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Abstract—Reconfigurable intelligent surfaces (RISs) have great
potential to improve the coverage of mmWave networks; however,
acquiring perfect channel state information (CSI) of a RIS-
enabled mmWave network is very costly and should thus be
done infrequently. At the same time, finding an optimal RIS
configuration when CSI is outdated is challenging. To this end,
this work aims to provide practical insights into the tradeoff
between the outdatedness of the CSI and the system performance
by using the effective capacity as analytical tool. We consider
a RIS-enabled mmWave downlink where the base station (BS)
operates under statistical quality-of-service (QoS) constraints.
We find a closed-form expression for the effective capacity
that incorporates the degree of optimism of packet scheduling
and correlation strength between instantaneous and outdated
CSI. Moreover, our analysis allows us to find optimal values
of the signal-to-interference-plus-noise-ratio (SINR) distribution
parameter and their impact on the effective capacity in different
network scenarios. Simulation results demonstrate that better
effective capacity can be achieved with suboptimal RIS config-
uration when the channel estimates are known to be outdated.
It allows us to design system parameters that guarantee better
performance while keeping the complexity and cost associated
with channel estimation to a minimum.

Index Terms—Reconfigurable intelligent surface, millimeter-
wave communication, effective capacity, qulaity-of-service, chan-
nel state information

I. INTRODUCTION

Fifth-generation (5G) networks are experiencing an ever-
increasing demand for high data rates, extremely low latency,
and ultra-reliability from a massive number of connected
users. Wireless networks operating at sub-6 GHz frequencies
are quickly becoming a bottleneck in the effective rollout
of 5G networks as they are unable to fulfill these demands
from an exponentially growing number of users due to the
scarcity of spectrum resources [1]. In contrast, millimeter wave
(mmWave) networks have the capability to overcome these
challenges by exploiting the vast and largely unused frequency
spectrum ranging from 30 to 300 GHz. Communication at
mmWave frequencies promises to provide several benefits,
including but not limited to an order of magnitude increase
in throughput, latencies of less than 10 ms, and enough
bandwidth to provide access to a massive number of users [2].
However, mmWave communication suffers from penetration
loss and much higher overall path loss compared to sub-
6 GHz communication, and is thus susceptible to blockages
caused by objects in the environment. These challenges limit

the deployment scope of mmWave networks to comparatively
short distances [3].

Recently, the concept of reconfigurable intelligent surfaces
(RISs) has emerged, which has the potential to overcome
several of the challenges faced by mmWave networks. A RIS
is a software-defined metasurface containing a large number
of scattering elements (also known as unit cells), which can
passively beamform the incident signals towards the intended
user(s). The unit cells are passive elements that have the
capability to adjust the incident signals’ amplitude and phase
responses by using a low-cost and low-power RIS controller
[4]. This phenomenon allows the RIS to turn an uncontrolled
wireless environment into a controlled and reconfigurable one.
A RIS can effectively be used for the transmission distance
extension of mmWave communication without increasing the
energy budget of a network [5].

The performance of a RIS-assisted network critically de-
pends upon the channel estimation, as these estimates are
used to configure the RIS elements. As the channel estimate
ages, the performance degrades, which can be addressed
by estimating the channel more frequently. However, perfect
instantaneous channel state information (CSI) is hard to come
by, especially for mmWave networks, where the channel condi-
tions change rapidly over time [6, 7]. Also, mmWave networks
use large antenna arrays both at the transmitter and receiver to
compensate for the higher path loss, which makes the channel
estimation even more difficult for RIS-enabled mmWave net-
works [8]. Moreover, the signaling overhead associated with
acquiring perfect CSI is very high for RIS-enabled mmWave
networks because the corresponding channel matrices are
extremely large due to the presence of an intermediate RIS
[9, 10]. Since a RIS itself cannot estimate the channel, the BS
(in case of a downlink) performs the estimation for the end-
to-end communication channel through feedback links, which
results in large delays and higher complexity [11]. Beyond
that, with higher user mobility, acquiring perfect channel
estimates would entail extremely high signaling overhead and
even larger delays, which consequently has the potential to
evolve into a bottleneck for channel estimation [12].

These considerations raise several questions on the esti-
mation quality of a RIS-enabled mmWave channel. First and
foremost, how often should a RIS-enabled mmWave channel
be estimated given different network conditions? How much
signaling overhead would that cause, and how it will affect



the overall performance of the network? Intuitively, the higher
the quality of estimation, the higher the overhead, and vice
versa, which requires finding the right tradeoff to optimize
channel capacity [13]. However, to the best of the authors’
knowledge, there is no study available that provides practical
insights into these string of questions. Second, in the case of
outdated CSI (to maintain a manageable signaling overhead),
what is the tradeoff between the outdatedness of the CSI and
RIS configuration and again, what impact does it have on the
network performance? In other words, how optimized should
the RIS configuration be for the current CSI that is known
to be outdated? Last but not least, given the outdated CSI,
how should the system parameters be designed to guarantee
good performance while keeping the complexity and cost
associated with channel estimation to a minimum? These
questions are extremely important, particularly, for mmWave
networks because, in these networks, the RIS uses narrow
beams to communicate with the user. If the RIS is configured
using outdated channel estimates and if the user is mobile, the
transmit beam might miss the user entirely, which will cause
an outage.

To this end, this work investigates these questions to provide
insights into the different tradeoffs. We leverage a link-layer
analytical model, effective capacity (EC), for our analysis.
When a transmitter operates under certain quality-of-service
(QoS) constraints, the EC provides a maximum sustainable
constant arrival rate at the transmission queue in the face
of a randomly time-varying wireless channel [14]. We find
a closed-form expression for the EC of the RIS-enabled
mmWave communication network, which provides insights
into a tradeoff between the degree of optimism of packet
scheduling at the BS and the correlation strength between the
instantaneous and outdated CSI, and also investigates their
impact on the achievable EC. Our analysis provides an in-
depth discussion of the impact of correlation strength on
the probability distribution function (PDF) of the received
signal-to-interference-plus-noise-ratio (SINR), which can help
network service providers with RIS configuration as well as
RIS placement in different network conditions.

The rest of the paper is organized as follows. In Section
II, we summarize the existing literature related to the topic.
Section III provides the system model used for the analysis.
In Section IV, we introduce the RIS-enabled mmWave channel
and find the PDF of the received SINR. Section V presents the
EC analysis. Simulation results with discussions are presented
in Section VI, and we draw conclusions in Section VII.

II. RELATED WORKS

Most prior works on RIS-assisted wireless networks con-
sider a perfect or a statistical CSI at hand to configure the
RIS elements for capacity and coverage enhancement. In
[15], a channel capacity optimization scheme was proposed
for an indoor RIS-enabled mmWave network. The proposed
scheme maximizes the channel capacity by adjusting the RIS
elements using a global and a local co-phasing mechanism. In
[16], the authors use the statistical CSI to jointly optimize

the transmit covariance matrix and the phases of the RIS
elements to maximize the ergodic capacity of a RIS-enabled
mmWave MIMO channel. The authors in [17] perform the
throughput analysis of a RIS-assisted channel by considering
both statistical and perfect CSI at the transmitter. When the
transmitter sends data without prior knowledge of the CSI, the
packet drop ratio increases, and to address that, the authors use
retransmission schemes to improve the throughput. Despite the
fact that these and other similar works which assume perfect
or statistical CSI present notable improvements in achievable
capacities and system performance, their practicality in real-
time systems is still undecided. The improvements made in
these works may be considered an upper bound for the network
performance as they do not consider the real-time random
behavior of the channels. Although there have been various
solid efforts to estimate RIS-enabled mmWave channels ([18–
23] and references therein), perfect channel estimation is not
only difficult, it is also not practical due to the very large
measurement and signaling overhead associated with it [24].

Despite extensive works on RIS-assisted wireless networks,
only few studies consider the outdated channel information for
capacity analysis and network performance. Some works that
do consider outdated CSI do not provide many insights into
its impact on the overall performance. In [25], the authors use
the outdated CSI to jointly optimize the transmit beamforming
and the RIS’ reflecting beamforming matrices to enhance the
secrecy rate. Although this work investigates the impact of
several factors such as transmit power, the number of users,
eavesdroppers, and RIS elements on the secrecy capacity of the
RIS-assisted network, it does not provide much detail on the
impact of outdated CSI. In another work [26], a deep reinforce-
ment learning (DRL)-based secure transmission mechanism
for RIS-enabled mmWave unmanned aerial vehicle communi-
cation under the assumption of outdated CSI is presented. The
authors proposed a maximization problem for the secrecy rate
given the secrecy outage probability resulting from an outdated
CSI error model. In [27], a DRL-based spectral efficiency
enhancement mechanism is given for a RIS-enabled mmWave
high-speed railway Network. Through numerical simulations,
the authors investigate the impact of outdated CSI coefficients
on the spectral efficiency of the network. More recently, in
[28], the authors proposed a RIS deployment mechanism
in centralized and distributed scenarios given the outdated
CSI. They find the ergodic capacity for both the scenarios
and highlight the importance of correlation strength between
outdated and instantaneous CSI.

Despite considering outdated CSI in their analysis, the
above studies do not provide deeper insights into the impact of
outdated CSI on the performance of a RIS-assisted network.
Many questions related to the quality of estimating a RIS-
enabled mmWave channel, as well as its impact on the
signaling overhead and the practical aspects behind using the
outdated CSI instead of instantaneous CSI, are still unan-
swered in the literature. To this end, this work aims to answer
these questions by performing a statistical QoS analysis of a
RIS-enabled mmWave network with outdated CSI.



III. SYSTEM MODEL

We consider the downlink of a RIS-enabled mmWave
communication network1, as shown in Fig. 1, in which the
BS is equipped with NB antennas to communicate with K
single-antenna mobile stations (MSs) with the assistance of a
RIS with NR passive reflecting elements. Each RIS element
is capable of independently adjusting its phase shift to reflect
the incident signals toward desired users. For the channel,
we consider that the direct link between BS and MS is
blocked by obstacles and only the reflected/cascaded link (via
the RIS) is available for transmission. The transmit antennas
at the BS and the RIS elements are placed in a uniform
linear array (ULA) and a uniform rectangular array (URA),
respectively. To reduce the propagation loss for BS→RIS and
RIS→MS links, we assume that the ULA and URA elements
can adaptively adjust the weights on each omnidirectional
antenna element at the BS and each RIS element, respectively,
for beamforming.

BS

O
bstacle

Fig. 1. RIS-enabled mmWave communication network for multiple single-
antenna users: solid blue arrows show incident wave and dotted blue arrows
represent reflected waves.

Let NR = {1,2, . . . ,NR}, NB = {1,2, . . . ,NB}, K =
{1,2, . . . ,K} represent the set of RIS elements, transmit
antennas at the BS, and the single-antenna MSs, respectively.
Let H ∈ CNR×NB , gk ∈ C1×NR , fk = {fk,1, fk,2, . . . , fk,NB

},
and sk represent the channel coefficients between the BS and
the RIS, channel coefficients between the RIS and the kth MS,
the transmit precoding vector at the BS, and the transmitted
symbol for the kth MS, respectively. We also consider that
both channels (H and gk) follow Rician fading. Thus, by
considering the line of sight (LoS) and non-LoS (NLoS) paths,
we can express the channels as

H =
√

KB

1 +KB
HLoS +

√
1

1 +KB
HNLoS

gk =
√

KR

1 +KR
gLoS
k +

√
1

1 +KR
gNLoS
k .

(1)

1Note that we determine the EC of a RIS-enabled mmWave downlink;
however, the analysis presented in this work can be easily extended to the
uplink by exploiting the duality property of uplink and downlink.

In (1), KB and KR represent the Rician K-factor. As a result,
the received signal at the kth MS can be written as

yk = (gkΩH)fksk +
K

∑
i=1,i≠k

(gkΩH)fisi + nk. (2)

In (2), Ω ∈ CNR×NR represents the phase control ma-
trix at the RIS. Note that Ω is a diagonal matrix (Ω =
diag[π1, π2, . . . , πn, . . . , πN

R
]), where πn = ejθn and θn is

the phase shift introduced by nth RIS element. Here, we
assume that the channel between the BS and the RIS (H)
can be known perfectly since the locations of the BS and the
RIS are generally taken as fixed; hence, optimal values of
the transmit beamforming vector (fk) are known at the BS.
However, for the channel between the RIS and the kth MS
(gk), acquiring perfect channel estimates is difficult and costly,
due to MS mobility. Therefore, the optimal configuration of the
phase control matrix at the RIS (Ω) is usually not available.
To this end, the next section provides an investigation of a
RIS-enabled mmWave channel when only outdated channel
estimates are available for RIS configuration.

IV. RIS-ENABLED MMWAVE CHANNEL WITH OUTDATED
CSI

In this section, we investigate a RIS-enabled mmWave
network with multiple users under the condition that the BS
only has access to outdated channel estimates for configuring
its elements. We find the PDF and a closed-form expression
for the distribution parameter of the SINR at the user, which
incorporates the correlation strength between the outdated
and instantaneous CSI. This PDF and the expression for
the distribution parameter will allow us to perform an EC
analysis of the RIS-enabled mmWave channel for different
network conditions (presented in Section V). Based on that
analysis, we can configure system parameters that guarantee
better performance while ensuring the cost and complexity
associated with channel estimation remains low.

Perfect channel estimation for the RIS → MSk link is usu-
ally not possible due to acquisition delay and large signaling
overhead, which can become even larger with MS mobility
(details are given in Sections I and II). Therefore, we consider
that only outdated channel estimates for the RIS → MSk

link are available. Let Tdelay denote the delay between the
outdated CSI and the instantaneous CSI. As shown in [25],
the relation between the outdated channel vector gk(t) and
the instantaneous channel vector gk(t + Tdelay) can then be
written as

gk = ρĝk + ρ̄wk, (3)

where gk = gk(t + Tdelay), ĝk = gk(t), wk = ĝk(t + Tdelay),
ρ is the correlation coefficient between the outdated channel
estimate ĝk and the actual channel gk, and ρ̄ =

√
1 − ρ2. It is

also important to note that 0 ≤ ρ ≤ 1, where ρ = 0 and ρ = 1
represent the perfect CSI and no CSI, respectively. Moreover,
ρ can be calculated using ρ = J0(2πfDTdelay). Here, fD is
the maximum Doppler shift, with fD = fcv/c, where fc is
the carrier frequency, v is the velocity with which the MS



is moving, and c is the speed of light. Furthermore, wk =
[wk,1,wk,2, . . . ,wk,n, . . . ,wk,NR

], where wk,n is independent
and identically distributed with gk,n and ĝk,n, and it follows
a complex Guassian distribution with zero mean and variance
σ2
ĝk,n

(i.e., wk,n ∼ CN (0, σ2
ĝk,n
)).

By incorporating the impact of the outdated CSI on gk in
(2), the received signal under the channel uncertainty model
becomes

yk = ({ρĝk+ρ̄wk}ΩH)fksk+
K

∑
i=1,i≠k

({ρĝk+ρ̄wk}ΩH)fisi+nk ,

(4)
where nk is the additive complex Gaussian noise (AWGN)
with with zero mean and σ2

k variance at the kth MS (nk ∼
CN (0, σ2

k)). By separating the desired signal from the out-
dated CSI noise and the inter-user interference, the expression
for the received signal at the kth MS in (4) can be re-written
as
yk ={ρĝkΩH}fksk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

desired signal

+ {ρ̄wkΩH}fksk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
outdated CSI noise

+
K

∑
i=1,i≠k

{ρĝkΩH}fisi +
K

∑
i=1,i≠k

{ρ̄wkΩH}fisi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
outdated CSI noise

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inter−user interference

+nk. (5)

Next, we need to find the SINR of the received signal, which
will allow us to find the EC of the RIS-enabled mmWave
channel. By using the expression in (5), the received SINR
becomes

γk =
∣ρĝkΩHfk ∣2

σ2
MM

. (6)

In (6), σ2
MM represents the cumulative noise (outdated plus

thermal) and interference (caused by other users present in
the network) experienced by the received signal at kth MS,
which can be calculated as

σ2
MM = E[∣ρ̄wkΩHfk ∣2 + ∣

K

∑
i=1,i≠k

ρĝkΩHfi∣2

+ ∣
K

∑
i=1,i≠k

ρ̄wkΩHfi∣2 + ∣nk ∣2].
(7)

By separating each term to simplify the calculation, the
expression in (7) can be re-written as

σ2
MM = ρ̄2E[∣wkΩHfk ∣2] + ρ2E[∣

K

∑
i=1,i≠k

ĝkΩHfi∣2]

+ ρ̄2E[∣
K

∑
i=1,i≠k

wkΩHfi∣2] + σ2
k,

(8)

where E[∣nk ∣2] = σ2
k is the variance of the AWGN. Next,

we aim to solve the cumulative noise and interference given
in (8), which will consequently help finding the PDF of the
received SINR and the closed-form expression for the SINR
distribution parameter.

For finding the ensemble mean of the outdated CSI noise,
we leverage Appendix B in [28], which solves a SISO model,

and extend it for our system model with H ∈ CNR×NB and
a transmit beamforming vector fk. Lemma 1 provides the
ensemble mean of the outdated CSI noise.

Lemma 1. E[∣wkΩHfk ∣2] = (1−α2)∑NB

b=1 ∣fk,b∣2. Where, α is
the average value of Rician variable ∣ĝk,n(t+ Tdelay)∣, which
can be found using Appendix A in [29].

Proof:

E[∣wkΩHfk ∣2] = E[∣
NR

∑
n=1

NB

∑
b=1

wk,nhn,be
jθnfk,b∣

2

]

= E[∣
NR

∑
n=1

NB

∑
b=1

NR

∑
m=1

NB

∑
a=1

wk,nhn,be
jθnfk,bw

∗
k,mh∗m,ae

−jθmfk,a∣]

(9)

E[∣wkΩHfk ∣2] =
NR

∑
n=1

NB

∑
b=1

E[∣wk,n∣
2∣hn,b∣

2∣fk,b∣
2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a1

+

NR

∑
n=1

NB

∑
b=1

NR

∑
m=1,m≠n

NB

∑
a=1,a≠b

E[wk,nhn,bw
∗
k,mh∗m,afk,bfk,a]ej(θx)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a2

.

(10)

Here θx = θn − θm. Note that wk and H are independent
of each other and E[wk,n] = 0. Therefore, a2 becomes zero.
Moreover, hn,b ∼ CN (0,1) and E[∣wk,n∣

2] = σ2
ĝk,n(t+Tdelay) =

1 − α2. Thus, (9) becomes

E[∣wkΩHfk ∣2] =
NR

∑
n=1

NB

∑
b=1

E[∣wk,n∣
2]E[∣hn,b∣

2]∣fk,b∣
2

=
NR

∑
n=1

NB

∑
b=1

σ2
ĝk,n(t+Tdelay)(σ

2
hn,b
+E[∣hn,b∣]

2)∣fk,b∣
2

= (1 − α2)
NB

∑
b=1
∣fk,b∣

2
.

(11)

∎
Next, by following steps similar to those given in Lemma

1, we can also find the ensemble mean of the inter-user inter-
ference experienced by the received signal, which becomes

E[∣
K

∑
i=1,i≠k

ĝkΩHfi∣2] = (1 − β2)
NB

∑
b=1
∣fi,b∣

2

E[∣
K

∑
i=1,i≠k

wkΩHfi∣2] = (1 − α2)
NB

∑
b=1
∣fi,b∣

2
.

(12)

Now, for the final expression of the cumulative noise and
interference, we substitute the ensemble mean values from (11)
and (12) into (8), which gives

σ2
MM = ρ̄2(1 − α2)

NB

∑
b=1
∣fk,b∣

2 + ρ2(1 − β2)
K

∑
i=1,i≠k

NB

∑
b=1
∣fi,b∣

2

+ ρ̄2(1 − α2)
K

∑
i=1,i≠k

NB

∑
b=1
∣fi,b∣

2 + σ2
k.

(13)



After some simplification steps, the expression in (13) be-
comes

σ2
MM = ρ̄2(1−α2)

K

∑
i=1

NB

∑
b=1
∣fi,b∣

2+ρ2(1−β2)
K

∑
i=1,i≠k

NB

∑
b=1
∣fi,b∣

2+σ2
k.

(14)
Now, by substituting the expression in (14) into (6), we
can find the received SINR at the kth MS (γk). Since we
have the final expression for the received SINR, we can
find its PDF. Moreover, we also need to find the expression
for the distribution parameter of the PDF, which will define
the statistical dispersion of the PDF. To this end, Lemma
2 provides the PDF and the expression for the distribution
parameter for the received SINR γk given in (6).

Lemma 2. The received SINR of the RIS-assisted multi-user
MISO network at the kth MS during time slot l follows an
exponential distribution: γk(l) ∼ exp(ξ), where ξ is the expo-
nential parameter and can be calculated using the following
expression

ξ =
{Υ1 +Υ2 + σ2

k}
2

2N2
R(∑

NR

n=1∑
NB

b=1 e
j2θn ∣fk,b∣2)

2
.

where Υ1 = ρ̄2(1 − α2)∑K
i=1∑NB

b=1 ∣fi,b∣
2

and Υ2 = ρ2(1 −
β2)∑K

i=1,i≠k∑NB

b=1 ∣fi,b∣
2
.

Proof: In order to compute the distribution of the re-
ceived SINR of the RIS-assisted multi-user MISO network at
the kth MS, we start by assuming that both the RIS and the
BS have two reflecting elements and transmitting antennas,
respectively (NR = NB = 2). It allows us to write

ĝkΩHfk = ĝk,1ejθ1(fk,1h1,1 + fk,2h1,2)
+ ĝk,2ejθ2(fk,1h2,1,+fk,2h2,2).

(15)

Let Ψ1 = ĝk,1e
jθ1(fk,1h1,1 + fk,2h1,2) and Ψ2 =

ĝk,2e
jθ2(fk,1h2,1 + fk,2h2,2). Here, we remind again that

ĝk,n ∼ CN (0,1) and hn,b ∼ CN (0,1) for n ∈ {1,2} and b ∈
{1,2}. Then, one can verify that Ψ1 ∼ CN (0, ej2θ1(∣fk,1∣2 +
∣fk,2∣2)) and Ψ2 ∼ CN (0, ej2θ2(∣fk,1∣2 + ∣fk,2∣2)). We note
that ĝkΩHfk is the sum of two independent and identi-
cally distributed complex Gaussian random variables when
NR = NB = 2. Thus, in general, we can write, ĝkΩHfk =
∑NR

n=1Zn, where Zn ∼ CN (0,∑NR

n=1∑
NB

b=1 e
j2θn ∣fk,b∣2). The

term ĝkΩHfk is thus the sum of NR independent and
identically distributed complex Gaussian random variables.
In case NR is reasonably large, we can invoke the Cen-
tral Limit Theorem to get the following approximation:

ĝkΩHfk ∼ CN(0,NR∑NR

n=1∑
NB

b=1 e
j2θn ∣fk,b∣2). This implies

that ∣ĝkΩHfk ∣ follows the Rayleigh distribution, ∣ĝkΩHfk ∣ ∼
Rayleigh(NR∑NR

n=1∑
NB

b=1 e
j2θn ∣fk,b∣2). Finally, the distribu-

tion of the received SINR becomes: ∣ρĝkΩHfk ∣2/σ2
MM ∼

exp(ξ), where ξ is the exponential parameter and can be
written as

ξ = {Υ1 +Υ2 + σ2
k}

2

2N2
R(∑

NR

n=1∑
NB

b=1 e
j2θn ∣fk,b∣2)

2
, (16)

where Υ1 = ρ̄2(1 − α2)∑K
i=1∑NB

b=1 ∣fi,b∣
2

and Υ2 = ρ2(1 −
β2)∑K

i=1,i≠k∑NB

b=1 ∣fi,b∣
2
. ∎

Since the PDF of the received SINR follows an exponential
distribution, the distribution/scale parameter refers to the mean
of the distribution. The distribution parameter will determine
the spread of the PDF; the larger the distribution parameter the
larger the spread, and vice versa. In other words, for a smaller
distribution parameter, the PDF curve is skewed towards the
extreme values. Thus, high and low values of SINR are equally
probable. Conversely, for a larger distribution parameter, the
PDF curve has more spread; hence, there is a concentration on
medium values of SINR. This insight helps us tune the system
parameters (RIS configuration, etc.) under given correlation
strengths between outdated and instantaneous CSI to achieve
better performance at low cost and complexity.

Further, using the SINR expression, we find the Shannon
capacity of a RIS-assisted mmWave channel under outdated
CSI, which will allow us to find the moment generating
function (MGF) of the channel service process. The Shannon
capacity at the kth MS for time slot l becomes

ck(l) = B log2(1 + γk(l)), (17)

where B is the allocated bandwidth. Next, we find the EC
of the RIS-enabled mmWave channel for different network
settings when the CSI is outdated.

V. EFFECTIVE CAPACITY ANALYSIS OF RIS-ENABLED
MMWAVE CHANNEL

In this section, we perform the EC analysis of the RIS-
assisted mmWave channel under outdated CSI. We investigate
the impact of the degree of optimisim of packet scheduling
on the EC when the CSI is known to be outdated. More-
over, we provide a closed-form expression for the achievable
EC, which incorporates the correlation strength between the
outdated and instantaneous CSI, SINR distribution parameter,
and the degree of optimism of packet scheduling. This closed-
form expression allows us to understand the tradeoff between
different system parameters, and consequently, helps us tune
them for improved system performance at a low channel
estimation cost.

The EC is an analytical tool to find the maximum constant
arrival rate that can be supported by the time-varying chan-
nel conditions while satisfying the statistical QoS guarantees
imposed at the transmitter’s queue. It is defined as the log
moment generating function (MGF) of the cumulative channel
service process [30]. The EC at the kth MS given that the



BS operates under certain QoS constraints (in terms of delay
bound) becomes

Πk(ν) = −
Λ(−ν)

ν
= − lim

t→∞
1

νt
log(E[e−ν∑

t
l=1 s(l)]), (18)

where s(l) is the service process during time slot l (S(t) =
∑t

l=1 s(l) is the cumulative service process) and ν is the QoS
exponent. Further, we assume that t is reasonably large so that
we can invoke the Central limit theorem to approximate the
distribution of S(t), which becomes Gaussian [31]. Therefore,
(18) becomes the log MGF of a Gaussian random variable,
which can be written as

Πk(ν) = −
Λ(−ν)

ν
= E[s(l)] − ν

2
var[s(l)], (19)

where E[s(l)] and var[s(l)] are the mean and variance of the
service process, respectively. Further to find the EC, we recall
that the BS has outdated CSI and it is aware of the imperfect
nature of the available CSI. Therefore, in this case, the BS
schedules packets of variable size for transmission depending
upon the available CSI. However, due to the outdated nature of
CSI, the transmitted packets will be lost from time to time. The
packet loss ratio critically depends on the correlation between
the outdated CSI and the real CSI for the upcoming time slot
as well as the corresponding strategy for packet scheduling.
In this case, the BS needs to schedule packets more carefully
as it is aware of the erroneous CSI. Let γ̂k(l) be the outdated
CSI of the upcoming time slot l, then the scheduling decision
at the BS is a function of the outdated CSI, which becomes:
a(l) = B log2(1 + δ2γ̂k(l)), where δ2 is the SINR margin.
Moreover, when γk(l) ≥ δ2γ̂k(l), the resulting service process
becomes equal to the scheduled packets (s(l) = a(l)).

Before moving further with the calculation of the EC, we
need to find the success probability of a(l) given the correla-
tion between the outdated and the real CSI for time slot l. The
authors in [32] find the conditional PDF of the SINR for time
slot l, which can help us find the success probability of a(l).
The conditional probability can be calculated using the follow-
ing expression: Px/γ̂k

= ξ/ρ̄2Io(2ξρ
√
xγ̂k/ρ̄2)e−ξ(x+ρ

2γ̂k)/ρ̄2,
where Io is the modified Bessel function of the first order.
Further, given γ̂k and a(l), the success probability of the
service process s(l) can be calculated as

P[s(l) = a(l)] = ∫
∞

δ2γ̂k

ξ

ρ̄2
Io(

2ξρ
√
xγ̂k

ρ̄2
)e

−ξ(x+ρ2γ̂k)
ρ̄2 dx

(a)
= ∫

∞

δ
√

2ξγ̂k/ρ̄
uIo(

uρ
√
2ξγ̂k
ρ̄

)e
−ρ̄u2−2ξρ2γ̂k

2ρ̄ du

(b)
= ∫

∞

δuγ̂k

uIo(u.ρ.uγ̂k
)e

−u2+(ρuγ̂k
)2

2 du = Q(ρuγ̂k
, δuγ̂k

).

(20)

In (20), for equalities (a) and (b), we substitute u =
√
2ξx/ρ̄

and uγ̂k
=
√
2ξγ̂k/ρ̄, respectively, and Q is the Marcum Q-

function.
Given the success probability of the service process in hand,

we now aim to find the EC, and for that we need to find mean

and variance of s(l). The mean of s(l) can be calculated using
the following expression.

E[s(l)] = B ∫
∞

0
log2(1 + δ2x)Q1(ρuγ̂k

, δuγ̂k
)fX(x)dx

(a)
= Bξ

ln2
∫
∞

0
ln(1 + δ2x)Q1(ρuγ̂k

, δuγ̂k
)e−ξxdx.

(21)

Equality (a) comes from the fact that X is the received SINR
at the kth MS and fX(x) is the PDF of X ∼ exp(ξ), as
given in Lemma 2. Because the expression in (21) has a Q
function, deriving the closed-form expression for the mean
is quite involved. Therefore, we find an upper bound for
Q(ρuγ̂k

, δuγ̂k
), which is based on a geometric approach [33],

and it comes out to be the following

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q(ρuγ̂k
, δuγ̂k

) ≤ ∑Ξ−1
i=0 Die

−ξxϖ1,i ρ < δ

Q(ρuγ̂k
, δuγ̂k

) ≤ 1 −∑
Ξ−1
i=0 Die

−ξxϖ2,i

+∑Ξ−1
i=0 Die

−ξxϖ3,i
ρ ≥ δ (22)

where Di = (ϑi+1 − ϑi)/π for ϑ ∈ [0, π],
Ξ ∈ N, ϖ1,i = (

√
δ2 − ρ2 sin2 ϑi − ρ cosϑi)/ρ̄2,

ϖ2,i = (−
√
δ2 − ρ2 sin2 ϑi+1 − ρ cosϑi+1)/ρ̄2, and

ϖ3,i = (
√
δ2 − ρ2 sin2 ϑi+1 − ρ cosϑi+1)/ρ̄2. Given the

upper bound on the corresponding Q function, the expression
in (21) for the case of ρ < δ becomes

E[s(l)] ≤ B

ln2

Ξ−1
∑
i=0
∫
∞

0
ξDi ln(1 + δ2x)e−ξx(1+ϖ1,i)dx. (23)

Applying integration by parts and after some simplification
steps, the final expression for the mean of the service process
when ρ < δ can be written as

E[s(l)] ≤
Ξ−1
∑
i=0

BDie
v

ln2(1 +ϖ1,i)
E1[v]. (24)

In (24), v = ξ(1+ϖ1,i)/δ2 and E1[⋅] is the exponential integral
function. Similarly, one can also find the mean of the service
process for ρ ≥ δ by using the expression of the Q-function
given in (22). Further, to find the variance of the service
process, we have the following expression

var[s(l)] = E[s2(l)] −E[s(l)]2, (25)

where E[s2(l)] is the second moment of s(l). For the case of
ρ < δ, it can be found using the following

E[s2(l)] ≤
Ξ−1
∑
i=0

B2ξ2Di

ln2(2) ∫
∞

o
(ln(1 + δ2x))2e−ξx(1+ϖ1,i)dx

=
Ξ−1
∑
i=0

B2Die
v

ln2(2)(1 +ϖ1,i)
( ln2(v) + 2η ln(v) + η2 + π2

6
)

−
Ξ−1
∑
i=0

2B2Diξe
v

ln2(2)δ2 3F3([1,1,1], [2,2,2],−v).

(26)

In (26), 3F3 is the hyper-geometric function and η is the Euler
constant. By substituting (26) and (24) in (25), we can find the
variance of s(l). Similarly, one can also find variance of s(l)



for ρ ≥ δ by using the expression of Q-function given in (22).
Further, the final expression for the EC at the kth MS of the
RIS-assisted MISO system when the BS only has outdated CSI
of the upcoming time slot l can be calculated by substituting
mean and variance of s(l) in (19). It is worth noting that the
corresponding EC is a function of δ, which refers to the degree
of optimism at the BS for packet scheduling. In addition, the
right expressions for mean and variance of the service process
need to be chosen to find the EC, which critically depends
upon the relationship between the SINR margin (δ) and the
correlation between the outdated and instantaneous CSI of the
upcoming time slot (ρ).

This analysis allows us to tune the packet scheduling at the
BS to achieve better EC even when the RIS is not optimally
configured (due to the outdated CSI). Moreover, it provides a
tradeoff between the degree of optimism in packet scheduling
and the outdatedness of the CSI, which helps us find the
optimal number of packets (to be transmitted) as the CSI
ages. Through this approach, a RIS-assisted mmWave system
can achieve better performance (in terms of throughput and
QoS) even without perfectly estimating the channels, which
can significantly reduce the signaling overhead.

VI. EVALUATION

We now verify the analytical findings by means of simula-
tions. We first explore the general relationship of correlation
strength, QoS constraints, and packet scheduling on the EC.
We then use these insights to investigate the impact of mobility
on the speed with which CSI becomes outdated, different
mechanisms to cope with outdated CSI, as well as, their
impact on the correlation between instantaneous and outdated
CSI. In particular, we can consider narrow vs. wide antenna
beams, which trade off antenna gain and speed with which
the gain is reduced, as well as required CSI estimation (or
beam training) frequency. This allows to optimize the RIS and
protocol configuration to achieve the best overall EC.

A. Simulation Setup

We are primarily interested in the channel between RIS
and the user as it determines the capacity and required beam
training overhead. For simplicity, we assume a 128 x 128 RIS
with half-wavelength element spacing to be at the center of a
circle and the user to move around the circle, so that the path
loss is constant. We assume beam training at the RIS is similar
to conventional IEEE 802.11ad/ay systems with a codebook
of beam patterns that are tested sequentially. Furthermore, we
assume the elevation angle remains same while the azimuth
angle changes as the MS moves along the circle. We take
IEEE 802.11ad/ay beam training as reference to gather more
insights on the training overhead and EC of the MS taking
user movement into account. Assume the RIS has 128 beam
patterns; then the time taken to configure the link via RIS is
5.3 milliseconds according to IEEE 802.11ay standard [34].
For the simulations, we generate different beam patterns with
varying beam widths using the beam pattern design given in
[35].

B. Simulation Results

Fig. 2 presents the EC versus the correlation strength
between the instantaneous and outdated CSI given different
QoS constraints imposed at the BS. We observe that the EC
almost remains the same when the correlation strength is low
(for ρ ≤ 0.25), but it increases rapidly as the CSI becomes
less outdated (for ρ > 0.25). This is due to the fact that as the
correlation strength increases, the probability of a higher re-
ceived SINR also increases, which ultimately provides a better
EC. Moreover, when the correlation coefficient is high, the BS
can opt for an optimistic approach and schedule more packets
for transmission and that leads to a better EC. In contrast,
for a smaller correlation coefficient, the BS schedules packets
to be transmitted more pessimistically, which limits the EC.
Further, we observe from Fig. 2 that a lower EC is achieved
when the BS operates under stringent QoS constraints. The
impact of the QoS constraints on the EC becomes significant
when the correlation strength between the instantaneous and
outdated CSI is high. This is due to the fact that with a higher
correlation coefficient, the BS optimistically schedules the
packet to be transmitted, and with relaxed QoS constraints, the
transmission queue at the BS can process more packets, thus
allowing a significantly better EC. Conversely, with stringent
QoS constraints imposed, the probability of packet loss during
transmission (due to the randomness of the wireless channel
and the demand for higher QoS guarantees) will increase,
which increases the packet retransmissions (depending upon
the retransmission scheme at use), and that limits the number
of unique packets being processed at the transmission queue,
which ultimately leads to a lower EC.

Fig. 2. Impact of correlation strength on the achievable effective capacity
(EC) for different QoS constraints imposed at the BS.

Next, we provide a complete picture of the EC of the
RIS-enabled mmWave link when the channel estimates are
outdated. To this end, Fig. 3 presents a combined effect of dif-
ferent correlation strengths, SINR margins, and QoS exponents
on the EC. We observe that there exists an optimal value of the
SINR margin on which a maximum EC is achieved, and when
the BS schedules the packets by following this optimal value,



the impact of outdatedness of the CSI becomes less significant.
It leads us to believe that when the BS optimally schedules the
packet, given the QoS constraints imposed at the transmission
queue, the link provides better EC even with a lower correla-
tion strength between outdated and instantaneous CSI. In other
words, a conservative approach for RIS optimization, in which
the RIS elements are configured less often, can also provide a
better EC with less signaling overhead for channel estimation.
This insight helps us apprehend the overall system design and
provides the ground for a better understanding of the relation
between the RIS configuration and the EC when the channel
estimates are known to be outdated. It allows us to design
different parameters of a RIS-assisted mmWave system in such
a way that provides better performance (in terms of EC), while
keeping the complexity and overhead at a minimum.

Fig. 3. Impact of the degree of optimism of packet scheduling at the BS on
the achievable effective capacity (EC) for different QoS constraints imposed
at the BS and different correlation strengths.

In Fig. 4, we investigate the impact of the correlation
strength between the instantaneous and outdated CSI on the
distribution parameter of the received SINR at the user. We
observe that with perfect CSI (ρ = 1), RIS elements are
optimally configured, which allows for a narrow beam directed
towards the intended user. In this case, both high and low
SINRs are equally probable because using a narrow beam
can either provide coverage with full strength or it can miss
the user entirely due to the fact that the CSI is outdated,
and hence an outage occurs. In contrast, as the CSI becomes
more outdated, one can use a conservative approach and not
configure the RIS elements as often, which leads to a wider
beam toward the user, and as a result, the probability of an
outage reduces significantly because the probability that a
wider beam misses the user entirely is lower. In this case,
a high received SINR is less probable, but the user will have
a medium SINR with high probability. This phenomenon is
shown in Fig. 5, in which a comparison for aggressive and
conservative RIS configuration approaches and their impact on
the probability of received SINR is given. This tradeoff allows
us to analyze the impact of the width of the beams given
the network conditions and user mobility, i.e., how close to
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optimal should the RIS elements be configured for the current
CSI that is known to be outdated. To this end, we further
investigate the impact of beam patterns on the EC by using
varying beam widths.

Based on these findings, we now aim to find how often
the RIS elements should be reconfigured, given a specific
beam pattern in the context of outdated CSI to achieve better
system performance. First, we investigate how the correlation
strength between outdated and instantaneous CSI changes over
time with MS mobility. We observe that for a narrow beam,
the correlation strength quickly becomes weak as the user
moves along the circumference of the RIS coverage (recall
that MS distance from the RIS center remains the same).
The correlation strength decreases more slowly for a wider
beam for the same user velocity. Therefore, to achieve a
certain threshold for a correlation strength, the RIS needs to
be reconfigured more often for a narrow beam pattern and vice
versa. To this end, Fig. 6 presents the impact of correlation
strength on the EC for different beam patterns. We observe that
the correlation strength for beam width = 5 degrees decreases
rapidly over time (with MS velocity = 10 meter/s) compared
to the correlation strength for beam width = 20 degrees. As
the user moves along the circumference, it takes less time to
move outside the beam coverage region for a narrower beam.
Therefore, for a narrower beam to maintain a certain threshold
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for correlation strength, beam training should be done more
often. For the EC, we also observe that it decreases over time
rather quickly for a narrower beam (beam width = 5 degrees)
compared to a wider beam (beam width = 20 degrees). This is
because the correlation strength decreases more quickly for a
narrower beam, which consequently reduces the EC. Another
insight we get from here is that even though a higher EC can
be achieved with a narrower beam, it degrades quickly with
user mobility. In turn, beam training should be done more
often to sustain better EC, which comes with the cost of extra
signaling overhead. This highlights the importance of finding
the optimal frequency for beam training given different beam
patterns.

Fig. 7 presents an investigation to find the optimal beam
training frequency for different beam patterns. Note that,
to find the optimal value for beam training frequency, we
subtract the time required for each beam training from the
time allocated for data transmission; hence, there is less time
for data transmission with a higher number of beam training
procedures. We observe that as the frequency of the beam
training increases, the average EC for all the beam patterns
first increases, reaches an optimum, and then decreases. There-
fore, there exists an optimal beam training frequency that
provides the maximum average EC for a specific beam pattern.
Moreover, we also observe that for a certain distance and MS
velocity, as the beam becomes wider, a lower beam training
frequency is required to achieve the maximum average EC (as
shown in Fig. 6). Fewer beam trainings, in turn, result in more
time for data transmission, which consequently increases the
average EC. Further, we observe that a beam pattern with 20
degrees beam width can achieve significantly better EC with
only 10 beam trainings per second when compared to a beam
width of 5 degrees with 23 beam trainings per second. It shows
that for a certain user velocity and distance from RIS, a wider
beam can provide better performance at a much lower channel
estimation cost.
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VII. CONCLUSION

In this paper, we investigate the impact of outdated CSI on
the effective capacity of a RIS-enabled mmWave network. Our
analysis presents practical insights into the optimal design of
the system parameters that provide good performance while
keeping the complexity and cost associated with channel
estimation to a bare minimum, given only the outdated channel
estimates. Our simulation results reveal that the reflected beam
pattern from the RIS has a direct impact on the correlation
strength between outdated and instantaneous CSI. Moreover,
our results demonstrate that a RIS needs to be reconfigured
more often for a narrower beam pattern to maintain better
effective capacity, which, in turn, increases the channel estima-
tion cost. The results also show that an optimal beam training
frequency exists for different beam patterns, which provides
the maximum average effective capacity. Therefore, a suitable
beam pattern, given the user’s velocity and distance (from
RIS), should be used, which not only provides better effective
capacity but also keeps the signaling overhead associated with
frequent channel estimation low. To further understand the
optimal system design of a RIS-assisted mmWave network,
we plan to investigate the impact of the distance between the
RIS and the BS and the users (near and far-field scenarios)
on the optimal selection of a beam pattern especially, when
the system operates under outdated channel conditions. This
analysis can provide insights into the RIS deployment strategy
for mmWave networks in centralized and distributed RIS
deployments.
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