
Explainable Machine Learning for Performance Anomaly Detection and

Classification in Mobile Networks ⋆

Juan M. Ramı́reza,∗, Fernando Dı́ezb, Pablo Rojoc, Vincenzo Mancusoa, Antonio Fernández-Antaa

aIMDEA Networks Institute, 28918, Madrid,
bUniversidad Politecnica de Madrid,

cNokia CNS,

Abstract

Mobile communication providers continuously collect many parameters, statistics, and key performance indicators (KPIs)
with the goal of identifying operation scenarios that can affect the quality of Internet-based services. In this regard,
anomaly detection and classification in mobile networks have become challenging tasks due to both the huge number of
involved variables and the unknown distributions exhibited by input features. This paper introduces an unsupervised
methodology based on both a data-cleaning strategy and explainable machine learning models to detect and classify
performance anomalies in mobile networks. Specifically, this methodology dubbed explainable machine learning for
anomaly detection and classification (XMLAD) aims at identifying features and operation scenarios characterizing per-
formance anomalies without resorting to parameter tuning. To this end, this approach includes a data cleaning stage
that extracts and removes outliers from experiments and features to train the anomaly detection engine with the cleanest
possible dataset. Moreover, the methodology considers the differences between discretized values of the target KPI and
labels predicted by the anomaly detection engine to build the anomaly classification engine which identifies features and
thresholds that could cause performance anomalies. The proposed methodology incorporates two decision tree classifiers
to build explainable models of anomaly detection and classification engines whose decision structures recognize features
and thresholds describing both normal behaviors and performance anomalies. We evaluate the XMLAD methodology
on real datasets captured by operational tests in commercial networks. In addition, we present a testbed that generates
synthetic data using a known TCP throughput model to assess the accuracy of the proposed approach.

Keywords: anomaly detection and classification, data cleaning, decision tree classifiers, explainable machine learning,
mobile networks.

1. Introduction

Mobile networks have shown remarkable growth over
the last two decades. More precisely, fifth-generation (5G)
mobile technologies have played an important role in wire-
less network access providing high-speed connectivity for
an increasing number of heterogeneous devices [2, 3]. With
the consolidation of the 5G and the rising of the 6G, mobile
networks exhibit increasingly complex structures, with dis-
tributed servers operating in a coordinated way to ensure
reliable network services. With mobile networks becom-
ing increasingly complex, it has become necessary to de-
velop different approaches based on learning architectures
to solve operating problems [4], such as network traffic [5],
dynamic spectrum access [6] and energy-efficient computa-
tion [7]. In this context, mobile network providers continu-
ously collect information about the communication system

⋆A preliminar version of this manuscript is included in the pro-
ceedingns of the 20th Mediterranean Communication and Computer
Networking Conference (MedComNet 2022) [1].

∗Corresponding author.
Email address: juan.ramirez@imdea.org (Juan M. Ramı́rez)

with the aim of detecting operation instances that could
unveil the misfunctioning of different network components.
However, network health diagnosis and anomaly identifica-
tion have become challenging tasks because of the increas-
ing structural complexity of mobile networks requiring a
large number of variables to monitor the communication
system performance.

In the context of computer networks, anomalies can
be categorized into two groups: (i) performance anomalies

and (ii) security anomalies [8, 9]. On one hand, perfor-
mance anomalies comprise operation scenarios related to
network efficiency loss or misfunctioning. These scenar-
ios induce undesired events such as large-time file down-
loads or low-quality connections. On the other hand, se-
curity anomalies are associated with malicious intrusions
aiming at affecting partially or totally the communication
network. In this work, we focus on detecting and classi-
fying performance anomalies in mobile networks. Exist-
ing approaches leverage the machine learning framework
with supervised (cf., [10, 11]) and unsupervised mecha-
nisms (cf., [12, 13, 14]) to detect performance anomalies,
outages, or faults. For example, Falk et al. introduced

Preprint submitted to Computer Communications January 12, 2023

in [10] an architecture based on supervised learning mod-
els for detecting network outages from 4G-LTE perfor-
mance data. On the same topic, Moulay et al. reported
in [11] a methodology combining supervised and unsuper-
vised learning models for fault identification in cellular net-
works. However, labels are frequently unavailable for per-
formance anomaly detection in mobile networks, and la-
beling is a costly data engineering process [15]. Moreover,
due to the rapid growth and evolution of mobile networks,
the labeling process typically provides insufficient infor-
mation to describe the wide range of anomalous scenarios
that arise as a result of incorporating new technologies
and devices into the network architecture. Various works
[12, 13] developed unsupervised and non-parametric ma-
chine learning architectures for predicting network outages
using a small set of basic features extracted manually from
available data. Also, an unsupervised anomaly detection
algorithm was reported in [14] to detect abrupt changes af-
fecting multiple KPIs in traffic time series. These methods
typically operate ad-hoc, and, more importantly, they do
not attempt to determine what aspects of the network are
causing the anomalies. Moreover, these methods require
fine hyperparameter tuning.

This paper presents a machine learning methodology
for detecting and classifying mobile network performance
anomalies that is unsupervised and non-parametric. The
proposed methodology referred to as explainable machine
learning for anomaly detection and classification (XMLAD)
identifies in an unsupervised fashion both network perfor-
mance indicators (features) and operation scenarios (ex-
periments) that could cause performance anomalies. To
this end, the proposed approach includes a data-cleaning
stage that discards features and experiments that allow
us to characterize the normality model so that deviations
from the model can be detected. After that, XMLAD con-
siders both the classification error yielded by the anomaly
detection engine and the statistical modeling of features
in order to optimize the anomaly classification engine that
identifies features that cause abnormal behaviors. The
proposed methodology incorporates two decision tree clas-
sifiers that generate explainable structures that allow the
identification of both normal operation scenarios and per-
formance anomalies. Additional contributions of this pa-
per are summarized as follows:

1. This work includes a data preprocessing stage di-
vided into three steps: missing value identification
and removal, low variability detection and removal,
and outlier detection in features. These steps extract
a set of relevant features based on data statistics.
Moreover, we incorporate a training set preparation
stage divided into two modules: outlier detection in
experiments and a feature selection method based on
a 2D clustering technique. Specifically, the aim of
the training set preparation is to obtain samples and
labels to train the anomaly detection engine. Notice
that the anomaly detection engine should describe

the network’s normal behavior such that misclassi-
fied samples characterize anomalous scenarios.

2. The XMLAD methodology uses an unsupervised and
non-parametric approach to identify problematic fea-
tures and experiments causing anomalies. In order
to accomplish this, XMLAD applies a 1D cluster-
ing technique to each feature vector with the aim of
identifying different behaviors implicitly embedded
in feature distributions. Afterward, the procedure
considers the labels predicted by the anomaly detec-
tion engine to determine the misclassification density
for each cluster. Moreover, the methodology auto-
matically selects the columns with the highest mis-
classification densities as problematic features. Sub-
sequently, XMLAD optimizes an anomaly classifica-
tion engine that recognizes the features inducing per-
formance anomalies.

3. We evaluate the performance of the proposed method-
ology on data collected by drive tests over real net-
works. Specifically, we test the XMLAD approach
on three datasets by considering different test types
such as HTTP file download, HTTP live page down-
load, and QUIC file download.

4. Finally, we build a testbed that generates synthetic
data to evaluate the performance of the proposed
methodology. We use the testbed to evaluate the
accuracy of the XMLAD under different conditions.
We also describe the statistical models characterizing
features that form synthetic datasets.

We implement the XMLAD methodology in Python
and test its performance using real and synthetic datasets.
More precisely, we use datasets with data obtained from
measurements in operational networks: we have two datasets
with data gathered by Nokia and one with our measure-
ment operated through the MONROE platform [16]. Nokia
datasets comprise hundreds of features but few experi-
ments and they were collected by Nokia for auditing pur-
poses in European countries. On the other hand, MON-
ROE data is more abundant as it was acquired by means
of an open-access platform for testing networks across Eu-
rope, although it contains much fewer features than Nokia’s
data. XMLAD is also tested using a synthetic dataset that
we generated and which contains a known rate of anoma-
lies. It is worth noting that the synthetic dataset contains
thousands of experiments but only a very restricted num-
ber of key features.

Compared to our preliminary conference paper [1], this
extended version introduces the procedure to automati-
cally select those features with high classification errors as
problematic features. Furthermore, the proposed method-
ology uses the proportional approach to select the number
of output classes of the anomaly classification engine with-
out resorting to a threshold search. In this sense, XMLAD
is a significant extension of the KLNX methodology pro-
posed in our conference paper, which justifies why we here
we use a different name (i.e., XMLAD instead of KLNX).

2

Furthermore, here we include a comprehensive evaluation
of the XMLAD methodology by means of the execution of
multiple experiments on datasets profiling the performance
of real mobile networks. Finally, this extended version ex-
tensively evaluates the impact of the various components
of data preprocessing and training set preparation on the
performance of the anomaly detection engine.

1.1. Related Work

Several anomaly detection methods have been designed
in the context of communication networks. Methods based
on signal processing tools typically address the anomaly
detection problem in network traffic time series [17, 18,
19, 20]. Specifically, these methods consider a single fea-
ture (univariate) to detect anomalous spikes in traffic data
and the designed processing structures are tailored to the
data at hand. Supervised machine learning techniques
have been also proposed to detect anomalies in traffic time
series [21, 22] requiring ground truth labels that are not
always available. Moreover, unsupervised machine learn-
ing techniques have been introduced [23, 24, 14] to identify
spikes in traffic time series whose performance is severely
affected by the hyperparameter tuning. In the context of
performance anomalies in communication networks, ma-
chine learning architectures based on supervised models
have been introduced [10, 11]. These methods use multi-
ple features (multivariate) to identify performance anoma-
lies. However, these approaches discard many available
features by selecting manually a small set of basic features
and they also require the knowledge of ground truth la-
bels to train the supervised models [12, 13]. In addition,
it can be observed that these supervised techniques usually
do not provide information about features that can cause
abnormal behaviors. Recently, an unsupervised method
based on principal component analysis (PCA) and root
cause analysis was presented to identify features causing
anomalies [25]. This method manually selects the problem-
atic features to build the finite state machine that searches
anomaly root causes and the selected principal components
hide the thresholds related to anomalies in a specific net-
work aspect.

In contrast to the anomaly detection methods in traf-
fic time series, the XMLAD methodology is a multivari-
ate approach that detects and classifies anomalies in mo-
bile networks considering the entire set of available fea-
tures. Compared to previous machine learning methods
[10, 12, 13, 11], the proposed approach includes a data
cleaning stage that automatically extracts from the set of
available variables those features related to a particular
network task, e.g., HTTP File Download. Furthermore,
the data cleaning stage is a nonparametric and unsuper-
vised procedure with a self-tune of hyperparameters based
on data statistics that identify features and experiments
describing the normal network behavior. Instead of using a
manual selection procedure of the problematic features as
reported in [25], our framework embeds an unsupervised
and nonparametric technique to automatically recognize

Table 1: Notation summary
Notation Description

DDD Original dataset
zzz Target KPI vector
yyy Discretized KPI vector
N1 Features indices retained by the missing value detection
N2 Features indices retained by the low variability detection
N3 Features indices retained by the outlier detection in features
M4 Row indices retained by the outlier detection in experiements
N5 Features indices retained by feature selection stage
DDD1 Output dataset of the missing value detection
DDD2 Output dataset of the low variability detection
DDD3 Output dataset of the outlier detection in features
DDD4 Input dataset of the outlier detection in experiments [zzz,DDD3]
TTT Output dataset of the outlier detection in experiments
CCC Pearson correlation matrix for the feature selection stage
CCC′ Projection of CCC into the 2D Euclidean space

XXXtrain Input dataset to train the anomaly detection engine
yyytrain Output label vector to train the anomaly detection engine

Γ Training set of the anomaly detection engine {XXXtrain, yyytrain}
XXXtest Input dataset to evaluate the anomaly detection engine
yyypred Predicted labels by the anomaly detection engine
yyydiff Differences between predicted labels and discretized KPI values
yyyanm Vector of anomalous scenarios
Nr Features indices retained by the relevant feature identification
χ Input dataset to train the anomaly classification engine
ζ Output label vector to train the anomaly classification engine
Π Training set of the anomaly classification engine {χ, ζ}

fθ(·) Function performed by the discretization model
gφ(·) Function performed by the anomaly detection engine
hϕ(·) Function performed by the anomaly classification engine

features and experiments causing performance anomalies
based on both the statistical feature modeling and the mis-
classification generated by the anomaly detection engine.
Finally, this framework includes an anomaly classification
stage that identifies in an unsupervised way the anomalous
scenarios and the set of features causing these anomalies,
which is a fundamentally novel contribution of our work.

1.2. Notations

In this work, we consider bold fonts for vectors and
matrices, in lowercase and uppercase, respectively, e.g. aaa
and AAA. The i-th component of the vector aaa is denoted as
aaa(i) and AAA(i, j) represents the entry of AAA at the location
(i, j). In addition, the i-th row and the j-th column of the
matrix AAA are denoted as AAA(i, :) and AAA(:, j), respectively.
Consider AAA a matrix with dimensions m × n, and subset
M ⊆ {1, . . . ,m} of row indices and subset N ⊆ {1, . . . , n}
of column indices, then, AAA(M, :) and AAA(:,N) are subma-
trices of AAA containing the rows included in M and the
columns included in N , respectively. F

V
indicates the cu-

mulative distribution function of the random variable V .
The lower quartile, the upper quartile, and the interquar-
tile range of the observation entries included in vector aaa

are denoted by Q
(aaa)
1 , Q

(aaa)
3 , IQR(aaa), respectively. Table 1

shows a summary of notations used in this paper.

1.3. Paper organization

The paper is organized as follows. Section 2 describes
the proposed anomaly detection and classification method-
ology. Section 3 describes the real datasets and introduces
the modeling to generate synthetic data. The results of
the proposed methodology are displayed in Section 4 for
both synthetic data and real measurements. Finally, we
summarize some concluding remarks in Section 5.

3

Figure 1: Flowchart of the XMLAD methodology.

2. The XMLAD methodology

The XMLAD methodology is a three-phase, unsuper-
vised, and nonparametric approach for detecting and clas-
sifying performance anomalies in mobile networks. This
section presents the preparation of the dataset to model
the anomaly detection engine, which is the first phase of
the proposed methodology. The second and third phases
focus on optimizing detection and classification engines.
The rationale behind the design of the three phases is that
a clean model of the dataset’s regularities will need to be
constructed in order to identify and classify anomalies.

The first step of the XMLAD approach is the loading of
the database containing performance indicators (features)
in operation scenarios (experiments). This database also
includes the target KPI vector. Then, XMLAD applies a
preprocessing stage to the loaded data in order to obtain
the cleanest dataset for training an anomaly detection en-
gine, also known as the knowledge tree. Fig. 1 illustrates
the flowchart of the XMLAD methodology. Notice that ar-
rows can have two line widths, thick lines for matrices or
datasets with multiple features and thin lines for vectors.
As can be seen, the modeling of the anomaly detection
engine is divided into three subphases: (i) data prepro-
cessing, (ii) training set preparation, and (iii) knowledge
tree training.

2.1. Data preprocessing

As shown in Fig. 1, this subphase consists of three
steps: null cell detection and removal, identification and
removal of features with low variability, and detection and
removal of features with a large number of outliers. More
precisely, the first step of this subphase is to remove fea-
tures that contain a large number of missing values. The

second step involves discarding features with low variabil-
ity in their samples. As a final step, this subphase removes
features that have a large number of outliers or gross er-
rors.

2.1.1. Missing value detection and removal

Drive tests typically collect data related to different
test types. However, when drive tests run a specific test,
several operation indicators are not stored. Consequently,
it is necessary the development of practical tools to extract
the relevant features for a particular test type. Specifically,
this module recovers the features recorded for a specific
task by identifying and removing columns with many null
cells. For this purpose, let DDD be a matrix with dimensions
m0×n0, which contains the data extracted from the loaded
dataset, where m0 represents the number of experiments
and n0 represents the number of features. Observe that the
target KPI has not been included in DDD. In this process,
rows are removed fromDDD in order to generate an auxiliary
matrixDDD′, which will later be used to remove features. To
do so, the methodology determines the number of missing
values or null cells (for example, NaN in numeric arrays) at
each row of DDD as follows:

ddd(i) =

n0
∑

j=1

isnull(DDD(i, j)) for i = 1, . . . ,m0, (1)

where ddd is an m0-dimensional vector whose i-th element
contains the number of null cells in the i-th row of DDD, and
isnull(·) is a nonlinear function that detects null cells.

Afterward, this step extracts from ddd the row indices
M1 ⊆ {1, . . . ,m0} whose number of null cells is less than
a threshold defined by median(ddd) + 3MAD(ddd) [26], where
median(ddd) denotes the sample median of the components
included in ddd, and MAD(ddd) stands for the median of the
absolute deviations defined as

4

MAD(ddd) = ρ
(ddd) (median (|ddd−median(ddd)|)) , (2)

with ρ(ddd) as a scalar parameter, whose value is determined
directly from the data as follows [27]:

ρ
(ddd) =

1
(

QQQ
(d̄̄d̄d)
3 − µd̄̄d̄d

) , (3)

where d̄̄d̄d is a scaled version of ddd, i.e., d̄̄d̄d = ddd/σddd, σddd
denotes

the sample standard deviation of the observations included
in ddd, and µ

d̄̄d̄d
represents the sample mean of the scaled

version of ddd. Hence, the subset M1 is given by

M1 = {k ∈ {1, . . . ,m0}|ddd(k) < median(ddd) + 3MAD(ddd)} . (4)

Next, the submatrix DDD′ is extracted from the original
dataset, which contains samples belonging to the subset
of row indices M1, i.e., DDD

′ =DDD(M1, :).
Then, the procedure identifies and retains only those

columns in DDD′ that do not contain missing values. This
step obtains the subset of column indices as follows:

N1 =

{

k ∈ {1, . . . , n0}
∣

∣

∣

∣

∣

∑

i∈M1

isnull(DDD′(i, k)) = 0

}

. (5)

Finally, a submatrix DDD1 = DDD(:,N1) is obtained from the
original dataset DDD, containing the features in N1.

2.1.2. Low variability detection

After discarding features with a large number of miss-
ing values, the approach aims at detecting features with
low variability in their samples. These features do not con-
tribute to the performance improvement of the anomaly
detection model. Notice that features with zero variability
are easily detected by computing the standard deviation
of every measurement set. However, the criterion for de-
tecting features with low variability can be set in a more
flexible manner. In particular, we use the interquartile
range (IQR) as an indicator of low variability. The IQR is
defined as the difference between the upper quartile and

the lower quartile, i.e., IQR(aaa) = Q
(a)(a)(a)
3 − Q

(a)(a)(a)
1 . There-

fore, a feature vector with a zero-valued IQR contains at
least half of the samples equal to the median value. Since
the anomaly detection model should be optimized around
the central tendency of the features that, in turn, describe
the network’s normal behavior, we assume that a feature
with zero-valued IQR makes a negligible contribution to
the performance improvement of the detection model.

ConsiderDDD1, a matrix with dimensions m0×n1, where
m0 is the number of experiments and n1 = |N1| is the
number of features extracted by the procedure described
in Section 2.1.1. The purpose of this step is to extract the
features from DDD1 whose IQR is greater than zero. Hence,
the subset of selected indices consists of

N2 = {k ∈ N1|IQR(DDD1(:, k)) 6= 0} . (6)

A submatrix is extracted from DDD1 containing the feature
indices included in N2, i.e., DDD2 =DDD1(:,N2).

2.1.3. Outlier detection in fetures

An outlier is a measurement that deviates significantly
from the mass of samples. Outliers can occur in a dataset
as a result of anomalous scenarios, sampling errors, and
storing errors. Furthermore, the persistence of sampling
errors leads to features with many outliers, which may
introduce bias into the modeling of the anomaly detection
engine. During this step of the data preprocessing process,
features with a large number of outliers are discarded. In
this regard, let DDD2 be the input matrix of size m0 × |N2|.
In addition, consider θ = outlier(aaa) a vector with the same
length as aaa whose i-th element θ(i) indicates the presence
of an outlier in the i-th element of aaa, i.e.,

θ(i) =

{

1, if |a(i)−median(aaa)| > 3MAD(aaa), and
0, otherwise,

(7)

XMLAD builds a matrix whose j-th column contains the
outlier locations at the respective j-th feature, i.e.,

BBB
′(:, j) = outlier(DDD2(:, j)), ∀j ∈ N2. (8)

This step obtains the number of outliers in each feature in
the following manner:

oooc(j) =

m0
∑

i=1

BBB
′(i, j), ∀j ∈ N2. (9)

Afterward, the methodology extracts column indices with
fewer outliers than threshold median(oooc)+3MAD(oooc), i.e.,

N3 = {k ∈ N2|oooc(k) < median(oooc) + 3MAD(oooc)} . (10)

In this case, the features with a low number of outliers
are obtained as DDD3 = DDD2(:,N3). It is pertinent to note
that the outlier detection stage does not rely on parame-
ter tuning since it uses parameters extracted directly from
feature statistics.

2.2. Training set preparation subphase

During the second subphase of the knowledge tree mod-
eling, training data and training labels are extracted in or-
der to build the knowledge tree. At this stage, the method-
ology concatenates the target KPI vector zzz to the matrix
obtained in the previous stage, i.e. DDD4 = [zzz,DDD3], whereDDD4

has dimensionsm0×n4, withN4 = N3∪{z} and n4 = |N4|.
First, this subphase detects outliers in the experiments
(i.e., the rows of DDD4). After that, a clustering-based fea-
ture selection method is implemented. Lastly, training la-
bels are generated by discretizing the target KPI.

2.2.1. Outlier detection in experiments

Throughout this study, we assume that samples around
the central tendency of each feature are associated with the
network’s normal behavior. Thus, training samples with
outliers can introduce bias into the knowledge model and
should be avoided. For this purpose, XMLAD builds a
matrix from DDD4 whose columns are given by

BBB
′′(:, j) = outlier(DDD4(:, j)), ∀j ∈ N4. (11)

5

Furthermore, the vector including the number of outliers
in each row is described as

ooor(i) =

n4
∑

j=1

BBB
′′(i, j), for i = 1, . . . ,m0. (12)

This step detects the subset of row indices with zero out-
liers, i.e., M4 = {k ∈ {1, . . . ,m0} | ooor(k) = 0}. Finally, the
method obtains a submatrix fromDDD4 that extracts the ex-
periments belonging to the set of row indices M4, in other
words, TTT = DDD4(M4, :). Observe that this stage removes
outlier experiments from the target KPI and features.

2.2.2. Feature selection

Redundant information in features typically affects the
modeling of machine learning engines. With an increase in
the number of features, this problem becomes more pro-
nounced. To overcome this limitation, we use a feature se-
lection technique to extract a limited set of features from
the data available. This technique belongs to the field of
dimensionality reduction (DR), which extracts a subset of
features following a selection rule [28].

To select the training features, consider TTT the input
matrix with dimensions m4×n4, where m4 = |M4| stands
for the number of experiments and n4 represents the num-
ber of features. A correlation indicator matrix CCC ′ is built
as follows:

CCC
′ = 111n4×n4 − abs(CCC), (13)

where 111n×n is a matrix of size n×n with one-valued entries,
abs(AAA) is a matrix with the absolute value of the elements
of AAA, and CCC denotes the correlation matrix of size n4 ×
n4. Specifically, each element of CCC at the location (i, j)
corresponds to the Pearson correlation coefficient between
TTT (:, i) and TTT (:, j), in other words:

CCC(i, j) =
cov (TTT (:, i),TTT (:, j))

σ
TTT (:,i)

σ
TTT (:,j)

, (14)

for i = 1, . . . , n4 and j = 1, . . . , n4, where cov(aaa,bbb) denotes
the sample covariance of two n-dimensional sample vectors
aaa and bbb, which is defined as cov(aaa, bbb) = 1

n

∑n
i=1(a(i) −

µ
aaa
)(b(i)− µ

bbb
).

In this stage, we focus on clustering features that are
correlated. To achieve this goal, we leverage multidimen-
sional scaling (MDS), which projects multidimensional points
into a smaller space while maintaining a distance (dis-
similarity) measure among them [29]. In essence, we use
MDS to map features into a 2D Euclidean space from in-
formation embedded in CCC ′, which contains the reference
distances. Therefore, the distance between points in Eu-
clidean space reflects the correlation between them.

To select the training features, we include a model-
based clustering method to the projected correlation points.
Basically, a model-based clustering technique assumes that
the points belonging to each cluster obey to a 2D Gaussian
distribution, therefore, the projected set is modeled as a
mixture of normal distributions. The clustering method
includes an expectation-maximization (EM) algorithm to
compute the maximum likelihood estimates describing each

Figure 2: Representation of the feature selection procedure based on
the 2D clustering technique.

Gaussian distribution. Moreover, the model-based cluster-
ing recognizes the optimal model according to the Bayes
information criterion (BIC) [30]. Specifically, this stage
evaluates various clustering models, each of which has a
certain number of output clusters, and then, the proposed
approach selects the model with the best BIC value. No-
tice that this study evaluates the number of output clusters
within the range from 1 to ⌈n4/2⌉ [31] where ⌈a⌉ is the ceil
function that returns the minimum integer greater than a.

During the training stage, features exhibiting a high
correlation with the target KPI may introduce bias into the
knowledge tree. Therefore, the decision structure may rely
on factors that do not provide relevant information about
the underlying processes affecting network performance.
In this work, we first discard the cluster containing the
target KPI. Subsequently, the methodology extracts the
feature with the closest distance to the cluster centroid for
the remaining clusters. Specifically, consider (xk, yk) the
location of the k-th feature projection and (xci , yci) the
coordinate of the cluster centroid, for ci = 1, . . . , C, where
C is the number of clusters. The set of selected features is
determined as

N5 = {k ∈ N4|∃ci ∈ [1, C] :

k = arg min
k′∈N4

√

(xk′ − xci)
2 + (yk′ − yci)

2

}

. (15)

Finally, the training set is obtained as XXXtrain = TTT (:,N5).
Fig. 2 illustrates the feature selection procedure based on
the 2D clustering technique.

2.2.3. Discretization

Target KPI samples typically exhibit floating point rep-
resentations with values lying on an infinite set. Since
our goal is to detect and classify anomalies, the proposed
methodology discretizes the target KPI samples into a fi-
nite number of class labels. Each category should describe
a particular operation scenario. As a result, the XMLAD
builds a discretization model fθ(·) that estimates the bin-
ning intervals by considering a vector of training samples
with continuous values. In this regard, consider the tar-
get KPI vector zzz. Therefore, the training set of the dis-
cretization model can be defined as zzz′ = zzz(M4), i.e., zzz

′

6

contains the KPI samples belonging to the subset of in-
dices M4, which is obtained in Section 2.2.1. Further-
more, the XMLAD resorts to proportional discretization
to automatically determine the number of classes [32]. Un-
der the proportional discretization approach, the number
of classes depends on the size of the input vector, i.e.,
w = ⌊(log2 n)/2⌋, where w is the number of target cat-
egories, n is the input vector size, and ⌊a⌋ is the floor
operator that returns the integer part of a. In addition,
discretization uses the k-means binning strategy to map
the continuous KPI values into the discretized classes. In
summary, the discretization strategy assigns the class la-
bels based on the distance between the continuous entry
and centroids yielded by the k-means clustering. Finally,
the training labels are obtained from the KPI measure-
ments as yyytrain = fθ(zzz

′), where fθ(·) represents the non-
linear function implementing the discretization.

2.3. Knowledge model training subphase

This subphase aims at building a knowledge model
from the extracted training sets to detect performance
anomalies in mobile networks. We select the decision tree
classifier to model the anomaly detection engine. A deci-
sion tree classifier is a supervised pattern recognition sys-
tem that predicts the output classes based on simple deci-
sion rules considering the values of the input features. We
select the decision tree classifier because the tree structure
is explainable and easy to understand. Decision tree classi-
fiers typically exhibit lower accuracies than those yielded
by other black-box classification methods. Nevertheless,
the tree structure allows the user to identify the features
and thresholds that describe the output classes [33].

In order to optimize the decision tree classifier, we use
the training set Γ = {XXXtrain, yyytrain}, where XXXtrain is
the input training matrix of size mℓ × nℓ, with mℓ as the
number of training experiments and nℓ is the number of
features extracted by the feature selection method based
on 2D clustering. Furthermore, yyytrain consists of an mℓ-
dimensional vector that contains the ground truth labels
generated during the discretization process. The decision
tree is trained using the classification and regression tree
(CART) algorithm with the Gini impurity index as the
loss function to be minimized [33]. Specifically, the Gini
impurity index assesses the misclassification rate in a tree
leaf, and it is computed as G = 1 −

∑k
i=1 p

2
i . In this ex-

pression, k represents the number of output labels, and
pi stands for the rate between the number of training la-
bels assigned with the i-th class and the total number of
samples evaluated by the tree leaf. When a tree level is
aggregated, the number of training samples required to
train a decision tree classifier doubles. Hence, we con-
strain the depth of the decision tree to ⌊(log2 mℓ)/2⌋ to
avoid overfitting. Additionally, the minimum number of
training samples per leaf is limited to five [34].

Lastly, cost-complexity pruning is applied to the deci-
sion tree in order to reduce the likelihood of overfitting.
Using a cost-complexity pruning algorithm, unnecessary

tree nodes are eliminated by balancing the trade-off be-
tween classification error and model size. This algorithm
minimizes a linear cost-complexity function with a param-
eter α ≥ 0, referred to as the complexity parameter, which
controls the relative influence of the model complexity on
the tree size. A cross-validation procedure is implemented
to automatically select the appropriate α value from a set
of effective values. A cross-validation procedure evaluates
the cost-complexity function over an interval of α. For
each value of α, the training set is divided into smaller
subsets. Using this method, multiple training and testing
operations are implemented, where one subset is used to
train the model and the remaining ones to test it. Follow-
ing this, the average classification accuracy is calculated.
It is significant to note that a different tree structure is
evaluated for each value of α. After cross-validation, the
tree structure with the highest classification accuracy is se-
lected. The decision tree classifier is fitted with the train-
ing set Γ, the maximum number of levels (depth), the
minimum number of training samples per leaf, and the
optimal α. The function performed by the knowledge tree
over the input data is denoted as gφ(·).

2.4. Network performance anomalies

The XMLAD methodology tests the knowledge model
after the training stage in order to detect anomalies in
performance. Accordingly, the proposed approach uti-
lizes all experiments to evaluate the decision tree classi-
fier. More precisely, the set of test samples is obtained
as XXXtest = DDD(:,N5), where XXXtest is a submatrix of size
m0×|N5| that extracts the variables identified by the fea-
ture selection method directly from the loaded data. Then,
the anomaly detection engine is tested to predict the out-
put classes, i.e., yyypred = gφ(XXXtest). Our approach imple-
ments the discretization process fθ(·) to obtain the refer-
ence labels, i.e., this method determines yyy = fθ(zzz). Note
that the anomaly detection model has been optimized to
identify “normal” operation scenarios. Thus, misclassified
experiments may be considered anomalous. In addition,
the differences between the predicted labels and the dis-
cretized KPIs can provide information about the deviation
from the normal operation of the samples under test. Next,
we introduce the steps of the anomaly detection procedure.

2.4.1. Identification of anomalous scenarios

This stage estimates the element-wise difference be-
tween the set of class labels predicted by the anomaly de-
tection model and the set of discretized KPIs, i.e., yyydiff =
yyypred−yyy. In this context, three scenarios are identified: (i)
the label predicted by the knowledge tree matches with re-
spect to the corresponding discretized KPI, i.e., yyydiff (i) =
0; (ii) the class label predicted indicates a worse perfor-
mance compared to the discretized KPI, i.e., yyydiff (i) > 0;
or (iii) the performance predicted is better than the dis-
cretized KPI, i.e., yyydiff (i) < 0. Since this work focuses
on detecting and classifying scenarios in which the perfor-
mance observed is worse than predicted, our attention is

7

oriented to scenario (iii). Therefore, the XMLAD method-
ology builds a vector of errors for anomalous scenarios as
yyyanm(i) = yyydiff (i) if yyydiff (i) < 0 (and yyyanm(i) = 0 other-
wise), for i = 1, . . . ,m0.

2.4.2. Identification of relevant features

Observe that the training stage considers a reduced set
of features to optimize the anomaly detection model gφ.
Nevertheless, the methodology requires the evaluation of
a large number of features to build the anomaly classifi-
cation model. Hence, this phase recovers the features dis-
carded by the preprocessing phase. In essence, this phase
retrieves the matrixDDD3 outputted by the outlier detection
in features (Section 2.1.3) with dimensions m0 × |N3|.

To quantify the relevance of each feature with respect
to the vector of anomalous scenarios yyyanm , we compute
the miscoding (mscd) index. This metric essentially esti-
mates the amount of information sharing a feature vector
(in our case is the i-th column of DDD3, i.e., DDD3(:, i)) and a
target vector yyyanm. In other words, the miscoding assesses
how much a feature vector can describe the target vector
pattern. The miscoding has been recently proposed in [35]
to select the relevant features that better describe a mis-
classification behavior. To compute this metric, consider
the matrix DDD3 whose |N3| columns correspond to the in-
put features. Therefore, the miscoding index between the
i-th feature DDD3(:, i) and the vector of anomalous scenarios
yyyanm is estimated by

mscd(DDD3(:, i), yyyanm) =
1−NCD(DDD3(:, i), yyyanm)

∑m0
i=1(1−NCD(DDD3(:, i), yyyanm))

, (16)

for i = 1, . . . , |N3|, with NCD(aaa,bbb) as the normalized com-
pression distance between vectors aaa and bbb. The miscoding
estimates are sorted in decreasing order such that features
that contribute more to the anomaly detection are firstly
selected. In this sense, the number of selected features
to evaluate the anomaly classification engine is given by
nr = min(|N3|, ⌊log2(m0)/2⌋2). Specifically, let eee be the vec-
tor of sorted miscoding estimates such that eee(0) = mscd(DDD3(:

, i0), yyyanm), eee(1) = mscd(DDD3(:, i1), yyyanm), . . . , eee(nr) = mscd(DDD3(:

, inr), yyyanm) and eee(0) ≥ eee(1) ≥ . . . ≥ eee(nr). Hence, the subset
of relevant feature indices can be written as

Nr={k ∈ {1, . . . , n1}|k = iu, for u = 0, 1, . . . , nr} . (17)

2.5. Classification tree modeling

This phase detects the features that exhibit a strong
association with anomalies from relevant features. For this
purpose, we apply a model-based 1D clustering to every
relevant feature in order to identify the feature intervals
that can contain anomalous scenarios. Then, a procedure
that detects problematic features and experiments is de-
veloped to generate the training labels of the anomaly clas-
sification engine.

2.5.1. Detection of problematic features and experiments

Since anomalous scenarios are related to unusual values
generated by some network aspects, we focus on detecting
feature intervals related to abnormal behaviors. To this
end, the XMLAD methodology applies a 1D model-based
clustering to every relevant feature. More precisely, we
assume that the statistical model of each relevant feature
obeys a mixture of Gaussian distributions with different
parameters. In this case, model parameters are estimated
using the EM algorithm and the number of clusters is se-
lected in an unsupervised manner based on the BIC [30].
Before applying the 1D clustering, each relevant feature is
scaled using standard normalization, i.e., âaa = (aaa−µ

aaa
)/σ

aaa
,

where âaa is the normalized set, aaa is the original vector, µ
aaa

and σ
aaa
are, respectively, the sample mean and the stan-

dard deviation of aaa. The idea behind this procedure is to
identify feature intervals with a high rate of misclassifica-
tion with the goal of recognizing the problematic experi-
ments.

Then, the XMLAD approach estimates the anomaly
density of each cluster, i.e., the mean error in the cluster
normalized to the overall mean error (cf. Section 2.4.1
for the definition of error). Assume that the clustering
generates a vector yyy

clust
with cluster labels cj = 1, . . . , C

J
,

where C
J
is the number of detected clusters. Thus, the

anomaly density of the vector anomalous scenarios for each
cluster ρcj is obtained as the normalized average of the
subvector yyyanm(Mcj), whereMcj is a subset of row indices
such that

Mcj = {k ∈ {1, . . . ,m0}|yyyclust(k) = cj} , (18)

for cj = 1, . . . , C
J
. For each feature this step obtains a set

of densities {ρcj}
C
J

cj=1. Then, we implement a procedure to
select those features with the highest anomaly densities. It
is worth noting that these features are considered problem-
atic features, i.e., they are variables associated with net-
work aspects that could induce the anomaly. As a result,
each anomalous scenario can be described by listing prob-
lematic features. Taking into account that a problematic
feature can contain two types of experiments (problem-
atic and nonproblematic), the number of categories that
should detect the anomaly classification engine reduces to
ηclasses = 2nprob , where nprob is the number of problematic
features. To generate a classification model with high ac-
curacy, we use the proportional approach to determine the
number of problematic features that the classifier should
consider, i.e., nprob = ⌈log2(log2(m0))⌉, where ⌈a⌉ returns
the least integer greater than or equal to a. Furthermore,
at each problematic feature, we consider the samples in
clusters with high anomaly densities as problematic ex-
periments with a label T$P, where $ is the ID assigned to
the problematic feature. Otherwise, if experiments are in
clusters with low anomaly densities, we consider them as
nonproblematic samples, with a label T$N.

8

2.5.2. Classification model training

In this stage, we train the anomaly classification en-
gine using the features used to train the knowledge tree
and the relevant features selected to identify problematic
features and experiments. In other words, we obtain a
feature set with column indices Nc = N3 ∪ Nr. Then, the
input training set is obtained as a submatrix extracted
from the original dataset DDD containing the column indices
Nc, i.e., χ =DDD(:,Nc). The input training set attempts to
consider the information that builds the first decision tree
classifier gφ and the knowledge embedded in the miscoding
estimates.

In addition, the method builds the output training set
ζ from the labeling of problematic and non-problematic
experiments, described in Section 2.5.1. This labeling gen-
erates two types of classes: (i) the compliant class that
identifies the samples that do not contain any problem-
atic feature, i.e., this class describes the network’s normal
behaviors, or (ii) the class of anomalous scenarios, which
are labeled as a concatenated semicolon list of problematic
and non-problematic features. For example, consider that
the method detects four problematic features with number
assignation:

• packet.loss → 1

• maximum.segment.size → 2

• round.trip.time → 3

• start.snr → 4

An experiment with class T1P;T2N;T3N;T4P identifies
an anomalous scenario whose variables packet.loss and
start.snr cause the abnormal functioning in the exper-
iment of interest. Afterward, this stage trains a deci-
sion tree engine to model the anomaly classification en-
gine. We use a decision tree classifier because the decision
tree structures provide an explainable visualization tool
that identifies features and thresholds related to normal
and abnormal operative scenarios. In this case, the pro-
posed approach optimizes the decision tree classifier by
implementing the CART algorithm with the training set
Π = {χ, ζ}. The training stage also uses cost-complexity
pruning and cross-validation to remove unnecessary com-
plexities in the decision tree classifier. Finally, the non-
linear function performed by the classification engine is
represented with hϕ(·).

3. Datasets

In this paper, we evaluate the performance of the XM-
LADmethodology on both measurements collected by drive
tests on real mobile networks and synthetic datasets. In
order to recreate behaviors similar to those observed in
real experiments, we first describe the datasets derived
from real drive tests. Afterward, we introduce statistical
models characterizing the synthetic measurements.

Table 2: Characteristics of the measurement subsets used to evaluate
the performance of the XMLAD methodology.

Dataset Test type Rows Cols Task name

NokiaFL HTTP FILE DL 1, 730 442 HTTP 5MB Download
NokiaLP HTTP LIVEPAGE DL 1, 185 393 HTTPS Static Kepler 30s
MonroeQL Data Exchange 3, 951 188 Server-Client Exchange

3.1. Nokia datasets

Table 2 displays a summary of the characteristics of
the real measurement sets used to evaluate the perfor-
mance of the XMLAD methodology. As seen in this table,
we consider three real datasets: the NokiaFL dataset, the
NokiaLP dataset, and the MonroeQL dataset. In 2019,
Nokia acquired the first two datasets with the aim of au-
diting the performance of 4G mobile networks in various
European countries [36]. These datasets contain measure-
ments of tens of features profiling different aspects of the
mobile network such as TCP traffic, routing, and radio
links, among others. Furthermore, NokiaFL and NokiaLP
datasets provide the statistics of different network aspects
including count, average, maximum, minimum, and per-
centiles. Hence, every row extracted from these datasets
corresponds to a particular experiment collecting informa-
tion on thousands of features such as date, location, test
type, performance measurements, statistics, and KPI out-
comes. It is worth noting that these datasets were collected
by using a mobile testing device to generate the stimuli
that induce the communication network response, hence,
the dataset does not contain sensitive information about
customers. Additionally, sensitive information about the
mobile network operator was removed.

Firstly, the NokiaFL dataset contains information on
the network performance when the testing device down-
loads a 5 MB file. For this dataset, we select the session
duration as the target KPI. More precisely, the NokiaFL
dataset includes those qualified experiments performed un-
der the LTE technology and extracted the numerical fea-
tures only. It can be observed in Table 2 that the NokiaFL
measurement set contains 1, 730 experiments and 442 fea-
tures. On the other hand, the NokiaLP dataset contains
the measurements when the mobile testing device fetches
a live web page. Specifically, this dataset captures the mo-
bile network profile while the test device fetches a static
website. For this measurement set, we also extracted the
numerical features and selected the session duration as the
target KPI. As seen in Table 2, the NokiaLP dataset has
dimensions of 1, 185 rows and 393 columns.

3.2. MonroeQL dataset

In the MonroeQL dataset, we derive the data collection
from measurement campaigns conducted with MONROE,
an open-access platform designed to evaluate mobile net-
work performances across Europe [16]. Specifically, this
dataset was collected to assess the performance of mobile
networks that use protocols other than TCP. To be more

9

1,300 1,350 1,400
0

1

·10−2

(a) MSS (bytes)

D
e
n
s
i
t
y

0 2,000 4,000
0

1

2

·10−3

(b) RTT (ms)

D
e
n
s
i
t
y

0 0.5 1

·106

0

2

4

6
·10−6

(c) CWND (bytes)

D
e
n
s
i
t
y

0 0.5 1 1.5

·10−4

0.0

2.0

4.0

·10−1

(d) p

D
e
n
s
i
t
y

Figure 3: Histogram and kernel density estimation (KDE) of syn-
thetic samples for the parameters (a) MSS , (b) RTT , (c) CWND ,
and (d) p (KDE only).

precise, the packets are sent over the Quick UDP Connec-
tions (QUIC) protocol, which provides the reliability of
TCP and the speed of UDP [37].

In this work, we test the proposed methodology on the
MonroeQL dataset, which contains the measurements dur-
ing data exchange between a control server and a client
in the MONROE network. In order to collect informa-
tion for this dataset, mobile clients were located in Nor-
way, Sweden, and Spain. Afterward, the drive test cap-
tured the data exchange information for different qualities
of the network connectivity. Due to the difficulty in ex-
tracting information from QUIC environments, the raw
dataset was stored in qlog format [38]. After that, the
MonroeQL dataset was constructed from qlog files to ob-
tain a measurement set formatted similar to that used for
Nokia datasets [39]. This dataset includes measurements
and statistics (mean, median, percentiles, minimum, max-
imum, etc.) of traffic variables such as round trip time,
congestion window, session time, and throughput. As can
be seen in Table 2, the MonroeQL dataset contains 188
features and 3, 951 experiments.

3.3. Synthetic data modeling

To evaluate the behavior of the methodology in a more
controllable way, we also build a testbed that randomly
generates each feature vector with entries following a par-
ticular statistical model. Table 3 depicts the notation sum-
mary related to the synthetic data modeling. The TCP
throughput Btcp (in bytes/s) is then computed analyti-
cally using the simple Mathis model [40],

Btcp = min

(

MSS

RTT
√
p
,
CWND

RTT

)

, (19)

where MSS is the maximum segment size (in bytes), RTT
is the round trip time, CWND is the congestion window,

Table 3: Notation summary for the synthetic data modeling
Notation Description

Btcp TCP throughput
Ltcp TCP session duration
MSS Maximum segment size
RTT Round-trip time

CWND Congestion Window
p Packet loss probability

fmss Probability density function of MSS

F
RTT

Cumulative density function of RTT

F
cwnd

Cumulative density function of CWND

Fp Cumulative density function of p

lbmss , ubmss Parameters of the uniform distribution fmss
β Rate of negative exponential distribution of F

RTT
RTTmin Minimum RTT value

¯̄µ
cwnd

, σ
cwnd

Parameters of lognormal component of F
cwnd

lb
cwnd

, ub
cwnd

Parameters of the uniform component of F
cwnd

ǫ
cwnd

Rate of lognormal samples of F
cwnd

µp , σp Parameters of lognormal component of Fp

lbp , ubp Parameters of uniform component of Fp

ǫp Rate of packet loss probability outliers

and p is the packet loss probability. In addition, we set
download size FLSZ to 5 MB in order to estimate the
session duration as

Ltcp =
FLSZ

Btcp

. (20)

Notice that we generate just four TCP features, i.e., MSS ,
RTT , CWND , p, which greatly simplifies the possibility
to illustrate and evaluate the operation of the XMLAD
methodology.

Synthetic parameters are generated so as to resemble
the behavior observed in the NokiaFL dataset. The MSS

is drawn from a uniform probability density function (pdf),
i.e., f

mss
∼ u(lb

mss
, ub

mss
), with bounds lb

mss
= 1300

bytes and ub
mss

= 1400 bytes. Fig. 3(a) displays the his-
togram and the kernel density estimation (KDE) obtained
from an MSS synthetic vector with 20, 000 samples. The
KDE curve is estimated using a Gaussian kernel [41]. RTT
samples are obtained from a shifted exponential distribu-
tion, i.e.:

F
RTT

= Exponential(β) ∗RTTmin, (21)

where the convolution operator ‘∗’ simply tells that we sum
a constant minimum value RTTmin = 30ms to the one
generated with a negative exponential distribution with
rate β = 400(ms)−1 (cf. Fig. 3(b)). To generate the syn-
thetic samples of CWND and p, we use a ǫ-contaminated
mixture model [27] with a uniform and a (shifted and mir-
rored) log-normal distribution, i.e., with CDF given by

F
cwnd

(x) = ǫ
cwnd

Lognormal (µ
cwnd

, σ
cwnd

) (1.0 · 106 − x)

∗ (1− ǫ
cwnd

)u (lb
cwnd

, ub
cwnd

) (x), (22)

where the log-normal distribution has mean µ
cwnd

and
standard deviation σ

cwnd
, and is mirrored around the value

of 1 MB (cf. Fig. 3(c)), while u (lb
cwnd

, ub
cwnd

) denotes
the uniform distribution with bounds lb

cwnd
= 40 kB and

ub
cwnd

= 700 kB. The contamination parameter ǫ
cwnd

is
set to 0.90, σ

cwnd
= 0.65, and µ

cwdn
= log(¯̄µ

cwnd
) + σ2

cwnd
,

where ¯̄µ
cwdn

= 0.1 MB is the desired mode of the log-
normal.

So far, we have described synthetic features reproduc-
ing what is observed in the NokiaFL dataset. Additionally,

10

−100 −40
0

1

2

·10−7

End.RSSI.dBm

D
e
n
s
i
t
y

−100 −50
0

1

2

·10−7

End.RSRP.dBm

D
e
n
s
i
t
y

−20 0 20 40
0

1

2

3

·10−7

End.SINR.dB

D
e
n
s
i
t
y

−100 −40
0

1

2

·10−7

Start.RSSI.dBm

D
e
n
s
i
t
y

−120 −80 −40
0

1

2

·10−7

Start.RSRP.dBm

D
e
n
s
i
t
y

−20 0 20 40
0

1

2

3

·10−7

Start.SINR.dB

D
e
n
s
i
t
y

Figure 4: KDE yielded by different radio parameters for both the
Nokia dataset (dashed lines) and the synthetic data (continuous
lines).

we select the packet loss probability (p) to induce anoma-
lous scenarios in a controllable way with a mixture model,
i.e.:

Fp(x)=(1−ǫp)Lognormal
(

µp , σp

)

(x)∗ ǫpu
(

lbp , ubp
)

(x), (23)

where the mode of the log-normal pdf is set to ¯̄µ
p
= 2.50×

10−6, σ
p
= 0.20, lb

p
= 1.00× 10−4, and lb

p
= 1.25× 10−4.

Upon a closer look at the mixed model (23), it can be
observed that a specific rate of samples ǫ

p
exhibits much

higher packet loss probabilities, that should be identified
as anomalous. Fig. 3(d) shows the KDE of the synthetic
packet loss probabilities obtained for ǫ

p
= 0.10. The syn-

thetic dataset also includes six radio parameters. These
features are generated so as to be correlated with the TCP
throughput Btcp, and the corresponding models rely on a
Poisson distribution. The KDE curves obtained for the
various radio parameters for the NokiaFL dataset and a
synthetic dataset are displayed in Fig. 4.

In the synthetic dataset, anomalies are forced by means
of abnormal values of the loss probability, which are gen-
erated with probability ǫ

p
. We have also tested other syn-

thetic datasets in which (part of the) anomalies are intro-
duced by altering the value of a parameter after having
generated the KPI. This corresponds to scenarios in which
a parameter is measured incorrectly or, in general, it does
not fully correspond to the target KPI for some random
reason. However, due to space limitations, in what follows
we only comment on anomalies introduced in p with the
ǫ-contaminated model described above, whose results are
also simpler to interpret.

4. Results and analysis

In this study, the XMLAD methodology was imple-
mented in Python using the Scikit-learn [42] and the Ne-

science libraries1. Specifically, Nescience is an open-source
library that contains routines computing the miscoding
metric. In this section, we evaluate the XMLAD method-
ology in detail using the NokiaFL dataset. In addition,
we examine the impact of the data cleaning included in
the data preprocessing and the training set preparation
on the detection performance of the proposed methodol-
ogy. Then, we analyze the decision structures generated
by anomaly detection and classification engines using the
NokiaLP and MonroeQL datasets. Finally, we analyze the
performance of the XMLAD methodology using synthetic
datasets.

4.1. NokiaFL dataset

The NokiaFL dataset contains the network profiling
when a mobile testing device downloads a 5MB file. For
this dataset, we select the session duration as the target
KPI. First, the XMLADmethodology applies the data pre-
processing stage to remove columns with many null cells,
low column variabilities, and outliers. Table 4 shows the
sizes of data matricesDDD1,DDD2, andDDD3 yielded by the miss-
ing value detection and removal, low variability detection,
and the outlier detection in features, respectively. We also
include the size of the original NokiaFL dataset for com-
parison purposes. Notice that the missing value detection
discards most of the features 384 (86.88% of the original
number of columns). In drive tests conducted on mobile
networks, if an experiment runs a particular test type, e.g,
HTTP file download, several parameters related to other
test types are neither measured nor aggregated. Conse-
quently, the data matrix for this test type would contain
a large number of columns with many null cells. Thus,
the missing value detection allows the extraction of the
information associated with a particular test type. It can
be also observed that the low variability detection and
the outlier detection in features remove 28 (6.33%) and
14 (3.17%) columns, respectively. Table 5 displays the list
of columns extracted by the data preprocessing stage and
a brief description of each feature. Observe that a refers
to the testing mobile device and b refers to the HTTP
server hosting the download file. Furthermore, selective
acknowledgment, reference signal received power, received
signal strength indicator, and signal-to-interference plus
noise ratio are denoted using SACK, RSRP, RSSI, and
SINR, respectively.

In the training set preparation, the outlier detection
in experiments yields the data matrix TTT with dimensions
1, 385 rows and 26 columns (see the last row of Table
4). This set of rows contains the scenarios describing
the normal network behavior. Afterward, the proposed
methodology implements the feature selection technique
that projects the correlation matrix CCC into the Euclidean

1The source code for the proposed methodology is available at the
following URL: https://github.com/GCGImdea/NetPredict-Public/
CommNetworks2022.

11

https://github.com/GCGImdea/NetPredict-Public/CommNetworks2022
https://github.com/GCGImdea/NetPredict-Public/CommNetworks2022

Table 4: Dimensions of the data matrices yielded by different sub-
phases of the XMLAD methodology for the NokiaFL dataset.

XMLAD Subphase Data matrix Rows Cols

Original input DDD 1,730 442
Missing value detection DDD1 1,730 58
Low variability detection DDD2 1,730 30

Outlier detection in features DDD3 1,730 26
Outlier detection in experiments TTT 1,385 26

Feature selection XXXtrain 1,385 12

Table 5: Description of the features outputted by the data prepro-
cessing stage for the NokiaFL dataset. In this dataset, a denotes the
testing mobile device and b indicates the HTTP server.

Feature Description

1 abs.packetlost.sum Sum of packets lost during the test
2 ack.pkts.sent.a2b ACK packets sent from a to b
3 actual.data.bytes.b2a Data transmitted from b to a
4 actual.data.pkts.b2a Packets transmitted from b to a
5 avg.segm.size.b2a Average segment size from b to a
6 avg.win.adv.a2b Average receiving window from b to a
7 dsack.pkts.sent.a2b Duplicated SACK packets sent from b to a
8 duplicate.acks.a2b Duplicated ACK packets from a to b
9 end.rsrp.dbm RSRP in dBm at the end of the test
10 end.rssi.dbm RSSI in dBm at the end of the test
11 end.sinr.db SINR in dB at the end of the test
12 initial.window.bytes.b2a Initial window size in bytes from b to a
13 max.win.adv.a2b Maximum receiving window from a to b
14 outoforder.pkts.b2a Out of order packets from b to a
15 pushed.data.pkts.b2a Pushed data packets from b to a
16 rexmt.data.bytes.b2a Retransmitted data packets from b to a
17 rexmt.data.pkts.b2a Retransmitted data bytes from b to a
18 rtt.from.3whs.a2b 3-way handshaking round trip time
19 start.rsrp.dbm RSRP in dBm at the start of the test
20 start.rssi.dbm RSSI in dBm at the start of the test
21 start.sinr.dbm SINR in dB at the start of the test
22 tcp.first.sec.volume.dl Volume downlink during the first second
23 tcp.first.sec.volume.ul Volume uplink during the first second
24 time.to.first.byte.s Time to the receiving of the first data byte
25 truncated.data.b2a Truncated data from b to a
26 unique.bytes.sent.b2a Unique bytes sent from b to a

space. The feature selection method also runs the model-
based 2D clustering algorithm to reduce the number of
variables and remove the features highly correlated with
the target KPI. Fig. 5(a) displays the clusters detected
by the model-based technique from the projection of the
correlation matrix CCC into the 2D space (cf. Section 2.2.2).
This figure also shows centroids and the ellipses of the cor-
responding covariance matrices. Recall that the feature
selection stage removes the cluster containing the target
KPI. In addition, the methodology selects the feature that
is closest to the centroid in each of the remaining clusters.
Specifically, the features selected are listed below:

1. rexmt.data.bytes.b2a,

2. tcp.first.sec.volume.dl,

3. end.rssi.dbm,

4. unique.bytes.sent.b2a,

5. rtt.from.3whs.a2b,

6. pushed.data.pkts.b2a,

7. duplicate.acks.a2b,

8. abs.packetlost.sum,

9. avg win adv a2b,

10. end.sinr.db,

11. initial.window.bytes.b2a,

12. tcp.first.sec.volume.ul.

Notice that the dimensions of the training sample set
are mℓ = 1, 385 experiments and nℓ = 12 features. Fur-
thermore, the methodology applies the discretization pro-
cess to the target KPI. In this case, the number of class
labels is determined by w = ⌊(log2 mℓ)/2⌋ = 5. Fig. 5(b)

(a) (b)

(c) (d)

(e) (f)

Figure 5: (a) Clustering on the projections of the correlation matrix
CCC into 2D Euclidean space obtained by the model-based technique
for the NokiaFL measurement set. (b) Histogram of the training
labels obtained by the discretization model for the NokiaFL dataset.
(c) Accuracy versus α exhibited by the anomaly detection model
during the pruning process. (d) Histogram of the vector of anomalous
scenarios yyyanm. (e) Sorted barplot of the miscoding between every
column of DDD3 and yyyanm. (f) Accuracy versus α exhibited by the
anomaly classification model during the pruning process.

displays the histogram of the training labels outputted by
the discretization process. Then, the XMLAD approach
optimizes the knowledge tree gφ(·) with the training set
Γ = {XXXtrain, yyytrain}. To this end, the decision tree prun-
ing process first generates a set of effective values of the
regularization parameter α such that the tree complexity
is reduced as the value of α increases. In this work, we se-
lect the value of α that generates the knowledge tree with
the best classification accuracy. The curve of the accuracy
versus α, exhibited by the decision tree during the prun-
ing process, is illustrated in Fig. 3(c). As can be observed
in this figure, the pruning process selects the decision tree
with a classification accuracy of over 0.75.

Once built the knowledge model with the best α and
the training set Γ = {XXXtrain, yyytrain}, we obtain the deci-
sion tree structure whose flowchart is depicted in Fig. 7.
As can be observed in this figure, the knowledge tree learns
parameters and thresholds that describe scenarios within
the network’s normal behavior. For every experiment, the
decision tree first compares the tcp.first.sec.volume.

dl with respect to the threshold 3, 071, 795 at the root
node. If the inequality rule is true, the decision tree moves
to the left side in the next tree level, otherwise, the struc-
ture moves to the right side. For example, the knowl-
edge tree assigns the “Good” label to scenarios with tcp.

12

(a) (b)

Figure 6: Histograms of feature clusters obtained by the model-based
technique for two variables: (a) ack.pkts.sent.a2b, and (b) pushed.
data.pkts.b2a. The dashed lines show the probability density func-
tions fitting for clusters using the parameters estimated by the EM
algorithm.

first.sec.volume.dl greater than 1, 665, 557 or lower or
equal to 3, 071, 795 bytes. If we analyze in detail the de-
cision structure of the knowledge tree in Fig. 7, we ob-
serve that four features describe the network behavior: (a)
tcp.first.sec.volume.dl, (b) tcp.first.sec.volume.
ul, (c) duplicate.acks.a2b, and (d) avg.win.adv.a2b.
These features characterize different key behaviors in an
HTTP Transfer Download. More precisely, tcp.first.
sec.volume.dl describes the initial delays during the first
second of the downlink. In TCP, the first second is usually
limited by latency rather than network capacity. Higher
values indicate better performances. Uplink direction vol-
ume should not be a relevant factor, it should contain the
HTTP request length. In this case, it is detecting differ-
ent URLs used for this test so performance differences are
associated with the test server. In addition, duplicate.
acks.a2b reflects packet loss and higher values should be
associated with worse performance. Finally, avg.segm.
size.b2a is the receiving window, normally very low val-
ues could limit performance but it is usually a consequence
of the performance: higher speeds trigger higher RWIN. In
this case, it also reflects differences in the terminal used
for testing.

Afterward, the methodology tests the knowledge tree
using the entire set of experiments. In this phase, we com-
pute the vector of differences by subtracting the labels
predicted by the knowledge tree and the labels estimated
by the discretization of the target KPI. The histogram of
the vector of anomalous scenarios yyyanm is shown in Fig.
5(d). As can be observed in this figure, the number of de-
tected anomalies decreases as the error between the pre-
dicted labels and the discretized KPIs increases. Note that
each element of the vector of differences assesses the mis-
classification degree of the knowledge tree with respect to
the corresponding discretized KPI. For instance, a differ-
ence value −4 indicates that the knowledge tree predicted
a “Very good” performance when the respective discrete
KPI exhibits a “Very bad” behavior. For this dataset, the
knowledge tree detects 353 (20.40% of the original number
of experiments) anomalies.

Then, the methodology considers both the matrix ob-
tained at the outlier detection in features DDD3 and the vec-

tor of anomalies yyyanm to identify the features that better
characterize anomalous behaviors. To this end, we com-
pute the miscoding (16) for each feature with respect to
the vector of anomalies yyyanm. Fig. 5(e) shows the barplot
of the miscoding values for the set of features in decreasing
order. Specifically, the sorted set of features according to
the miscoding metric is listed as follows:

1. actual.data.pkts.b2a 14. unique.bytes.sent.b2a

2. time.to.first.byte.s 15. rtt.from.3whs.a2b

3. avg.segm.size.b2a 16. dsack.pkts.sent.a2b

4. abs.packetlost.sum 17. end.sinr.db

5. ack.pkts.sent.a2b 18. avg.win.adv.a2b

6. duplicate.acks.a2b 19. start.sinr.dbm

7. outoforder.pkts.b2a 20. tcp.first.sec.volume.dl

8. rexmt.data.pkts.b2a 21. tcp.first.sec.volume.ul

9. pushed.data.pkts.b2a 22. max.win.adv.a2b

10. rexmt.data.bytes.b2a 23. end.rssi.dbm

11. initial.window.bytes.b2a 24. start.rssi.dbm

12. truncated.data.b2a 25. end.rsrp.dbm

13. actual.data.bytes.b2a

Subsequently, a model-based 1D clustering is applied to
each feature are evaluated according to the order exhibited
by the miscoding coefficients. Fig. 6 illustrates the nor-
malized histograms of the clusters derived from the model-
based clustering technique for two features: (a) ack.pkts.
sent.a2b, and (b) pushed.data.pkts.b2a. Fig. 6 also
shows the density curve fitting for each cluster using the
parameters estimated by the EM algorithm. As observed
in this figure, a feature can be represented as a mixture
of Gaussian distributions with different means, where each
distribution can be associated with a particular operative
status of the corresponding network aspect. Moreover,
the methodology applies the procedure based on the 1D
clustering of every feature and the vector of anomalous
scenarios to detect both problematic features and prob-
lematic experiments. In this case, the number of relevant
features is determined by wp = ⌊log2((log2 m)/2)⌋ = 3. For
this dataset, XMLAD identifies the problematic features
that are listed below:

1. ack pkts sent a2b

2. actual data bytes b2a

3. tcp.first.sec.volume.dl

Fig. 8 displays the scatter plots of yyyanm versus the
feature value for the three detected problematic columns.
This figure also shows the clustering of each problematic
feature into two classes: (T$P) problematic experiments,
and (T$N) non-problematic experiments, where $ indi-
cates the number of the feature. As can be seen in this fig-
ure, the proposed approach detects as problematic scenar-
ios those experiments with ack.pkts.sent.a2b greater
than 2, 000 units, ack.pkts.sent.a2b a greater than 2, 000
and smaller than 4, 000 units, and tcp.first.sec.volume.
dl smaller than 300 kB. Then, the methodology imple-
ments the CART algorithm to optimize the anomaly clas-
sification tree from the input training data χ and the out-
put training labels ζ. Specifically, the decision tree clas-
sifier learns the rules to detect anomalous scenarios and
identify the features that can induce performance anoma-
lies. In this stage, the methodology runs a pruning pro-

13

Figure 7: Schematic representation of the tree structure of the anomaly detection engine optimized for the NokiaFL dataset. Each decision
tree node (leaf) contains the Gini impurity measure, the number of evaluated training samples, and the output class label.

(a) (b) (c)

Figure 8: NokiaFL dataset. Scatter plots of the vector of anomalous scenarios yyyanm versus the feature value for problematic features.
Non-problematic experiments are labeled as T$N and problematic samples are categorized as T$N, where $ is the feature number.

cess to build the best classification tree. Fig. 5(f) dis-
plays the accuracy versus α exhibited by the anomaly
classification model during the pruning process. Notice
that the selected classification tree reaches a classifica-
tion accuracy near 1.0. The flowchart of the decision
tree structure for the classification model is depicted in
Fig. 9. In this case, the features closely related to ses-
sion duration anomalies (or problematic features) are (a)
ack.pkts.sent.a2b, (b) actual.data.pkts.b2a, and (c)
tcp.first.sec.volume.dl. Note that tcp.first.sec.

volume.dl is present in both the knowledge model and
the classification tree. The ACK packets and actual data
bytes are related to packet loss and retransmissions and
the last one is with delay and latency.

4.1.1. Cleaning matters!

In this section, we evaluate the impact of both the data
preprocessing and the training set preparation on the per-
formance of the anomaly detection engine. To this end, we
assess the anomaly detection performance of the proposed
methodology for different data-cleaning scenarios. Specif-
ically, Table 6 indicates the implemented subphases of the

Table 6: Implemented XMLAD modules in the various scenarios of
data cleaning.

XMLAD phase XMLAD subphase
Scenario

1 2 3 4 5

Data Missing value detection ✓ ✓ ✓ ✓ ✓

preprocessing Low variability detection ✓ ✗ ✗ ✗ ✗

Outliers in features ✓ ✓ ✗ ✗ ✗

Training set Outliers in experiments ✓ ✓ ✓ ✗ ✗

preparation Feature selection ✓ ✓ ✓ ✓ ✗

XMLAD methodology for each data cleaning scenario. As
seen in Table 6, we evaluate five different data cleaning
scenarios. It should note that the missing value detection
subphase has been implemented in all scenarios in order
to avoid errors in the machine learning models caused by
missing values (Nans). More precisely, Scenario 1 imple-
ments all data-cleaning subphases, and Scenario 2 removes
the low variability detection only. Scenario 3 discards the
low variability detection and the outlier detection in fea-
tures. Moreover, Scenario 4 eliminates low variability de-
tection, outlier detection in features, and outlier detection
in experiments. Finally, Scenario 5 disregards low vari-
ability detection, outlier detection in features, anomaly

14

Figure 9: Schematic representation of the tree structure of the anomaly classification engine built from the NokiaFL dataset.

Figure 10: Schematic representation of the anomaly detection engine built for the NokiaLP dataset.

Table 7: Dimensions of the input training samples and recall of the
anomaly detection engine for different data cleaning scenarios.

Scenario Training features Training samples Detection recall

1 12 1, 385 100.00%
2 12 1, 637 77.42%
3 20 682 49.46%
4 27 1, 730 39.78%
5 58 1, 730 36.56%

detection in experiments, and feature selection based on
model-based clustering.

Table 7 depicts the dimensions of the input sample set
that trains the anomaly detection engine for different data-
cleaning scenarios. Table 7 also displays the recall values of
the anomaly detection engine for the various data clean-
ing scenarios. As part of an anomaly detection process,
the recall indicates how many anomalous experiments are

correctly detected, which is expressed as

recall =
TP

TP + FN
, (24)

where TP is the number of correctly detected anomalies
(true positives) and FN is the number of incorrectly la-
beled normal experiments (false negatives). This metric
decreases when the number of normal behaviors incor-
rectly labeled as anomalies increases, describing a worse
detection performance. To compute the recall metric, we
select as the reference set the vector of outliers of the tar-
get KPI yielded by the MAD method, i.e.,

rrrv = outlier(zzz), (25)

where rrrv denotes the reference vector, outlier(·) is defined
in (7), and zzz stands for the target KPI vector. Table 7
shows that the recall metric decreases as the discarded
cleaning stages increases. It is important to mention that

15

the vector of anomalous scenarios should contain informa-
tion about the detected anomalies in order to calculate
the miscoding metric correctly and, consequently, select
the relevant features that describe anomalies. When more
data cleaning stages are discarded, an important percent-
age of information is lost.

4.2. The NokiaLP dataset

In this case, we attempt to determine the features and
experiments inducing anomalous session times when a test
device (terminal a) fetches a live static web page (termi-
nal b). Fig. 10 depicts the decision tree structure of the
anomaly detection engine for the NokiaLP dataset. In
particular, the features modeling the network’s normal be-
havior are (a) tcp.first.sec.volume.ul, (b) time.to.

first.byte.s, (c) rexmt.data.bytes.b2a, and (d) max.
segm.size.b2a. The decision tree first compares tcp.

first.sec.volume.ul with respect to the 54, 533 bytes.
If the feature value is less than the threshold, the decision
tree moves to the left side and assigns the “Good” label
to the experiment, otherwise, the decision structure moves
to the right side and uses the “Very good” label for the
experiment. It is important to note that tcp.first.sec.
volume.ul reflects the volume of data delivered to the user
during the first second of the connection, so higher values
indicate better performance. As can be seen in Fig 10, the
anomaly detection engine recognizes and explains this pat-
tern. Furthermore, it can be seen that the comparison with
different levels of tcp.first.sec.volume.ul can catego-
rize up to four different classes: Bad, Fair, Good, and Very
Good. This suggests that tcp.first.sec.volume.ul is a
relevant feature for describing the network’s normal behav-
ior. As mentioned before, this feature reflects the size of
the HTTP request detecting different URLs used for this
test so performance differences are associated with the test
server.

Fig. 11 shows the scatter plots of the vector of anoma-
lous scenarios versus the problematic feature values. These
scatter plots also show the clusters of problematic and non-
problematic experiments. As can be observed in Fig. 11,
the XMLAD methodology identifies as problematic sce-
narios those experiments with (a) rtt.from.3whs.a2b be-
tween 50 and 135 ms, (b) time.to.first.byte.s greater
than 0.5 s, and tcp.first.sec.volume.ul with zero bytes.
Fig. 12 illustrates the flowchart of the tree structure of the
anomaly classification engine for the NokiaLP dataset. For
each testing scenario, the anomaly classification model first
compares the tcp.first.sec.volume.ul with respect to
583 bytes. If this variable is less than the threshold, the
classification engine detects an anomaly and indicates that
the anomaly is caused by the tcp.first.sec.volume.

ul (T2P). Notice in Fig. 11(b) that problematic exper-
iments T2P exhibit zero-value, hence, anomalies labeled
with T2P are related to those experiments that could not
upload data during the first second. It can be noticed
that T1P and T3P anomalies are related to rtt.from.

3whs.a2b and time.to.first.byte.s, respectively. For

Table 8: Dimensions of the data matrices yielded by different sub-
phases of the XMLAD methodology for the MonroeQL dataset.

XMLAD Subphase Data matrix Rows Cols

Original input DDD 3,951 188
Missing value detection DDD1 3,951 181
Low variability detection DDD2 3,951 120

Outlier detection in features DDD3 3,951 111
Outlier detection in experiments TTT 222 111

Feature selection XXXtrain 222 4

instance, the classification engine identifies performance
anomalies caused by the three problematic features (T1P;
T2P; T3P) when tcp.first.sec.volume.ul is less than
583 bytes, time.to.first.byte.s is less than 0.47 s, and
rtt.from.3whs.a2b is greater than 51.5 ms.

4.3. The MonroeQL dataset

For this dataset, we select the average session time as
the target KPI. Table 8 displays the data sizes obtained
by the data preprocessing and training set preparation. In
contrast to the results yielded from the NokiaFL dataset,
for this dataset, the low variability identification step dis-
cards the largest number of features (61, 32.45% of the
original number of input features). Furthermore, null cell
identification and outlier detection in features remove 11
(5.85%) and 9 (4.79%) columns, respectively. In this case,
several variables with all empty cells were set to zero dur-
ing the data extraction process, and therefore, the low vari-
ability identification removes features with a large number
of zero-valued cells that do not contribute to the modeling
of the anomaly detection engine.

The outlier detection in experiments extracts a small
number of operation scenarios (222, 5.62% of the origi-
nal number of experiments) to build training samples and
labels. On the other hand, the number of class labels
determined by the discretization process is given by w =

⌊(log2 mℓ)/2⌋ = 3. We can see in Fig. 13(a) the histogram of
the classes generated by the discretization process. Then,
the methodology applies the feature selection method based
on the 2D clustering over projections of the correlation
matrix. Fig. 13(b) depicts the clusters detected by the
feature selection technique. The features are listed next:

1. abs.cwin.volstep.30kb,

2. abs.cwin.50,

3. abs.rtt.timestep.320ms,

4. abs.cwin.timestep.160.ms.

Fig. 14 shows the decision tree structure of the fit-
ted anomaly detection classifier for the MonroeQL dataset.
For this dataset, the decision tree classifier compares the
abs.cwin.50 with respect to 40, 619 bytes at the root
node. If the inequality rule is true at the root node, the
decision tree evaluates the abs.cwin.50 with respect to
20, 219 bytes. The decision tree classifier assigns the “Bad”
label to the sample if the abs.cwin.50 is lower or equal to
20, 219 bytes, i.e., the decision tree identifies a bad network
performance when the abs.cwin.50 is lower than 20, 219

16

(a) (b) (c)

Figure 11: Scatter plots of the vector of anomalous scenarios yyyanm versus the feature value for the detected problematic features and for the
NokiaLP dataset.

Figure 12: Schematic representation of the anomaly classification
tree built for the NokiaLP dataset.

bytes. In summary, the decision rule detects a bad net-
work performance for 20, 219 < abs.cwin.50 ≤ 40, 619,
and abs.rtt.timestep.320ms > 0.15 s. For this dataset,
the network’s normal behavior is described with two fea-
tures: (a) abs.cwin.50, (b) abs.rtt.timestep.320ms.
Fig. 13(c) and (d) illustrate the histogram of the vector of
anomalous scenarios and the barplot of the miscoding es-
timates for the set of relevant features, respectively. More
precisely, the sorted features according to the miscoding
are shown below:
1. abs.idletime.max 14. abs.rtt.timestep.10240ms

2. abs.idletime.timestep.10240ms 15. abs.rtt.50

3. abs.segmentsizes.timestep.640ms 16. abs.rtt.volstep.1650kb

4. abs.idletime.timestep.320ms 17. abs.idletime.timestep.5120ms

5. abs.idletime.timestep.1280ms 18. abs.rtt.avg

6. abs.segmentsizes.timestep.320ms 19. abs.rtt.25

7. abs.rtt.volstep.1000kb 20. abs.idletime.volstep.1650kb

8. abs.idletime.timestep.2560ms 21. abs.rtt.timestep.1280ms

9. abs.rtt.75 22. abs.rtt.timestep.2560ms

10. abs.segmentsizes.firstsec 23. abs.segmentsizes.volstep.240kb

11. delay 24. abs.rtt.volstep.240kb

12. abs.idletime.timestep.20480ms 25. abs.idletime.volstep.1000kb

13. abs.rtt.timestep.5120ms

Fig. 15 shows the scatter obtained for the problem-
atic features and for each problematic feature, we can ob-
serve the clusters of problematic and non-problematic ex-
periments. The proposed methodology detects network
problems for abs.cwin.50, abs.rtt.timestep.2560.ms,
and abs.rtt.volstep.240kb greater than 300 ms approx-
imately. In addition, the decision tree structure of the

(a) (b)

(c) (d)

Figure 13: MonroeQL dataset. (a) Histogram of the training labels
obtained by the discretization model. (b) Clustering on the projec-
tions of CCC into the 2D Euclidean space obtained by the model-based
technique. (c) Histogram of the vector of anomalous scenarios yyyanm.
(d) Sorted barplot of the miscoding between every column ofDDD3 and
yyyanm.

Figure 14: Schematic representation of the anomaly detection engine
built for the MonroeQL dataset.

anomaly classification engine is displayed in Fig. 16. If
the abs.rtt.timestep.2560.ms is greater than 0.32 s,
the anomaly classification model detects an anomaly that
could be induced by abs.rtt.timestep.2560.ms (T2P).
Once verified that abs.rtt.timestep.2560.ms < 0.32 s,
the decision tree compares abs.rtt.volstep.240kb with
respect to 0.03 s. If the inequality is true, the XMLAD
identifies an anomaly that could be induced by abs.cwin.

50 (T1P), otherwise, the methodology detects anomalies

17

(a) (b) (c)

Figure 15: Scatter plots of the vector of anomalous scenarios yyyanm versus the feature value for problematic features and for the MonroeQL
dataset.

Figure 16: Schematic representation of the anomaly classification engine built for the MonroeQL dataset.

Table 9: Simulation parameters for the synthetic dataset

Parameter value Parameter value

m0 20, 000 samples n1 10 features
lbmss 1, 300 bytes ubmss 1, 400 bytes

β 400(ms)−1 RTTmin 30ms
¯̄µ
cwnd

100kB σ
cwnd

0.65
lb

cwnd
40kB lb

cwnd
700kB

ǫ
cwnd

0.90 ¯̄µp 2.50 × 10−6

σp 0.20 lbp 1.00 × 10−4

lbp 1.25 × 10−4 ǫp 0.10

caused by both abs.cwin.50 (T1P) and abs.rtt.volstep.
240kb (T3P). RTT refers to buffering. Higher values nor-
mally indicates radio buffering. Time and Volume steps
refers to interval for statistic calculation. Small values
(Volume < 500KB or Time < 500ms) normally describe
TCP aggressiveness and Big Values are more related to
TCP ability to fill and maintain channel utilization. All
the cases describe Radio limitations in different phases of
the test (Median, End or Beginning).

Remarkably, the results of the analysis carried out by
means of the XMLAD methodology are meaningful, as
they were validated by a Nokia expert on anomaly/alarm
detection and remediation procedures. What has been
shown so far hints at the fact that XMLAD can identify
anomalies, but does not tell if the results are accurate or
not. For a more objective evaluation of the results achiev-
able with XMLAD, we will consider synthetic data in Sec-
tion 4.4, in which we purposely introduce anomalies, and
hence can use them as ground truth.

4.4. Synthetic datasets

This section evaluates the performance of the proposed
methodology from a synthetic dataset generated by the

(a) (b)

Figure 17: Synthetic dataset. (a) Histogram of the training labels
obtained by the discretization model. (b) Histogram of the vector of
anomalous scenarios yyyanm.

statistical models described in Section 3.3. Specifically, the
testbed generates a dataset synthetic dataset with m0 =
20, 000 experiments and n1 = 10 features. It should note
the generated dataset contains a packet loss probability (p)
feature whose entries are drawn as independent samples
following the statistical model (23) with a predefined rate
of outliers ǫ

p
= 0.10. A summary of the simulation param-

eters used to generate synthetic data can be found in Table
9. As observed in Fig. 3(d), the statistical model generates
a bimodal distribution with two separated modes. In the
context of the TCP throughput model described by (19)
and (20), outliers in packet loss probability could lead to
large session times. This behavior favors the outlier detec-
tion in experiments at the training set preparation stage
and the 1D clustering at the detection of problematic fea-
tures and experiments.

For a specific realization of the synthetic dataset, the
data cleaning stage extracts a matrix with mℓ = 15, 785
experiments and nℓ = 4 features. In essence, the fea-
ture selection method based on the 2D clustering tech-

18

Table 10: Class labels of the anomaly classification engine for the
synthetic dataset

Class label Type of problem

Compliant No problem
T1N:T2N;T3P p problem
T1N:T2P;T3N RTT problem
T1P:T2N;T3N CWIN problem
T1N:T2P;T3P RTT problem and p problem
T1P:T2N;T3P CWIN problem and p problem
T1P:T2P;T3N CWIN problem and RTT problem
T1P:T2P;T3P CWIN problem and RTT problem and p problem

nique identifies the variables RTT, MSS, CWND, and End.

RSSP.dBm. The data cleaning stage discards the entire set
of experiments (100%) with large packet loss probability
values drawn from the uniform distribution of the model
(23). On the other hand, the discretization process yields
six class labels, i.e., w = ⌊(log2 mℓ)/2⌋ = 6. Fig. 17(a) dis-
plays the histogram of the training labels outputted by
the discretization process for the synthetic dataset. Then,
the methodology optimizes the anomaly detection engine
gφ(·) using the CART algorithm from the training set
Γ = {XXXtrain, yyytrain}. The decision tree structure of the
anomaly detection is omitted due to space limitations.

Then, we obtain the vector of anomalous scenarios from
the entire set of experiments of the original data. Fig.
17(b) displays the histogram of the vector of anomalous
scenarios yyyanm. Afterward, XMLAD implements the de-
tection of problematic features and experiments. For this
realization of the synthetic dataset, the methodology de-
tects p, CWIN, and RTT as features causing anomalous ses-
sion times. Fig. 18 shows the scatter plots of the vector
of anomalous scenarios versus the magnitude of the prob-
lematic features. Furthermore, these scatter plots display
the problematic and non-problematic samples. From prob-
lematic features and experiments, the methodology builds
the output labels for the anomaly classification engine. To
be more precise, this procedure generates eight different
classes of anomalies that are described in Table 10.

The anomaly classification engine is fitted using the
entire set of experiments and features. Fig. 19 illustrates
the decision tree structure of the anomaly classification
engine. In this figure, the classifier first compares the
CWIN with respect to the threshold 564506 bytes. If an
experiment has a CWIN feature value lower than the thresh-
old, the classifier identifies an anomaly caused by network
aspects related to the CWIN parameter, otherwise, it de-
scribes a normal operation scenario. In the next tree level,
the anomaly classifier sets a threshold 5 × 10−5 to sepa-
rate packet loss probabilities into two classes: normal and
problematic. For example, for p ≤ 5 × 10−5, the classi-
fier identifies operation scenarios that are not affected by
the packet loss probability. On the contrary, the classifier
detects performance anomalies for p > 5 × 10−5. Dashed
lines in Fig. 3(d) and Fig. 18(c) correspond to the bound-
aries determined by the classifier, i.e., p = 5 × 10−5. For
this experiment, the classification engine is able to identify
the entire set of anomalies (100%) introduced in the dis-

tribution of p with the uniform term of (23). Additionally,
XMLAD identifies anomalous scenarios related to RTT, due
to the heavy tails exhibited by the corresponding statisti-
cal model. Although the distributions of CWIN and RTT are
not multimodal, the 1D clustering at these problematic
experiments detects problematic samples. Fig. 19 shows
how the introduced anomalies (p-anomalies) are success-
fully classified but also how other performance anomalies
are detected (due to high RTT, which is also a meaningful
result) and how both types of anomalies are combined in
the data set. As a result, we have successfully classified
the samples and identified which ones have none, one, or
both anomalies.

Finally, we compare the anomaly detection performance
of the XMLAD methodology with respect to those ob-
tained by the TTrees [35] and Kim [25] techniques. To
this end, Fig. 20 shows the recall curves (24) with the cor-
responding 95% confidence interval yielded by the various
anomaly detection methods for different rates of packet
loss outliers. More precisely, we observe the recall curves
for the TTrees method, the Kim method with α = 0.01 and
α = 0.001, the anomaly detection engine of the XMLAD
methodology (XMLAD model 1), and the anomaly clas-
sification engine of the XMLAD methodology (XMLAD
model 2). Each point of the curves is obtained by averag-
ing 100 realizations of the corresponding experiment and
at each trial, a new synthetic dataset is generated with the
number of operation scenarios fixed to m0 = 2, 000. The
remaining simulation parameters are the same as those
shown in Table 9 except the rate of packet loss outliers ǫ

p

that varies from 0.01 to 0.15. As can be seen in this fig-
ure, both the anomaly detection engine and the anomaly
classification engine of the XMLAD approach exhibit supe-
rior performance with respect to the other state-of-the-art
methods.

5. Conclusions

In this work, we have developed a methodology based
on data-cleaning procedures and explainable learning mod-
els to detect and classify anomalous operation scenarios in
mobile networks. More precisely, a preprocessing stage was
included in the proposed methodology, called explainable
machine learning for anomaly detection and classification
(XMLAD) anomaly detection, to train the anomaly detec-
tion engine with the cleanest dataset such that the train-
ing data properly describes the network’s normal behavior.
Further, two interpretable learning models were incorpo-
rated to detect and classify anomalies. These explainable
learning models output tree structures whose decision rules
enabled the identification of features and thresholds that
describe the network’s normal behavior and the recogni-
tion of the samples that could induce performance anoma-
lies. We built a testbed to generate synthetic datasets
whose feature samples obey well-defined statistical models
and the KPI sets follow a known TCP model. The per-
formance of the proposed methodology was evaluated on

19

(a) (b) (c)

Figure 18: Scatter plots of the experiment clustering for each detected feature from synthetic dataset.

Figure 19: Structure of the anomaly classification decision tree built for the synthetic dataset.

Figure 20: Recall curves with the corresponding 95% confidence in-
terval versus the rate of packet loss probability outliers (p-outliers)
using synthetic data for different anomaly detection techniques.

synthetic and real datasets. In this sense, the proposed
approach efficiently detected the performance anomalies
and provided information about the set of features that
can cause network misfunctioning. In addition, the deci-
sion trees generated interpretable structures enabling the
understanding of both the network’s normal behavior and
anomaly classification. In future work, we are interested
in evaluating other types of anomalies as well as different
learning models such as deep neural networks.

6. Acknowledgements

This work has been partially supported by the Project
AEON-CPS (TSI-063000-2021-38), funded by the Min-
istry of Economic Affairs and Digital Transformation and
the European Union NextGeneration-EU in the frame-
work of the Spanish Recovery, Transformation and Re-
silience Plan. This work has been also supported by the
Project EDGEDATA-CM (S2018/TCS-4499), funded by

the Department of Education and Research of the Re-
gional Government of Madrid, through the 2018 RD tech-
nology program for research groups, co-financed by the
Operational Programs of the European Social Fund (ESF)
and the European Regional Development Fund (ERDF).
The work of Juan M. Ramirez has been supported by
the Project ECID: Edge Computing for Intelligent Driv-
ing (PID2019-109805RB-I00) funded by the Spanish State
Research Agency, Spanish Ministry of Science and Inno-
vation. This paper has been supported by the projects
Netpredict4 and Netpredict5 funded by Nokia Spain.

References

[1] J. M. Ramı́rez, P. Rojo, F. Dı́ez, V. Mancuso, A. Fernández
Anta, Cleaning matters! preprocessing-enhanced anomaly
detection and classification in mobile networks, in:
2022 20th Mediterranean Communication and Computer
Networking Conference (MedComNet), 2022, pp. 103–112.
doi:10.1109/MedComNet55087.2022.9810378.

[2] N. Al-Falahy, O. Y. Alani, Technologies for 5g networks: Chal-
lenges and opportunities, IT Professional 19 (2017) 12–20.
doi:10.1109/MITP.2017.9.

[3] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu,
P. De Silva, F. Tufvesson, A. Benjebbour, G. Wunder, 5G: A tu-
torial overview of standards, trials, challenges, deployment, and
practice, IEEE Journal on Selected Areas in Communications
35 (2017) 1201–1221. doi:10.1109/JSAC.2017.2692307.

[4] C. Zhang, P. Patras, H. Haddadi, Deep learning in mo-
bile and wireless networking: A survey, IEEE Com-
munications Surveys & Tutorials 21 (2019) 2224–2287.
doi:10.1109/COMST.2019.2904897.

[5] M. Abbasi, A. Shahraki, A. Taherkordi, Deep learning for net-
work traffic monitoring and analysis (ntma): A survey, Com-
puter Communications 170 (2021) 19–41.

[6] M. Chen, A. Liu, W. Liu, K. Ota, M. Dong, N. N. Xiong, Rdrl:
A recurrent deep reinforcement learning scheme for dynamic
spectrum access in reconfigurable wireless networks, IEEE
Transactions on Network Science and Engineering 9 (2022) 364–
376. doi:10.1109/TNSE.2021.3117565.

[7] M. Chen, W. Liu, T. Wang, S. Zhang, A. Liu, A game-based
deep reinforcement learning approach for energy-efficient com-

20

http://dx.doi.org/10.1109/MedComNet55087.2022.9810378
http://dx.doi.org/10.1109/MITP.2017.9
http://dx.doi.org/10.1109/JSAC.2017.2692307
http://dx.doi.org/10.1109/COMST.2019.2904897
http://dx.doi.org/10.1109/TNSE.2021.3117565

putation in mec systems, Knowledge-Based Systems 235 (2022)
107660.

[8] M. Thottan, C. Ji, Anomaly detection in IP networks,
IEEE Transactions on Signal Processing 51 (2003) 2191–2204.
doi:10.1109/TSP.2003.814797.

[9] M. H. Bhuyan, D. K. Bhattacharyya, J. Kalita, Net-
work anomaly detection: Methods, systems and tools,
IEEE Communications Surveys Tutorials 16 (2014) 303–336.
doi:10.1109/SURV.2013.052213.00046.

[10] E. Falk, R. Camino, R. State, V. K. Gurbani, On non-
parametric models for detecting outages in the mobile net-
work, in: 2017 IFIP/IEEE Symposium on Integrated Net-
work and Service Management (IM), 2017, pp. 1139–1142.
doi:10.23919/INM.2017.7987448.

[11] M. Moulay, R. A. G. Leiva, P. J. R. Maroni, J. Lazaro,
V. Mancuso, A. F. Anta, A novel methodology for
the automated detection and classification of networking
anomalies, in: 39th IEEE Conference on Computer Com-
munications, INFOCOM Workshops 2020, Toronto, ON,
Canada, July 6-9, 2020, IEEE, 2020, pp. 780–786. URL:
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162710.
doi:10.1109/INFOCOMWKSHPS50562.2020.9162710.

[12] V. K. Gurbani, D. Kushnir, V. Mendiratta, C. Phadke,
E. Falk, R. State, Detecting and predicting outages in
mobile networks with log data, in: 2017 IEEE Interna-
tional Conference on Communications (ICC), 2017, pp. 1–7.
doi:10.1109/ICC.2017.7996706.

[13] V. B. Mendiratta, M. Thottan, Rich network anomaly detec-
tion using multivariate data, in: 2017 IEEE International Sym-
posium on Software Reliability Engineering Workshops (ISS-
REW), 2017, pp. 48–51. doi:10.1109/ISSREW.2017.36.

[14] G. Yu, Z. Cai, S. Wang, H. Chen, F. Liu, A. Liu, Un-
supervised online anomaly detection with parameter adap-
tation for KPI abrupt changes, IEEE Transactions on
Network and Service Management 17 (2020) 1294–1308.
doi:10.1109/TNSM.2019.2962701.

[15] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon,
W. Samek, M. Kloft, T. G. Dietterich, K.-R. Müller, A unifying
review of deep and shallow anomaly detection, Proceedings of
the IEEE 109 (2021) 756–795. doi:10.1109/JPROC.2021.3052449.

[16] O. Alay, A. Lutu, M. Peón-Quirós, V. Mancuso, T. Hirsch,
K. Evensen, A. Hansen, S. Alfredsson, J. Karlsson, A. Brun-
strom, A. Safari Khatouni, M. Mellia, M. A. Marsan, Experi-
ence: An open platform for experimentation with commercial
mobile broadband networks, in: Proceedings of the 23rd An-
nual International Conference on Mobile Computing and Net-
working, MobiCom ’17, Association for Computing Machinery,
New York, NY, USA, 2017, p. 70–78. URL: https://doi.org/
10.1145/3117811.3117812. doi:10.1145/3117811.3117812.

[17] W. Lu, A. A. Ghorbani, Network anomaly detection based
on wavelet analysis, EURASIP Journal on Advances in Signal
Processing 2009 (2008) 1–16.

[18] A. H. Yaacob, I. Tan, S. F. Chien, H. K. Tan, Arima based net-
work anomaly detection, in: 2010 Second International Con-
ference on Communication Software and Networks, 2010, pp.
205–209. doi:10.1109/ICCSN.2010.55.

[19] H. Kasai, W. Kellerer, M. Kleinsteuber, Network volume
anomaly detection and identification in large-scale networks
based on online time-structured traffic tensor tracking, IEEE
Transactions on Network and Service Management 13 (2016)
636–650. doi:10.1109/TNSM.2016.2598788.

[20] M. Thill, W. Konen, T. Bäck, Online anomaly detection on
the webscope s5 dataset: A comparative study, in: 2017 Evolv-
ing and Adaptive Intelligent Systems (EAIS), 2017, pp. 1–8.
doi:10.1109/EAIS.2017.7954844.

[21] N. Laptev, S. Amizadeh, I. Flint, Generic and scalable frame-
work for automated time-series anomaly detection, in: Pro-
ceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’15, Associa-
tion for Computing Machinery, New York, NY, USA, 2015, p.
1939–1947. URL: https://doi.org/10.1145/2783258.2788611.

doi:10.1145/2783258.2788611.
[22] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, M. Feng,

Opprentice: Towards practical and automatic anomaly de-
tection through machine learning, in: Proceedings of the
2015 Internet Measurement Conference, IMC ’15, Associa-
tion for Computing Machinery, New York, NY, USA, 2015,
p. 211–224. URL: https://doi.org/10.1145/2815675.2815679.
doi:10.1145/2815675.2815679.

[23] J. Dromard, G. Roudière, P. Owezarski, Online and scalable
unsupervised network anomaly detection method, IEEE Trans-
actions on Network and Service Management 14 (2017) 34–47.
doi:10.1109/TNSM.2016.2627340.

[24] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao,
D. Pei, Y. Feng, J. Chen, Z. Wang, H. Qiao, Unsupervised
anomaly detection via variational auto-encoder for seasonal
KPIs in web applications, in: Proceedings of the 2018 World
Wide Web Conference, WWW ’18, International World Wide
Web Conferences Steering Committee, Republic and Canton
of Geneva, CHE, 2018, p. 187–196. URL: https://doi.org/10.
1145/3178876.3185996. doi:10.1145/3178876.3185996.

[25] C. Kim, V. B. Mendiratta, M. Thottan, Unsupervised
anomaly detection and root cause analysis in mobile net-
works, in: 2020 International Conference on Communica-
tion Systems and networks (COMSNETS), 2020, pp. 176–183.
doi:10.1109/COMSNETS48256.2020.9027328.

[26] C. Leys, C. Ley, O. Klein, P. Bernard, L. Licata, De-
tecting outliers: Do not use standard deviation around the
mean, use absolute deviation around the median, Jour-
nal of Experimental Social Psychology 49 (2013) 764–766.
doi:https://doi.org/10.1016/j.jesp.2013.03.013.

[27] P. Huber, Robust statistics, volume 523, John Wiley & Sons,
2004.

[28] P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti,
A. Plaza, Advances in hyperspectral image and signal process-
ing: A comprehensive overview of the state of the art, IEEE
Geoscience and Remote Sensing Magazine 5 (2017) 37–78.

[29] I. Borg, P. Groenen, Modern multidimensional scaling: Theory
and applications, Springer Science & Business Media, 2005.

[30] L. Scrucca, M. Fop, T. B. Murphy, A. E. Raftery, mclust 5:
clustering, classification and density estimation using gaussian
finite mixture models, The R journal 8 (2016) 289.

[31] G. J. McLachlan, S. Rathnayake, On the number of components
in a gaussian mixture model, Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 4 (2014) 341–355.

[32] S. Garćıa, J. Luengo, J. A. Sáez, V. López, F. Herrera, A survey
of discretization techniques: Taxonomy and empirical analysis
in supervised learning, IEEE Transactions on Knowledge and
Data Engineering 25 (2013) 734–750. doi:10.1109/TKDE.2012.35.

[33] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classi-
fication and regression trees, Routledge, 2017.

[34] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statis-
tical Learning, Springer Series in Statistics, Springer New York
Inc., New York, NY, USA, 2001.

[35] M. Moulay, R. G. Leiva, V. Mancuso, P. J. Rojo Maroni,
A. F. Anta, Ttrees: Automated classification of causes of
network anomalies with little data, in: 2021 IEEE 22nd
International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2021, pp. 199–208.
doi:10.1109/WoWMoM51794.2021.00033.

[36] V. Mancuso, M. P. Quirós, C. Midoglu, M. Moulay, V. Comite,
A. Lutu, Ö. Alay, S. Alfredsson, M. Rajiullah, A. Brunström,
et al., Results from running an experiment as a service platform
for mobile broadband networks in Europe, Computer Commu-
nications 133 (2019) 89–101.

[37] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bai-
ley, J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Tenneti,
R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, Z. Shi, The
quic transport protocol: Design and internet-scale deployment,
in: Proceedings of the Conference of the ACM Special Inter-
est Group on Data Communication, SIGCOMM ’17, Associ-

21

http://dx.doi.org/10.1109/TSP.2003.814797
http://dx.doi.org/10.1109/SURV.2013.052213.00046
http://dx.doi.org/10.23919/INM.2017.7987448
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162710
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162710
http://dx.doi.org/10.1109/ICC.2017.7996706
http://dx.doi.org/10.1109/ISSREW.2017.36
http://dx.doi.org/10.1109/TNSM.2019.2962701
http://dx.doi.org/10.1109/JPROC.2021.3052449
https://doi.org/10.1145/3117811.3117812
https://doi.org/10.1145/3117811.3117812
http://dx.doi.org/10.1145/3117811.3117812
http://dx.doi.org/10.1109/ICCSN.2010.55
http://dx.doi.org/10.1109/TNSM.2016.2598788
http://dx.doi.org/10.1109/EAIS.2017.7954844
https://doi.org/10.1145/2783258.2788611
http://dx.doi.org/10.1145/2783258.2788611
https://doi.org/10.1145/2815675.2815679
http://dx.doi.org/10.1145/2815675.2815679
http://dx.doi.org/10.1109/TNSM.2016.2627340
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1145/3178876.3185996
http://dx.doi.org/10.1145/3178876.3185996
http://dx.doi.org/10.1109/COMSNETS48256.2020.9027328
http://dx.doi.org/https://doi.org/10.1016/j.jesp.2013.03.013
http://dx.doi.org/10.1109/TKDE.2012.35
http://dx.doi.org/10.1109/WoWMoM51794.2021.00033

ation for Computing Machinery, New York, NY, USA, 2017,
p. 183–196. URL: https://doi.org/10.1145/3098822.3098842.
doi:10.1145/3098822.3098842.

[38] R. Marx, W. Lamotte, J. Reynders, K. Pittevils, P. Quax,
Towards quic debuggability, in: Proceedings of the Work-
shop on the Evolution, Performance, and Interoperability of
QUIC, EPIQ’18, Association for Computing Machinery, New
York, NY, USA, 2018, p. 1–7. URL: https://doi.org/10.1145/
3284850.3284851. doi:10.1145/3284850.3284851.

[39] M. Moulay, R. G. Leiva, P. J. R. Maroni, F. Diez, V. Mancuso,
A. F. Anta, Automated identification of network anomalies
and their causes with interpretable machine learning: The cian
methodology and ttrees implementation, Computer Communi-
cations (2022).

[40] M. Mathis, J. Semke, J. Mahdavi, T. Ott, The macroscopic be-
havior of the TCP congestion avoidance algorithm, SIGCOMM
Comput. Commun. Rev. 27 (1997) 67–82. URL: https://doi.
org/10.1145/263932.264023. doi:10.1145/263932.264023.

[41] G. James, D. Witten, T. Hastie, R. Tibshirani, An introduction
to statistical learning, volume 112, Springer, 2013.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, et al., Scikit-learn: Machine learning in python,
the Journal of machine Learning research 12 (2011) 2825–2830.

22

https://doi.org/10.1145/3098822.3098842
http://dx.doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3284850.3284851
https://doi.org/10.1145/3284850.3284851
http://dx.doi.org/10.1145/3284850.3284851
https://doi.org/10.1145/263932.264023
https://doi.org/10.1145/263932.264023
http://dx.doi.org/10.1145/263932.264023

	Introduction
	Related Work
	Notations
	Paper organization

	blackThe XMLAD methodology
	Data preprocessing
	Missing value detection and removal
	Low variability detection
	Outlier detection in fetures

	Training set preparation subphase
	Outlier detection in experiments
	Feature selection
	Discretization

	Knowledge model training subphase
	Network performance anomalies
	Identification of anomalous scenarios
	Identification of relevant features

	Classification tree modeling
	Detection of problematic features and experiments
	Classification model training

	Datasets
	Nokia datasets
	MonroeQL dataset
	Synthetic data modeling

	Results and analysis
	NokiaFL dataset
	Cleaning matters!

	The NokiaLP dataset
	The MonroeQL dataset
	Synthetic datasets

	Conclusions
	Acknowledgements

