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We consider a resource-constrained Edge Device (ED) embedded with a small-size ML model (S-ML) for a generic classification

application, and an Edge Server (ES) that hosts a large-size ML model (L-ML). Since the inference accuracy of S-ML is lower than that

of the L-ML, offloading all the data samples to the ES results in high inference accuracy, but it defeats the purpose of embedding S-ML

on the ED and deprives the benefits of reduced latency, bandwidth savings, and energy efficiency of doing local inference. To get the

best out of both worlds, i.e., the benefits of doing inference on the ED and the benefits of doing inference on ES, we explore the idea

of Hierarchical Inference (HI), wherein S-ML inference is only accepted when it is correct, otherwise the data sample is offloaded for

L-ML inference. However, the ideal implementation of HI is infeasible as the correctness of the S-ML inference is not known to the ED.

We thus propose an online meta-learning framework to predict the correctness of the S-ML inference. The resulting online learning

problem turns out to be a Prediction with Expert Advice (PEA) problem with continuous expert space. We consider the full feedback

scenario, where the ED receives feedback on the correctness of the S-ML once it accepts the inference, and the no-local feedback

scenario, where the ED does not receive the ground truth for the classification, and propose the HIL-F and HIL-N algorithms and

prove a regret bound that is sublinear with the number of data samples. We evaluate and benchmark the performance of the proposed

algorithms for image classification applications using four datasets, namely, Imagenette and Imagewoof [18], MNIST [24], and CIFAR-

10 [23].

Additional KeyWords and Phrases: hierarchical inference, edge computing, regret bound, continuous experts, expert advice prediction

1 INTRODUCTION

Emerging applications in smart homes, smart cities, intelligent manufacturing, autonomous internet of vehicles, etc.,

are increasingly using Deep Learning (DL) inference. Collecting data from the Edge Devices (EDs) and performing

remote inference in the cloud results in bandwidth, energy, and latency costs as well as reliability (due to wireless

transmissions) and privacy concerns. Therefore, performing local inference using embedded DL models, which we

refer to as S-ML (Small-ML) models, on EDs has received significant research interest in the recent past [10, 29, 37].

These S-ML models range from DL models that are optimized for moderately powerful EDs such as mobile phones

to tinyML DL models that even fit on microcontroller units. However, S-ML inference accuracy reduces with the

model size and can be potentially much smaller than the inference accuracy of large-size state-of-the-art DL models,

which we refer to as L-ML (Large-ML) models, that can be deployed on Edge Servers (ESs). For example, for an image

classification application, an S-ML can be a quantizedMobileNet [17] with a widthmultiplier of 0.25, that has a memory

size of 0.5 MB and an inference accuracy of 39.5% for classifying ImageNet dataset [9], whereas CoCa [39], an L-ML,

has an accuracy of 91% and a memory size in the order of GBs.

One may choose to achieve the accuracy of L-ML model while utilizing the computational capabilities of EDs using

the well-known DNN partitioning techniques, e.g., see [20, 21, 25]. Note that such partitioning techniques require
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Fig. 1. Schematic of the HI meta-learning framework Fig. 2. Classification of Imagene�e by a small-size quan-

tized MobileNet using width multiplier 0.25 [17].

processing time and energy profiling of the layers on EDs as well as on ESs to decide the optimal partition points.

Early Exit is yet another technique that introduces side branches in between the layers of DL models to trade-off

accuracy with latency [34]. In this work, we explore the novel idea of Hierarchical Inference (HI) that complements

the above techniques for performing DL inference at the edge. Consider that an ED is embedded with an S-ML and an

L-ML1 is deployed on an ES (to which the ED enlists to get help for doing inference). In HI, we propose that an ED

first observes the S-ML inference on each data sample and offloads it to L-ML only if S-ML inference is incorrect.

Clearly, the ambition of HI is tomaximize the use of S-ML in order to reap the benefits of reduced latency, bandwidth

savings, and energy efficiency while not losing inference accuracy by offloading strategically to L-ML, thus achieving

the best benefits out of the two worlds: EDs and ESs. However, the central challenge is that the incorrect inferences

are inherently unknown at the ED and thus a decision under uncertainty needs to be taken. In this work, we focus

on the pervasive classification applications and address the above sequential decision problem by proposing a novel

HI meta-learning framework, shown in Fig. 1, that facilitates the ED to decide if a current S-ML inference for a given

sample should be accepted or the sample to be offloaded. In our framework, for each sample, the HI learning algorithm

observes ? , the maximum probability value in the probability distribution over classes output by the S-ML. It then

decides to offload, receiving a fixed cost 0 ≤ V < 1, or not to offload, receiving a cost 0 if the inference is correct, and

a cost 1, otherwise. We will show later that this cost structure facilitates HI by maximizing the offloading of samples

with incorrect inference and not offloading the samples with correct inference. To simplify the analysis, we assume

that S-ML accepts the inference of L-ML as the ground truth implying that the top-1 accuracy of L-ML is 100%. The

justification for this assumption is that the ED cannot know the ground truth when L-ML provides incorrect inference

and thus by accepting the L-ML inference the ED tries to achieve the top-1 accuracy of L-ML.

Intuitively, if the maximum probability ? is high, then accepting S-ML inference will likely result in cost 0 and

thus, it is beneficial to do so. However, if ? is low, the cost will likely be equal to 1, and thus offloading with cost V is

beneficial. This can be seen from Fig. 2, where we present the number of misclassified and correctly classified images

of the dataset Imagenette [18] by the classifier MobileNet [17]. Observe that, for ? ≥ 0.45 (approximately) there are

more images correctly classified. Thus offloading for images with ? < 0.45 might look like a reasonable policy, where

the images that statistically tend to be correctly classified are processed locally and those that are not are offloaded. In

this work, we design learning algorithms that learn the best threshold \ ∈ [0, 1) with performance guarantees after

1Both S-ML and L-ML are trained ML models deployed for providing inference and HI does not modify these models.
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assigning quantifiable cost functions. Using these algorithms in each step, we decide to offload if ? < \ and not offload,

otherwise.

The above problem falls in the domain of Prediction with Expert Advice (PEA) [6]. However, we have continuous

expert space (or action space) for \ and therefore, as explained later in Section 4, the standard Exponentially Weighted

average Forecaster (EWF) does not have a regret bound for our problem. Another challenge is that, in the case of

accepting S-ML inference, the local cost is not observable as the ED will not know if the interence is correct or not; we

call this no-local feedback scenario. To tackle this challenge, we first design an algorithm for the important scenario

where local feedback is available – for example, a human user providing this feedback. We refer to this as full feedback

scenario. We then extend the algorithm to the no-local feedback scenario.

A novel aspect of our algorithms is that they use the structural properties of the HI learning problem at hand to find

a set non-uniform intervals obtained by doing dynamic and non-uniform discretizations, and use these intervals as

experts, there by transforming the problem from a continuous to a discrete domain without introducing any error due

to this discretization. To the best of our knowledge, our work is the first attempt to extend the concept of continuous

experts to the no-local feedback scenario and find regret bounds for the same. We summarize our main contributions

below.

• We propose a novel meta-learning framework for HI that decides whether a data sample that arrived should be

offloaded or not based on S-ML output. For the full feedback scenario, we prove that $
(√

= log=
)
is the lower

bound for the regret that can be achieved by any randomized algorithm for a general loss function, where = is

the number of data samples.

• We propose the HI Learning with Full feedback (HIL-F) algorithm that uses exponential weighting and dynamic

non-uniform discretization. We prove that HIL-F has
√
= ln(1/_min)/2 regret bound, where _min is the minimum

difference between any two distinct ? values among the = samples.

• We propose HI Learning with the no-local feedback (HIL-N) algorithm, which on top of HIL-F, uses an unbi-

ased estimate of the loss function. We prove a regret bound $
(
=2/3 ln1/3 (1/_min)

)
. We discuss the ways to

approximate _min and find the optimal values of the parameters used.

• We show that the computational complexity of our algorithms in round C is $
(
min(C, 1

_min
)
)
.

• Finally, we evaluate the performance of the proposed algorithms for image classification application using four

datasets, namely, Imagenette and Imagewoof [18], MNIST [24], and CIFAR-10 [22, 23]. For Imagenette and Im-

agewoof we use MobileNet, for MNIST we implement a linear classifier for S-ML, and for CIFAR-10, we use a

readily available CNN. We compare with four baseline algorithms – the optimal fixed-\ policy, one that offloads

all samples, one that does not offload any, and a hypothetical genie algorithm that knows the ground truth.

This paper is organized as follows: In Section 2 we go through the related research and explain the novelty in the

contributions. In Section 3, we describe the system model followed by some background information and preliminary

results in Section 4. Sections 5 and 6 details HIL-F and HIL-N, derive their regret bounds, and Section 7 discuss their

computational complexity. Finally, we show the numerical results in Section 8 and conclude in Section 9.

2 RELATED WORK

Inference Offloading: Since the initial proposal of edge computing in [30], significant attention was given to the com-

putational offloading problem, wherein the ED needs to decide which jobs to offload and how to offload them to an

ES. The majority of works in this field studied offloading generic computation jobs, e.g., see [8, 15, 32]. In contrast, due
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to the growing interest in edge intelligence systems, recent works studied offloading data samples for ML inference

both from a theoretical [12, 26, 27] and practical [35, 36] perspectives. In [27], offloading between a mobile device and

a cloud is considered. The authors account for the time-varying communication times by using model selection at

the cloud and by allowing the duplication of processing the job a the mobile device. In [12], the authors considered a

scalable-size ML model on the ED and studied the offloading decision to maximize the total inference accuracy sub-

ject to a time constraint. All the above works focus on dividing the load of the inference and do not consider HI and

online learning. Our work is in part motivated by [26], where the authors assumed that the energy consumption for

local inference is less than the transmission energy of a sample and studied offloading decision based on a confidence

metric computed from the probability distribution over the classes. However, in contrast to our work, the authors do

not consider the meta-learning framework and compute a threshold for the confidence metric based on the energy

constraint at the ED.

On-Device Inference. Several research works focused on designing S-MLmodels to be embedded on EDs that range from

mobile phones to microcontroller units. While optimization techniques such as parameter pruning and sharing [16],

weights quantization [28], and low-rank factorization [11] were used to design the S-ML models, techniques such as

EarlyExit were used to reduce the latency of inference. For example, [38] studied the use of DNNs with early exits [34]

on the edge device, while [33] studied the best DNN selection on the edge device for a given data sample to improve

inference accuracy and reduce latency. These works do not consider inference offloading and in turn HI.

DNN Partitioning: Noting that mobile devices such as smartphones are embedded with increasingly powerful proces-

sors and the data that needs to be transmitted between intermediate layers of a DNN is much smaller than the input

data in several applications, the authors in[21] studied partitioning DNN between a mobile device and cloud to reduce

the mobile energy consumption and latency. Following this idea, significant research work has been done that includes

DNN partitioning for more general DNN structures under different network settings [19, 25] and using heterogeneous

EDs [20], among others. In contrast to DNN partitioning, under HI, ED, and ES may import S-ML and L-ML algorithms

from the pool of trained ML algorithms available on open-source libraries such as Keras, TFLite, and PyTorch. Fur-

thermore, HI doesn’t even require that S-ML and L-ML be DL models but rather they can even be signal processing

algorithms. On the one hand, there is significant research by the tinyML community for building small-size DNNs that

can be embedded on microcontrollers and also in designing efficient embedded hardware accelerators [29]. On the

other hand, abundant state-of-the-art DNNs are available at edge servers that provide high inference accuracy. Our

work is timely as HI will equip ML at the edge to reap the benefits of the above two research thrusts. To the best of

our knowledge, we are the first to propose an online meta-learning framework for HI.

Online Learning: The problem of minimizing the regret, when the decision is chosen from a finite expert space falls

under the well-known Prediction with Expert Advice (PEA) or Multi-Armed Bandit (MAB) problems [3, 6]. We will

explain more about these problems in Section 4. We will see that we cannot directly use these problems due to the

uncountable nature of the expert space in our problems which we will elaborate in 3. We will also explain why some

of the existing literature on continuous extensions of PEA and MAB are not suited or sub-optimal for our specific

problem.
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3 SYSTEM MODEL AND PROBLEM STATEMENT

We consider the system shown in Fig. 1, with an ED enlisting the service of an ES for data classification applications. For

the EDs, we focus on resource-constrained devices such as IoT sensors or microcontroller units. The ED is embedded

with an S-ML which provides lower inference accuracy, i.e., the top-1 accuracy, whereas the ES runs an L-ML with

higher accuracy. For example, for an image classification application, an S-ML can be a quantized MobileNet [17] with

a width multiplier of 0.25; its memory size is 0.5 MB and has an inference accuracy of 39.5% for classifying ImageNet

dataset [9], whereas CoCa [39], an L-ML, has accuracy 91% and has memory size in the order of GBs. Note that the

only assumption that we make on the algorithms is that the L-ML is significantly more accurate and costlier than the

S-ML. Thus, we do not specify what exactly the S-ML or the L-ML algorithms needs to be, but can be any classification

algorithm including regression algorithms, SVMs, random forests, and DNNs. Given an arbitrary sequence of = data

samples that arrive over time at the ED, the question we study is: For each sample, should the ED offload for inference

from L-ML or accept the inference from S-ML? We approach this as an online sequential decision problem. We assume

that each sample first goes through local inference and the decision is made according to the inference results and

parameters. Note that this is an essential assumption to facilitate HI, otherwise, the ED cannot infer anything about

the sample. Also, as argued earlier in Section 1, we assume that all the offloaded images will be correctly classified by

the L-ML. This assumption is not necessary for the proposed algorithms, but since the ED cannot possibly know if the

inference provided by the ES is correct or wrong, we use the assumption to simplify the formulation.

Let C denote the index of a data sample (e.g., an image), or simply sample, that arrives C-th in the sequence. Let

?C denote the maximum probability in the probability distribution over the classes output by S-ML for the sample C .
2 Note that the class corresponding to ?C is declared as the true class for computing the top-1 accuracy. Intuitively

speaking, ?C is the confidence level of S-ML for classifying sample C and it is a natural candidate to use for HI. Let

binary random variable .C denote the cost representing the ground truth that is equal to 0 if the class corresponding to

?C is the correct class and is equal to 1, otherwise. Clearly, given an S-ML model, .C depends on ?C and the sample. Let

V ∈ [0, 1) denote the cost incurred for offloading the image for inference at the ES. This cost, for example, may include

the costs for the transmission energy and the idle energy spent by the transceiver till the reception of the inference.

Note that, if V ≥ 1, then accepting the inference of S-ML, which incurs a cost at most 1, for all samples will minimize

the total cost.

If the ED offloads sample C , it incurs cost V , and if it accepts the S-ML inference, it incurs a cost .C . In the latter

case, the ED may not know .C , in general, and we refer to it by no-local feedback scenario. If .C is revealed once the

ED accepts S-ML, we refer to by full feedback scenario. In either scenario, if the ED offloads and receives the inference

from the ES, it can use that inference to infer .C . As explained in Section 1, in round C , we use the following decision

ruleDC based on the choice of threshold \C ∈ [0, 1]:

DC =



Do not offload if ?C ≥ \C ,

Offload if ?C < \C .
(1)

2Note that, in a classification application, a classifier typically outputs a probability distribution over the classes. Our framework allows other metrics,
besides ?C , that are computed based on the probability distribution over classes.



6 Vishnu Narayanan Moothedath, Jaya Prakash Champati, and James Gross

Therefore, given ?C , choosing threshold \C results in a cost/loss ; (\C , .C ) at step C , given by

; (\C , .C ) =


.C ?C ≥ \C ,

V ?C < \C .
(2)

Note that, we omit the variable ?C from the loss function ; (\C , .C ) for notational simplicity. We focus on designing

online algorithms that learn the best threshold, which balances the conflicting objectives of reducing the number of

images offloaded and increasing the inference accuracy, thereby improving the responsiveness and energy efficiency

of the system.

We use boldface notations to denote vectors. Let _C = {.g }, )C = {\g }, and pC = {?g }, g = 1, 2, . . . , C ≤ =. Further,

let _ ≔ _= , ) ≔ )= and p ≔ p= for convenience. Finally, we define _min as the minimum difference between any

two distinct probability values in the sequence p= . Define the cumulative cost !() , _ ) as !() , _ ) = ∑=
C=1 ; (\C , .C ). Also

let )∗ = {\∗, \∗, . . . }, a vector of size = with all values \∗ , denote an optimal fixed-\ policy and !() ∗, _ ) denote the
corresponding cost. Then,

!() ∗, _ ) =
=∑
C=1

; (\∗, .C )],

where \∗ need not necessarily be unique and is given by

\∗ = argmin
\ ∈[0,1]

=∑
C=1

; (\,.C ).

Given a sequence _ , we now define the regret under an arbitrary algorithm c as

'= = Ec [!() , _ )] − !() ∗, _ ), (3)

where the expectation Ec [·] is with respect to the distribution induced by c .

In this work, we are interested finding algorithms for both the full feedback and no-local feedback scenarios that

have a sublinear upper bound (i.e., a bound that goes to 0 as n goes to ∞) on E_ ['=] – the expected regret over the

distribution of all possible sequences _ . We call this bound an expected regret bound and note that if we can find a

regret bound that is applicable for any given sequence _ , the same bound is also applicable for the expected regret (or

even the maximum regret) over all possible sequences of _ . For this reason, and for the sake of simplicity, we will only

carry out the analysis for a given _ in the upcoming analysis sections. However, later in the numerical section, we

will show the results with expected average regret E_ [ 1='=] =
1
=E_ ['=] and expected average cost 1

=E_ ,c [!() , _ )].
We take the average over the number of samples = to remove the dependency on the size of different datasets and

normalize the maximum to 1, for easy comparison.

Before going to the next section, we summarize the abbreviations and notations used in this paper in TABLE 1 below.

ED edge device HI hierarchical inference HIL-F HIL algorithm: full feedback

ES edge server HIL hierarchical inference learning HIL-N HIL algorithm: no-local feedback

S-ML small-size ML PEA prediction with expert advice EWF exponentially weighted forecaster

L-ML large-size ML ? [8 ] 8th smallest district value in the set of available probabilities {?1, ?1, . . . }
Table 1. Table of abbreviations.
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4 BACKGROUND AND PRELIMINARY ANALYSIS

Learning Problems: The HI learning problem falls into the category of PEA [6] problems. In the standard PEA prob-

lem, # experts (or actions) are available for a predictor – known formally as a forecaster. When the forecaster chooses

an expert, it receives a cost/reward corresponding to that expert. If the cost is only revealed for the chosen expert,

then this setting is the MAB. In contrast to the standard PEA, we have an uncountable expert space where the expert

\C belongs to the continuous space [0, 1]. Continuous action space is well studied in MAB settings, e.g., see [1, 4, 31],

where the main technique used is to discretize the action space and bound the regret by assuming that the unknown

loss function has smoothness properties such as uniformly locally Lipschitz. However, the problem at hand does not

assume any smoothness properties for the loss function.

As discussed briefly in Section 1, one well-known forecaster for standard PEA is the exponential weighted average

forecaster (EWF). For each expert, EWF assigns a weight that is based on the cost incurred for choosing this expert.

For each prediction, EWF selects an expert with a probability computed based on these weights. It is known that for

= predictions, EWF achieves a regret
√
= ln# /2. However, the continuous nature of the expert space renders EWF not

directly applicable for solving the problem at hand and we need an extension of EWF. Such an extension was considered

in [2], and a regret bound for convex losses is obtained for continuous experts, conditioned on a hyperparameter W > 0.

Later, a particular W is proposed to get the optimum regret bound of 1 +
√
= ln=/2. We, on the other hand, do not

require any hyperparameter and more importantly do not assume any convexity for the loss function. In addition, [2]

does not describe how to compute the integral required for computing the weights. Furthermore, the solution in [2]

is only applicable to HIL-F with full feedback, but not to HIL-N in which case ours is the first work to the best of our

knowledge.

One may discretize [0, 1] with a uniform interval length Δ and use the standard EWF, where a straightforward

substitution of the number of experts # = 1/Δ results in regret bound
√
= ln(1/Δ)/2. However, to not sacrifice the

accuracy due to this discretization, one has to take Δ small enough such that no two probability realization ?C falls

within an interval. This is to make sure that the cumulative loss function is constant within each interval, which

will be more clear after Lemma 4.1. Thus, if _min is the minimum separation between any two distinct probabilities

?C , 1 ≤ C ≤ =, the best attainable regret bound of a standard EWF using uniform discretization is
√
= ln(1/_min)/2 with

# = 1/_min. We will soon see that these regret bounds are similar to what we get using our proposed algorithms, but

the added complexity with a large number of experts from the first round onwards makes it suboptimal.

In this paper, we start with the continuous experts and then use the structure of the problem to formulate it in

a discrete domain. We propose a non-uniform discretization that retains the accuracy of a continuous expert while

reducing the complexity to the theoretical minimum with at most = + 1 experts after =th round. Note that, due to the

non-uniform discretization, the proposed HIL does not involve Δ, but instead involves _min, where 1/_min acts similar

to # in the regret bound. In Section 5, we provide simple methods to approximate _min.

Preliminary Analysis: In order to choose a good threshold \C in round C , we take a hint from the discrete PEA [6]

where a weight for an expert is computed using the exponential of the scaled cumulative losses incurred for potentially
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choosing that expert. We extend this idea and define continuous weight functionFC (\) as follows:

FC+1 (\) =4−[
∑C

g=1 ; (\,.g )

=4−[
∑C−1

g=1 ; (\,.g )4−[; () ,.C ) = FC (\)4−[; (\,.C ) . (4)

,C+1 =
∫ 1

0
FC+1 (\) d\ . (5)

Here, [ > 0 is the learning rate. At each round C , the normalized weights give the probability distribution for choosing

the next threshold \C+1 , and thus they can be used to learn the system. However, it comes with two challenges – (i)

finding a (set of) thresholds that follow this distribution, and (ii) computing the integral. Although these challenges can

be solved using direct numerical methods, they incur a large amount of computational cost. For instance, the inverse

transformation method can generate a random sample of the threshold with this distribution. Instead, we use the facts

from (1) and (2) that our final decision (to offload or not) depends solely on the relative position of \C and ?C , but not

directly on \C . Thus, using the distribution given by the normalized weights, we define @C as the probability of not

offloading, i.e., the probability that \C is less than ?C , where

@C =

∫ ?C
0

FC (G) dG
,C

. (6)

Thus, the decisionDC from (1) boils down to do not offload and offload with probabilities @C and (1 − @C ), respectively.
With the first challenge mitigated, we look for efficient methods to compute the integral in (6). Note that the cumu-

lative loss function !()C , _C ) =
∑C
g=1 ; (\g , .g ) can take potentially 3C different values (because of 0, 1, or V cost in each

step), without any necessary pattern, and hence direct analytical integration is not possible. To address this issue, we

leverage the result of the following lemma (Lemma 4.1) and convert the integral into summation by discretizing the

domain [0, 1] of the integral into a finite set of non-uniform intervals.

The non-uniform discretization suggested by this lemma is incremental and a new interval is (potentially) added

in each round. Let’s look at the structure of the weight function after = rounds. Let ?0 = 0 and ?# = 1, where #

is the number of intervals formed formed in [0, 1] by the sequence of probabilities p= . Here, we have # ≤ = + 1
because of the repeated probabilities that do not result in the addition of a new interval. We denote these intervals

by �8 = (? [8−1], ? [8 ]], 1 ≤ 8 ≤ # , where ? [8 ] denotes the 8-th smallest distinct probability in p= . Let<8 , 1 ≤ 8 ≤ #

be the number of times ? [8 ] is repeated in p= . For instance, # = = + 1 and ? [8 ] = ?8 iff<8 = 1∀8 . Finally, let .[8 ], 8 =
1, 2, . . . = be the 8-th element in the ordered set of local inference costs ordered according to the increasing values of

the corresponding probability ?8 . Note that, 8 in .[8 ] goes up to = while 8 in ? [8 ] goes only up to # because any two

local inference costs .9 and .: associated with repeated probability values ? 9 = ?: are two different but i.i.d random

variables.

Lemma 4.1. The function !() , _ ) is a piece-wise constant functionwith a constant value in each interval�8 . Furthermore,

if there are no repetitions in the sequence p= , then

!()∗, _ ) = min
1≤8≤=+1

{
(8 − 1)V +

=∑
:=8

.[ 9 ]

}
.
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Proof. By definition, ?C falls on the boundary of �8 , ∀C , for some 8 . Hence, �8 is a subset of either (0, ?C ] or (?C , 1].

⇒ ; (\C , .C ) =


.C , ∀\ : \C ∈ �8 ⊂ (0, ?C ], and

V, ∀\ : \C ∈ �8 ⊂ (?C , 1] .
(7)

Thus, ∀ 8 ≤ #, ; (\,.C ) ≔ ; (�8, .C ),∀\ ∈ �8 . That is, the cost for all \ within an interval �8 takes a constant value of

; (�8, .C ), and this value depends on whether ? [8 ] (the upper boundary of �8 ) is greater than ?C or not. To prove the

second part, note that !(\, _ ) = ∑=
C=1 ; (�8, .C ) : \ ∈ �8 .

⇒ !()∗, _ ) = min
\ ∈[0,1]

!(\, _ ) = min
1≤8≤#

=∑
C=1

; (�8, .C ).

=∑
C=1

; (�8, .C ) =
=∑
C=1

[V 1(?C < ? [8 ]) + .C 1(?C ≥ ? [8 ])]

= V

8−1∑
9=1

< 9 +
=∑

:=1+∑8−1
9=1< 9

.[: ] (8)

⇒ !()∗, _ ) = min
1≤8≤#

{
V

8−1∑
9=1

< 9 +
=∑

:=1+∑8−1
9=1< 9

.[: ]
}

When there are no repetitions, we can substitute< 9 = 1,∀9 in the above expression to complete the proof. �

From Lemma 4.1, we infer that for any C the weight function is constant within the intervals defined by pC , and

we can compute the integral in (6) by adding multiple rectangular areas formed by the length of each interval �8 and

the corresponding constant weight within it. Thus, by converting the integral of FC (\) in a continuous domain to a

summation of areas of rectangles with non-uniform bases, we not only reduce the complexity but also do that without

sacrificing the accuracy of the results. We will discuss more on the computational complexity in Section 7. Note that

the property of the piece-wise nature – given by the first part of Lemma 4.1 – is not only valid for the particular loss

function ; (\C , .C ), but also for any other loss function with a single decision boundary (as in (2)) and discrete costs on

either side of this boundary. This becomes important when we use a modified loss function for finding the optimum

decision boundary \∗ later in Section 6.

Consider the scenario where p= is known a priori. We can then use the standard EWF with # intervals with the

cost corresponding to interval �8 as defined in (7). The following Corollary states the regret bound for this algorithm.

Corollary 4.2. If the sequence p= is known a priori, an EWF that uses the intervals �8 as experts achieves
√
= ln# /2

regret bound. Consequently, given that # = $ (=), the regret bound of EWF is $ (
√
= ln=).

Note that, for the standard PEA with # experts,
√
= ln# /2 is the lower bound for the regret for any randomized

algorithm [5]. Thus, Corollary 4.2 implies that for the problem at hand, under a general loss function, no randomized

algorithm has regret bound lower than$ (
√
= ln=). Clearly, the lower bound$ (

√
= ln=) is much higher than the lower

bound of PEA, where the number of experts is independent of =. This establishes the hardness of our problem. Adding

to the difficulty,$ (
√
= ln=) can only be achieved if p= is known a priori, which is not the case in practice.

With all preliminaries covered, we now present the HIL algorithms and their regret bounds for full feedback and

no-local feedback scenarios in Sections 5 and 6, respectively.
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5 FULL FEEDBACK

In this section, we consider the full-feedback scenario, where the algorithm receives the ground truth .C for all the

samples, including those that are not offloaded by accepting the S-ML inference. For this scenario, we present the HIL-F

algorithm in Algorithm 1. Some algorithmic rules for the parameter updates are given later in Section 7. As explained

in the previous section, given ?C , we compute @C , the probability to not offload. Once the decision is made using @C , the

costs are received and the weights are updated using (4) and (5). For simplicity, we denote the expected cost received

by HIL-F in round C by ;̄ (\C , .C ) and is given by

;̄ (\C , .C ) = E&C
[; (\C , .C )] = .C@C + V (1 − @C ),

where the expectation is with respect to the probability distribution dictated by @C . Also, let !̄() , _ ) =
∑=
C=1 ;̄ (\C , .C )

denote the total expected cost after = rounds. In the theorem below, we provide a regret bound for HIL-F.

Theorem 5.1. For [ > 0, HIL-F achieves the following regret bound:

'= = !̄() , _ ) − !()∗, _ ) ≤ 1

[
ln

1

_min
+ =[

8
.

Proof. Recall from Lemma 4.1 that ? [8 ], �8 = (? [8−1], ? [8 ]], and ; (�8, .C ) are the 8−th smallest probability, intervals

formed by them, and the constant loss function within that interval at round C , respectively. Also, _8 = ? [8 ] − ? [8−1]
and # ≤ = + 1 correspond to the length of the intervals 8 and the total number of intervals, respectively. Finally,

_min = min1≤8≤# _8 . Substituting C = 0 in (5), we have,1 = 1. Thus, taking logarithm of ,=+1
,1

gives,

ln
,=+1
,1

= ln

∫ 1

0
4−[

∑=
C=1 ; (G,.C ) dG

= ln

#∑
8=1

_84
−[∑=

C=1 ; (�8 ,.C )

≥ ln max
1≤8≤#

(
_min4

−[∑=
C=1 ; (�8 ,.C )

)

= −[ min
1≤8≤#

=∑
C=1

; (�8, .C ) − ln
1

_min

= −[ min
\ ∈[0,1]

=∑
C=1

; (\, .C ) − ln
1

_min
. (9)

Now, we bound the ratio ,C+1
,C

.

ln

(
,C+1
,C

)
= ln

©«
∫ 1

0
FC+1 (G) dG
,C

ª®
¬

= ln

(∫ 1

0

FC (G)
,C

4−[; (G,.C ) dG
)
.

By using Hoeffding’s lemma3 in the above equation, we get
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Algorithm 1: The HIL-F algorithm for full feedback.

1: Initialize: SetF1 (\) = 1,∀\ ∈ [0, 1] and # = 1.

2: for every sample in round C = 1, 2, . . . do

3: S-ML outputs ?C .

4: Compute @C using (5) and (6), and generate Bernoulli random variable &C with P(&C = 1) = @C .

5: if &C = 1 then

6: Accept the S-ML inference and receive cost .C .

7: else

8: Offload the sample and receive cost V .

9: end if

10: Find the loss function using (2).

11: if ?C is not a repetition then

12: Update the intervals by splitting the interval containing ?C , at ?C . Increment # by 1.

13: end if

14: Update the weights for all intervals using (4), based on the interval positions with respect to ?C .

15: end for

ln

(
,C+1
,C

)
≤ −[

∫ 1

0

FC (G)
,C

; (G,.C ) dG +
[2

8

= −[
∫ ?C

0

FC (G)
,C

; (G,.C ) dG − [
∫ 1

?C

FC (G)
,C

; (G,.C ) dG +
[2

8

= −[
(
.C

∫ ?C

0

FC (G)
,C

dG + V
∫ 1

?C

FC (G)
,C

dG

)
+ [2

8
.

In the above step, we used (2). Now using (6) to replace the integrals, we get

ln

(
,C+1
,C

)
≤ −[ (.C@C + V (1 − @C )) +

[2

8

= −[;̄ (\C , .C ) +
[2

8
. (10)

Extending this expression telescopically, we get

ln

(
,=+1
,1

)
= ln

(
=∏
C=1

,C+1
,C

)
=

=∑
C=1

ln
,C+1
,C

≤
=∑
C=1

[
−[;̄ (\C , .C ) +

[2

8

]
= −[

=∑
C=1

;̄ (\C , .C ) +
=[2

8
. (11)

Using (9) and (11), we obtain

−[ min
\ ∈[0,1]

=∑
C=1

; (\, .C ) − ln
1

_min
≤ −[

=∑
C=1

;̄ (\C , .C ) +
=[2

8

⇒ !̄() , _ ) ≤ !()∗, _ ) + 1

[
ln

1

_min
+ =[

8

⇒ '= ≤
1

[
ln

1

_min
+ =[

8
.

3For a bounded random variable- ∈ [0, 1 ], ln(E[4B- ]) ≤ BE[- ] + B2 (1−0)2
8 .
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In the last two steps above, we rearranged the terms and divided them with [ . �

Here, [ is the learning rate of the algorithm. To find [∗, the [ that minimizes the above regret bound, we differentiate

the regret '= above to obtain

[∗ =

√
8 ln(1/_min)

=
. (12)

What remains is to find an approximation for _min , which is possible through various methods. For instance, one

can use the precision of the probability outputs, i.e., if the probability outputs are truncated to 6 decimal places, then

we know that _min ≥ 10−6. Further, some datasets and/or S-ML models come with specific _min . For example, the

probability output by MobileNet on the Imagenette dataset is 8-bit and hence the probabilities are integer multiples of

1/256. Even in cases where all these methods fail, we see that a decent approximation for _min is _̂min = 1/(= + 1).

6 NO-LOCAL FEEDBACK

Under no-local feedback, the cost is unknown once the inference of the S-ML is accepted. For this scenario, we use

the randomization idea used for label efficient prediction problem [7], which is a variant of the PEA, where the costs

in each round are not revealed, unless they are inquired for, and there can only be at most < inquires that can be

made. For this variant, EWF is modified as follows: in each round, a Bernoulli random variable / is generated with

probability n. If / = 1, then feedback is requested and the costs are revealed. However, for our problem, the algorithm

for the label-efficient prediction problem is not applicable due to the aspect of continuous expert space. Further, we do

not have the notion of inquiring about the costs at the ED. Instead, when / = 1, the sample has to be offloaded to the

ES with cost V irrespective of the original decision made using @C . These samples provide the ED with the inference

using which the ED computes the cost .C .

To address the above aspects we follow the design principles of HIL-F and use non-uniform discretization of the

continuous domain and propose the HI algorithm for no-local feedback (HIL-N), which is presented in Algorithm 2.

Even though HIL-N and HIL-F have a similar structure, the design of HIL-N is significantly more involved and has

the following key differences with HIL-F. Firstly, in line 5 of Algorithm 2, a Bernoulli random variable /C is generated

with probability n. If /C = 1, then the sample is offloaded even if &C = 1, and thus .C is realized in this case. This step

is used to control the frequency of additional offloads carried out to learn the ground truth .C . Secondly, instead of the

loss function, the weights are updated using a pseudo loss function ;̃ (\C , .C ) defined as follows:

;̃ (\C , .C ) =




0 ?C ≥ \C , /C = 0; [Do Not Offload]
.C
n ?C ≥ \C , /C = 1; [Offload]

V ?C < \C . [Offload]

(13)

We also update the equations (4), (5) and (6) as follows:

FC+1 (\) = FC (\)4−[;̃C (\,.C ) , (14)

,C+1 =
∫ 1

0
FC+1 (\) d\, and (15)

@C =

∫ ?C
0

FC (G) dG
,C

. (16)
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We emphasize that the pseudo loss function ;̃ (\C , .C ) is used only as part of the HIL-N algorithm, and is not the actual

cost incurred by the ED. The actual cost remains unchanged and it depends only on the offloading decision and the

correctness of the inference if not offloaded. However, this actual incurred cost or the corresponding loss function

; (\C , .C ) is unknown for the no-local feedback scenario, whenever the sample is not offloaded and the local inference is

accepted. This is precisely the reason to introduce the pseudo loss function ;̃ (\C , .C ) which is known in each C , and can

be used in the HIL-N algorithm to update the weights. Recall from Section 5 that in HIL-F, the cost incurred and the

cost used to update the weights are the same, and the incurred cost is V if and only if ?C < \C . However in HIL-N, we

use the pseudo cost to update the weights, and thus the actual cost incurred can be equal to V even if ?C ≥ \C . However,

we designed the pseudo-loss function such that

E/

[
;̃ (\C , .C )

]
= ; (\C , .C ). (17)

Therefore, the pseudo loss function is an unbiased estimate of the actual loss function, a fact that we will facilitate our

analysis. Further, with the addition of a random variable & , the regret for HIL-N can be rewritten as

'= = EW/ [!() , _ )] − !()∗, _ ), (18)

where EW/ [·] is expectation with respect to random variables {&1,&2, . . . ,&=} and Bernoulli random variable / .

Theorem 6.1. For [,n > 0, HIL-N achieves the regret bound

'= ≤ =Vn + =[

2n
+ 1

[
ln(1/_min).

Proof. Step 1: Since the costs incurred and the loss function used for updating the weights are different under

HIL-N, we first find a bound for the difference between the expected total cost received and the expected total cost

obtained using ;̃ (\C , .C ). From Algorithm 2, we infer that sample C is offloaded if &C = 0 or &C = 1 and /C = 1, and it is

not offloaded only when &C = 0 and /C = 0. Therefore, we have

E&C/ [; (\C , .C )] = V [1 − @C + @Cn] + @C (1 − n).C . (19)

From (13), we have

;̃ (\C , .C ) =
.C

n
1(\C ≤ ?C ) 1(/C = 1) + V 1(\C > ?C )

⇒ E&C/

[
;̃ (\C , .C )

]
= .C@C + V (1 − @C ). (20)

From (19) and (20), we obtain

E&C/ [; (\C , .C )] − E&C/

[
;̃ (\C , .C )

]
= Vn@C − .Cn@C .

⇒ EW/ [!() , _ )] −
=∑
C=1

EW/

[
;̃ (\C , .C )

]
= Vn

=∑
C=1

@C − n
=∑
C=1

.C@C

≤ =Vn − n
=∑
C=1

.C@C

⇒ −
=∑
C=1

EW/

[
;̃ (\C , .C )

]
≤ −EW/ [!() , _ )] + =Vn. (21)

In the last step above, we have used @C ≤ 1, for all C .
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Step 2: Using the same analysis to derive (9), we obtain

ln

(
,=+1
,1

)
≥ −[ min

\ ∈[0,1]

=∑
C=1

;̃ (\, .C ) − ln
1

_min

Note that, here we have ;̃ (\, .C ) instead of ; (\, .C ). Now using the fact that the expectation over the minimum is upper

bounded by the minimum over expectation, we get

⇒ E/
[
ln

(
,=+1
,1

)]
≥ −[ min

\ ∈[0,1]

=∑
C=1

E/

[
;̃ (\, .C )

]
− ln 1

_min

⇒ E/
[
ln

(
,=+1
,1

)]
≥ −[!()∗, _ ) − ln(1/_min). (22)

Step 3: In the following we find a bound for ln(,C+1
,C
).

ln

(
,C+1
,C

)
= ln

©«
∫ 1

0
FC+1 (G) dG
,C

ª®
¬

= ln

(∫ 1

0

FC (G)
,C

4−[;̃ (G,.C ) dG
)

(using (14))

≤ ln

(∫ 1

0

FC (G)
,C

(
1 − [;̃ (G, .C ) +

[2

2
;̃ (G, .C

)2
) dG

)
.

In the above step, we used the fact that 4−G ≤ 1 − G + G2/2. Rearranging the terms, we get

ln

(
,C+1
,C

)
= ln

(
1 +

∫ 1

0

FC (G)
,C

(
−[;̃ (G,.C ) +

[2

2
;̃ (G, .C )2

)
dG

)

≤
∫ 1

0

FC (G)
,C

(
−[;̃ (G, .C ) +

[2

2
;̃ (G, .C )2

)
dG.

The above step follows from the fact that ln(1 + G) ≤ G, ∀G > −1.

⇒ ln

(
,C+1
,C

)
≤

∫ 1

0

FC (G)
,C

(
−[;̃ (G, .C ) +

[2

2n
;̃ (G, .C )

)
dG. (23)

In the last step, we have used the fact that ;̃ (G, .C ) ∈ [0, 1/n]. Note that the integral above can be rearranged as follows:∫ 1

0

FC (G)
,C

;̃ (G, .C ) dG =

∫ ?C

0

FC (G)
,C

;̃ (G, .C ) dG +
∫ 1

?C

FC (G)
,C

;̃ (G, .C ) dG

=
.C

n
1(/C = 1)@C + V (1 − @C ).

Therefore, we have

E/

[∫ 1

0

FC (G)
,C

;̃ (G, .C ) dG
]
= .C@C + V (1 − @C )

= E&C/

[
;̃ (\C , .C )

]
, (24)

where we have used (20). Taking expectation with respect / on both sides in (23) and then substituting (24),

E/

[
ln

(
,C+1
,C

)]
≤ −[E&C/

[
;̃ (\C , .C )

]
+ [2

2n
E&C/

[
;̃ (\C , .C )

]
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Algorithm 2: The HIL-N algorithm

1: Initialize: SetF1 (\) = 1,∀\ ∈ [0, 1] and # = 1.

2: for C = 1, 2, . . . do

3: S-ML outputs ?C .

4: Compute @C using weights from (14) and (15) and generate Bernoulli random variables

&C and /C with P(&C = 1) = @C and P(/C = 1) = n.

5: if &C = 1 and /C = 0 then

6: Accept the S-ML inference and receive cost .C (unknown).

7: else

8: Offload the sample and receive cost V .

9: end if

10: Find the pseudo loss function using (13).

11: if ?C is not a repetition then

12: Update the intervals by splitting the interval containing ?C at ?C . Increment # by 1.

13: end if

14: Update the weights for all intervals using (14), based on the interval positions with respect to ?C .

15: end for

≤ −[E&C/

[
;̃ (\C , .C )

]
+ [2

2n
. (25)

Above, we used the fact that EW/ [;̃ (\C , .C )] ≤ 1. Taking summation of (25) over C , we obtain

E/

[
ln

=∏
C=1

(
,C+1
,C

)]
≤ −[

=∑
C=1

E&C/

[
;̃ (\C , .C )

]
+ =[2

2n

⇒ E/
[
ln

(
,=+1
,1

)]
≤ −[

(
EW/ [!() , _ )] − =Vn

)
+ =[2

2n
. (26)

In the last step above, we have used (21). Combining (26) and (22) and rearranging the terms, we obtain

EW/ [!() , _ )] − !()∗, _ ) ≤ =Vn + =[

2n
+ 1

[
ln(1/_min),

which is the regret '= for HIL-N given by (18). �

The bound in Theorem 6.1 neatly captures the effect of n on the regret. Note that the term=Vn is a direct consequence

of offloading sample C , when /C = 1. We denote the bound by

6(n, [) = =Vn + =[

2n
+ 1

[
ln(1/_min). (27)

We now minimize this bound and find the parameters that provide a bound that is sublinear in =.

Lemma 6.2. The function 6(n, [) defined in (27) has a global minimum at (n∗, [∗), where [∗ =
(
2 ln2 (1/_min)

V=2

)1/3
and

n∗ =
√

[
2V

. At this minimum, we have,

6(n∗, [∗) = 3=2/3
(
V ln(1/_min)

2

)1/3
.

Proof. We can easily see the strict convexity of 6(n, [) in each dimension n and [ independently, which tells us

that any inflection point of the function will be either a saddle point or a minima but not a maxima. We equate the
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first-order partial derivatives to zero to get a set of points given by the equations

m6

mn
= 0⇒ n =

√
[

2V
, (28)

m6

m[
= 0⇒ [ =

√
2n ln(1/_min)

=
. (29)

However, it still remains to check if this point is unique and if this point is indeed a minimum, but not a saddle point.

Seeing the uniqueness is straightforward by noting that these two expressions correspond to two non-decreasing,

invertible curves in the n–[ plane, and thus they have a unique intersection. We find this intersection denoted using

(n∗, [∗) by substituting (28) in (29). We obtain

[∗ =

√
2n∗ ln(1/_min)

=
=

√
2
√
[∗/2V ln(1/_min)

=
.

We get [∗ and n∗ by simplifying the above equation and then substituting it back in (28). Finally, to prove that (n∗, [∗)
is indeed a minimum, we verified that the determinant of the Hessian at (n∗, [∗) is positive, the steps of which are not

presented due to space constraints. Since (n∗, [∗) is a unique minimum, it should be the global minimum. The proof is

complete by substituting (n∗, [∗) in (27). �

Now, with the above Lemma in hand, we provide a sublinear regret bound for HIL-N in the following corollary.

Corollary 6.3. With [ =

(
2 ln2 (1/_min)

V=2

)1/3
and n = min{1,

√
[
2V
}, HIL-N achieves a regret bound sublinear in =:

'= ≤ 3=2/3
(
V ln(1/_min)

2

)1/3

Proof. Note that, if
√

[
2V
≤ 1, then n =

√
[
2V

and the results directly follows from Lemma 6.2. If
√

[
2V

> 1, then we

have n = 1. Substituting [ value in
√

[
2V

> 1, we obtain

V <

√√
2 ln(1/_min)

=
. (30)

Since n = 1, we will have /C = 1 for all C , i.e., HIL-N will always offload. Therefore, in this case, the total cost incurred

by HIL-N is equal to =V . Now, using (30), we obtain

=V <

√√
2 ln(1/_min)

/
= =

√√
2= ln(1/_min).

Thus, when (30) holds and we have n = 1, the total cost itself is $ (= 1
2 ) and therefore regret cannot be greater than

$ (= 1
2 ). The result follows by noting that $ (= 2

3 ) is the larger bound. �

Remarks: It is worth noting the following:

(1) The proof steps in Theorem 5.1 closely follow some analysis of the standard EWF for PEA with the added

complexity to account for the continuous experts and non-uniform discretization. The analysis for HIL-N is

novel. In particular, the design of the unbiased estimator, steps 1 and 3 in the proof of Theorem 6.1, and the

proof of Lemma 6.2 have new analysis.

(2) The computational complexity of HIL-N is of the same order as that of HIL-F due to the similar interval gener-

ation steps.
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(3) We can remove the dependency of [ on _min and = by using a sequence of dynamic learning rates: [C =
1√
C+1 .

Sublinear regret bounds can be obtained for such a modification but we omit the analysis due to space con-

straints.

7 ALGORITHM IMPLEMENTATION AND COMPUTATIONAL COMPLEXITY

Recall from Lemma 4.1 that cumulative loss is a piece-wise constant function. We use this fact to compute the continu-

ous domain integral in (6) efficiently by splitting the function into multiple rectangular areas of nonuniform base and

then summing them up, where we do not make any discretization error but compute the exact value of the integral.

In each round C , we increase the number of intervals by at most 1 as we split the interval containing ?C at ?C . After

receiving ?C , we thus have # ≤ C + 1 intervals with boundaries given by ? [0] = 0, ? [8 ], 1 ≤ 8 ≤ C , and ? [# ] = 1.

The weight F8,C , 8 ≤ C + 1 of the interval 8 in round C is then updated based on, 1) the weights in round C − 1, and

2) the position of the interval with respect to ?C . Note that in lines 12 of HIL-F and HIL-N, we state that the interval

containing ?C should be split and in line 14 we state that the weights should be computed, but without giving more

details. Below, we present four algorithmic rules that can be used to compute the probability @C , interval boundaries

{? [8 ]} and weights {F8,C }, which needs to be computed in order. Let 9 be the interval strictly below ?C and 3D? be a

boolean variable denoting duplicate ?C .

(8) 9 ← max{8 : ? [8 ] < ?C }.

(88) 3D? ← ��!(�, if ?g ≠ ?C ∀g < C, )'*� otherwise.

(888) @C ←
∑ 9
8=1F8,C (? [8 ] − ? [8−1]) +F 9+1,C (?C − ? [8 ])∑#

8=1F8,C (? [8 ] − ? [8−1])

(8E) # ←


# (3D? = )'*�),

# + 1 (3D? = ��!(�).

(E) ? [8 ] ←




? [8 ] 8 ≤ 9 or (3D? = )'*�)

?C 8 = 9 + 1 and (3D? = ��!(�)

? [8−1] 9 + 1 < 8 ≤ # and (3D? = ��!(�)

(E8) F8,C ←




F8,C−14−[V ? [8 ] > ?C , (3D? = )'*�)

F8−1,C−14−[V ? [8 ] > ?C , (3D? = ��!(�)

F8,C−14−[.C ? [8 ] ≤ ?C ,HIL-F

F8,C−14−[.C /n ? [8 ] ≤ ?C , /C = 1,HIL-N

F8,C−1 ? [8 ] ≤ ?C , /C = 0,HIL-N.

In every round of computation, we need a certain constant number of additions, multiplications, and comparisons

per interval, irrespective of the number of samples already processed. Thus, the computational complexity in each

round is in the order of the number of intervals present in that interval. Now consider a set of = input images. In our

proposed algorithms, the number of intervals in round C is upper bounded by C +1. Thus, the worst-case computational

complexity ofHIL-F in round C is$ (C). Further, when _min is theminimum difference between any two probabilities, the

maximumnumber of intervals is clearly upper bounded by 1/_min, which reduces the complexity to$ (min{C, 1/_min}).
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Proposition 1. The computational complexity of HIL-F and HIL-N in round C is $ (min{C, 1/_min}).

Note that there can be many intervals with lengths larger than _min, and thus the number of intervals can typically

be less than 1/_min, which reduces the complexity in practice. As discussed earlier, one might approximate _min to 1/=
in some datasets, which gives us a complexity of $ (min{C, =}) in terms of the number of images. Also note that the

above complexities are that of round C , and to get the total complexity of the algorithm, one has to sum it overall C .

Finally, we note that there can be datasets where _min < 1/= and for such cases the complexity from Proposition 1

will be $ (C). For instance, this is the case for the MNIST dataset but is not applicable for the Imagenette dataset with

_min =
1
256 . In this regard, we propose a practical modification to the algorithms by limiting the interval size to a

minimum of Δmin > _min, where Δmin is a parameter chosen based on the complexity and cost tradeoffs. One then

considers any different probabilities that lie within Δmin of each other as duplicates while generating new intervals

in line 12 of HIL-F and HIL-N, which further reduces the complexity to$ (min{C, 1/Δmin}). We observed by choosing

different values of _min (including 1
= ) that over a range of values, there is a notable reduction in algorithm runtime,

with negligible difference in the expected average costs.

8 NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed algorithms HIL-F and HIL-N by comparing them against

each other as well as further benchmarks. Our evaluation scenario consists of two different classifiers and four different

datasets. Firstly, we use 8-bit quantized MobileNet [14, 17], with width parameter 0.25, to classify the Imagenette and

Imagewoof datasets [18].We use 0.25 for thewidth parameter as it reduces the number of filters in each layer drastically,

and the resulting MobileNet has a size of 0.5 MB, suitable to fit on an IoT sensor. Imagenette and Imagewoof are derived

from Imagenet [9] and each contains a mixture of 10 different image classes with approximately 400 images per class.

Out of the two, Imagewoof is a tougher dataset for classification as it contains 10 different breeds of dogs. Next, we

use the test set of MNIST dataset [24], which contains 10000 images of handwritten digits from 0 through 9. For this

dataset, we train a linear classifier (without regularizer), as the S-ML model. We convert the labels into vectors of size

10. For label ; , i.e., digit ; , we use all zero vectors except in ;-th location, where the value is 1. After training the classifier,

we scale the output to obtain a probability distribution over the 10 labels. The top-1 accuracy we obtain is 86%. Finally

for CIFAR-10 [22, 23], we use a readily available trained CNN [13] with accuracy 84% as the S-ML model. Note that for

all the simulations we invoke the assumption that the L-ML models have accuracy 1.

As explained in Section 3, we choose the expected average regret 1
=E_ ['=] and expected average cost

1
=E_ ,c [!() , _ )]

as the metrics to compare the performance. Recall that these metrics are upper bounded by 1, which is the maximum

cost in a single round. For simplicity, we refer to them by average regret and average cost, respectively. For the sim-

ulations, we take 100 randomizations of the input sequence . and for each of these randomizations we repeat the

simulations 100 times. The randomization is for the statistical convergence across the sequences of _ (8 .4 ., E_ [.]), and
the repetitions are for the convergence over the randomized decisions based on @C made in line 4 of the algorithms (i.e.,

Ec [.]). We also checked with higher numbers of randomizations and repetitions and verified that 100 × 100 iterations
are sufficient for statistical convergence. We use [ and n from (12) and Lemma 6.2, unless mentioned otherwise.

We use the following four baseline algorithms (i.e., policies) to compare the performance of HIL-F and HIL-N.

(1) Genie – a non-causal policy, where only those images that are misclassified by S-ML are offloaded.

(2) )∗ – an optimal fixed-\ policy. We compute this cost by running a brute-force grid search over all \ .

(3) Full offload – all images are offloaded to the ES.
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(4) No offload – all images are processed locally.

Before we go to the figures, we show the number of images offloaded and the number of images misclassified by

different policies for the Imagenette dataset with a total of 3925 images in TABLE 2. These results are basically the

data point with V = 0.5 from Fig. 3(a) (explained later). We can immediately infer from the table that HIL-F achieves

an offloading rate and misclassification rate very close to that of the optimum fixed-\ policy. Further, HIL-F offloads

approximately the same number of images as the optimum fixed-\ policy and achieves a top-1 accuracy of 92.3%.

Contrast this with a much lower accuracy output of 43.2% by the chosen MobileNet as the S-ML. This also asserts that

our framework with the cost structure V and . indeed facilitates HI by reducing the number of offloaded images that

are correctly classified by S-ML. Note that HIL-N also achieves high accuracy 95.2%, but it achieves this at the cost of

offloading more images, 18% more than \∗ . This is because HIL-N can only get feedback from L-ML and chooses to

offload more images to learn the best threshold. Note that a V of 0.5 corresponds to minimizing the sum of the total

number of errors and offloads. One can the optimum in this case visually from Fig. 2 in Section 1, where all images

below the threshold and all misclassified images above the threshold add 1 to the total costs.

In Fig. 3, we compare the two proposed algorithms HIL-F and HIL-N with the baselines for all four datasets by

plotting the average cost vs. V . Here, Fig. 3(a) through Fig. 3(d) correspond to Imagenette, Imagewoof, MNIST, and

CIFAR-10 datasets, respectively. Observe that HIL-F performs very close to \∗ , having at most 6% higher total cost

than \∗ among all four figures irrespective of the absolute value of the cost or the dataset considered. In Fig. 3(a)

we have also added an inset where we have enlarged a portion of the figure to highlight the distinction between the

proposed policies and \∗ . The vertical difference between these two corresponds to the corresponding regret. We can

see that HIL-F achieves a cost very close to that of \∗ , having at most 4.5% higher total cost than \∗ throughout the

range of V . For instance for the Imagenette dataset with V = 0.5, this increase is less than 1.4%. HIL-N on the other hand

is more sensitive to the properties of the considered dataset. It performs much better than the Full offload policy and

also follows a similar trend as that of the HIL-F. However, for larger values of V the comparative performance of HIL-N

with the No offload policy deteriorates. This is because even when offloading is not optimum, HIL-N is offloading with

a fixed probability n > 0, to learn the ground truth . . Furthermore, we can see by comparing the four figures that,

lower the accuracy of S-ML – for instance in Fig. 3(b) – larger will be the range of V for which HIL-N performs better

than both No offload and Full offload policies.

In Fig. 4 we show the dependency of the algorithm on the learning rate parameter [ plotting the average regret

obtained by the proposed algorithms vs. the number of images for V = 0.7 and different values of [ . We show the plots

for theoretical bound-optimizing [ , and for HIL-F we also show the plots with a few other [ for comparison. First,

note that the HIL-N learns slower compared to HIL-F which is an intuitive behavior because HIL-N cannot learn from

those images that are not offloaded. Also, note that the difference in regret incurred by using _̂min = 1/(= + 1) as an
approximation of _min is minimal – in the order 10−3. Recall that the optimum [ that we proposed is an optimum

for the regret bound, but not necessarily for the regret itself. Hence, it is worth noting that, while using a larger [ is

slightly beneficial in this particular dataset, this turns out to be deleterious for the regret bound, which is valid for any

Images Genie Full offload No offload \∗ HIL-F HIL-N

offloaded 2230 3925 0 2588 2626 3056

Misclassified 0 0 2230 303 304 191

Table 2. Number of images offloaded and misclassified for different policies on Imagene�e with V = 0.5 and optimal [, n .
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(b) Imagewoof dataset
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(d) CIFAR-10 dataset

Fig. 3. Average cost incurred by various offloading policies vs. V for different datasets. The bound optimizing [ and n are used

assuming a prior knowledge of _min. Note that the curves corresponding to \ ∗ and HIL are very close to each other.
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Fig. 4. Average regret vs. Number of images for V = 0.7 using HIL-F and HIL-N on the imagene�e database with various [.

given dataset. Further, too large an [ will give too large weights to the thresholds that achieved lower costs in the past,

making the algorithm resemble a deterministic algorithm that cannot guarantee performance [6].
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9 CONCLUSION

We considered an ED embedded with S-ML and an ES having L-ML and explored the idea of HI, where the ED can

benefit from only offloading samples for which S-ML outputs incorrect inference. Since an ideal implementation of

HI is infeasible, we proposed a novel meta-learning framework where the ED decides to offload or not to offload after

observing the maximum probability ? in the probability mass function output by S-ML. For the full feedback scenario,

we proposed HIL-F, which assigns exponential weights to decision thresholds \ ∈ [0, 1] based on past costs and

probabilistically chooses a threshold, based on ? , to offload or not. For the no-local feedback scenario, we proposedHIL-

N, which uses an unbiased estimator of the cost and generates an additional Bernoulli random variable / and always

offloads if / = 1. A novel and unique aspect of the proposed algorithms is that we use non-uniform discretization, i.e.,

create new intervals in each round based on ? and use these intervals as experts. We proved that HIL-F and HIL-N

have sublinear regret bounds
√
= ln(1/_min)/2 and $

(
=2/3 ln1/3 (1/_min)

)
, respectively, and have runtime complexity

$ (min{C, 1/_min}) in round C . Here, it is worth noting that the term 1/_min acts similarly to the number of experts

in PEA as far as regret bounds are concerned and we have explained simple methods to approximate it. For verifying

the results, we generated values of ? for four datasets, namely, Imagenette, Imagewoof, MNIST, and CIFAR-10, and

compared the performance of HIL-F and HIL-N with four different baseline policies, including the fixed-\ policy. The

cost achieved by the proposed algorithms is always lower compared to the Full offload and the No offload policies and

is close to the cost achieved by the optimum fixed-\ policy for a wide range of V . More importantly, the algorithms

achieve much higher accuracy compared to S-ML while offloading a marginally higher number of images compared

to the optimum fixed-\ policy.
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