ToD services in a simple scenario under different network and
application configurations. We simulate the implementation of
the ToD service in a slice of a 5G RAN, with varying application
and network parameters, also considering a variable amount of
background traffic. Our simulation results show that the ToD
service performance is heavily impacted by the amount and
shape (i.e., the selected 5G NR numerology) of radio resources
allocated to the 5G slice.

Index Terms—Tele-Operated Driving; 5G Radio Access Net-
work; Simulation; CARLA; OMNeT++

I. INTRODUCTION

Tele-operated Driving (ToD) is a technology that assists
and complements semi- and fully-automated driving in vari-
ous scenarios, allowing a remote operator to drive a vehicle
through the services of a Radio Access Network (RAN).
ToD is classified as SAE Level 4, i.e., a system entirely in
charge of all driving and navigational tasks, under specific
circumstances, without requiring passengers to be ready to
take control of the vehicle [1]. The 5G Automotive As-
sociation (5GAA) proposes an architecture and defines the
system requirements for ToD [2] to operate properly in
heterogeneous contexts with the support of the 5G mobile
network. The ToD technology can be employed to support
autonomous driving (AD) systems which, despite the enor-
mous improvements in the last decade, are still unable to
operate properly in many borderline situations, where human
intervention is required. This is for example the case of the
Baidu taxis developed in Chinese cities1. ToD can also be
used to assist a driver who is experiencing difficulties, like
a sudden health problem, or to remotely perform specific
driving tasks of non-automated vehicles without the physical
presence of a driver in the vehicle. Moreover, ToD can

1See e.g., https://techwireasia.com/2021/05/baidu-rolls-out-chinas-first-
paid-driverless-taxi-service/

be employed to maneuver industrial vehicles in particularly
dangerous situations guaranteeing the safety of workers.

In all these scenarios, the mobile network plays a central
role and must guarantee a suitable level of quality of service
(QoS). In particular, the RAN must be able to handle the
uplink traffic containing vehicle data captured by the on-
board sensors (e.g., cameras and LiDAR), as well as the
downlink traffic consisting of driving instructions sent by the
remote driver. The 5GAA defines a minimum uplink bitrate
of 32 Mb/s with a maximum delay of 100 ms, while in the
downlink direction, latency is more stringent than bandwidth,
i.e., 20 ms and 1 Mb/s, respectively [2]. Guaranteeing such
QoS levels in heterogeneous environments is challenging,
mainly due to the rapid variability of the radio channel
characteristics caused by vehicle mobility, shadowing effects,
and object reflections, resulting in unpredictable channel
quality. Therefore, it is fundamental to understand under
which network conditions and application settings the ToD
service is able to operate properly, guaranteeing secure and
comfortable remote driving.

In this paper, we report on the development of an elab-
orate simulation framework integrating the CARLA [3] and
OMNeT++ [4] simulators, and including on top of them a
vehicle driver agent that mimics real human drivers better
than the agents available in CARLA and other simulators. The
resulting framework offers a remarkable level of physical and
networking details, together with a large set of configurable
parameters. Using this framework, we are able to create
different network and application configurations to test the
effectiveness of the ToD service. The code of the simulation
framework will be released upon publication of this work.

Using the developed framework, we perform a first inves-
tigation of the feasibility of ToD services under different
network and application configurations. We measure the
performance of ToD by comparing the vehicle’s trajectory
w.r.t. a baseline trajectory driven by a simulated human
driver within the car. We conduct an extensive simulation
campaign on a realistic scenario by varying a number of
application parameters, such as video frame rate and video
quality, as well as network settings, like 5G-NR numerology
and background traffic. The results show that the ToD service
is feasible (according to the 5GAA minimum requirements)
under specific combinations of application and network set-
tings. In general, performance is highly sensitive to radio
channel conditions, availability of radio resources at the base
station, and presence of background traffic, but also to the
different difficulties of driving trajectory segments.

II. RELATED WORK

ToD was considered in a number of research works. Zhang
[5] presents a vision of intelligent ToD and discusses its

benefits and challenges. Gnatzig et al. [6] tested a ToD
prototype at low speeds with a low-quality multi-camera
system of 640×480 pixels, generating up to 2 Mb/s bitrate,
and incurring around 600 ms total delay. Liu et al. [7] devel-
oped a prototype of ToD system by emulating a LTE mobile
network to investigate how human remote drivers perform,
and assessed the system performance under realistic network
conditions. The main limitation of these contributions is that
they are tested in a controlled and simple environment, using
application settings significantly lower than the one specified
by 5GAA [2]. Moreover, the results are potentially biased by
the human test (e.g., driving style, reaction time, and training
level), blurring the effect of the network component.

Some recent studies investigated the effect of network
configuration on driving performance. Pérez et al. [8] define
a fully parametrizable model which relates network perfor-
mance (throughput, latency, loss rate) with the perceived
video quality. They analyze the performance of different
network scenarios, using existing databases and field mea-
surements, considering LTE and pre-commercial 5G pilots.
Neumeier et al. [9] investigate the effects of latency on
performance and perceived workload for different driving
scenarios. They run an experiment with 28 participants,
measuring quantitative metrics accounting for their driving
behavior and asking them to complete a questionnaire. The
results show that latency negatively affects driving behavior
and becomes a perceived problem above 300 ms.

As regards simulation tools for ToD, the research com-
munity has proposed frameworks for performance evaluation
and emulation. TELECARLA [10] is an extension of the
CARLA simulator that integrates an emulated network using
the Linux built-in tool tc-netem and provides an interface for
the adaptation of the temporal resolution and target bitrate of
the compressed video streams. Schimpe et al. [11] propose
a ROS-based software stack to support research in the field
of ToD. The system is modular, allowing easy integration
with existing AD software. OpenROUTS3D [12] is a Unity-
based simulator specifically designed for ToD, which offers
a highly detailed model of vehicle physics and integration
with external tools for map generation. These simulation
frameworks mainly focus on reproducing a realistic remote
driving experience, but unfortunately, they do not include
realistic models of the mobile network. The recent work of
Mason et al. [13] focuses on proposing a reinforcement learn-
ing solution for guaranteeing QoS for ToD applications. They
evaluate their solution using a simulation framework based on
the ns-3 network simulator and SUMO [14]. Opposite to the
aforementioned simulators, this framework offers a realistic
network model, but limited vehicle dynamics.

Different from previous works, in this paper we report a
new ToD simulation framework providing detailed descrip-
tions of both vehicle dynamics and data exchange. Exploiting
this simulation tool we perform a first analysis of the feasi-
bility of a ToD service implemented within a slice of a 5G
RAN.

III. NETWORK ASSISTED TELE-OPERATED DRIVING

The activity cycle of the ToD service is divided into three
distinct phases. The first phase corresponds to the ToD start,
either because the Host Vehicle (HV) is started, or because the
AD that drives the HV recognizes that a remote intervention
is necessary to manage a critical situation, which is unknown

Delay
components

Vehicle
dynamics

OBU

ToD
operator

Vehicle
motion

Retrieve
data Encoding

Tx
Uplink

Decoding
&

Rendering
Operator
actions

Generate
instructions

Tx
Downlink

Processing
and

applying
instruction Actuation

trd te

tu

tdr to tg

tp

ta

td

tvm

Fig. 1: Delay components of ToD service as identified in [15].

or unexpected. This first phase is named ToD Activation.
The remote driver establishes an authenticated and secure
communication channel with the HV. Once the connection
is in place, HV provides information about its vehicle type,
position, destination, and other details that will assist the
ToD operator to create a model of the vehicle and of the
surrounding area. This information includes vehicle motion,
camera view, and data from other on-board sensors, possibly
complemented by information coming from nearby vehicles.

The second phase, namely the Driving phase, begins when
the ToD activation has been completed. At this time, the
Tele-Operator evaluates the vehicle context, selects the most
appropriate strategy to reach the HV destination or to re-
solve a critical situation, and starts driving. For the whole
duration of the driving phase, the HV continuously collects
and transmits sensor data to the Tele-Operator through the
network at predetermined intervals. This data includes HV
status information such as high-quality video streaming to
see the road, as well as motion data, nearby vehicles position
and movement, and other context information. Based on the
received information, the remote driver obtains a model of the
vehicle’s surroundings and produces the driving instructions
which are sent to the HV through the network. As soon as the
HV receives the driving information, it applies the maneuver
instructions subject to the onboard security checks.

Once the HV reaches its destination or resolves the critical
situation, the remote driving process ends. In this last phase,
namely ToD De-activation, the control of the HV returns to
the on-board controller (AD system or human).

All actors involved in the ToD service must satisfy several
requirements. The HV must be able to periodically send
state information to the ToD Service Provider, receive driving
instructions from the ToD operator, and implement them
using on-board actuators. In order to securely operate the
remote vehicle, the ToD operator must be able to see on
a display the driven vehicle’s environment together with
additional sensor data in real-time.

In Fig. 1 we show the main delay components of a ToD ser-
vice as identified in [15]. Vehicle motion between consecutive
status samplings (spaced by time tvm) and actuation time due
to the vehicle’s inertia (ta) are unavoidable sources of error
that have to be taken into account in the definition of system
requirements. Other delay components reside in the vehicle’s
On-Board Unit (OBU). In particular, we must consider the
time for retrieving status data according to on-board sensors’
duty cycle and CAN bus transmissions (trd); the processing
time for encoding video streaming from cameras (te) and the
time for processing and sending instructions to actuators (tp).
These delay components strongly depend on the vehicle’s
specifications and OBU computation capabilities. Moreover,
also ToD operations involve latency which can be modeled
in three components. First, a non-negligible time is required

to decode and render the video data on the operator’s mon-
itors (tdr). Second, tele-operator’s reaction time (to) must
be considered. Last, some time is necessary for the tele-
operator’s console to generate the instructions (tg) based
on the interactions between the operator and the console’s
actuators2. Note that the time required for computing the
instruction varies between human and AD operators. In the
latter case, it is reasonable to assume that a new instruction is
generated based on the last received status and recent history
each time the vehicle status is updated in the operator system.
While a human gives new maneuvers with less time precision
depending on several factors, including reaction time.

The last delay components are network data transfer delays
in both the uplink (tu) and downlink (td) directions. These
represent the most critical and variable delay components
in the whole ToD system. In particular, the uplink delay
strongly impacts the coherence of the context perceived by
the remote operator: a high uplink delay causes a significant
discrepancy between the actual context of the vehicle and
the one displayed on the operator’s monitors. Similarly, the
downlink latency must be low, in order not to compromise the
effectiveness of instructions. The high variability of network
delays, due to several factors such as available bandwidth,
channel quality, background traffic, and amount of data to
transmit, poses many challenges to a ToD service that must
be able to operate properly under complex and heterogeneous
network conditions. In this work, we investigate the feasibil-
ity of ToD services focusing on network requirements and
evaluating different network and application configurations.

IV. SIMULATION FRAMEWORK

In this section, we present our highly detailed and realistic
simulation framework. The framework is based on the two
state-of-the-art simulators CARLA [3] and OMNeT++ [4].
CARLA is an open-source simulator for autonomous driving
research built on top of Unreal Engine3 and provides develop-
ers with a full-fledged set of APIs for modeling, sensing, and
controlling detailed physical environments. CARLA offers a
remarkable level of physical and graphical realism. In particu-
lar, it provides a complete suite of onboard sensors (cameras,
Radar, LiDAR) and a sophisticated vehicle dynamics model.
OMNeT++ is a highly extensible network simulator that
offers several options purposely designed to model specific
parts of the communication network. In this work, we use
the INET framework, which implements the whole suite of
the standard TCP/IP protocol stack, and Simu5G [16], which
offers a detailed model of a 5G RAN, focusing on 5G-NR,
data-plane, and MEC implementation.

We designed the simulation framework following the sep-
aration of concerns principle, reusing and extending the
existing frameworks, and exploiting modern and high-level
programming languages such as Python.

The high-level integration of CARLA and OMNetT++ is
depicted in Fig. 2. All networking components (in blue) are
implemented in OMNeT++ and include all the protocol stacks
of UE, gNodeB, UPF, and remote host. The OMNeT++ part
is responsible only for realizing the communication between
HV and ToD operator, without implementing the application
logic. In particular, the network application layer is in charge
of: (i) receiving/sending packets from/to the transport layer;

2This component can be neglected in the case of an AD operator.
3https://www.unrealengine.com/

Network
Application

Transport

Network

MAC/PHY

Network

MAC/PHY

Network
Application

Transport

Network

MAC/PHY

Sensing/actuators
Application

Tele-operated Driver
Application

CARLA World

CARLA Simulator OMNeT++ Simulator

Fig. 2: Overview of CARLA and OMNeT++ integration.
CARLA components in green, OMNeT++ components in
blue, and interactions between CARLA and OMNeT++ in
red.

(ii) generating the timed events of the application; (iii)
interacting with CARLA application components for passing
messages between HV and ToD through the communication
network (the red arrows in the figure).

The CARLA components (in green) are responsible for:
(i) implementing the physical world, e.g., vehicle dynamics,
sensors/actuators, road maps, traffic lights, and other moving
objects such as vehicles, bicycles, pedestrians, and more;
(ii) implementing a specific application deployed onboard
of HV for sensing data from sensors and actuating driving
instructions; (iii) implementing the remote ToD agent that
uses the received data of the vehicle to generate the instruc-
tions to control the HV. The implementation of the ToD
agent makes extensive reuse of the driving agents’ library
provided by CARLA and written in Python, which allows
easier integration with the most common machine learning
suite designed for autonomous driving prototyping. In this
paper, we extend a base agent that emulates human driving
behavior adding a realistic mechanism to implement realistic
and continuous micro-driving decisions based on the visible
road segment and the available sensing data (more details in
Section V-D).

A. Co-simulation architecture

The architecture of the ToD simulation framework is shown
in Fig. 3. It is a distributed architecture made of three
main parts: CARLA Server, CARLA Client, and OMNeT++
simulator. In the figure, the components we implemented are
represented in colors, while the unchanged ones are in gray.

CARLA simulator is implemented as a client-server ar-
chitecture. All the physics and graphic components reside in
the server part, while the control agent is implemented on
the client side. The interaction between the client and the
server is realized through a TCP connection and a set of
APIs (CARLA APIs in the figure) written in C++ to get data
from the CARLA physical world and to send commands to
actors4. Moreover, CARLA provides a wrapper for C++ API
written in Python to ease the integration with the driving
agents’ library.

In our framework implementation, the interaction be-
tween CARLA client and OMNeT++ is realized through a

4In CARLA, an actor is an object whose action commands are given by
an external agent.

CARLA ClientCARLA Server

TCP

OMNeT++

Message-oriented
Middleware

Simulator Engine
Master Clock

UE APP MEC APP

CARLA-INET ManagerAP
I

CARLA API

Car APP ToD APP

CARLA-INET Manager AP
I

CARLA API

Fig. 3: Technical schema of the ToD simulator.

message-oriented middleware (red components in the figure)
in charge of dispatching JSON-formatted messages between
OMNeT++ and CARLA. This solution is inspired by the
approach adopted by the Veins [17] framework, which im-
plements the binary Traffic Control Interface (TraCI) of
SUMO [14] and the communication between OMNeT++ and
SUMO is realized through TCP connections. Differently from
Veins, our solution relies on high-level messaging libraries
such as ZeroMQ5, rather than a bare TCP connection, which
offers a simplified message passing interface allowing multi-
ple communication patterns like publish-subscribe and push-
pull-in, in addition to the request-reply schema. Another
difference w.r.t. Veins is the utilization of JSON API. The
reason for the adoption of JSON-formatted messages instead
of a binary interface like TraCI is the following: TraCI
is an interface designed for allowing external programs to
interact with the physical world of SUMO providing well-
defined features for getting data and controlling vehicles. In
our case, in addition to preserving the consistency of the
vehicles’ position in both simulators, the APIs are designed
for mapping the network application layer, implemented in
OMNeT++, to the applications developed on top of CARLA
API (the red arrows in Fig. 2). Therefore, the communication
protocol between the two simulators consists of two types
of messages: (i) predefined messages, which carry basic
information such as initialization parameters, clock ticks,
and position updates, and (ii) scenario-dependent messages,
which are more complex and customizable according to the
specific requirement of the scenario. For this reason, JSON
represents a suitable format to easily extend and customize
the set of APIs according to the specific scenarios and is
also human-readable which simplifies the development and
debugging.

The JSON APIs are managed through CARLA-INET Man-
ager component which is responsible for performing some
basic procedures such as initialization and mobility synchro-
nization, and exposing the APIs to the upper layer, i.e., the
applications.

B. Co-simulation message sequence

In our co-simulation framework, the OMNeT++ compo-
nent manages the simulation clock and schedules all discrete
events including those for advancing the simulation on the
CARLA side. This design choice allows the two simulators
to run coherently maintaining the same simulation time on
both sides. To implement this mechanism, we configure the

5https://zeromq.org/

Car App

CARLA INET
Manager
(APIs) UE App MEC App

CARLA INET
Manager
(APIs) ToD App

Status update1
event fires

Get status update 2
<APIs>

Read status3
CARLA API

Store status
get <st_ID>

Status <st_ID>4
<APIs>

Status msg 5
<st_ID>

Compute instruction6
with status <st_ID>

<APIs>

Retrieve
status
<st_ID>

Compute7
instr.

Store instruction
get <in_ID>

Instruction <in_ID>8
<APIs>

Instr. msg 9
<in_ID>

Execute10
instruction <in_ID>

<APIs>

Retrieve
instruction
<in_ID>

Execute11
instruction
CARLA API

Done12

Fig. 4: Sequence diagram of the simulated ToD service.
CARLA components are in green, OMNeT++ modules are
in blue, and interactions with CARLA-INET Manager are
displayed in red.

CARLA server to run in synchronous mode6 with fixed time-
step length, which makes the CARLA simulation engine wait
for an external clock tick to execute the next simulation step.
Moreover, we configure the message-oriented middleware to
operate in the request-reply mode. In particular, the requests
are performed by modules on the OMNeT++ side, while
replies are generated by CARLA components. In this setting,
when the execution of an OMNeT++ discrete event requires
interaction with CARLA, it issues a request using APIs and
waits for the response before proceeding to the execution of
the next events, guaranteeing time coherence between the two
simulators.

There are three main types of request-reply messages:
initialization, mobility, and ToD service. Initialization mes-
sages are exchanged at the beginning of the simulation to
configure the CARLA side from OMNeT++ exploiting the

6CARLA can also run in asynchronous mode, where the simulation clock
is directly managed by CARLA using variable time-step length. This mode
is suitable for real-time simulation with a human tele-operator as in the
TELECARLA [10] simulator but cannot suit a co-simulated framework like
ours.

TABLE I: Simulation parameters

Parameter Value

ToD service

Frame rate (f/s) {25, 60}
Status packet size {33, 66} kB
Instruction packet size 1000 B
Transport protocol UDP
Data retrieval time (trd) N (15 ms, 0.1 ms)
Encoding image time (te) N (10 ms, 0.5 ms)
Processing status time (tp) N (15 ms, 0.75 ms)

Mobile network

Path loss model ITU Rural/Urban macro cell
Path loss exponent (α) 2.5
Car UE transmit power 26 dBm
Car UE antenna gain +0 dB
gNodeB antenna gain +18 dB
gNodeB height 25 m
gNodeB transmit power 43 dBm
gNodeB duplex mode FDD
gNodeB scheduling discipline DRR
Handover latency 50 ms
Target BLER 0.01
Numerology index (µ) {0, 1}
gNodeB carrier Single carrier (2 GHz)
gNodeB bandwidth 20 MHz µ = 0, 40 MHz µ = 1
Resource blocks 100 per TTI

Miscellaneous

ToD background car per BS (Nbg) {0, 1, 2, 3}
Background ToD app pkt = 33 kB, fps = 25
CARLA time-step 10 ms

powerful parameter studies tool. Mobility messages are sent
by CARLA-INET Manager at fixed time intervals to advance
CARLA simulation and to synchronize the motion status
(i.e., position, velocity, and acceleration) in OMNeT++. The
exchange of ToD service messages implements the retrieval
of sensor data, the computation of the agent’s instruction, and
the instruction actuation.

In Fig. 4 we show in detail the sequence of a ToD service
messages exchange. The whole procedure is triggered by a
status update event which is periodically scheduled according
to the configured frame rate. The message sequence (2–4)
represents the vehicle status retrieval, (6–8) implements the
remote instruction computation, and (10–12) performs the
instruction actuation. Messages 5 and 9 represent the upload
of the status and the download of the instruction, respectively.
As a design choice, we decide to not pass the raw data of
the status/instruction, but rather to use unique identifiers to
refer to a specific vehicle status/instruction read/computed at
a particular time, avoiding complex marshaling/unmarshaling
of raw data. This solution allows us to configure arbitrary
packet sizes on the OMNeT++ side emulating different
video coding algorithms and sophisticated video compression
techniques [18], [19].

V. SIMULATION SETUP

In this section, we present the simulated scenario, dis-
cussing the different configurations of network and applica-
tion parameters. Table I reports the main parameters we use
throughout the simulations. Note that N (m, d) indicates the
normal distribution with mean m and standard deviation d.

A. Map and trajectory

In Fig. 5 we illustrate the entire simulation map, which
is an adaptation of World 04, one of the predefined maps

gNB 1
RURAL

gNB 4
RURAL

gNB 2
RURAL

gNB 3
URBAN

200 m

400 m

600 m 800 m

1000 m

1600 m

1800 m

1400 m

1200 m

START

Fig. 5: Simulated scenario

of CARLA. It covers an area of approximately one square
kilometer and includes both urban streets and highways. The
remote operator is in charge of driving HV from the highway
exit on top, marked START, to the town center marked by
the checkered flag. The route is about 1.8 km long and the
service lasts approximately 160 seconds. Distances from start
are reported along the driving path. The resulting trajectory
allows us to simulate a realistic scenario combining different
degrees of difficulty and speed limits. In particular, in sub-
urban and highway segments, speed limits are 60 and 90
km/h, respectively, whereas they lower to 40/30 km/h along
the entrance/exit ramp and within the town center. We can
see that the HV must exit from the highway close to the
top of the figure, follow a ramp to reenter at the left, exit
end reenter again at the center, finally exit from the highway
close to the start, but in opposite direction, and follow urban
roads to reach its destination. The most challenging segments
for ToD are the first entrance ramp (400-650 m) and the
town center part (1500-1800 m). The former is particularly
complex because it combines turning, lane alignment, and
progressively accelerating to reach the highway speed limit
of 90 km/h. We assume that the vehicle is remotely driven for
the entire journey, without simulating the context-switching
phases described in Section III.

B. Network

Four base stations (BSs) are placed in correspondence to
the four corners of the map; the BS closest to town (gNB 3 in
Fig. 5) is modeled with the ITU urban path loss model, while
the other three BSs with the rural path loss model. The vehicle
associates with all four BSs during its journey, varying the
quality of the cellular signal and causing handovers. Each BS
provides the ToD service through a slice that is configured
with a single carrier having a total bandwidth of 20 MHz or
40 MHz, considering numerology index µ equal to 0 and 1,
respectively. Both these configurations lead to 100 resource
blocks per TTI, i.e., the configuration with µ = 1 offers
double RB/s w.r.t. µ = 0. The ToD agent is deployed on a
remote host located at 10 km distance from the driving path,
and the connection with the mobile network is realized with
a 10 Gb/s wired link. This setting avoids bottlenecks in the
transport network and introduces marginal further network
latency.

To simulate a realistic scenario, we configure different
levels of background traffic, considering the presence of

other HVs using the ToD service in the same area, but not
interfering with the movement of the considered vehicle. In
particular, we simulate up to 3 ToD service instances per BS,
leading to a maximum of 12 additional HVs. This represents
a slightly more challenging environment than what described
in the 5GAA specifications, which limit to 10 the number
of ToD services active in an area of 1 square kilometer. In
order to reduce the variability of the BS resource usage by
background ToD service, we assume that background HVs
have always a good channel quality. This setting allows us to
better understand the behavior of the main ToD service with-
out introducing arbitrary side effects of background traffic.

C. Application

At the application level, we can tune two parameters: the
frame rate and the video quality. The frame rate determines
the status update interval, while the video quality character-
izes the size of the status packet. We consider two values for
the frame rate, 25 and 60 frames/s, and two different packet
sizes, 33 and 66 kB. The configuration with 60 frames/s and
66 kB packet size leads to a total uplink bitrate of 32 Mb/s,
a value that agrees with the 5GAA requirements.

As for the background traffic, we configure the application
using the lowest settings, i.e., 25 frames/s and 33 kB of packet
size, which leads to an average bitrate of 6.5 Mb/s each.

D. ToD Agent

The ToD agent is an extension of the base pro-
portional–integral–derivative (PID) controller available in
CARLA. It is a combination of two PID controllers (lateral
and longitudinal) to perform the low-level control of the
HV from the client side. The agent aims at traveling at the
maximum allowed speed while remaining at the center of
the lane. Given a start and destination point, it computes
a trajectory as a set of waypoints at a prefixed distance,
connected through linear segments. To obtain the route to-
ward the destination we use an inter-waypoint distance of
0.5 m, which represents a suitable value for approximating
the sharpest turns, e.g., those in the town center in Fig. 5.
The agent aims at reaching the next waypoint by computing
the suitable corrective maneuvers to reach that waypoint
following a linear segment from the current vehicle position.
However, the CARLA approach exhibits good performance
only if the vehicle is not too far from the ideal trajectory
and requires a careful setting of the inter-waypoint distance
parameter. To overcome this problem, we adopt the trajectory
optimization algorithm presented in [20], which implements
a threshold-guided sampling. The key intuition behind this
approach is to discard samples that do not reveal a relative
change in the course of a trajectory. This produces a trajectory
with a dynamic inter-waypoint distance as a function of the
road curvature.

We configure different simulation scenarios by varying
some of the system parameters: the frame rate (fps), the
status packet size (pkt), the numerology index (µ), and the
number of background ToD services (Nbg). Using the values
of the parameters shown in Table I, we simulate 32 different
configurations, performing 10 runs for each scenario.

VI. PERFORMANCE EVALUATION

In this section, we present the results of the simulations to
evaluate the consistency of our simulation framework and to
provide a preliminary analysis about the feasibility of ToD
serving under realistic 5G network conditions.

A. Metrics
To guarantee safety, the remote operator must be able to

keep HV as close as possible to the center of the lane. The op-
timal trajectory is the one that maintains the vehicle perfectly
aligned to the lane center. However, strictly following the op-
timal trajectory is a challenging and unreasonably too precise
requirement. In particular, the experiments have shown that
also the agent deployed on board HV is unable to perfectly
follow the optimal trajectory, mainly due to the actuation time
(ta in Fig. 1). For this reason, we evaluate the performance
of the remote operator by measuring the trajectory error
w.r.t. a benchmark obtained by placing the agent on board
the vehicle, i.e., removing all delay components except the
actuation time. To compare two trajectories, we implement
a simple similarity algorithm based on the Dynamic Time
Warping (DTW) metric [21]. In particular, we exploit the
best-match computation of DTW to measure the trajectory
error for every single point.

As for network metrics, we measure round trip time (RTT),
considering the delay components from tu to td in Fig. 1, the
mobile channel quality indicator (CQI) in uplink direction,
and the percentage of the resource blocks allocated by the
base station that is serving HV.

For all metrics we report the average value7 over all the
simulation runs.

B. Base scenario
In the first set of experiments, we vary the packet size and

the numerology index, while we assume no background traffic
and fixed frame rate at 25 frames/s. These configurations lead
to an uplink bitrate of about 6.6 and 13.2 Mbps with 33 and
66 kB packet size, respectively. These settings allow us to
investigate the feasibility of the ToD service under mid-low
application requirements. In Fig. 6 we report all the metrics
described above as a function of the HV position along the
trajectory. We also indicate the points when handovers are
triggered (dashed vertical lines). By observing the trajectory
error (top figure), we can see that the error is always below
0.3 m, which is less than 10% of displacement w.r.t. the
reference trajectory considering an average road lane 3 m
wide8. The relatively largest error is in the proximity of the
first entrance ramp around 600 m, this being the most difficult
part of the trajectory (see Section V-A).

The very small trajectory error indicates that the considered
RAN configurations are capable of handling the entire uplink
traffic in all configurations. As a matter of fact, RTT is at
most 65 ms in case of 66 kB packet size and numerology
0, which is far below the 5GAA requirements. Moreover,
the slight increase in RTT is coherent with the decrease in
channel quality (see the CQI plot), which leads to more re-
transmissions at the radio link level occupying some more
base station resources, up to 50% in the worst case, as shown
in the bottom figure.

7Since the four metrics have different sampling periods, we perform a
common re-sampling every 250 ms averaging over the sample period.

8In Europe, the minimum widths of lanes are generally between 2.5 to
3.25 meters [22]

0 200 400 600 800 1000 1200 1400 16000.0

0.1

0.2

0.3
Tr

aj
ec

to
ry

 e
rro

r (
m

)

Nbg: 0, μ: 0, pkt: 33 kB, fps: 25
Nbg: 0, μ: 0, pkt: 66 kB, fps: 25

Nbg: 0, μ: 1, pkt: 33 kB, fps: 25
Nbg: 0, μ: 1, pkt: 66 kB, fps: 25

0 200 400 600 800 1000 1200 1400 1600
30
40
50
60
70
80
90

100

RT
T

(m
s)

0 200 400 600 800 1000 1200 1400 1600
9

10
11
12
13
14
15

CQ
I

0 200 400 600 800 1000 1200 1400 1600
Travelled distance (m)

0

25

50

75

100

Us
ed

 R
Bs

 (%
)

Fig. 6: Base scenario. 25 frame/s, packet size 33 and 66 kB,
numerology index (µ) 0 and 1, and no background traffic,
Nbg = 0.

0 200 400 600 800 1000 1200 1400 16000.0

0.1

0.2

0.3

Tr
aj

ec
to

ry
 e

rro
r (

m
)

Nbg: 3, μ: 0, pkt: 33 kB, fps: 25
Nbg: 3, μ: 0, pkt: 66 kB, fps: 25

Nbg: 3, μ: 1, pkt: 33 kB, fps: 25
Nbg: 3, μ: 1, pkt: 66 kB, fps: 25

0 200 400 600 800 1000 1200 1400 1600
30
40
50
60
70
80
90

100

RT
T

(m
s)

0 200 400 600 800 1000 1200 1400 1600
9

10
11
12
13
14
15

CQ
I

0 200 400 600 800 1000 1200 1400 1600
Travelled distance (m)

0

25

50

75

100

Us
ed

 R
Bs

 (%
)

Fig. 7: Impact of background traffic. 25 frame/s, packet size
33 and 66 kB, numerology index (µ) 0 and 1, and maximum
background traffic, Nbg = 3.

C. Impact of background traffic

The second set of simulations investigates the impact of
background network traffic on the ToD service. We consider
the same network and application configuration as before,
and we add up to 3 background ToD services at each base
station. Here we report the results only for Nbg = 3, which
represents the most challenging configuration.

The results of this second set of simulations are reported in
Fig. 7. Comparing the trajectory error with the one in Fig. 6,
we observe a negligible worsening with a maximum error of
0.3 m with the configuration of 66 kB packet size and µ = 0.
As for the previous experiments, the network is still able to
process all uplink traffic (around 33 Mbps at most), at the cost
of increasing RTT and resource blocks usage. In particular,
RTT is up to 10 ms more than in the case with no background
traffic, while base station resource utilization increases up to
75%. Also in this set of experiments, the network delays do
not cross the limit of 100 ms and the ToD service is able to
run properly throughout the trajectory.

0 200 400 600 800 1000 1200 1400 16000.0

0.1

0.2

0.3

Tr
aj

ec
to

ry
 e

rro
r (

m
)

Nbg: 3, μ: 0, pkt: 33 kB, fps: 60

Nbg: 3, μ: 1, pkt: 33 kB, fps: 60
Nbg: 3, μ: 1, pkt: 66 kB, fps: 60

0 200 400 600 800 1000 1200 1400 1600
30
40
50
60
70
80
90

100

RT
T

(m
s)

0 200 400 600 800 1000 1200 1400 1600
9

10
11
12
13
14
15

CQ
I

0 200 400 600 800 1000 1200 1400 1600
Travelled distance (m)

0

25

50

75

100

Us
ed

 R
Bs

 (%
)

Fig. 8: Worst case scenario. 60 frame/s, packet size 33 and 66
kB, numerology index (µ) 0 and 1, and maximum background
traffic, Nbg = 3. Configuration with packet size 66 kB and µ
0 is not shown because it ends with an accident.

0 20 40 60 80 100 1200.0

0.5

1.0

1.5
Tr

aj
ec

to
ry

 e
rro

r (
m

)

Nbg: 0, μ: 0, pkt: 66 kB, fps: 60
Nbg: 1, μ: 0, pkt: 66 kB, fps: 60

Nbg: 2, μ: 0, pkt: 66 kB, fps: 60
Nbg: 3, μ: 0, pkt: 66 kB, fps: 60

0 20 40 60 80 100 120
100
300
500
700
900

1100

RT
T

(m
s)

0 20 40 60 80 100 120
9

10
11
12
13
14
15

CQ
I

0 20 40 60 80 100 120
Travelled distance (m)

0

25

50

75

100

Us
ed

 R
Bs

 (%
)

Fig. 9: Accident scenarios. 60 frame/s, packet size 66 kB,
numerology index (µ) 0, and all conditions of background
traffic, Nbg from 0 to 3.

D. Worst case and accident scenarios

In the last set of experiments, we consider more challeng-
ing application settings, configuring all simulations with 60
frame/s, thus meeting the 5GAA specifications.

In Fig. 8, we report results for the most demanding config-
uration, i.e., 60 frame/s and maximum amount of background
traffic. As we can observe, the configuration with 66 kB
packet size and numerology 0 is missing because all runs
terminate with an accident, as we will discuss later. On the
contrary, in the other three configurations, the remote operator
is able to complete the journey. Compared to the results
shown in the previous sections, we note that the trajectory
error is significantly lower. This result is due to a higher
frequency of the control loop, which reduces the interval
between two consecutive status samplings (tvm in Fig. 1).

Looking at the RTT metric, we observe a larger differ-
ence between numerology configurations w.r.t. the previous
simulations. In particular, we can see that numerology index
0 leads to RTT above 70 ms, whereas with numerology

1 RTT remains below 50 ms all over the trajectory. As
for base station resources, the more demanding application
configuration, around 51.5 Mbps with 66 kB packet size,
leads to considerably high utilization of RBs, up to 80% in
the case of µ = 0 in presence of non-optimal channel quality.

We now briefly discuss scenarios leading to car accidents.
In Fig. 9 we report the results obtained for the configurations
having 66 kB packet size and numerology index 0, consider-
ing all levels of background traffic. Since the behavior of the
remote agent is highly unpredictable with very large network
delays, we show results until the displacement w.r.t. the
benchmark trajectory is below 1.5-1.7 m. Even though 1 m
leads to a non-negligible drift into another lane, we tolerate
extra displacement to allow the remote agent to recover. From
the figure we clearly see that in this case the network is unable
to handle the uplink traffic, which leads to a rapid increase
in the trajectory error. In the bottom figure, we can see the
cause of the failure. The resources at the base station rapidly
saturate, leading to an increase in network delays, which in
this scenario is always above the limit of 100 ms. The results
in Fig. 9 show that the base station does not have enough
resources to support the highest application settings even in
presence of good channel quality (CQI is equal to 11 at the
beginning of the journey).

To summarize, the performance analysis reported in this
section has shown the correctness of our simulation frame-
work and provided preliminary insights into the network
requirements to properly deploy ToD service. In particular,
we have observed that the performance is highly affected by
the availability of resources at the base station; thus, provided
enough free RBs within the network latency constraints, the
ToD service is feasible. On the contrary, a saturation of BS’s
resources leads to rapid degradation of performance with
dangerous consequences.

VII. CONCLUSIONS

In this paper, we presented a sophisticated simulation
framework for tele-operated driving that integrates CARLA
and OMNeT++, providing a detailed modeling of the driven
vehicle dynamics as well as of the data transfer necessary
to remotely drive the vehicle. The resulting framework pro-
vides high flexibility in configuring many parameters of both
network and application components of the ToD service.
Moreover, the simulator is suitable for exploring the param-
eter space relying on the high repeatability of the scenario
settings. We have demonstrated some of the main features
of the simulation framework in a preliminary investigation
of the effectiveness of tele-operated driving, verifying good
performance for those cases in which the specifications of the
5GAA are met. On the contrary, longer round trip times in
the data transfer lead in a number of cases to the inability to
remotely drive the vehicle, possibly causing accidents.

While here we have presented a novel co-simulation frame-
work and its potential applications, a more detailed and
exhaustive simulation campaign is necessary to completely
characterize in a number of different driving scenarios, which
we leave as future work. In there we will, e.g., also evaluate
the impact of interfering vehicular traffic, pedestrians and
obstacles, so as to be able to assess safety and efficiency
of ToD in cellular networks.

REFERENCES

[1] SAE International Automotive, “Taxonomy and Definitions for Terms
Related to Driving Automation Systems for On-Road Motor Vehicles.”
https://www.sae.org/standards/content/j3016 202104/, 2021.

[2] 5GAA, “Tele-Operated Driving (ToD): Use Cases and Technical
Requirements.” https://5gaa.org/wp-content/uploads/2021/08/ToD D1.
1-Use-Cases-and-Technical-Requirements.pdf, 2021.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, pp. 1–16, 2017.

[4] A. Varga, “Omnet++,” in Modeling and Tools for Network Simulation
(K. Wehrle, M. Güneş, and J. Gross, eds.), pp. 35–59, Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010.

[5] T. Zhang, “Toward automated vehicle teleoperation: Vision, opportuni-
ties, and challenges,” IEEE Internet of Things Journal, vol. 7, no. 12,
pp. 11347–11354, 2020.

[6] S. Gnatzig, F. Chucholowski, T. Tang, and M. Lienkamp, “A system
design for teleoperated road vehicles,” in International Conference on
Informatics in Control, Automation and Robotics, 2013.

[7] R. Liu, D. Kwak, S. Devarakonda, K. Bekris, and L. Iftode, “In-
vestigating remote driving over the lte network,” in Proceedings of
the 9th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, AutomotiveUI ’17, (New York, NY,
USA), p. 264–269, Association for Computing Machinery, 2017.

[8] P. Pérez, J. Ruiz, I. Benito, and R. López, “A parametric quality model
to evaluate the performance of tele-operated driving services over 5g
networks,” Multimedia Tools and Applications, vol. 81, pp. 12287–
12303, Apr 2022.

[9] S. Neumeier, P. Wintersberger, A.-K. Frison, A. Becher, C. Facchi,
and A. Riener, “Teleoperation: The holy grail to solve problems of
automated driving? sure, but latency matters,” in Proceedings of the
11th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, AutomotiveUI ’19, (New York, NY,
USA), p. 186–197, Association for Computing Machinery, 2019.

[10] M. Hofbauer, C. B. Kuhn, G. Petrovic, and E. Steinbach, “Telecarla:
An open source extension of the carla simulator for teleoperated driving
research using off-the-shelf components,” in 2020 IEEE Intelligent
Vehicles Symposium (IV), pp. 335–340, 2020.

[11] A. Schimpe, J. Feiler, S. Hoffmann, D. Majstorović, and F. Diermeyer,
“Open source software for teleoperated driving,” in 2022 International
Conference on Connected Vehicle and Expo (ICCVE), pp. 1–6, 2022.

[12] S. Neumeier, M. Höpp, and C. Facchi, “Yet another driving simulator
openrouts3d: The driving simulator for teleoperated driving,” in 2019
IEEE International Conference on Connected Vehicles and Expo (IC-
CVE), pp. 1–6, 2019.

[13] F. Mason, M. Drago, T. Zugno, M. Giordani, M. Boban, and M. Zorzi,
“A reinforcement learning framework for pqos in a teleoperated driving
scenario,” in 2022 IEEE Wireless Communications and Networking
Conference (WCNC), pp. 114–119, 2022.

[14] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using SUMO,” in IEEE International
Conference on Intelligent Transportation Systems, 2018.

[15] J.-M. Georg, J. Feiler, S. Hoffmann, and F. Diermeyer, “Sensor and
actuator latency during teleoperation of automated vehicles,” in 2020
IEEE Intelligent Vehicles Symposium (IV), pp. 760–766, 2020.

[16] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, “Simu5g–an
omnet++ library for end-to-end performance evaluation of 5g net-
works,” IEEE Access, vol. 8, pp. 181176–181191, 2020.

[17] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis,”
IEEE Transactions on Mobile Computing (TMC), vol. 10, pp. 3–15,
January 2011.

[18] M. Hofbauer, C. B. Kuhn, M. Khlifi, G. Petrovic, and E. Stein-
bach, “Traffic-aware multi-view video stream adaptation for teleop-
erated driving,” in 2022 IEEE 95th Vehicular Technology Conference:
(VTC2022-Spring), pp. 1–7, 2022.

[19] S. Neumeier, V. Bajpai, M. Neumeier, C. Facchi, and J. Ott, “Data rate
reduction for video streams in teleoperated driving,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 10, pp. 19145–
19160, 2022.

[20] M. Potamias, K. Patroumpas, and T. Sellis, “Sampling trajectory
streams with spatiotemporal criteria,” in 18th International Confer-
ence on Scientific and Statistical Database Management (SSDBM’06),
pp. 275–284, 2006.

[21] R. S. D. Sousa, A. Boukerche, and A. A. F. Loureiro, “Vehicle tra-
jectory similarity: Models, methods, and applications,” ACM Comput.
Surv., vol. 53, sep 2020.

[22] SAFESTAR FP4 EU Project, “Safety Standards for Road
Design and Redesign.” https://trimis.ec.europa.eu/project/
safety-standards-road-design-and-redesign, 1998.

