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Remote sensing community relies on Voronoi
tessellation as an approximation to BS
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Voronoi cell, using only
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diverse fields of research, yet its validity is Inside this area
guestionable. VoronoiBoost can be used
- - to predict the optimal

scaling for several t
values, and by overlapping
these predictions, one can
obtain a more realistic
coverage approximation.

Service area delimit Recorded path

Natur @0 08Mobi Coe018ci en e d 2WWWO 24P Provide the community

Contributions with a tool that enables .
o . . L acquiring an improved |
(1) Quantifying the quality of Voronol approximation. version of Voronoi cell.
(2) Proposing VoronoiBoost, a data -driven model of BS coverage.
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Problem & Concepts

Practical application use cases
Ground truth data

Application |: Traffic maps

Ground truth coverage dataset
provided by Orange.
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Scaling Voronois to improve coverage qualit VoronoiBoost induce up to 28% more accurate ES deployment than
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