
Flowrest: Practical Flow-Level Inference in
Programmable Switches with Random Forests

Aristide Tanyi-Jong Akem∗†, Michele Gucciardo∗ and Marco Fiore∗
∗IMDEA Networks Institute, Spain, †Universidad Carlos III de Madrid, Spain

{aristide.akem, michele.gucciardo, marco.fiore}@imdea.org

This is the author’s version of the article. The final version published by IEEE is A. T.-J. Akem, M. Gucciardo and M. Fiore, “Flowrest: Practical Flow-Level
Inference in Programmable Switches with Random Forests,” IEEE INFOCOM 2023 - IEEE Conference on Computer Communications, New York City, NY,
USA, 2023, pp. 1–10, doi: 10.1109/INFOCOM53939.2023.10229100

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—User-plane machine learning facilitates low-latency,
high-throughput inference at line rate. Yet, user planes are
highly constrained environments, and restrictions are especially
marked in programmable switches with limited memory and
minimum support for mathematical operations or data types.
Thus, current solutions for in-switch inference that are compat-
ible with production-level hardware lack support for complex
features or suffer from limited scalability, and hit performance
barriers in complex tasks involving large decision spaces. To
address this limitation, we present Flowrest, a first complete
Random Forest (RF) model implementation that operates at the
level of individual flows in commercial switches. Our solution
builds on (i) an original framework to embed flow-level machine
learning models into programmable switch ASICs, and (ii) novel
guidelines for tailoring RF models to operations in programmable
switches already at the design stage. We implement Flowrest
as an open-source software using the P4 language, and assess its
performance in an experimental platform based on Intel Tofino
switches. Tests with tasks of unprecedented complexity show how
our model can improve accuracy by up to 39% over previous
approaches to implement RF models in real-world equipment.

I. INTRODUCTION

Over the past decade, the growing flexibility and complexity
of network architectures has been calling for increasingly auto-
mated network operations that reduce or even entirely replace
conventional human-in-the-loop approaches. Concepts such as
self-driving networking [1] or zero-touch network and service
management (ZSM) [2] envision networked systems where
controllers and orchestrators collect measurements and analyze
them to feed policies and algorithms that can take effective
management decisions in real time or even proactively.

In this context, the success of Software Defined Networking
(SDN) has paved the road for the deployment of machine
learning models in control planes, where they automate a
wide range of management functions. Examples include traffic
classification, quality of service (QoS) prediction, routing op-
timization or security enhancement, among others, as compre-
hensively reviewed in several recent surveys [3]–[6]. Although
intelligent functionalities such as those listed above represent
a substantial contribution to automating network operations,
control-plane solutions show inherent limitations for real-time
decision-making at high speed. Indeed, the need for commu-
nication from and to the user plane introduces a structural
delay that prevents inference at line rate –a key requirement for
self-driving networking [1], and a critical technical achieve-
ment towards meeting next-generation mobile networks sub-
millisecond end-to-end latency specifications [7].

Inference at line rate needs pure user-plane implementations
of machine learning models, alongside in-network computa-
tion principles [8]. The advent of programmable user planes
triggered activities in that direction: the availability of com-
mercial protocol-independent and programmable ASICs [9]
and Network Processing Units (NPUs) [10], alongside ded-
icated programming languages such as P4 [11], has led to
proposals to embed different models directly into switches or
Smart Network Interface Cards (SmartNICs).

The endeavour is especially challenging in the case of pro-
grammable switches, due to their severe limitations in terms
of memory, support for mathematical operations and number
of allowed operations per packet [8], [12]. Prior studies have
shown the promises of in-switch inference based on Decision
Tree (DT) and Random Forest (RF) models. Yet, owing to the
constraints above and as thoroughly discussed in Section II,
state-of-the-art approaches have shortcomings in terms of:
(i) design, e.g., by relying only on basic features extracted
independently for each packet, and lacking flow statistics that
are instrumental to an effective inference such as inter-arrival
times or flow-level counts; (ii) scalability, e.g., of the machine
learning model size, and of the complexity of tasks it can
address effectively; or, (iii) practical viability, e.g., due to
incompatibilities with real hardware. As a result, to date, no
practical solution is available that can run Random Forest
models at flow level in real-world programmable switches.

In this work, we propose a first complete design that closes
the aforementioned gap. Our solution, Flowrest, allows
integrating large RF models in production-grade programma-
ble hardware, so as to perform challenging inference tasks
on individual traffic flows at line-rate. The development of
Flowrest sets forth the following main contributions.

• We present a pragmatic framework to embed generic
flow-level machine learning models into commercial
programmable switch ASICs. To this end, we propose
solutions to (i) run the legacy forwarding logic of the
switch and the line-rate inference process in a synergic
way, and (ii) effectively manage and exploit the stateful
per-flow information that is beneficial to complex tasks.

• We draw original guidelines for the generation of RF
models that are natively tailored to the requirements of
commercial programmable switches. This ensures that the
strict constraints of network hardware are considered by
design, during the phases of (i) feature engineering and
(ii) machine learning model hyper-parameter tuning.

https://doi.org/10.1109/INFOCOM53939.2023.10229100


ML model 
training

ML model 
design

Feature 
engineering

ML model preparation

ML model mapping

Random Forest
Programmable 

switch ASIC

FPGA

SmartNIC / DPU

Trained 
model

Hardware 
specific 

program

Binarized 
Neural Network

Neural Network

Control plane User plane

Network 
programming 

language

SmartNIC
equipped 
server

Programmable switch

Dedicated FPGA

Traffic flows

Figure 1: Summary of the approaches for line-rate inference.

• Our framework can accommodate any mapping of the
RF model onto Protocol Independent Switch Architecture
(PISA) pipelines. We then realize a first complete solution
for in-switch flow-level RF-based inference, which we
name Flowrest, by reproducing and integrating in the
framework a state-of-the-art RF mapping.

• We implement Flowrest into a real-world Intel Tofino
switch using the P4 language, along with a benchmark
mimicking current packet-level approaches in the literat-
ure. Our implementation is open source, which reduces
the significant barriers that exist today in the access to
hardware-level code of solutions for in-switch inference.

• We run experiments in a real-world testbed, revealing
how Flowrest yields increasing accuracy gains over a
packet-level model as the complexity of the inference task
grows. In a device identification problem with decision
space of 26 categories, Flowrest improves accuracy
by 39%, without increasing the use of key switch re-
sources such as the Ternary Content Addressable Memory
(TCAM) or Packet Header Vector (PHV).

Overall, these contributions let us advance the state of the
art in in-switch inference, and make steps towards a deeper
integration of machine learning into network equipment.

II. LINE-RATE INFERENCE: A PRIMER

We provide a brief but complete review of existing solutions
for line-rate inference, looking at the whole user plane, in
Section II-A, and then focusing on in-switch approaches,
in Section II-B. As our study focuses on pure user-plane
implementations, we do not consider hybrid strategies that split
the inference process across planes [12]–[15].

A. Machine learning in the user plane

Figure 1 offers a unifying view of the workflows adopted
for line-rate inference. Given the limitations of programma-
ble network hardware, all existing approaches in scope of
our study assume that the whole model preparation, includ-
ing computationally expensive phases such as model hyper-
parameter optimization and training, is performed offline in the
control plane, typically using dedicated Graphics Processing
Units (GPUs) or Tensor Processing Units (TPUs). Trained
models are then encoded for operation in the target user-
plane equipment via a network programming language. Where

proposals vary are in terms of (i) the family of machine
learning models considered for user-plane implementation, and
(ii) the nature of the target programmable hardware. We next
review prior works based on the hardware they target, while
also discussing the specific models they implement.

Programmable switch ASICs. The majority of the effort
has focused to date on in-switch inference. In this case,
as shown in Figure 1, the machine learning model is fully
deployed in a single programmable switch, by implementing
it into the switch ASIC: this allows processing packets at line-
rate using solely the resources of the switch. Here, Decision
Tree (DT) and Random Forest (RF, realized by running
multiple DTs in parallel) are common choices of model, due
to their relatively low complexity and intuitive mapping to
the ASIC pipeline. As this is the strategy we also adopt for
our solution, we provide an in-depth discussion of current in-
switch implementations of DTs and RFs in Section II-B.

Other machine learning models have been also tested for in-
switch operation. The list includes Support Vector Machines
(SVM), Naive Bayes, K-Means, XGBoost, or Isolation Forest;
however, DTs and RFs were ultimately found to offer higher
scalability and better performance [16], [17]. The same holds
for attempts targeting more complex models, such as Neural
Networks (NN) [17], [18], possibly with a Binarized flavor
(BNN) [19] that relies on +1/−1 weights and sign activa-
tions [20]. Even simplified versions of neural networks are
onerous to deploy into commodity programmable switches: a
very basic BNN with two layers of 64 and 32 neurons already
exhausts the resources of an Intel Tofino ASIC [19], while
yielding poor inference results due to its exceeding simplicity.

SmartNICs. The fundamental limits of programmable
switches in supporting neural networks have fostered the
exploration of alternative user plane hardware where to im-
plement such models. N3IC [21] is a very recent work that
presents a comprehensive approach for integration of BNNs on
SmartNICs. Figure 1 highlights how N3IC maps the machine
learning model to a SmartNIC hardware located in a server.

The SmartNIC environment alleviates the constraints of
programmable switches, and N3IC can implement a 3-layer
BNN that operates at line-rate while consuming a relatively
small fraction of the available resources. Yet, SmartNICs are
deployed at network appliances (e.g., traffic classifiers, load
balancers, or security middleboxes) that physically reside in a
dedicated host within the network datacenter. Approaches like
N3IC can thus grant line-rate inference at specific locations of
the network only, and not at any point of the transport domain
as it can potentially happen with in-switch solutions. We also
note that a single SmartNIC is priced similarly to a production-
level programmable switch, while supporting a much smaller
number of ports (1–4 versus 16–64), and is thus substantially
less cost-efficient on a per-port basis [22].

FPGA-enhanced switches. An even more radical strategy is
that of adding dedicated FPGAs to switches or SmartNICs, and
exploit them to implement complex NN models. The recently
proposed Taurus [23] framework employs a custom accelerator
based on a pipelined Single Instruction Multiple Data (SIMD)



parallelism to implement NNs via MapReduce operations.
Taurus-enhanced switches offload to the external hardware
the per-packet inference process, enabling the deployment of
powerful machine learning models in user planes.

The limit of the approach taken by Taurus obviously lies in
substantial added costs and technical complexity. Its adoption
at scale would require revisiting the user plane design, and
deploy significant custom hardware next to already expensive
programmable switches and SmartNICs.

B. In-switch tree-based inference

We focus our attention on in-switch inference with DT
and RF models. The rationale is twofold and is based on
the overview above: first, running machine learning models
on standalone programmable switch ASICs paves the way to
the most pervasive user-plane deployment possible at no addi-
tional hardware cost; second, tree-based models are the most
performing solutions in such very challenging environments.

As anticipated, several studies have investigated in-switch
tree-based inference. Table I summarizes all such previous
works, based on three classes of features: design strategy,
scalability to complex models and decision spaces, and suitab-
ility to practical environments. Next, we detail prior solutions
and juxtapose them to ours along the dimensions above.

Design. In terms of design, the key dichotomy is between
inference at packet versus flow level. In packet-level designs,
the models are fed with features gathered independently from
the headers of each packet. This approach is simpler to
realize, as the feature extraction only builds on baseline header
parsing functionalities of programmable switches. However,
it also has significant drawbacks. First, packet-level models
do not have access to features computed over the whole
flow, such as inter-arrival times or flow-level counts; these
features have repeatedly proven paramount to accurately solve
complex network tasks [32]–[36]. Second, packet-level models
are stateless and need to be run on each and every packet
transiting through the switch; this entails significant additional
costs in terms of processing, for increased table lookups, and
energy, due to higher access to power-hungry TCAM [37].

Flow-level inference relies instead on statistical features that
can be collected over multiple packets of a same flow. This has
the potential to overcome the limitations above by (i) enabling
access to flow-level statistics, and (ii) producing decisions that
apply to all packets of a flow while processing just a few
of them. However, it also prompts new design challenges.
As a result, despite its advantages, only a minority of the
solutions in the literature, e.g., pForest [25], NERDS [28]
and pHeavy [29], support flow-level operation. Flowrest

advances the literature above by proposing a pragmatic frame-
work to embed flow-level machine learning models into com-
mercial programmable switch ASICs, in Section III.

Moreover, a unique aspect of our solution is that it pro-
poses and takes advantage of guidelines for the design of
RFs that ensure the compatibility of the trained models
with off-the-shelf programmable equipment. pForest [25] and
SwitchTree [26] have included feature selection as part of their

operation, which is however a legacy model preparation step,
completely agnostic of in-switch requirements. pForest [25]
has proposed a feature compression technique to save switch
resource, yet the approach is not viable in practice1. Unlike
such previous proposals, Flowrest for the first time tailors
feature engineering and hyper-parameter tuning to the under-
lying user-plane operation, as detailed in Section III-E.

Scalability. We look at scalability from two perspectives:
(i) the size of the tree-based model supported; and, (ii) the
largest inference task demonstrated with experiments.

In terms of complexity, most solutions allow multi-tree
RF designs. Yet, the most recent approaches, NERDS [28],
pHeavy [29] and Mousika [30] are limited to single-tree
models, i.e., DTs. This is an obvious shortcoming, as RFs
generalize DTs and are widely recognized to have superior
learning capability, especially when the task difficulty grows.

Existing designs employ different strategies to map DTs
or RFs into the Protocol Independent Switch Architecture
(PISA) adopted by modern programmable user planes. Most
strategies introduce structural limits to the maximum tree
depth. For instance, the mapping of pForest [25], later reused
by SwitchTree [26], associates each tree level to one Match-
Action Unit (MAU) stage of the PISA pipeline; hence, the
tree depth is bounded by the small number2 of MAUs in com-
mercial switch ASICs. Also, NERDS [28] and pHeavy [29]
employ mappings where conditional statements and/or differ-
ent trees are associated to individual MAU stages and must
be executed in series. This sequential operation across limited
MAUs creates an inherent ceiling to the model complexity.

Other works employ encodings of the tree that decouple
the levels from MAUs, removing the systemic limitations
above. In particular, the mapping strategy first proposed by
Ilsy [16] and later extended by Planter [27] is the state of
the art, since it can embed in real-world hardware multiple
trees whose depth is only delimited by the switch memory.
Thus, while Flowrest can accommodate any technique to
map the RF model into PISA pipelines, it presently relies on a
custom implementation of this mapping technique, expounded
in Section III-D, to ensure scalable multi-tree support.

The heterogeneous complexity of the machine learning
models realized by each solution proposed in the literature
translates into demonstrated use cases of very varied difficulty.
In Table I, we report the maximum number of target traffic
classes that are to be inferred in the performance evaluation
of each study; while we acknowledge that the cardinality of
the classification problem only captures part of the complexity
of an inference task, we believe that is it a simple, reasonable
quantitative metric to tell apart naive and harder case studies.

1The bit-level compression of features proposed in pForest [25] allows
saving a few bits in the representation of each feature, yet commercial pro-
grammable switch ASICs only support byte-level memory allocation, making
the vast majority of the bit-level optimizations unprofitable in hardware.

2Intel Tofino switches have 12 MAU stages; for flow-level inference, some
stages must be dedicated to calculating flow identifiers, maintaining register
indices, managing stateful features, and implementing tree leaves, curbing the
maximum attainable tree depth. For instance, pForest [25] claims that only
rather shallow trees of depth 4 can be been implemented in such hardware.



Solution
Design Scalability Practicality

Hardware-tailored
model preparation

Flow-level
support

Forest
support

Unrestricted
tree depth

Largest
use case

General
purpose

Hardware
implementation

Resource
usage analysis

Open
code

Ilsy [16], [24] ✓ ✓ 2 ✓ ✓
pForest [25] ✓ ✓ 8 ✓
SwitchTree [26] ✓ ✓ 2 ✓ ✓
Planter [17], [27] ✓ ✓ 3 ✓ ✓
NERDS [28] ✓ 7 ✓ ✓
pHeavy [29] ✓ 2 ✓
Mousika [30] ✓ 6 ✓ ✓ ✓ ✓
BACKORDERS [31] ✓ ✓ 2
Flowrest ✓ ✓ ✓ ✓ 26 ✓ ✓ ✓ ✓

Table I: Comparative summary of prior solutions for in-switch inference and Flowrest. Columns refer to (i) adoption of a
machine learning modelling approach that is tailored to the switch hardware requirements by design, (ii) support for flow-level
inference, (iii) support for Random Forests composed of multiple Decision Trees, (iv) lack of structural constraints to the depth
of the trees, (v) largest use case demonstrated in number of classes, (vi) applicability to general inference problems opposed
to solving a dedicated task only, (vii) implementation and experimental evaluation with a real-world hardware platform, (viii)
complete analysis of switch resource consumption based on memory types, (ix) availability of open-source code.

It is interesting to observe that multiple works have only
looked at binary classification problems, and that the max-
imum number of traffic categories considered across the whole
literature is 8 in emulated environments and just 6 in real-
world testbeds. We show in Section IV how Flowrest can
tackle much more challenging tasks involving up to 26 classes.

Practicality. In-switch inference solutions can be developed
for software or hardware targets, using a same network pro-
gramming language like P4. In the former case, the solution
can be only evaluated in emulation, e.g., by running the
popular bmv2 target within a Mininet environment. Although
useful for initial development and debugging, software imple-
mentations are very distant from production-level hardware
targets, such as Intel Tofino ASICs. Not only throughput and
latency are completely different, but emulation hides many
hard constraints of real-world equipment: as a result, solutions
that are only tested in software are typically not compatible
with actual programmable switches, and porting them requires
substantial re-design and results in performance losses [38].

Therefore, the main trait defining the practical viability of a
model is whether it is implemented in real-world hardware. As
per Table I, this holds for the most recent versions of Ilsy [24]
and Planter [17], which however only support packet-level
inference. Other fresh works, pHeavy [29] and Mousika [30],
also present implementations in hardware, yet they only ac-
commodate single-tree models. Also, code is publicly available
only for the last approach among the four mentioned above.

With Flowrest, we provide a first solution for in-switch
inference that can operate on production-level equipment, and
supports both flow-level features and multi-tree models. This
sets a new standard for the state of the art, which we open
source to foster further research about in-switch inference.

Finally, we comment on two further aspects in Table I. First,
while the majority of the proposed models are general-purpose
and can be applied to varied inference tasks, pHeavy [29]
is dedicated to a specific goal, i.e., the binary identification
of heavy flows. Second, with the exception of the packet-
level Mousika [30] model, no previous study detailed the
requirements in terms of switch resources. We instead propose
a general-purpose model, and provide a first look at resource
usage of a flow-level model in production-level equipment.

PHV

Control plane

User plane

Controller

Digest with 
classified flows

Target 
unclassified 

flowsNon-target or 
classified flows

First classified packet recirculation

Flow 
register 
update

Forwarding 
logic update

Incoming 
packets

Preprocessing

Parsing

Forwarding logic Flow tracking

Flow-level feature handling

Early forwarding

Adversarial 
flows

RF model inference

Packet n

Flo
w

 m
an

age
m

e
n

t

Packets < n or 
classified flows

Adversarial 
flows

In
fe

re
n

ce
-a

w
ar

e
 f

o
rw

ar
d

in
g

Figure 2: Overview of the system proposed for Flowrest.

III. PRACTICAL FLOW-LEVEL IN-SWITCH INFERENCE

Our Flowrest solution sits in a complete system for user-
plane flow-level inference, portrayed in Figure 2. The system
mainly rests in the programmable switch, but also encom-
passes control plane functions via, e.g., an ONOS controller.
Next, we detail our proposal, and highlight its original aspects.

A. Parsing

Incoming packets at the switch are processed by a PISA
pipeline composed by a parser followed by a sequence of
Match-Action Units (MAU). The parser extracts metadata
from the headers of each packet. While the metadata is
only functional to forwarding decisions in standard switch
operations, we program the parser so as to collect packet-level
information that is also relevant to the target inference task.
This is stored into the Packet Header Vector (PHV), i.e., a set
of containers that carry raw header fields of interest (e.g., the
payload size) and gathered metadata (e.g., the packet arrival
timestamp) along the whole MAU pipeline. We remark that
this is analogous to the packet data handling of pForest [25].

B. Inference-aware forwarding

Packets then enter the MAU stages implementing the legacy
behavior of the switch, i.e., the dedicated pre-processing of



the metadata required by advanced forwarding rules, and the
actual forwarding logic. However, in Flowrest, we integrate
inference-related configurations into the forwarding logic it-
self, and let the controller specify the following elements.

• The target for inference, i.e., the part of traffic concerned
with the inference task. For example, the network man-
ager may target a specific range of source IP addresses
suspected to host malicious activities, or a set of protocols
known to support the traffic to be classified. The selection
is implemented as part of the forwarding logic, and flags
packets that shall go through in-switch inference.

• The status of packets that are among the inference targets,
i.e., whether their flow has been already classified or not.
If yes, the controller configures the switch to deactivate
the flag above, as inference is not needed anymore.

• The forwarding decision for already classified flows.
The controller configures the forwarding logic to handle
classified flows based on the outcome of the RF model.

The forwarding logic thus directly acts upon flows that are
not targets for inference, or for which RF results are available.
As exemplified in Figure 2, regular traffic is directed to the
egress ports based on legacy rules, while, e.g., flows identified
as adversarial by the inference process are dropped right away.

Clearly, this requires that the controller is aware of the
inference results and uses them to configure the forwarding
pipeline. To this end, once a flow has been classified by the
RF model as later explained in Section III-D, the switch is
programmed to inform the controller via a digest, i.e., a small
and flexible message used exclusively for communications to
the control plane. The digest contains the unique flow identifier
introduced in Section III-C and the associated inference result,
i.e., its class. The controller can then leverage the received
information to update the forwarding logic, as per Figure 2.

We acknowledge that the closed loop with the control plane
breaks the concept of a pure user-plane inference. Yet, the fact
that the forwarding logic is reconfigured by the controller with
a significant delay of seconds or higher is not a problem in
our framework. Indeed, until the instant when the forwarding
logic is updated with the RF model result for a given flow,
the decisions for the associated packets are taken fully in
the switch, via the flow management routine that we will
present in Section III-C. Ultimately, the system abides by the
specifications of pure in-network computation: it ensures that
inference happens at all times at line rate and with very low
latency, be it in the flow management MAUs at first or in the
forwarding MAUs upon a closed loop with the controller.

As a result, the architectural solution adopted by Flowrest

in Figure 2 lets the forwarding and inference stages operate
in synergy. The advantages are significant. Processing is faster
since packets that have already been (or do not need to be)
classified only go through the regular forwarding logic. Also,
the model scales better, as it leverages the forwarding tables
to offload already classified flows from the flow management
registers that, as seen in Section III-C, are limited in size.

We finally remark that the system above is not feasible with
packet-level inference where flows are not differentiated. And

PHV
5-tuple Flow identifier

Flow index

CRC32

CRC16

Id Class Count Time Feature 1 … Feature N

- 2 130 0010100 11010011

32 bits 8 bits 8 bits 32 bits * bits * bits

Flow tracking Flow-level feature handling

Figure 3: Flow management table and its associated stages.

it is novel with respect to all previous solutions for flow-level
inference, which are bounded to in-switch operation, and do
not set forth a complete system where the RF model benefits
form a deep integration with regular forwarding pipelines.

C. Flow management

Packets that the forwarding logic tags as inference targets,
and for which a class is not yet available in the forwarding
pipeline, are moved to flow management. This stage deals with
the computation, storage and usage of flow-level information.
It is decomposed into three phases, detailed next, which rely
on a same flow management table, represented in Figure 3.
The table stores all data relevant to each flow currently under
inference, and is implemented as a set of registers in the
Static Random Access Memory (SRAM), and contains (i) the
identifier of the flow, (ii) its class if already determined, and
(iii) all of its stateful features.

Flow tracking. This component is in charge of identify-
ing incoming flows, and monitoring their status in the flow
management table. First, a flow identifier is generated for the
packet, via a CRC32 hash checksum of the 5-tuple composed
of IP source and destination addresses, source and destination
ports, and transport protocol identifier. We also compute a flow
index as a CRC16 hash of the same 5-tuple, used to locate the
entry for the current flow in the flow management table.

As shown in Figure 3, when accessing the flow management
table with the flow index, we first compare the flow identifier
with that stored in the table. If the two match or the entry is
empty, we proceed to the following phase. A mismatch, denot-
ing a hash collision, prevents storing stateful information and
thus no inference is performed on the flow. Clearly, flow index
collisions are highly undesirable events that impact the overall
performance of the in-switch inference process. Unfortunately,
the limited size of registers and the large number of flows
traversing a switch may make such events frequent3. Previous
proposals to cascade hashes in emulated environments [25]
are very expensive to implement in hardware as they require a
dedicated MAU stage, and we opt not to employ them. Instead,
we find that the integration with the forwarding logic outlined
in Section III-B naturally mitigates collisions: by offloading
the inference-based decision to the regular forwarding pipeline
for a given flow, we can remove the corresponding flow entry
from the flow management table. This limits the number
of flows concurrently present in the table, and dramatically
reduces collisions4.

3In our use cases, more than 10% of flows collide without mitigation.
4In our use cases, the collision probability is nearly at 0% with Flowrest.



To remove flows from the management table, we employ a
timeout, which is much simpler than triggering the deletion of
the entry right upon inference. Every time a collision occurs,
we check the time elapsed since the arrival of the last packet
of the flow already in the table: if it is above a threshold5, we
purge the data from the entry and accommodate the new flow.

Flow-level feature handling. Once packets pass the flow
tracking phase, we compute, update and store all data in the
flow management table. As shown in Figure 3, each entry
contains the class of the flow if available, the count of recorded
packets in the flow, and a timestamp of the arrival of the
last packet used for the entry timeout as described above.
In addition, it stores all the stateful features needed by the
flow-level RF model. The exact list of features depends on
the specific RF model, and, in our tests, is always a subset of
the complete flow-level features listed in Section III-E.

Several important remarks are in order about this phase.
• From a technical standpoint, all the stateful variables in

the flow management table must be read and updated
at the same time, which is a non-trivial operation in
hardware. We achieve it via the Tofino Native Architec-
ture (TNA) RegisterAction extern function that exploits
Stateful Arithmetic Logic Unit (S-ALU) associated to the
registers for mathematical and logical operation.

• The counter is used to implement an early-flow detection
approach [39]. Namely, Flowrest performs the inference
upon reception of the first few packets of each flow as
also done by pForest [25]. Only a single n-th packet in
the sequence of the flow6 is processed by the RF model;
this is a further advantage over packet-level inference that
must process all packets in each flow.

• The class indicates the result of the RF model for the flow.
To store this information, we exploit the re-circulation
port as shown in Figure 2. After a packet has completed
the inference pipeline, we attach to it a custom header
with the output class information and re-circulate it. Since
the packet crosses the forwarding stages exactly as during
its first passage, it is handed again to flow management.
There, a dedicated logic in the flow-level feature handling
phase uses the custom header to update the class in
the corresponding flow management table, strips such
a header, stores the class in the PHV and forwards the
packet to the early forwarding phase.

Early forwarding. By coupling an early-flow detection and
class re-circulation, Flowrest can immediately react to the
outcome of the inference process. Once a packet reaches the
flow management stage and is found to belong to an already
classified flow, it is directed to the early forwarding stage.
Here, we implement a dedicated logic for already classified
flows, which takes forwarding decisions based on the class
reported in the flow management table. Figure 2 shows how,
e.g., all packets beyond the n-th of a flow classified as
malicious are directly dropped at this stage.

5A timeout of 60 seconds proved to work well in all use cases we analyzed.
6In our experiments, we use early-flow detection with the third packet, n=3.

A c1 c2

0-1 0 0

2-5 1 0

6-inf 1 1

codeword label

0*0 Class 1

0*1 Class 2

10* Class 3

11* Class 4

B c2
’

0-3 0

4-inf 1

MAU 0 MAU 1PHV

A=3, B=6

B>3

A>1

A>5

Class 1

Class 2

Class 3

Class 4

c1

c2

c2
’

0

1

0

1

0

1

codeword = 101

p
ip

e
 0

Figure 4: Overview of the Planter RF model mapping to MAUs
adopted by Flowrest. Each feature employed by the RF is
mapped to one MAU, and different trees of the forest share the
same match-action tables (except for the last one). Moreover,
the compiler may optimize memory usage by storing multiple
features of a same tree in the same MAU.

As already mentioned in Section III-B, the early forwarding
is run in the flow management for each recently categorized
flow, until the controller is informed of the flow class and the
main forwarding logic is updated to reflect that.

Finally, we also note that the early forwarding phase is also
configured to handle packets before the n-th in each flow.
While they contribute to flow-level statistics in the feature
handling phase, these packets come too early in the flow to
be classified; passing them on to the early forwarding ensures
that they are processed, e.g., based on standard rules.

D. RF model mapping and inference

When the flow management processes the n-th packet of
a target not-classified flow, the flow-level features are stored
in the PHV along the packet-level ones, and run across an
RF model encoded in the remaining MAU pipeline, as shown
in Figure 2. The framework developed for Flowrest can ac-
commodate any hardware-feasible model or mapping strategy
without changes to the workflow stages presented before. To
the best of our knowledge, ours is the first framework for
flow-level in-switch inference that allows for easy integration
of different model mapping strategies.

In order to build a complete solution for in-switch flow-level
RF-based inference, we reproduce and integrate in the frame-
work a custom version7 of the mapping recently proposed by
Planter [27]. The rationale for this choice is that, as discussed
in Section II, this is a state-of-the-art mapping strategy en-
suring scalable multi-tree support. Below, we summarize the
functioning of the Planter RF mapping.

The characteristic element of the mapping is that individual
match-action operations are mapped onto single features, so
that each feature is processed in exactly one MAU even if used
across many levels of different trees. This approach implies
that all decisions based on a same feature and performed at
all nodes of all trees in the RF must be handled at once. This is
illustrated by the toy example in Figure 4; the diagram refers

7The code of Planter is not openly available at the time of writing.



to a single tree, but it can be easily generalized to the forest
case. First, value ranges are computed for each feature so as
to capture all thresholds the feature may encounter in the RF,
and are stored into the match part of a MAU. For instance, in
Figure 4, the feature A is compared to thresholds 1 and 5 at
nodes C1 and C2, respectively: hence, the match-action table
associated to A reports three value ranges, i.e., less than or
equal to 1, between 2 and 5, or 6 and above.

Then, for each node using the feature, a result true (1) or
false (0) is associated to each value range above, via the action
stage. For instance, in Figure 4, the first decision C1 (which
checks if A > 1) is set to 0 for the match row where A ∈ [0, 1],
and to 1 for the two rows where A is strictly greater than one,
i.e., A ∈ [2, 5] and A ∈ [6,∞). The second decision C2 is
instead verified at 1 only in the last case, A ∈ [6,∞). Through
the match-action operation, a packet with A=3 is assigned a
code 10 for feature A, which is stored into PHV metadata.

By repeating the process for each feature and concatenating
the action results in the PHV, one builds a full path code for the
packet. In the last MAU, each tree in the forest has a dedicated
match-action sequence, where the path code is matched against
predefined sequences that describe all possible paths from the
root to the leaves of the tree. This allows matching the packet
with a specific path, hence its associated label, which is stored
in the PHV and re-circulated as presented in Section III-C.

An important remark is that not all possible path codes
are feasible in each tree, since each bit refers to one node,
and a path only traverses a subset of nodes. Wildcards are
thus employed in the last match stage to represent bits (i.e.,
nodes) that are not along the path, and whose value is thus
irrelevant to the current classification decision. This determines
that in the final MAU the mapping heavily relies on Ternary
Content Addressable Memory (TCAM), required for non-exact
matches with feature value ranges and wildcards.

E. Switch-tailored model design

A distinguishing aspect in the operation of Flowrest is
the fact that we account for the hardware constraints already
at the stage of preparing the machine learning model. This
facet of Flowrest is orthogonal to the view in Figure 2, as it
covers the stages of model preparation shown Figure 1, which
are implemented in the control plane and run offline.

Our hardware-tailored modeling process stems from the way
flow management and RF inference mapping are executed,
and ensures that the trained RFs are compatible with the
programmable switch by design. Like most previous works, we
rely on the popular Scikit-Learn libraries [40] for the model
preparation stage, but we tailor the feature engineering and the
selection of hyperparameters to accommodate implementation
into real-world equipment. Our complete machine learning
pipeline is organized along the following steps.

Feature extraction. Both packet-level and flow-level fea-
tures are computed in the training data, e.g., using Tshark [41]
to extract packet header information from historical pcap
traces. While any set of features of interest can be gathered
at this stage, for all the experiments in this paper we used

Selected bits
1 1 0 1 0 0 0 1 0 1 1 0 0 0 1

Feature original bit size

Hardware supported bit size

Bit shifting

Truncation

Feature original 
representation

Figure 5: Hardware-aware tuning of feature representation.

as stateless packet-level features the TCP/UDP source and
destination ports, packet length, and TCP flags (ACK, SYN,
PUSH, ECE, RESET, FIN). For stateful flow-level features,
we employ statistics on the packet length (total, minimum,
maximum and mean), inter-arrival time (minimum, maximum
and mean), flow duration, and counters of the TCP flags above.

An important remark is that, unlike previous works [17],
we do not use IP and MAC source or destination addresses
as features: the rationale is that such end host identifiers
allow to artificially inflate the model performance in most use
cases considered in the literature and in our work. Indeed,
these use cases rely on measurement data collected in limited
scenarios, and a sufficiently complex model fed with IP or
MAC addresses can learn during training which end hosts are
associated to the target classes (e.g., belong to a specific type
of device, or inject malicious traffic). Then, the inference task
becomes unnaturally trivial in tests reproposing the same end
hosts, as in most use cases adopted by the works presented
in Section II-B. Yet, the model would spectacularly fail once
deployed in the wild, where it would not find the same hosts
it learned to recognize. By excluding identifiers, we force the
model to complete the task based on inherent properties of the
traffic, so that it generalizes to previously unseen hosts.

Feature engineering. We follow classical procedures for
feature selection, by training an RF model with all available
features, and obtaining a feature ranking according to the
Mean Decrease in Impurity (MDI). We then train another set of
models by adding the features one by one, to find the smallest
subset of features that achieve performance comparable to or
better than those of the full model with all the features.

What makes our feature engineering unique is that we
adapt the representation of the features to the specifications
of the hardware. More precisely, state-of-the-art RF mapping
strategies use range matches to compare feature values against
thresholds from the model, as explained in Section III-D. The
size of range matches is bounded to a maximum number of
bits in real-world equipment8. While this limit does not curb
packet-level features rendered over a few bits, it affects flow-
level ones, and in particular time-related features that are by
default represented with floating point precision.

To cope with this issue, Flowrest fine-tunes the description
of features exceeding the size limit, by (i) shifting their binary
representation, and then (ii) truncating it to only consider
an ideal bit length smaller than the limit. This procedure,
illustrated in Figure 5, happens at training time via exhaustive
search of the best combination of shift and truncation for each

8The exact maximum size depends on the equipment and is confidential.



feature. The result can be replicated in hardware during the
flow-level feature handling phase, as it only uses basic binary
operations. The fine-tuning ensures that all comparisons used
by the RF model are compatible by design with the capabil-
ities of the target programmable switch, and that training is
optimized for performance in real-world equipment.

Model design. Jointly with the feature selection above, we
perform a traditional grid search on the maximum number of
trees t, and the maximum depth of the each tree d. Therefore,
the feature ranking and processing described before is in fact
derived for each RF of hyperparameters t and d. We compare
the models with all (t, d) on the basis of the F1-score defined
in Section IV-C, and pick the best performing one. The size
of the model ultimately depends on the complexity of the use
case: for instance, (t, d) varies from (2, 3) to (3, 11) in the
use cases we consider in our experiments.

Importantly, we also tailor the choice of hyperparameters in
the RF model to the underlying hardware target. Specifically,
state-of-the-art RF mapping strategies such as that presented in
Section III-D use ternary matches on codewords and associated
masks to perform the final classification. This implies that the
codeword length cannot exceed the maximum ternary match-
ing size allowed by the actual Ternary Content Addressable
Memory (TCAM) present in the switch.

We ensure that the constraint above is met by the model
during the design phase. To this end, we leverage the fact that
each tree in the RF generates one codeword, where every bit
encodes one node of the RF, leaves excluded. As in a full
binary tree with n − 1 total nodes we always have n leaves,
we can control the codeword length by limiting the number
of allowed leaves to the maximum ternary matching size in
the programmable switch. We implement this design control
by selecting the best nodes in each tree based on the relative
reduction in impurity [42], until the target number of leaves
is attained. Note that limiting the number of leaves does not
bound the tree depth, which can span all the way to d = n,
so that the model retains its flexibility.

IV. EXPERIMENTAL SETUP AND RESULTS

We implement Flowrest in an experimental testbed, and
run tests with multiple user-plane inference use cases. We
expressly include tasks of unprecedented high dimensionality,
so as to assess how the performance of a practical flow-level
approach scale with the complexity of the inference problem.

A. Hardware setup

We validate our solution in a testbed with three Edgecore
Wedge100BF-QS programmable switches equipped with an
Intel Tofino BFN-T10-032Q chipset and 32 100GbE QSFP28
ports; the testbed is completed by servers with Intel 8-core
Xeon processors at 2GHz and 48GB of RAM and QSFP28
interfaces, resulting in a full 100-Gbps platform. The switches
run Open Network Linux (ONL) and Intel’s Software Devel-
opment Environment (SDE) version 9.7.0. We developed a
Python controller on top of the Barefoot Runtime Interface
(BRI) to automatically perform the initial configuration of the

switch, including the mapping of RF models that are trained
with Scikit-Learn libraries as described in Section III-E. We
then use 100Gbps connections to inject traffic into the switch
from the server, by replaying pcap traces via Tcpreplay [43].
Figure 7e portrays the testbed in a rackmount configuration.

B. Use cases

We employ the experimental platform to test Flowrest in
multiple use cases employed for user-plane machine learning,
and targeting varied tasks of (i) device identification, (ii)
service classification, and (iii) anomaly detection. All use
cases are supported by public measurement datasets.

UNSW-IoT [44] is a device identification use case based
on measurement data for 28 Internet of Things (IoT) devices,
collected in a living lab emulating a smart environment. The
objective is identifying the type of IoT device generating each
traffic flow by looking at statistical features of the data packets.
We train the models on 15 days of data and test them on one.
Note that we use this use case in two flavors, by trying to
identify all 26 device types, or a subset of 16.

UNIBS-2009 [45], [46] is a traffic classification task based
on real-world traces collected on the edge router of the Uni-
versity of Brescia campus network, capturing traffic from 20
workstations. The traces include web traffic (HTTP/HTTPS),
mail (POP3, IMAP4, SMTP), peer-to-peer applications (Bit-
Torrent, Edonkey) and other protocols (FTP, SSH). The goal is
associating each traffic flow to one of 8 application categories.
We use one day of traffic for training and a second for testing.

CICIDS2017 [47] is an anomaly detection use case based
on measurements collected on a testbed at the University
of Brunswick. The testbed includes two networks: a victim-
network, which is a secure infrastructure with a set of com-
puters running a daemon which implements benign behaviors;
and an attack-network performing 7 types of attack. The goal
is a binary classification of flows into benign and malicious.
We use the Friday dataset, with a 75-25 split of train and test.

C. Benchmark and metrics

As explained in Section II-B, no hardware-compliant im-
plementation for flow-level RFs exists today that we can use
as a term of comparison. Therefore, we compare Flowrest

against a state-of-the-art packet-level RF model. Specifically,
we train dedicated RFs using only packet-level features with
the Scikit-Learn libraries, and we implement them in hardware
by pruning our framework from all its flow-level operations.
This benchmark is a pure packet-level RF that also uses
the efficient mapping described in Section III-D; it is thus
representative of the performance of recent proposals like
Planter [17] or Mousika [30]. We stress that this is the very first
direct comparison of packet-level and flow-level RF models
for programmable switches, and the fact that we run it with
real-world equipment is a clear added value for the test.

The quality of Flowrest and the packet-level benchmark
is assessed via classical metrics, applied across all use cases:
these are (i) the precision, (ii) the recall, and (iii) their
harmonic mean, i.e., the F1 score.



2 8 16 26
Number of classes

0.6

0.8

1.0
F

1
sc

or
e

Gain

Flowrest

Per-packet
0

20

40

F
lo

w
re

st
ga

in
(a)

2 8 16 26
Number of classes

0.6

0.8

1.0

P
re

ci
si

on

0

20

40

F
lo

w
re

st
ga

in

(b)

2 8 16 26
Number of classes

0.6

0.8

1.0

R
ec

al
l

0

20

40

F
lo

w
re

st
ga

in

(c)

1 5 10 15 20

Services

0.0

0.2

0.4

0.6

0.8

1.0

F
1

sc
or

e

Flowrest

Per-packet

(d)
Figure 6: Performance of Flowrest and packet-level benchmark in terms of (a) F1 score, (b) precision, and (c) recall, across
the four use cases. (d) Breakdown of the F1 score across the 26 classes of the UNSW-IoT use case.

2 8 16 26
Number of classes

0

10

20

30

R
es

ou
rc

e
us

ag
e

(%
)

3 4

10 11

15
17

27
29

Flowrest

Per-Packet

(a)

261682
Number of classes

0

10

20

30

U
sa

ge
di

ff
er

en
ce

(%
)

Absolute

Relative

0

2

4

6

U
sa

ge
di

ff
er

en
ce

ra
ti

o
(b)

261682

Number of classes

0

10

20

30

40

R
es

ou
rc

e
us

ag
e

(%
)

VLIW

SRAM

Per-packet Flowrest

(c)

261682
Number of classes

0

20

40

60

R
es

ou
rc

e
us

ag
e

(%
)

PHV

TCAM

Per-packet Flowrest

(d) (e)
Figure 7: Resource usage of Flowrest and packet-level benchmark in terms of (a) total average resources, (b) difference
between the two models, (c) PHV and TCAM, (d) VLIW and SRAM. (e) Picture of the experimental testbed used in our study.

D. Results

Figure 6a shows the F1 score of Flowrest and the bench-
mark in the four use cases, ordered by their number of classes.
Flowrest achieves good performance in all cases, with scores
that start at 0.99 for the binary case and stay at 0.86 with 26
classes. The packet-level model does not scale equally well: it
yields good performance in the simpler tasks, but the F1 score
drops to 0.62 in the most complex inference problem. The
accuracy gain of Flowrest over the per-packet benchmark is
2% for a binary classification, but grows with the number of
categories up to 39% with the most challenging task we study.

Figures 6b and 6c tell apart the contributions of precision
and recall, showing that a flow-level RF model helps improv-
ing in particular the recall. Figure 6d offers a breakdown of the
F1 score per class, in the UNSW-IoT use case with 26 device
types. Here, Flowrest yields a score above 0.85 in 9 classes,
with another 6 classes above 0.50. While the other classes
have F1 scores below 0.50, these are rare devices; instead, the
performances are especially good for well-represented classes,
as proven by the high aggregate F1 score in Figure 6a. When
juxtaposing our model to the packet-level approach, and apart
for a couple of outliers, Flowrest consistently outperforms
the benchmark, in some cases by a very large margin.

However, our flow-level framework is much more structured
than the minimum support needed for packet-level inference,
and this induces a higher use of resources in the programmable
switch. Figure 7a shows that Flowrest consumes 15% to 29%
of the total average resources used by the baseline P4 pro-
gram for core L2/L3 switching functions, i.e., switch.p4.
While this is a reasonable figure relative to that of a legacy
forwarding configuration, the resource usage is still sensibly
higher than in a per-packet approach where the same values
range from 3% to 11%. Yet, when looking at how these

numbers scale with the complexity of the task, interesting
trends emerge: in Figure 7b, the absolute difference of usage
is constant, and the relative resource consumption decreases.

The results point at the presence of a rather stable offset
between flow-level and packet-level solutions, determined by
the need of the former to implement structures capable to
handle flows and their stateful features. The good news is that
such structures appear to have a nearly constant cost that is
not affected by the dimensionality of the inference task. This
is corroborated in Figure 7c by the nearly fixed offset between
the usage of, e.g., SRAM that serves as the stateful memory
for the flow management table, or Very Long Instruction Word
(VLIW) that stores arithmetic instructions applied to flow-level
features. Moreover, it is worth noting that Flowrest does not
entail any added cost in terms of usage of expensive and scarce
resources such as PHV and TCAM, in Figure 7d.

V. CONCLUSIONS

We proposed Flowrest, which we experimentally prove to
set a new standard in flow-level in-switch inference. Our model
yields a number of technical contributions and novel concepts
that have general application to user-plane machine learning,
like the synergy of user and control planes for effective line-
rate inference, or the design of hardware-aware machine learn-
ing models. The authors have provided public access to their
code and/or data at https://github.com/nds-group/Flowrest.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement no. 101017109 “DAEMON”, which supported M.
Gucciardo, and the Marie Skłodowska-Curie grant agreement
no. 860239 “BANYAN”, which supported A.T.-J. Akem. We
thank the support of the Intel Connectivity Research Program.

https://github.com/nds-group/Flowrest


REFERENCES

[1] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” CoRR, vol. abs/1710.11583, 2017.

[2] European Telecommunications Standards Institute (ETSI), “Zero-touch
network and Service Management (ZSM); Proof of Concept Frame-
work,” ETSI GS ZSM 006 V1.2.1, Feb. 2022.

[3] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey
of machine learning techniques applied to software defined networking
(SDN): Research issues and challenges,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 1, pp. 393–430, 2019.

[4] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Communications Surveys and
Tutorials, vol. 21, no. 3, 2019.

[5] Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, “A survey
of networking applications applying the software defined networking
concept based on machine learning,” IEEE Access, vol. 7, pp. 95 397–
95 417, 2019.

[6] A. A. Gebremariam, M. Usman, and M. Qaraqe, “Applications of
artificial intelligence and machine learning in the area of SDN and NFV:
A survey,” SSD 2019, pp. 545–549, 2019.

[7] The 5G Infrastructure Association (5G IA), “European Vision for the
6G Network Ecosystem,” Jun. 2021.

[8] D. R. K. Ports and J. Nelson, “When should the network be the
computer?” ser. HotOS ’19. NY, USA: ACM, 2019, p. 209–215.

[9] Intel, “Tofino Programmable Ethernet Switch ASIC,” 2016.
[Online]. Available: https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-series.html

[10] Netronome, “Netronome Agilio SmartNICs,” 2016. [Online]. Available:
https://www.netronome.com/products/smartnic/overview/

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014.

[12] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-
network computation is a dumb idea whose time has come,” in Hot-
Nets’17. NY, USA: ACM, 2017.

[13] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón,
M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett,
G. Estrada, K. Ma’ruf, F. Coras, V. Ermagan, H. Latapie, C. Cassar,
J. Evans, F. Maino, J. Walrand, and A. Cabellos, “Knowledge-defined
networking,” SIGCOMM Comput. Commun. Rev., vol. 47, no. 3, p. 2–10,
sep 2017.

[14] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. Ports, and P. Richtarik, “Scaling distrib-
uted machine learning with In-Network aggregation,” in 18th NSDI.
USENIX, Apr. 2021, pp. 785–808.

[15] D. Sanvito, G. Siracusano, and R. Bifulco, “Can the network be the ai
accelerator?” NetCompute ’18, 2018.

[16] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
toward in-network classification,” in HotNets 2019. NY, USA: ACM,
2019, p. 25–33.

[17] C. Zheng, M. Zang, X. Hong, R. Bensoussane, S. Vargaftik, Y. Ben-
Itzhak, and N. Zilberman, “Automating in-network machine learning,”
arXiv, 2022.

[18] K. Razavi, G. Karlos, V. Nigade, M. Mühlhäuser, and L. Wang,
“Distributed DNN serving in the network data plane,” in EuroP4 ’22.
NY, USA: ACM, 2022, p. 67–70.

[19] G. Siracusano and R. Bifulco, “In-network neural networks,” CoRR, vol.
abs/1801.05731, 2018.

[20] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems, vol. 28. Curran
Associates, Inc., 2015.

[21] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh, H. Haddadi,
G. Antichi, and R. Bifulco, “Re-architecting traffic analysis with neural
network interface cards,” in NSDI. Renton, WA: USENIX, Apr. 2022.

[22] N. Corporation, “ConnectX SmartNICs - 10/25/40/50/100/200 and
400G Ethernet Network Adapters,” 2022. [Online]. Available: https:
//www.nvidia.com/en-gb/networking/ethernet-adapters/

[23] T. Swamy, A. Rucker, M. Shahbaz, I. Gaur, and K. Olukotun, “Taurus:
A data plane architecture for per-packet ml,” ASPLOS, 2022.

[24] C. Zheng, Z. Xiong, T. T. Bui, S. Kaupmees, R. Bensoussane, A. Bern-
abeu, S. Vargaftik, Y. Ben-Itzhak, and N. Zilberman, “IIsy: Practical
in-network classification,” arXiv, 2022.

[25] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Van-
bever, “pForest: In-network inference with random forests,” CoRR, vol.
abs/1909.05680, 2019.

[26] J. Lee and K. P. Singh, “Switchtree: in-network computing and traffic
analyses with random forests,” Neural Computing and Applications, pp.
1–12, 2020.

[27] C. Zheng and N. Zilberman, “Planter: Seeding trees within switches,”
in SIGCOMM ’21. NY, USA: ACM, 2021, p. 12–14.

[28] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello,
“Programmable switches for in-networking classification,” in IEEE
INFOCOM 2021, pp. 1–10.

[29] X. Zhang, L. Cui, F. P. Tso, and W. Jia, “pHeavy: Predicting heavy
flows in the programmable data plane,” IEEE Transactions on Network
and Service Management, vol. 18, no. 4, pp. 4353–4364, 2021.

[30] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan, “Mousika:
Enable general in-network intelligence in programmable switches by
knowledge distillation,” in IEEE INFOCOM 2022, pp. 1938–1947.

[31] B. Coelho and A. Schaeffer-Filho, “BACKORDERS: Using random
forests to detect DDoS attacks in programmable data planes,” in EuroP4
’22. NY, USA: ACM, 2022, p. 1–7.

[32] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian,
“Traffic classification on the fly,” ACM SIGCOMM Computer Commu-
nication Review, vol. 36, no. 2, pp. 23–26, 2006.

[33] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic classification
through simple statistical fingerprinting,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 1, pp. 5–16, 2007.

[34] L. Bernaille and R. Teixeira, “Early recognition of encrypted applica-
tions,” in PAM. Springer, 2007, pp. 165–175.

[35] M. Jaber, R. G. Cascella, and C. Barakat, “Can we trust the inter-packet
time for traffic classification?” in IEEE ICC, 2011, pp. 1–5.

[36] G. Lu, H. Zhang, M. Qassrawi, and X. Yu, “Comparison and analysis
of flow features at the packet level for traffic classification,” in ICCVE,
2012, pp. 262–267.

[37] R. Panigrahy and S. Sharma, “Reducing TCAM power consumption
and increasing throughput,” in Proceedings 10th Symposium on High
Performance Interconnects, 2002, pp. 107–112.

[38] H. Kim, X. Chen, J. Brassil, and J. Rexford, “Experience-driven re-
search on programmable networks,” SIGCOMM Comput. Commun. Rev.,
vol. 51, no. 1, p. 10–17, 2021.

[39] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar, “To-
wards the deployment of machine learning solutions in network traffic
classification: A systematic survey,” IEEE Communications Surveys
Tutorials, vol. 21, no. 2, 2019.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, 2011.

[41] “Wireshark.” [Online]. Available: https://www.wireshark.org/docs/
man-pages/tshark.html

[42] F. Mola and R. Siciliano, “A fast splitting procedure for classification
trees,” Statistics and Computing, vol. 7, pp. 209–216, 1997.

[43] A. Turner and F. Klassen, “Tcpreplay,” 2013.
[44] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,

A. Vishwanath, and V. Sivaraman, “Classifying IoT devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, 2019.

[45] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli, “Detection of
encrypted tunnels across network boundaries,” 2008 IEEE ICC, pp.
1738–1744, 2008.

[46] A. Este, F. Gringoli, and L. Salgarelli, “On-line SVM traffic classifica-
tion,” in 2011 7th IWCMC, 2011.

[47] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic char-
acterization,” ICISSP 2018, pp. 108–116, 2018.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.netronome.com/products/smartnic/overview/
https://www.nvidia.com/en-gb/networking/ethernet-adapters/
https://www.nvidia.com/en-gb/networking/ethernet-adapters/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html

	Introduction
	Line-rate inference: a primer
	Machine learning in the user plane
	In-switch tree-based inference

	Practical flow-level in-switch inference
	Parsing
	Inference-aware forwarding
	Flow management
	RF model mapping and inference
	Switch-tailored model design

	Experimental setup and results
	Hardware setup
	Use cases
	Benchmark and metrics
	Results

	Conclusions
	References

