
Fast Detection of Cyberattacks on the Metaverse
through User-plane Inference

Beyza Bütün∗†, Aristide Tanyi-Jong Akem∗†, Michele Gucciardo∗, Marco Fiore∗
∗IMDEA Networks Institute, Spain, †Universidad Carlos III de Madrid, Spain

{beyza.butun, aristide.akem, michele.gucciardo, marco.fiore}@imdea.org

This is the author’s accepted version of the article. The final version published by IEEE is B. Bütün, A.T.-J. Akem, M. Gucciardo, and M. Fiore, “Fast
Detection of Cyberattacks on the Metaverse through User-plane Inference,” IEEE MetaCom 2023, Kyoto, Japan, Jun 2023, doi: https://doi.org/10.1109/
MetaCom57706.2023.00067.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—The metaverse is envisioned as a digital world where
people can experience an immersive three-dimensional Internet,
thanks to the profound integration of different technologies like
the Internet of Things (IoT), augmented and virtual reality.
From a technical point of view, developing a system of such an
unprecedented scale and complexity also opens new challenges
in security: a prominent one is the capability to detect and
respond to cyberattacks in the shortest time possible, so as not
to disrupt the live user experience. In this paper, we discuss
how recent advances in user-plane inference can be leveraged to
identify malicious traffic generated by IoT devices connected to
the metaverse at line rate, ensuring a faster reaction than state-
of-the-art approaches where the attack detection is performed in
the control plane. We demonstrate the viability of the solution
in a programmable network testbed composed of off-the-shelf
Intel Tofino switches and with real-world traffic hiding a number
of different IoT-based cyberattacks. Our experimental results
show that Random Forest models implemented in programmable
switches can achieve up to 99% accuracy while using less than
5% of the hardware resources on average in the target case
study. Moreover, they quantify the existing trade-off between
attack detection precision and user plane resource consumption.

Index Terms—Metaverse, SDN, IoT, in-switch inference, P4

I. INTRODUCTION

The metaverse is envisioned as a digital world where people
can live with a digital alter ego, or avatar [1], in what will be
the next immersive three-dimensional Internet [2]. Networking
technologies are critical enablers for the metaverse, in partic-
ular towards guaranteeing the extremely low latency required
by many metaverse applications [3].

The fusion of networking technologies required to run the
metaverse creates a perfect environment for various security
and privacy breaches [4]. As such, the security and privacy
of the metaverse users, as well as that of the IoT devices,
must be defended from the many threats at multiple points
of the network ecosystem. Current state-of-the-art approaches
for securing IoT networks rely on SDN paradigms where
a controller collects traffic data and monitors the behavior
of individual devices [4], so as to profile [5] or isolate [6]
malicious connected objects. However, approaches relying on
traditional SDN involve unavoidable back-and-forth commu-
nication between the user plane that handles the actual data
traffic and the control plane where such traffic is analyzed
and attacks are detected. This introduces an inherent delay
that can range from hundreds of milliseconds to seconds [7]
in responding to cyberattacks, which risks to be troublesome
for time-sensitive applications in the metaverse [8].

In this paper, we advocate for a novel paradigm where a
much faster response to metaverse attacks is realized via user-
plane-only inference, and interactions with the control plane
are minimized. Our proposal leverage the present proliferation
of off-the-shelf programmable data planes like the Intel Tofino
ASIC [9], and of domain-specific languages like P4 [10].
Building on these tools, we propose the very first framework
for the fast and automated detection of cyberattacks against
metaverse IoT devices that relies on pure user-plane inference.
By offloading the decision logic from the control plane to the
data plane, and perform inference directly in P4 programmable
switches, our approach lets us classify traffic for attack detec-
tion at line rate, with high throughput and very low latency,
hence abiding by the requirements of metaverse applications.
With this solution, we make the following contributions.

• We outline a workflow that brings the concept of user-
plane machine learning inference into the metaverse
ecosystem for line-rate IoT cyberattack detection.

• We introduce a feature, hyperparameter, and model selec-
tion process based on an exhaustive grid search, which
allows exploring the trade-off between the performance
and complexity of models for in-switch operation.

• We implement our solution in a production-grade Intel
Tofino programmable switch, using the P4 language, and
make our code openly available1 to the community.

• We conduct an experimental evaluation of the perfor-
mance of the proposed solution, using a real-world
measurement data. Results show how we can detect
different attack classes at line rate with an F1 score above
99%, while consuming on average less than 5% of total
resources available in the switch.

These contributions let us make a step forward with respect to
the state-of-the-art control-plane solutions in terms of detec-
tion speed and response time to attacks, and position in-switch
attack detection as a viable tool for securing the metaverse.

II. SECURING THE METAVERSE AT LINE RATE

In the evolution towards a full-fledged three-dimensional
Internet, the metaverse will largely rely on cutting-edge com-
munication technologies, and will thus be exposed to many
network-related attacks. In order to detect and/or counter such
threats, several solutions have been proposed. As a few repre-
sentative examples, situational awareness has been proposed as
a powerful tool for monitoring one or more security domains

1Our code is available at https://github.com/nds-group/MetaCom.

https://doi.org/10.1109/MetaCom57706.2023.00067
https://doi.org/10.1109/MetaCom57706.2023.00067
https://github.com/nds-group/MetaCom


Control
plane

VNF
plane

User
plane

Metaverse domain

benignmalicious

Orchestration plane

Orchestrator

Controller

Honeynet

IoT
gateway

OpenFlow
switch

Tofino
switch

Inference

Inference

Inference
Controller

Controller

IDS Edge
MUD

Honeynet

MUD profiles

IDS

Metaverse
Application 
server

Fig. 1: State-of-the-art solutions overview. Solid lines refer to
traffic data: targeted by the inference (yellow), benign (green)
and malicious (red). Dashed lines refer to control or feature
data flows for the solutions from [6] (purple, on the left) and
from [5] (light blue, on the right). Our solution is highlighted
(dark blue, in the middle). Figure best viewed in colors.

and reacting promptly [11]; Support Vector Machine (SVM)
and clustering has been shown to achieve above 90% accu-
racy in detecting attacks against an industrial control system
simulated via Virtual Reality (VR) [12]; or, Auto Encoders
(AEs) have been adopted to learn latent representations of IoT
data and show how such representations greatly improve the
supervised classification of new attacks [13].

All approaches mentioned above, as well as all other
methods in the literature to date, invariably involve deploying
the solution in the control and/or orchestration planes. This
is illustrated in Figure 1 for two representative proposals
introducing sophisticated state-of-the-art architectures based
on SDN to identify and isolate malicious behaviors in IoT
network [5], [6]. In both workflows, the metaverse domain is
defended from attacks via three steps: (i) domain monitoring,
(ii) traffic classification, and (iii) malicious traffic isolation.
In [6], the monitoring function is fulfilled by a dedicated
virtual intrusion detection system (IDS). When the virtual IDS
raises an alarm, the controller triggers the switch to send its
traffic to an inference block running in the orchestration plane.
The classification result is sent to the orchestrator that can
select between multiple security policies. The loop is closed
by the controller which is responsible for enforcing the chosen
policies. The solution described in [5] has a similar workflow,
with an IDS running in the CPU of the IoT Gateway triggering
the forwarding of flow level metrics to the control plane, where
the inference module resides. The classification is performed
by feeding a deep neural network with low-level data and
MUD profiles taken from databases. After the classification,
the controller instructs the switch to drop malicious traffic and
updates a MUD module that in turn updates the IDS.

The communications between multiple actors deployed at
different planes introduced by approaches such as those above
ultimately translates into network overhead and delays that
may significantly curb a fast response to attacks. Hence, we
propose to reduce the latency in attack detection and response
by exploiting the recent advancements in in-switch inference
[14]–[20] to perform those tasks directly in the user plane.

Benign traffic

Malicious traffic

Target traffic

Security
rules

Pa
rs

in
g

Match Action

Target traffic inference

Generic traffic forward

Malicious traffic honeynet

Benign traffic forward

D
ep

ar
si

n
g

Per-packet digest

Controller

Inference

Source domains

Industrial

Automotive

Metaverse

benignmalicious

Switch

Generic traffic
Application servers

Generic

Honeynet

Metaverse

Fig. 2: Overview of the operation of the proposed framework
for fast user-plane identification of metaverse cyberattacks.

Figure 1 also illustrates how our framework would perform
the separation of benign and malicious traffic directly in the
switch, leaving to the controller the only task of modifying the
security policies after the attack has been detected. In addition
to cutting delays, the approach has the benefit of distributing
the cyberattack detection task among many switches, so that
the controller is no longer a single point of failure.

A detailed view of the proposed user-plane metaverse attack
identification framework is provided in Figure 2. The traffic
between the metaverse domain and the corresponding server
transits through a switch. The switch has been instructed by the
controller to perform classification of traffic in the metaverse
domain. During parsing, the information needed to identify the
domain and to build the features for the subsequent inference
is extracted from the packet. Matching the domain information
against a table allows forwarding normally all traffic that is
outside the metaverse domain, whereas the features of the
metaverse traffic are sent to an inference module implemented
within the switch. After the classification, traffic detected as
malicious is forwarded to a honeynet for further analysis, and
the benign traffic is forwarded to the application server.

III. PRACTICAL IMPLEMENTATION

Realizing our proposal for fast user-plane security requires
developing suitable machine learning models and embedding
them into programmable switches. As model design and
training are computationally heavy tasks that go well beyond
the switch capabilities, they are performed offline, and only
the trained model is deployed in the user plane. Model design
and training are carried out through the following three phases.

Feature extraction. We use legacy header fields to com-
pute stateless packet-level features. The features used in our
pipeline include TCP flags (ACK, SYN, PUSH, ECE, RESET,
FIN), TCP/UDP source and destination ports, packet size, TCP
data offset, IP packet length, and Time-to-live (TTL).

Model training. We employ the Scikit-Learn libraries [21]
to train Random Forest (RF) models on historical traffic
measured in the target network and provided in the form of
packet capture (pcap) files. We opt for RF models as they
have been repeatedly proven to suit well the architecture of
programmable switches [14]–[20].



Feature and hyper-parameter selection. To identify the
best combinations of RF model features and hyper-parameters,
we run an automated exhaustive grid search. The process
explores all RF models with number of trees and tree depth
within a predetermined range, and with the features added
one by one in the importance order obtained by the Mean
Decrease in Impurity (MDI). It picks the smallest feature set
that achieves the best performance in the target use case.

Once the final RF model has been identified and trained,
we deploy it into the programmable switch. Specifically, we
employ the first stage of the Henna model [14] to map
the trained RF model onto the Protocol Independent Switch
Architecture (PISA) adopted by modern programmable switch
ASICs. The mapping is based on that originally proposed by
Planter [18], whose code was not available at the time of
writing. The process ultimately realizes the inference stage
in Figure 2, and comprises the building blocks described next.

Ingress parser. Packets arriving at the switch are processed
by the ingress parser, which process the IP and transport-layer
protocol headers so as to compose and store in the packet
header vector (PHV) the features needed for the inference task.

Ingress control. Based on the extracted features, the asso-
ciated domain of the packet is determined. In case the packet
does not belong to the metaverse domain, it is forwarded
according to the standard switching rules. Otherwise, the
inference process is triggered by pushing the packet through
the match-action (M/A) stages implementing the RF model.

RF mapping. The first set of M/A stages map the RF model
to the PISA pipeline. The mapping relies on generating a
codeword which embeds the paths to be taken in each tree
of the RF model, and is matched against a final set of tables,
one per tree, associating each possible codeword (i.e., path)
to the classification result Thus, once it has traversed all M/A
stages, the packet is tagged with a class by each tree. We refer
the reader to [14] and Planter [18] for full details.

Voting system. The final classification decision of the RF
model is obtained by a majority vote on the outcome returned
by the individual trees. In case of a tie, the certainty value
associated to each leaf node, which denotes the accuracy of
the classification decision is used: the individual tree output
with the highest certainty is adopted.

IV. PERFORMANCE EVALUATION

We implement our proposal for in-switch cyberattack detec-
tion in an experimental programmable network testbed, as out-
lined in Section IV-A. We demonstrate the practical viability
of the solution on publicly available real-world network traffic
measurements of IoT-based threats presented in Section IV-B,
using performance metrics in Section IV-C.

A. Hardware setup

Our testbed consists of three Edgecore Wedge100 pro-
grammable switches with Intel Tofino BFN-T10-032Q chipsets
and 32 100GbE QSFP28 ports, and two servers equipped with
Intel 8-core Xeon processors at 2GHz, 48GB of RAM, and
QSFP28 interfaces. The testbed is thus fully 100Gbps-capable.

TABLE I: Performance of different RF models in detecting
cyberattacks in the IoT/IIoT space, in terms of weighted F1
score, true positive rate (TPR), false positive rate (FPR), true
negative rate (TNR) and false negative rate (FNR).

Weighted
F1-Score TPR FPR TNR FNR

Model Python Switch Python Switch Python Switch Python Switch Python Switch
RF(5,3,7) 98.34 98.33 99.66 99.67 2.84 2.91 97.16 97.09 0.34 0.33
RF(7,3,7) 98.53 98.89 98.35 98.96 1.11 1.20 98.89 98.80 1.65 1.04
RF(9,3,10) 98.92 98.85 99.89 99.77 2.72 2.68 97.28 97.32 0.11 0.23
RF(10,3,9) 99.28 99.27 99.93 99.93 0.74 0.77 99.26 99.23 0.07 0.07

The switches run an Open Network Linux (ONL) operating
system. To automatically conduct the initial configuration of
the switch and perform tasks such as setting up switch ports
and loading the mapped RF model table entries, we use a
Python controller program that interacts with the Barefoot
Runtime Interface (BRI). Then, by replaying pcap traces using
Tcpreplay [22], we employ 100Gbps connections to inject
traffic into the switch from one server to the other.

B. Cyberattack dataset
To demonstrate how in-switch machine learning inference

can detect and classify attacks in metaverse IoT networks at
line rate, we use the ToN-IoT dataset [23] captured from a
representative medium-scale testbed deployed using several
virtual machines to manage the interconnections between
the network domains of Cloud, Fog, and Edge. The testbed
includes IoT, industrial IoT, and non-IoT devices in the Edge
network domain. The dataset is captured using parallel pro-
cessing to collect benign and several cyberattack events [23],
such as Scanning, Denial of Service (DoS), Distributed Denial
of Service (DDoS), Ransomware, Backdoor, Injection, Cross-
site Scripting (XSS), Password, Man-In-The-Middle (MITM).

C. Detection goal and metrics
Our inference objective is to classify packets transiting in

the switch by tagging them as either benign or belonging
to one of three attack classes: DoS, Backdoor, and others.
The last class includes Scanning, DDoS, Ransomware, In-
jection, XSS, Password Cracking, and MITM attacks. The
cyberattack detection performance is evaluated using metrics
derived from four key measures of a classification task, i.e.,
true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN), which are True positive rate (TPR)
= TP/(TP+FN), False positive rate (FPR) = FP/(FP+TN), True
negative rate (TNR) = TN/(TN+FP), False negative rate (FNR)
= FN/(FN+TP), and F1 score = 2TP/(2TP+FP+FN). For the
classification quality, we utilize the weighted F1 score that is
the mean computed for each class weighted using the number
of samples of each class in the data. We report all these values
as percentages for the sake of interpretability.

V. RESULTS AND DISCUSSION

Based on the offline feature and hyper-parameter selection
phase we select a choice of four RF models with varying
complexity and yielding different inference accuracy. We refer
to these models as RF (5, 3, 7), RF (7, 3, 7), RF (9, 3, 10), and
RF (10, 3, 9), respectively, where the parameters indicate the
depth, trees and number of features used by each model.



normal backdoor dos others 
Actual Values

no
rm

al
ba

ck
do

or
do

s
ot

he
rs

 
P

re
di

ct
ed

 V
al

ue
s

97.09 4.02 0.01 0.4

0.02 94.22 0 0

0 0 99.92 0.78

2.89 1.75 0.07 98.82

0

20

40

60

80

100

(a) RF(5,3,7)

normal backdoor dos others 
Actual Values

no
rm

al
ba

ck
do

or
do

s
ot

he
rs

 
P

re
di

ct
ed

 V
al

ue
s

98.8 1.49 0.01 1.31

0 97.66 0 0

0 0 99.92 0

1.2 0.84 0.07 98.69

0

20

40

60

80

100

(b) RF(7,3,7)

normal backdoor dos others 
Actual Values

no
rm

al
ba

ck
do

or
do

s
ot

he
rs

 
P

re
di

ct
ed

 V
al

ue
s

97.32 0.76 0 0.29

0.01 97.2 0 0

0 0 99.92 0

2.68 2.05 0.08 99.71

0

20

40

60

80

100

(c) RF(9,3,10)

normal backdoor dos others 
Actual Values

no
rm

al
ba

ck
do

or
do

s
ot

he
rs

 
P

re
di

ct
ed

 V
al

ue
s

99.23 0.24 0 0.08

0 97.2 0 0

0 0 99.92 0.78

0.77 2.56 0.08 99.14

0

20

40

60

80

100

(d) RF(10,3,9)

Fig. 3: Confusion matrices of the four selected RF models implemented in an Intel Tofino switch, computed based on the
cyberattack detection results recorded in the experimental programmable network testbed.

TABLE II: Resource utilization by the cyberattack detection
module as a percentage of the total resource available.

Resource Models
RF(5,3,7) RF(7,3,7) RF(9,3,10) RF(10,3,9)

Action Data Bus Bytes 2.20 3.50 6.80 9.80
Logical Table ID 8.90 8.90 10.40 9.90
SRAM 1.60 1.60 2.00 2.20
TCAM 4.20 7.30 14.20 19.40
Ternary Match Input Crossbar 3.90 6.90 14.00 19.90
VLIW Instruction 4.40 3.90 4.40 4.40
Total Avg. Resource Usage 2.02 2.43 3.59 4.40
Match & Action Stages 7 7 9 9

A. Classification accuracy

The classification performance of our solution in identifying
attacks is summarized in Table I in terms of weighted F1 score,
TPR, FPR, TNR, and FNR. For each metric, we report results
obtained with the python implementation of the RF models,
which runs on a regular CPU, and with the P4 implementation
in the programmable switches of our experimental testbed.
This allows us to comment on if and to what extent the
constraints of in-switch inference affect the performance of
the machine learning solution when it is run directly in the
user plane, compared to a counterpart operating in the control
plane as commended by state-of-the-art security solutions for
the metaverse based on SDN.

Overall, we correctly identify attacks with a weighted F1
scores in the range 98.34% to 99.28% depending on the RF
model. TPR values are well above 99% in three of the four
models; in the case of the most complex RF (10, 3, 9) model,
the switch correctly detects more than 99.9% of all malicious
packets. TNR values are slightly lower for the less complex RF
models, indicating that benign traffic is slightly more difficult
to classify correctly, most likely due to its more heterogeneous
nature; yet, the value stays above 97% in the worst case. The
FPR is always less than 3%, and the FNR is never above 0.5%,
showing the low error rate of the in-switch solution.

When comparing the implementation programmed in P4
and running in the switch with that CPU-based in python,
differences are overall negligible. These discrepancies are
ascribed to the fact that there is a small fraction of packets
(less than 0.4%) for which a tie occurs in the majority
vote of the RF trees, and all trees yield the same certainty
values. The python implementation embeds further tie-breaker
mechanisms to deal with these situations, which are however

RF(5,3,7) RF(7,3,7) RF(9,3,10) RF(10,3,9)
RF Model

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Re
so

ur
ce

 U
sa

ge
 (%

)

F1-Score
Total Avg.

98.00

98.25

98.50

98.75

99.00

99.25

99.50

99.75

100.00

F1
 S

co
re

(a)

RF(5,3,7) RF(7,3,7) RF(9,3,10) RF(10,3,9)
RF Model

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Re
so

ur
ce

 U
sa

ge
 (%

)

F1-Score
Action Data Bus
TCAM
TM XBar

98.00

98.25

98.50

98.75

99.00

99.25

99.50

99.75

100.00

F1
 S

co
re

(b)

Fig. 4: Accuracy and resource usage of the in-switch models.
(a) All resources. (b) Action Data Bus, TCAM, and TM
Crossbar.

too complex to implement in the switch, which is forced to
take random choices. Yet, overall, the performance of a user-
plane implementation is well aligned with those of legacy
control-plane solutions, proving the viability of our approach.

A detailed breakdown of the performance of the user-
plane solution is presented in Figure 3, where the complete
confusion matrices are reported for the four RF models.
Benign normal traffic is correctly classified in over 97% of
cases with the simplest RF (5, 3, 7) model, and in more than
99% of packets with the most complex RF (10, 3, 9) model.
Backdoor attacks are detected above 97% of the time across
all the models, except for the simplest RF (5, 3, 7) model
where performance drops to 94%. DoS attacks are detected
in over 99% of situations with all the models, while the other
attacks are classified with a score of over 98% with the simpler
models and over 99% with the other two models. These figures
let us conclude that user-plane cyberattack detection not only
separates malicious traffic from normal traffic, but can further
tell apart three types of cyberattacks with high accuracy.

Finally, it is worth noting that all in-switch results above
are obtained by processing packets at the same rate at which
the traffic data goes through the switching hardware. This
implies that the cyberattack detection occurs transparently as
packets traverse the switching fabric, with a negligible added
latency to regular user-plane operation. Indeed, we measured
an average inference latency in the range of 73–91 ns per
packet, which proves how a pure user-plane implementation
of a security mechanism for the metaverse yields huge latency
improvement over traditional control-plane approaches that
involve communication delays of milliseconds to seconds [7].



B. Resource usage

As programmable switches are highly constrained in terms
of available resources, it is important to assess the resource
footprint of the cyberattack detection functionality once it is
deployed in the hardware. To gather statistics on resource
usage, we use the Intel P4 Insight tool, which delivers a
thorough analysis of the compiled P4 programs in the target
Intel Tofino ASICs, and of their mapping to specific hardware
resources. The results are recapitulated in Table II.

On average, the RF models we use consume less than 5% of
the total available resources on the hardware. When juxtaposed
to the standard P4 program for core L2/L3 switching, i.e.,
switch.p4, integrating a cyberattack detection functionality
grows resource usage by around 10% over what the baseline
program already needs. Usage is however not uniform across
different types of resources: in most cases, requirements are
fairly limited, between 0% and 10%, but exceptions exist for
the ternary content-addressable memory (TCAM) and ternary
match input crossbar (TM Crossbar) that are used for matching
codewords that include wildcards. In these cases, the RF
models could consume 4% to 20% of the switch resources.
In all cases, consumption is low enough for all types of
resources and shows that in-switch machine learning inference
is a potentially viable solution for detecting attacks against IoT
devices in the metaverse, while still allowing coexistence with
other legacy switching functions.

Importantly, different RF models have fairly diverse needs in
terms of switch resources, especially for those most intensively
used for inference, like the aforementioned TCAM and TM
Crossbar, or the Action Data Bus Bytes. By cross-correlating
these results with the performance in Table I, we can quantify
the trade-off between accuracy and requirements of the cyber-
attack detection functionality implemented in a programmable
switch. Figure 4 summarizes the trade-off, by comparing how
models of increasing complexity consume resources and affect
the weighted F1 score, which we consider here as an overall
measure of inference quality. Figure 4a shows that the total
resource utilization grows in a way that is fairly proportional
to the detection accuracy. Figure 4b confirms that this is the
case also for those individual resources that are affected the
most by the model hyper-parameters.

Note that the scales are different: e.g., increasing the max-
imum tree depth from 5 to 10 leads to a 1% gain in F1 score
and a 2% drop in FPR, but results in a 15% and 16% absolute
increase in the amount of required TCAM and TM Crossbar.
This creates a space for the operator to decide whether to
deploy a more complex user-plane cyberattack identification
and attain near-perfect accuracy, or spare resources and accept
a 3% error in immediately detecting attacks to the metaverse.

VI. CONCLUSIONS

We propose a machine learning solution for detecting cy-
berattacks against IoT devices in the metaverse, which is fully
deployed in the user plane. Our design operates at line rate,
and removes the communication latency with the control plane
that affects current SDN-based approaches for securing the

metaverse. Experiments with off-the-shelf hardware and real-
world traffic show that we can detect cyberattacks with 99%
accuracy while consuming on average less than 5% of the total
hardware resources, and with latency well below 100 ns.

ACKNOWLEDGMENTS

This work has received funding from the European
Union’s Horizon 2020 research and innovation program under
grant agreement no. 101017109 “DAEMON” and the Marie
Skłodowska-Curie grant agreement no. 860239 “BANYAN”,
from the CHIST-ERA grant no. CHIST-ERA-20-SICT-001
“ECOMOME”, and from the Spanish Ministry of Economic
Affairs and Digital Transformation and the European Union-
NextGenerationEU through the UNICO 5G I+D project
no.TSI-063000-2021-52 “AEON-ZERO”. We thank the Intel
Connectivity Research Program for their support.

REFERENCES

[1] J. Xu et al., “Metaverse: The vision for the future,” in CHI EA ’22. NY,
USA: ACM, 2022.

[2] L-H. Lee et al., “What is the metaverse? an immersive cyberspace and
open challenges,” arXiv, 2022.

[3] Y. Fu, C. Li, F. R. Yu, T. H. Luan, P. Zhao, and S. Liu, “A survey of
blockchain and intelligent networking for the metaverse,” IEEE Internet
of Things Journal, 2022.

[4] Y. Wang et al., “A survey on metaverse: Fundamentals, security, and
privacy,” IEEE Communications Surveys & Tutorials, 2022.

[5] P. Krishnan et al., “MUD-based behavioral profiling security framework
for software-defined IoT networks,” IEEE Internet of Things Journal,
vol. 9, no. 9, 2022.

[6] A.M. Zarca et al., “Virtual IoT honeynets to mitigate cyberattacks in
SDN/NFV-enabled IoT networks,” IEEE Journal on Selected Areas in
Communications, vol. 38, 2020.

[7] K. He et al., “Measuring control plane latency in SDN-Enabled
switches,” in Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, New York, NY, USA, 2015.

[8] J. Yu et al., “6G mobile-edge empowered metaverse: Requirements,
technologies, challenges and research directions,” arXiv, 2022.

[9] Intel, “Tofino Programmable Ethernet Switch ASIC,” 2016.
[10] P. Bosshart et al., “P4: Programming protocol-independent packet pro-

cessors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, 2014.
[11] J. Woodward et al., “Analytic review of using augmented reality for sit-

uational awareness,” IEEE Transactions on Visualization and Computer
Graphics, pp. 1–1, 2022.

[12] Z. Lv et al. , “Industrial security solution for virtual reality,” IEEE
Internet of Things Journal, vol. 8, no. 8, 2021.

[13] L. Vu et al., “Learning latent representation for IoT anomaly detection,”
IEEE Transactions on Cybernetics, vol. 52, no. 5, 2022.

[14] A.T-J. Akem et al., “Henna: Hierarchical machine learning inference in
programmable switches,” in NativeNi ’22. NY, USA: ACM, 2022.

[15] C. Zheng et al., “IIsy: Practical in-network classification,” arXiv, 2022.
[16] G. Xie et al., “Mousika: Enable general in-network intelligence in

programmable switches by knowledge distillation,” in IEEE INFOCOM
2022.

[17] B-G. Coralie et al., “pForest: In-network inference with random forests,”
CoRR, vol. abs/1909.05680, 2019.

[18] C. Zheng et al., “Automating in-network machine learning,” arXiv, 2022.
[19] B.M. Xavier et al., “Programmable switches for in-networking classifi-

cation,” in IEEE INFOCOM 2021, 2021.
[20] X. Zhang et al. , “pHeavy: Predicting heavy flows in the programmable

data plane,” IEEE Transactions on Network and Service Management,
vol. 18, no. 4, 2021.

[21] “Scikit-learn: Machine Learning in Python, author=F. Pedregosa et al.”
Journal of Machine Learning Research, vol. 12, 2011.

[22] A. Turner et al., “Tcpreplay,” 2013. [Online]. Available: https:
//tcpreplay.appneta.com/

[23] A. Alsaedi et al., “TON IoT telemetry dataset: A new generation dataset
of IoT and IIoT for data-driven intrusion detection systems,” IEEE
Access, vol. 8, 2020.

https://tcpreplay.appneta.com/
https://tcpreplay.appneta.com/

	Introduction
	Securing the metaverse at line rate
	Practical implementation
	Performance evaluation
	Hardware setup
	Cyberattack dataset
	Detection goal and metrics

	Results and discussion
	Classification accuracy
	Resource usage

	Conclusions
	References

