
Demonstrating Flow-Level In-Switch Inference
Michele Gucciardo∗, Aristide Tanyi-Jong Akem∗†, Beyza Bütün∗†, Marco Fiore∗

∗IMDEA Networks Institute, Spain, †Universidad Carlos III de Madrid, Spain
{michele.gucciardo, aristide.akem, beyza.butun, marco.fiore}@imdea.org

This is the author’s accepted version of the article. The final version published by IEEE is M. Gucciardo, A.T-J. Akem, B. Bütün and M. Fiore, “Demonstrating
Flow-Level In-Switch Inference,” IEEE INFOCOM 2023 Demo Session - IEEE Conference on Computer Communications, 2023, doi:
https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10225967.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Existing approaches for in-switch inference with
Random Forest (RF) models that can run on production-level
hardware do not support flow-level features and have limited
scalability to the task size. This leads to performance barriers
when tackling complex inference problems with sizable decision
spaces. Flowrest is a complete RF model framework that fills
existing gaps in the existing literature and enables practical flow-
level inference in commercial programmable switches. In this
demonstration, we exhibit how Flowrest can classify individual
traffic flows at line rate in an experimental platform based on
Intel Tofino switches. To this end, we run experiments with
real-world measurement data, and show how Flowrest yields
improvements in accuracy with respect to solutions that are
limited to packet-level inference in programmable hardware.

I. CONTEXT AND MOTIVATION

Machine learning (ML) models have become key enablers
of automation in networking scenarios with applications in
areas such as traffic classification, quality of service (QoS) pre-
diction, and routing optimization. In the traditional software-
defined network (SDN) paradigm, the ML models are trained
and executed in the control plane. However, such models
do not operate at line rate and hence do not meet the very
low latency requirements typical of many and varied next-
generation network functions.

The current availability of off-the-shelf programmable data
planes, like Intel Tofino ASICs [1], and of domain-specific
languages like P4 [2] brings new prospects for low-latency
and high-throughput inference in networks. There have been
multiple proposals to encode trained ML models directly into
network devices like switches or Smart Network Interface
Cards (SmartNICs). Embedding ML models into such devices
is a challenging task, especially in the case of programmable
switches, owing to their high constraints in terms of memory,
support for mathematical operations, and the amount of al-
lowed per-packet operations.

Previous works [3]–[5] have shown the potential of in-
switch inference based on Decision Tree (DT) and Random
Forest (RF) models. Yet, due to the constraints above, existing
approaches fall short in at least three aspects. First, most
solutions employ only stateless packet-level features and do
not use stateful flow-level features such as inter-arrival times
and flow counts that are essential for an effective inference in
challenging use cases. Second, they support limited scalability
in terms of ML model complexity and of the difficulty of
the classification tasks that can be effectively handled. Lastly,
many solutions are only tested in emulation environments and
are unsuitable for real hardware deployment.

II. PROPOSED SOLUTION

Flowrest [6] addresses the shortcomings of previous solu-
tions by proposing a practical framework that can run RF
models at flow level in real-world programmable switches. It
enables the embedding of large RF models into production-
grade hardware, for challenging inference tasks on individual
traffic flows and at line rate.
Flowrest is implemented as open-source software using

the P4 language. It is designed for the Protocol Independent
Switch Architecture (PISA) and is fully described in [6].
It enables a synergic integration of in-switch inference with
the legacy forwarding functions of the switch. Flowrest

effectively exploits flow-level metrics that are computed and
stored in the switch to be used as features for complex
inference tasks. In our solution, we take into account the
constraints of the programmable switches and tailor the RF
models’ features and hyper-parameters from the design phase.

Packets arriving in the switch are parsed and header in-
formation is extracted. If the packets are already classified or
do not have to be, they are forwarded normally. Otherwise,
they go through flow management which comprises three
phases that rely on a flow management table: (i) flow tracking,
where CRC32 and CRC16 hashes of a 5-tuple of header
information (source and destination IP addresses, source and
destination ports, and protocol) are used to identify flows and
retrieve their associated data; (ii) flow-level feature handling,
in which per-flow features are read and updated via Tofino’s
RegisterAction extern; (iii) early forwarding, in which
already classified flows use the classification result stored in
the switch to get forwarded without going through inference.

After going through flow management, packets reach the in-
ference module. Here, Flowrest employs a mapping scheme
based on that proposed by Planter [5] to encode RF models
into the switch pipeline. The scheme exploits range matches to
compare the computed features against feature tables, one for
each feature of the forest, and compose unique codewords that
identify a specific leaf on a tree. The resulting codewords are
then compared with ternary matches against codeword tables,
one for each tree. A voting table then produces the final class
as a majority vote of the different tree outputs.

III. DEMONSTRATION

The demonstration has two main goals. The first one
is to showcase how Flowrest outperforms a benchmark
solution based on packet-level inference in a challenging
classification use case. We use the UNIBS-2009 dataset,



Figure 1: Demonstration workflow, and mapping of the logical
components of the control and user planes into the testbed
hardware.

capturing real-world traffic including peer-to-peer applications
(BitTorrent, Edonkey), mail (POP3, IMAP4, SMTP), web
traffic (HTTP/HTTPS), and other protocols (FTP, SSH). In
a classification task that aims at identifying these 8 traffic
categories, Flowrest improves the classification accuracy of
the benchmark by 10%. The second goal of the demo is to
prove experimentally that in-switch inference can be fully
performed at line-rate, with minimum delay with respect to
normal forwarding. To this end, we implement our demon-
stration in a real-world testbed with one Edgecore switch
with an Intel Tofino BFN-T10-032Q chipset and two off-the-
shelf servers with Intel 8-core Xeon processors at 2GHz and
48GB of RAM. The hardware is interconnected with QSFP28
interfaces, resulting in a full 100-Gbps platform, as shown at
the bottom of Figure 1.

We perform three different evaluations. The first one aims
at estimating the end-to-end latency when no inference is per-
formed in the switch, running normal forwarding in the switch.
In the second and third evaluations, we estimate the end-to-
end latency and the classification performance of Flowrest
and the benchmark solution respectively, in a challenging
classification task. We estimate the classification performance
with three different metrics: F1-score, precision, and recall.
The evaluations are performed by running three experiments
one after the other, for about 60 seconds each. During each
iteration, we calculate and display in the dashboard the rel-
evant metrics live. After each iteration, the results are kept to
provide a comparison between the other evaluations.

The demonstration workflow builds on five logical compon-
ents: (i) packet source ; (ii) programmable switch; (iii) sink
for the traffic; (iv) controller that interacts with the switch,
with the traffic sink and with the statistics dashboard; (v)
dashboard that displays the statistics. These components are
mapped into the testbed hardware as shown in Figure 1.

Traffic source. We implement the traffic source into a
dedicated server. This component generates and sends traffic
packets to the switch. The packets that are targeted by the

inference, highlighted in yellow in Figure 1, are injected into
the switch by replaying pcap traces via Tcpreplay. We also
inject normal traffic with MoonGen packet generator.

Programmable switch. We use an Intel Tofino switch to
forward traffic from the source to the sink. After parsing, the
traffic is categorized as generic or target in the inference-aware
forwarding block, as shown in Figure 1. While generic traffic
is forwarded without any further action, the target packets are
first identified as belonging to specific flows, then classified
and finally forwarded according to their class, as described in
detail in Section II. After each classification, a digest is sent
to the controller with the class of the flow.

Traffic sink. The traffic forwarded by the switch is collected
by a Tcpdump instance running on a second server. Once all
the target packets have been received, we can analyze the
resulting pcap trace in order to find the time of arrival of
the packets. With this information, we can easily calculate the
end-to-end latency, from the source to the sink, by subtracting
the original timestamp of the packets.

Controller. We run a controller instance in the second server
of the testbed. It is a very important element since it plays
multiple roles. First of all, it configures the switch at each
iteration by injecting the P4 code of the relevant evaluation
to perform. Second, it analyzes the traces collected by the
traffic sink in order to calculate the end-to-end latency. Third,
it calculates the inference performance in terms of F1-score,
precision, and recall by comparing the classification results
with the ground truth. Finally, the controller interacts with the
statistics dashboard and feeds data to it.

Statistics dashboard. We show the performance of
Flowrest in a dashboard connected to the Controller. The
dashboard is organized into two main areas, as shown in Figure
1. In the first one, we show live results while each evaluation
is running. In the second one, we summarize and compare the
results of each evaluation with each other.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement no. 101017109 “DAEMON”, which supported the
work of M. Gucciardo, and the Marie Skłodowska-Curie grant
agreement no. 860239 “BANYAN”, which supported the work
of A.T.-J. Akem. This work was also funded by the CHIST-
ERA grant no. CHIST-ERA-20-SICT-001 “ECOMOME”, via
grant PCI2022-133013 of Agencia Estatal de Investigación,
which supported the work of B. Bütün.

REFERENCES

[1] Intel, “Tofino Switch.” [Online]. Available: https://tinyurl.com/ycx79k4z
[2] P. Bosshart et al., “P4: Programming protocol-independent packet pro-

cessors,” SIGCOMM Computer Communication Review, vol. 44, no. 3,
jul 2014.

[3] Z. Xiong et al., “Do switches dream of machine learning? toward in-
network classification,” in HotNets 2019. NY, USA: ACM, 2019.

[4] C. Busse-Grawitz et al., “pForest: In-network inference with random
forests,” CoRR, vol. abs/1909.05680, 2019.

[5] C. Zheng et al., “Planter: Seeding trees within switches,” in SIGCOMM
’21. NY, USA: ACM, 2021.

[6] A.T-J. Akem et al., “Flowrest: Practical flow-level inference in program-
mable switches with random forests,” in IEEE INFOCOM 2023.


