
FreqyWM: Frequency Watermarking for the New
Data Economy

Devriş İşler1,2, Elisa Cabana3§, Alvaro Garcia-Recuero4§, Georgia Koutrika5, and Nikolaos Laoutaris1

1IMDEA Networks Institute, 2UC3M, 3CUNEF University, 4Independent Researcher, 5Athena Research Center

Abstract—We present a novel technique for modulating the
appearance frequency of a few tokens within a dataset for
encoding an invisible watermark that can be used to protect
ownership rights upon data. We develop optimal as well as fast
heuristic algorithms for creating and verifying such watermarks.
We also demonstrate the robustness of our technique against
various attacks and derive analytical bounds for the false positive
probability of erroneously “detecting” a watermark on a dataset
that does not carry it. Our technique is applicable to both single
dimensional and multidimensional datasets, is independent of
token type, allows for a fine control of the introduced distortion,
and can be used in a variety of use cases that involve buying and
selling data in contemporary data marketplaces.

Index Terms—Intellectual property, digital rights management,
watermarking, ownership rights, data economy

I. INTRODUCTION

Data-driven decision making powered by Machine Learning
(ML) algorithms is changing how society and the economy
work. ML is driving up the demand for data in what has been
called the fourth industrial revolution. To satisfy this demand,
several data marketplaces (DMs), which are mediation plat-
forms aiming to connect the two primary stakeholders of the
data value chain, namely the data providers/sellers and the data
buyers [1], have appeared in the last few years.
The problems: Unfortunately, as with all digital assets, being
able to copy/store/transmit datasets with close to zero cost
makes creating illegal copies very easy. Even worse, unlike
media content and software, the issue of ownership is less
obvious when it comes to datasets. Any movie, song, e-
book, or software can usually be attributed to a director,
musician, author, or company, respectively, but this is hard to
do for large datasets. These large datasets in data economy are
traded in a wholesale manner that involves large numbers of
tuples/rows. Consider an anonymised mobility dataset logging
the movement of people in a city. Such a dataset may have
been produced by collecting GPS readings from the smart-
phones of individuals using a map application, or it may be
deduced by analysing cell phone traces [2] or Call Description
Records (CDRs) maintained by mobile operators. Deployment
of advanced privacy enhancing technologies (PETs) such as
multiparty computation [3], (fully) homomorphic encryption
[4], functional encryption [5], and trusted execution environ-
ments [6] can protect data from leaking in the first place and
allow (pre-agreed) computations on data without hampering
the functioning of the data-driven economy, e.g., private set

§Work done while the author was affiliated with IMDEA Networks Institute.

computation [7], encrypted databases [8], secure computation
[9], secure data aggregation [10], and verifiable databases
[11]. However, most such approaches face serious scalability
challenges that hamper their deployment in real-world use-
cases. An alternative to deploying PETs solutions, is to rely
on purely legal tools and terms and conditions to protect data
ownership in the context of the new data economy [12]. In fact,
most DMs do exactly that – trade plaintext versions of entire
data [1, 13, 14] assuming that the different parties will abide
to pre-agreed terms and conditions. With weak to nonexistent
ownership guarantees by technical means, it is difficult to
imagine that the data economy will ever flourish and reach
its projected potential [15]. Indeed, any sold copy of a dataset
can be ‘pirated’ by a buyer-turned-seller that can then resell
the same dataset in a DM thereby undercutting the rightful
owner and rendering its investment useless.

Watermarking is a well-known technique for protecting
ownership upon copying and unauthorized distribution, ini-
tially proposed for protecting digital media [16, 17] and soft-
ware [18]. Watermarking techniques for datasets [19, 20, 21]
and machine learning models [22] have been proposed re-
cently. Watermarking generally consists of two algorithms:
generation (or embedding) and detection. The generation
allows an owner to embed an invisible (or visible) watermark
into their data using a high entropy (watermarking) secret
and produces a watermarked version of the data introducing
tolerable distortion without degrading the data utility. During
the detection algorithm, the owner proves its ownership on the
suspected data (even if it is modified) using the same water-
marking secret generated during the watermark generation. If
the result of the detection is 1 (or accept), the owner can use
it to prove their ownership on the (suspected) watermarked
data. A watermarking scheme is assumed to be secure against
the guess attack (where an attacker tries to expose the water-
marking secret) and robust against (un)intentional alterations/-
modifications (i.e., a watermark should be still detectable even
under attacks such as [20, 23, 24, 25, 26, 27, 28]).
Limitations of existing watermarking techniques: Water-
marking techniques, depending on the nature of their appli-
cation, may have very different objectives, e.g., numerical
database watermarking controlling the distortion on mean
and standard deviation [21], reversible watermarking allowing
owners to reconstruct the original data [29], watermarking
text datasets preserving the meaning of a text [30] and/or
the frequencies of the words [31], categorical watermarking
preserving the (predefined) categories (e.g., gender) of a

dataset [32]. All these solutions focus on a specific data
type in a specific domain [23, 33]. Another limitation of
theirs relates to the level of control they offer to the user
in terms of controlling the distortion introduced upon the
original data due to the watermark. There are, for example,
techniques that maintain the mean and the standard deviation
of a numerical field [20, 34, 35] but, as we will show
later, this can lead to arbitrary large distortion between the
original and the watermarked data when considering the entire
distribution of values that goes beyond the mean and the
standard deviation. To address these limitations, we introduce a
novel watermarking technique that can be implemented over a
wide range of data types and structures (with some constraints
that will be explained later) while giving the data owner very
precise control over the introduced distortion.
A novel watermarking technique for data: In this paper, we
present a novel Frequency Watermarking technique, henceforth
FreqyWM, 1 for hiding a secret within a dataset in a manner
that makes the said secret indistinguishable from the data
that it protects. The main idea behind FreqyWM is to modify
slightly the appearance frequency of existing tokens within a
dataset in order to create a secret in the form of a complex
relationship between the frequencies of different tokens. By
making this relationship complex enough, we can reduce the
probability that it appeared by chance close to zero. Therefore,
by revealing knowledge of such secret relationship, a party
can claim ownership over a dataset because the only practical
way of knowing such a secret is to have inserted it in the
data in the first place. A token may be a word, a database
record, a URL, or any repeating value within a structured or
semi-structured commercial dataset. Our secret is created by
first selecting a number of token pairs. Then, for each pair, we
slightly modulate the frequency counts of its tokens in order to
make their difference yield zero under modulo N arithmetic.
This can be easily done by adding or removing some instances
of one, the other, or both tokens. By increasing the number of
selected pairs we can make our watermark more resistant to
attacks, as well as less likely to have appeared by chance.

FreqyWM can achieve several things. First and foremost, by
revealing knowledge of the secret encoded by the watermark, a
data seller can prove rightful ownership of a dataset to a third
party, such as a DM. This can be used to distinguish a rightful
owner from a pirate that may attempt to monetize a pirated
dataset in a DM. If the DM, or the rightful owner detects
such an event, the dataset can be removed and the pirate be
banned. This would mimic what web-sites like YouTube do to
protect copyrighted content. Detecting the presence of pirated
copies can be achieved using content similarity [36], locality
sensitive hashing [37, 38] and even hashing similarity [39] that
go beyond the scope of watermarking.

In addition to proving ownership, our watermarking tech-
nique can also reveal who may have leaked (copied/pirated)
a dataset in the first place. A dataset seller or a DM may
create a different watermark for every buyer and in addition to

1Freqy pronounced as freaky.

encoding it into the data, store also a description of it in some
immutable index (e.g., a blockchain). Then, if an unauthorized
copy of the dataset is found at a latter point, the culprit can
be identified by looking up its watermark against this index.
Our major contributions are as follows:
• Our first contribution is the idea of using the appearance fre-
quency of tokens to encode invisible watermarks upon datasets
traded in DMs. We establish a family of such watermarks
using frequency pairs and modulo arithmetic and prove that
creating an optimal FreqyWM reduces to solving a Maximum
Weighted Matching (MWM) problem [40, 41] combined with
a polynomial special version of the 0/1 Knapsack problem [42]
involving items of equal value but different weights.
•We extend frequency-based watermarking to make it resilient
against a series of attacks. In particular, we protect our
technique against a Guess Attack attempting to identify our
watermarked pairs and secrets to impersonate the rightful
owner. We make such an attack computationally hard by intro-
ducing a high-entropy secret while generating the watermark.
We also protect against a Re-watermarking Attack mounted
by having a pirate inject its own watermark upon an already
watermarked dataset, and then present the former as a false
proof of ownership. We thwart such an attack by describing a
simple protocol capable of ordering chronologically multiple
watermarks that may be carried by different versions of the
same dataset. We protect against a Destroy Attack attempting
to destroy our watermark by changing the frequency of differ-
ent tokens in the dataset. By relaxing our modulo arithmetic
rule used during the verification of a particular watermark pair,
as well as the percentage of pairs to be detected before the
entire watermark is verified (accepted), we oblige the attacker
to effectively also destroy the actual data in the process of
destroying the watermark. Finally, we show that our technique
is robust to a Sampling Attack in which the attacker attempts
to pirate only a random sample of the watermarked data.
• Our final contribution is an extensive performance evaluation
study aiming to explain the impact of the main parameters of
FreqyWM on major performance metrics under different attack
scenarios using synthetic and real world datasets.
The main findings of our evaluation are as follows:
• We show that as long as there exists sufficient variation
in the frequencies of different tokens, FreqyWM can encode
robust watermarks with minimal distortion on the initial data.
Our technique does not apply to uniform token appearance
frequencies, because in this case there does not exist sufficient
gap between different frequencies for encoding a watermark.
• Regarding the false positive probability, i.e., “detecting” a
watermark on a dataset that does not carry it, our analytical
bounds (in the form of closed form expressions) show that it
quickly goes to zero as we increase the number of pairs.
• We demonstrate that a Guess Attack has negligible prob-
ability of success, thereby making it impossible for almost
all practical cases. On the up side, the rightful owner or any
party, that is given the watermarking secret for verifying the
watermark, can do that very fast in linear time complexity.

2

• Regarding Sampling Attacks, we show that with the excep-
tion of very small samples, our detection algorithm is capable
of detecting our watermark. Achieving this requires using the
relaxed detection algorithm that trades robustness to attacks
with false positives. For example, on a sample of 20% and
with thresholds that impose tiny false positive probability, the
detection probability exceeds 90%.
• In terms of Destroy Attacks, we show that a watermark that
imposes (costs) a tiny 0.0002% distortion on the original data,
remains detectable even under attacks that add random noise
that imposes a 90% modification.
• Compared to existing solutions from the literature [30, 35]
that are applicable only to numerical data and preserve only
the mean value of the watermarked data, FreqyWM allows a
data owner to control the exact amount of distortion introduced
by the watermark in terms of cosine or other similarity metrics
which, under [30, 35] may become unbounded. For example,
a FreqyWM watermark that imposes only 0.0002% distortion
in terms of cosine similarity, is stronger than watermarks
from [35] and [30] that impose 46.72% and 4% distortion,
respectively under the same metric.

II. RELATED WORK

Database watermarking is the closest type of watermarking
to our work. There are of course other types of watermarking
and fingerprinting (when an owner generates a unique water-
mark for each intended party, e.g., buyers/data marketplaces),
for example, for sequential [43] and genomic datasets [44].
However, as they focus on specialized types of data, we do
not go into more details about them. Survey papers such
as [23, 33, 45, 46] compare database watermarking techniques
in terms of verifiability, distortion, supported data types, and
other aspects. Many of these solutions are applicable only
to numerical data and thus cannot be applied to a range of
commercial datasets, e.g., to web-browsing click-streams.

The first known watermarking technique for relational data
is a numerical database watermarking approach [20]. The
watermark information is normally embedded in the Least
Significant Bit (LSB) of features of relational databases to
minimize distortion. Other numerical database watermarking
solutions introduce distortion by considering the statistics of
numeric values [34, 35, 47, 48, 49]. The proposed solutions
in [20, 35] focus on keeping the change at minimum (i.e.,
median and standard deviation). However, numerical database
watermarking unfortunately cannot be applied to datasets
composed of string and numerical values (e.g., CDRs, web-
browsing history) that we handle in our work.

Distortion-free database watermarking schemes have also
been proposed [50, 51] that introduce fake tuples or columns
in the original database. The fake tuples or columns are created
based on a watermark secret by computing a secret function
which makes watermarking visible and easy to remove. How-
ever, an attacker can remove the watermark with minimum
computational power, making these approaches inapplicable
to our case. Reversible watermarking allows owners to recon-
struct the original data used for watermarking on the top of

watermark verification [29, 30, 49, 52, 53, 54, 55, 56, 57].
They have similar properties as other relational watermarking
techniques (e.g., private key based, robust, introducing distor-
tion).

Categorical watermarking [32] is another watermarking
approach that replaces tokens in a dataset with another token
in the same category. However, this causes an undesired
distortion and requires predefined categories (e.g., gender,
clothing size) in the data. Consequently, its applicability on
datasets consisting of different data types is limited. Text
watermarking [30, 31] is for text files where it changes a token
(e.g., by replacing a word with another similar word) trying to
preserve the meaning of a text [30] and/or the frequencies of
the words [31]. However, assume the dataset is a list of URLs
visited by the owner, then this (insecure) change/replacement
may invalidate a token (e.g., causing an invalid URL).

In the context of datasets in our use case, while prior
works try to minimize the amount of distortion on median,
average, or first moments of the distribution of a feature, the
owner can limit the exact distortion between the original and
the watermarked dataset as reflected by distance metrics that
capture the shape of the entire distribution of a feature. Our
results in Section IV-D have shown that the latter can deviate
arbitrarily if an owner tries to control only the first most
important moments.

III. FREQUENCY-BASED WATERMARKING

In this section we provide an overview of FreqyWM and the
notations used throughout the paper in Table I.

Do The original data to watermark.
Dw Watermarked (data) version of Do.
tki ith token.
fo
i Frequency of ith token in Do.

fw
i Frequency of ith token in Dw .
R A high entropy secret.

Lwm A list of chosen token pairs for watermarking.
Lsc A list of secrets required for watermark detection.
Le A list of eligible token pairs for watermarking.
k Threshold for detecting a watermark.
t Threshold to accept a pair as watermarked.
b A budget threshold for distortion that watermarking can introduce.

TABLE I: Notation.

Running Example. To provide the intuition behind our
watermarking approach, assume a scenario where an owner
holds a real click-stream dataset consisting of visited URLs
(e.g., the dataset by [58]). Such datasets are desired by modern
data analytic-based applications [59] where their frequency
histograms (e.g., the number of clicks/visits, popularity of
likes in social networks) are used as an essential source of
information. For instance, assuming the appearance frequen-
cies (histogram) visualized in Figure 1 via a tabular form,
the most frequent token is youtube.com, the second one
is facebook.com, and so forth. After watermarking, it is
important that the ranking of the tokens based on the frequency
shall not change while the frequency appearances can be
modified. For instance youtube.com shall be the most fre-
quent URL (token) visited in the watermarked dataset. Another
important distortion metric on the histogram is similarity. It

3

is important that owners shall have control over the change in
similarity. Since the similarity metric can be varied depending
on the application that a dataset will be used, owners can
assign a budget to determine the minimum similarity desired
on the frequency distribution after watermarking. Based on
the above, we derive two natural constraints on the data
utility to allow an owner to control distortion, without limiting
watermarking to a specific data type:
• Ranking Constraint: Watermarking should preserve the rank-
ing of token frequency distribution (histogram). Preservation
of ranking does not of course imply that frequencies of individ-
ual tokens need to remain intact. • Similarity Constraint: The
similarity between original and watermarked frequency distri-
butions (histograms) should not be any less than (100− b)%
where b is a budget. Input b is determined by the owner to
keep distortion due to watermark generation within a given
budget. 2

To satisfy these constraints and overcome the shortcoming
of existing watermarking techniques, we introduce a new
private-key based watermarking scheme, FreqyWM, that is
blind (does not require the original data), primary-key free
(does not need attributes that uniquely specify a tuple in a
relation in a dataset), robust, and secure against guess, sam-
pling, destroy, and false-claim attacks with a high utility and
a good trade-off between the complexity of the transformation
and algorithmic efficiency of the solution.

A. Overview of our Approach

FreqyWM consists of two main algorithms: the water-
mark generation algorithm, WMGenerate, and the water-
mark detection algorithm, WMDetect. WMGenerate gen-
erates watermarked data based on a budget b capturing how
much the watermarked data may differ from the original
one, e.g., in terms of cosine (or other) similarity metrics of
their corresponding token frequency distributions. By calling
WMGenerate, the owner creates a watermarked version of
their data consisting of tokens such that ownership can be
proved. WMDetect detects if a suspected dataset holds the
watermark of the owner using the owner secrets produced by
WMGenerate and two thresholds (k and t). If WMDetect
outputs accept/verified, this evidence would prove that the
owner can claim ownership of the watermark and thus the data.
By nature, WMDetect can be computed as many times as
desired in private while it can be computed only once in public,
because it would mean that the potential data owner shall
reveal the secret leading to such watermark to the public (or
whomever must verify it, e.g., a judging third party). As part
of our future work, we are also looking at public verifiability
without revealing the private key (Section VII).

We describe the general idea behind FreqyWM, illustrated
in Figure 1. We use our running example. Of course, our
technique is general and can be applied to any repeating token
beyond just URLs, as we explain in Section IV-C.

2Although in our experiments we use cosine similarity, any similarity
metrics can be deployed without any loss of security and change in FreqyWM.

Watermark Generation. Assume that the data owner holding
a list of URLs visited creates a dataset Do using the domain
of each URL in the list as a token and sets a budget b for the
similarity constraint. WMGenerate has the following steps:
• Histogram Generation. Since FreqyWM aims to preserve the
appearance frequency of tokens, it first creates a histogram of
the original dataset Do such that it sorts all unique tokens in
descending order of their frequency (e.g., YouTube is the most
visited, Facebook is the second, and so on).
• Generation of Eligible Tokens. FreqyWM cannot modify
the frequencies randomly because of the ranking constraint.
Therefore, it identifies a list Le of eligible pairs of tokens that
are candidates to be watermarked using some secret R.
• Optimal Selection. With the identification of eligible pairs,
FreqyWM ensures that the ranking is preserved after wa-
termarking. However, the similarity constraint is yet to be
satisfied. To keep the similarity at least at (100 − b)%,
FreqyWM selects pairs of tokens from eligible pairs for water-
marking, denoted by Lwm, based on the budget constraint b.
For this purpose, FreqyWM benefits from solving two well-
known problems: Maximum Weight Matching (MWM) and
Equally Valued 0/1 Knapsack problem (QKP). To do so,
eligible pairs are converted to a graph representation where
vertices represent a token, and an edge represents a pair.
FreqyWM applies Maximum Weight Matching to the graph
representation (discussed in detail later). By applying MWM,
FreqyWM selects the pairs from eligible pairs requiring the
minimum change in total; however, it does not necessarily
mean that the similarity between the original histogram and
watermarked histogram will be at least (100−b)%. To choose
another set of pairs satisfying the Ranking Constraint from the
pairs derived after MWM, an Equally Valued 0/1 Knapsack
problem needs to be solved. The more the token pairs are
selected to watermark, the more robust FreqyWM is, since the
number of tokens to attack (e.g., remove/identify) increases.
To fulfill the budget b, QKP selects a maximum number of
pairs such that the similarity between the original frequency
histogram and the watermarked one is at least (100− b)%.
• Frequency Modification. Until now, FreqyWM determines
the final pairs of tokens for watermarking but frequency
appearances are yet to be modified to create the watermarked
histogram. Therefore, FreqyWM modifies the frequencies of
the selected tokens where the frequencies of a pair of tokens
would be equal to 0 (as a watermark embedding rule) in
some modulo that is calculated based on secrets and tokens
in the pair. To make it more comprehensible and show how
the modifications occur, let us assume that the frequencies of
a chosen pair, e.g., youtube.com and instagram.com,
are 1098 and 537, respectively. Assume also that a modulo
value, say 129, is computed based on the secrets and the
tokens (e.g., youtube.com and instagram.com). The
difference between the two frequencies in modulo 129 is 45.
To set the difference to 0, we need to change the appearance
frequencies for Youtube and Instagram in the dataset. 45 is
divided (by 2) as 23 (by ceiling) and 22 (by flooring). The
new frequencies of youtube.com and instagram.com

4

Watermarked

 youtube.com\...
 google.com\...

 instagram.com\..

 bbc.com\…

 cnn.com\...

 elpais.com\...
O
ri
gi
na

l
D
at

a

URL Frequency
 Youtube 1098
 Facebook 980
 Google 674
 Instagram 537
 BBC 64
 CNN 53
 El Pais 53

URL Frequency
 Youtube 1075
 Facebook 981
 Google 673
 Instagram 559
 BBC 65
 CNN 53
 El Pais 53

Original

1. Histogram
Generation

2. Eligible
Tokens

3. Optimal
Selection

Fi
na

l T
ok

en
Se

le
ct

io
n

3.1 Graph
Representation

3.
2

M
W

M

Budget

3.
3

Q
KP4. Frequency

Modification
-23

-1
+1

+22

+1

0

W
at

er
m
ar

ke
d

D
at

a 5. Data
Transformation

 youtube.com\...
 youtube.com\...
 google.com\...
 instagram.com\..
 bbc.com\…

 cnn.com\...
 elpais.com\... Watermark Generation Watermark Detection

Watermarked
Data

Detection

: Watermarking Secrets

: Thresholds for detection

MWM: Maximum Weight Matching

QKP : Equally Valued 0/1 Knapsack

Fig. 1: FreqyWM illustrated based on a (Top Level Domain, TLD) URL dataset. URLs chosen as a pair for watermarking are represented
with the same colored frequencies (e.g., Youtube and Instagram) while the ones not selected are colored black (e.g., CNN).

need to become 1098 − 23 = 1075 and 537 + 22 = 559
such that (1075 − 559) mod 129 ≡ 0. We can do that
by removing 23 instances of Youtube from the dataset, and
adding 22 more instances of Instagram. However, when the
remainder (i.e., (1098 − 537) mod 21 ≡ 16) is greater than
half of the modulo, we add the modulo result calculated as
(⌈(1098− 537)÷ 21⌉)× (1098− 537) to the difference. This
way, we never have to eliminate remainders that exceed half
of the modulo. As it will be evident in the next section, this
observation enables us to determine eligible tokens.
• Data Transformation. FreqyWM adds/removes tokens based
on the frequencies and produces a watermarked dataset Dw.
Watermark Detection. An owner wishes to verify if a
(watermarked) dataset D′

w (a modified version of Dw) is
watermarked by using the secrets stored from the watermark
generation. To determine the confidence level in the detection
(e.g., the minimum number of detected watermarked tokens),
the owner provides some threshold values (k and t). With the
watermarking secret and the thresholds, the detection returns
accept/verified or reject.

B. Detailed Description of FreqyWM

Algorithm I: Watermark Generation

Input: Do, b
Output: Dw, Lsc

Dhist
o = Preprocess(Do)

R← {0, 1}λ , z ← Z+

foreach {tki, tkj}i̸=j ∈ Do do
sij = H(tki||H(R||tkj)) mod z

end
Le ← Eligible(Dhist

o , {sij})
Lwm ← OptMatch(Dhist

o , Le, {sij}, b)
foreach {tki, tkj} ∈ Lwm do

Dhist
o .Update(fw

i , fw
j , sij)

end
Dw ← Create(Dhist

o , Do)
Lsc = {Lwm, R, z}
Result: Dw, Lsc = {Lwm, R, z}

1) Watermark Generation: The data owner holds the orig-
inal data Do and defines a budget b that decides how much
distortion a watermark can introduce. For comprehensibility,

assume that Do is a single-dimensional dataset, e.g., a dataset
with one attribute (see Section IV-C for how to apply Fre-
qyWM to multi-dimensional datasets). Do consists of repeating
values called tokens that can be of any data type, which enables
FreqyWM to be data-type agnostic. The goal of watermarking
is to generate the optimal watermark, i.e., with the largest
number of watermarked pairs within the given budget b. The
generation algorithm (Algorithm I) follows these steps:
Histogram Generation: It pre-processes Do to generate a
histogram Dhist

o = Preprocess(Do). Dhist
o consists of a set

of tokens, {tk0, . . . , tk|Dhist
o |} (e.g., tk0 =youtube.com)

where each tki has an (original) appearance frequency fo
i

(e.g., there are 1098 YouTube visits). The histogram Dhist
o

is sorted in a descending order of frequency. To keep the
distortion introduced by the watermark at minimum (e.g., after
watermarking, YouTube is still the most visited, followed by
Facebook, although their frequencies may have changed), we
calculate two boundaries for each token tki: an upper bound-
ary ui and a lower boundary li. The boundaries allow us to
determine how much change we can introduce to the token and
whether a token pair is eligible as explained later. Naturally,
for the token with the highest frequency in the histogram, it
is u0 = ∞ because we can increase the frequency of tk0 as
much as we want, while the lower boundary of the last token,
tk|Dhist

o |−1, is set to its frequency as l|Dhist
o |−1 = f|Dhist

o |−1

because we can remove at so many appearances. For the rest
of the boundary calculations of each token tki, ui is defined
as the difference between fo

(i−1) and fo
i , while li is assigned

as fo
i − fo

(i+1). Note that once the boundaries are set, they
remain same until frequency modification.3

Generation of Eligible Tokens: In cryptography, λ ∈ N is a
security parameter, i.e., a variable measuring the probability
with which an adversary can break a cryptographic scheme
[60]. In other words, λ provides a way of measuring how
difficult it is for an adversary to break a cryptographic scheme.
FreqyWM requires randomization to be secure by ensuring
that an attacker has only negligible advantage to recover the
watermark and create collision for false claim (e.g., coming

3The frequencies of some tokens may have high importance. An owner can
filter the dataset and exclude them from watermarking.

5

up with another watermarking secret which returns accept on
data not watermarked by it). Thus, we choose a hash function
to overcome the collision. In detail, a hash function H (chosen
from a family of such functions) is a deterministic function
from an arbitrary size input to a fixed size output, denoted
H : {0, 1}∗ → {0, 1}λ. The hash function [60] is collision
resistant if it is hard to find two different inputs m0 ̸= m1

that hash to the same output H(m0) = H(m1).
Based on the above, to determine token pairs for watermark-

ing, FreqyWM first generates a high entropy random number,
i.e., secret, R ← {0, 1}λ and an integer z ∈ Z+. Then,
it uses R and z to compute sij values for modulo opera-
tion as: sij = H(tki||H(R||tkj)) mod z, where || denotes
concatenation. A set Le of all eligible pairs is generated by
an algorithm Eligible based on given pairs {tki, tkj} and
corresponding sij values as Le ← Eligible(Dhist

o , {sij}) .
A pair is accepted as eligible if it satisfies that the boundaries
of each token in the pair are at least ⌈sij/2⌉ where sij ≥ 2. sij
cannot be 0 or 1 because of modulo operation since modulo
0 is undefined and modulo 1 is 0. Note that the size of Le

is bounded by [0,
(|Dhist

o |
2

)
] where 0 means that there is no

eligible pair while
(|Dhist

o |
2

)
means that all the possible pairs

of tokens are eligible. After the eligible pairs are constituted,
the boundary check is not necessary anymore since whichever
set of pairs (that does not have a common token among) is
chosen, the ranking will be preserved.
Optimal Selection: The eligible pairs are defined by ensuring
the ranking constraint. However, to determine which subset
of eligible pairs shall be selected such that chosen optimal
number of pairs of tokens, denoted by a set Lwm, respect the
budget constraint, it runs optimal matching algorithm from
the eligible pairs Le using the frequencies and sij values as
Lwm ← OptMatch(Dhist

o , Le, {sij}, b). In Section III-B2,
we show that for our optimal selection solution, we acutely
reduce our problem to Maximum Weight Matching (MWM)
and Equally Valued 0/1 Knapsack problem (QKP) problems
to solve. We also devise two heuristics: greedy and random.
Frequency Modification: Based on Lwm, the algorithm cre-
ates new frequencies of tokens chosen from the optimal
matching algorithm (fw

i −fw
j) mod sij ≡ 0. This, of course,

changes the boundaries of tokens; however, we do not need
to update the boundaries as they are not needed anymore.
Data Transformation: It generates or removes tokens based
on new frequencies. Note that the position of where to add
tokens is important for security of FreqyWM against guess
attack. Therefore, new tokens should be added in random
positions (see Section IV-C for more discussion). As a final
step, it returns the list of tokens Dw and stores Lwm, z value,
and the random value R as a list Lsc.

2) Optimal and Heuristic Approaches : Given that all
watermarked pairs have equal value in terms of proving
ownership of the data, an optimal watermark is just a wa-
termark of maximum size in terms of watermarked pairs,
within the defined constraints (similarity and ranking). Op-
timal Matching. Let us now define our optimal watermarking.

Let G = {V,E} be a connected undirected graph which is
the representation of frequencies driven from eligible pairs
Le. V = {v1, v2, . . . , v|V |} where vi represents tki and
E = {e1, e2, . . . , e|E|} where e(vi, vj) is the edge between
vi and vj . The weight of an edge e(vi, vj), w(ei), is equal to
T −((fo

i −fo
j) mod sij) where T is a big value (e.g., T > C

where C is the highest difference between two frequencies in
the eligible pairs). Then, our optimal watermarking problem
reduces to finding the maximum number of edges (pairs) such
that no edge has a common vertex and b is not exceeded.

Definition 1 (Optimal Watermarking). Let
OptWM(G(V,E), b) be the optimal watermarking with
a budget of b among an eligible set of items Le represented
as a connected undirected graph G(V,E). The optimal
watermarking produces the maximum number of edges (pairs)
while not exceeding the budget b defined below:

MAX |Mw|, Mw = {e1, ..., e|M|} s.t. sim(Dhist
o , Dhist

w) ≥ (100−b)

where Mw denotes the chosen pairs for watermarking.

The solution of the pairing problem is reduced to two well-
known problems with polynomial time solutions: Maximum
Weight Matching (MWM) and Equally Valued 0/1 Knapsack
problem (QKP) (which we have a special case where all values
are equal). Note that while the general 0/1 Knapsack problem
is known to be NP-Hard [42], this special equally valued 0/1
Knapsack problem would have a polynomial time (greedy)
solution. In particular, our optimal pairing problem is reduced
and solved as follows:
• Find the maximum weight matching M = e1, e2, . . . , e|M |
as M = MWM(G(V,E)). Notice that M includes the edges
such that the sum gives the maximum weight. It refers to
minimum weight for us since the weights are defined as
T − (fi − fj mod sij) which makes the highest frequency
difference have the smallest weight and the smallest one have
the highest weight. With this conversion, we identify the edges
distorting the histogram minimally.
• After finding the edges via MWM, we have one more
constraint which is the budget b. The matching algorithm has
to return the maximum number of matchings for which the
distortion (e.g., based on cosine similarity) does not exceed b
which can be solved via QKP where the value of each item is
1, and the weight is recomputed as T −w(ei). Recomputation
is necessary because for the QKP we want to add as many
items as possible that will be bounded by b. Therefore, it
finds the set of edges Lwm in M such that the selected
edges do not exceed the budget b by employing the QKP as
Lwm = QKP (M, b) where Lwm = e1, e2, . . . , e|Lwm| and
value of each ei is 1 (val(ei) = 1). Showing the optimal-
ity of the resulting watermark according to Definition 1 is
straightforward and can be proven via proof-by-contradiction.
In a nutshell, if our solution is not optimal, it means that one
of the solutions produced by MWM and QKP cannot be
optimal. However, since MWM and QKP are both assumed

6

to be optimal, this contradicts with our statement and thus our
solution is optimal.

Heuristic Matching Algorithms. We define two heuristic
algorithms: 1) greedy; and 2) random. In the greedy algorithm,
all the eligible token pairs are sorted in an ascending order by
their remainders as rmij ≡ (fo

i −fo
j) mod sij . The algorithm

starts selecting a pair respectively for watermarking where b
would not be exceeded when it is chosen (i.e., comparing
the similarities of original and watermark histograms). This
continues until b is exhausted or there is no more item to
visit. The random matching algorithm follows the same steps
as the greedy algorithm except it does not sort the eligible
pairs but rather selects a pair randomly from Le.

3) Watermark Detection: In detection, the data owner
wishes to know if there is a watermark of its in a token
dataset D′

w to claim ownership. The owner holds its secret
list Lsc = {Lwm, R, z} where Lwm is the list of watermarked
token pairs, R is the high entropy value, and z is the (modulo)
integer, all generated by the watermark generation, along with
two thresholds: (1) t, a threshold to decide if a certain pair is
watermarked; and (2) k, the minimum number of watermarked
pairs required to conclude whether D′

w is a watermarked
dataset. How to set t and k depends on the robustness an
owner wants (see Sections III-B4 and IV-A2). If the owner
wants to prove ownership to a third party, it has to reveal
its secrets to that party. This causes to prove the ownership
once in public (see Section V-D). Our watermark detection
algorithm (Algorithm II) proceeds as follows:
(1) It builds the histogram list Dhist

w of the suspected dataset
D′

w as in the watermark generation algorithm. The algorithm
does not calculate the boundaries, just the token frequencies.
(2) For each token pair {tki, tkj} in Lwm, if the pair ex-
ists in Dhist

w , the algorithm generates sij values as sij =
H(tki||H(R||tkj)) mod z.
(3) Then, it decides whether it will accept a given token pair
(tki, tkj), as watermarked or not by checking if the following
statement holds: (fi − fj) mod sij ≤ t.
(4) After finding which pairs are watermarked, it checks
whether their number is over the minimum number of pairs,
k, needed to conclude that D′

w is watermarked by the owner,
and returns accept (verified) or reject, accordingly.

4) Probabilistic Analysis of False Positives: In this section,
we develop a statistical bound in the form of the closed
form expression derived from Markov’s inequality theorem, to
demonstrate that the false positive probability (i.e., accepting
a dataset as watermarked when it is not) goes to zero if
we increase the minimum number of pairs k that has to be
accepted, or if we decrease the threshold t to accept a pair as
watermarked.

Recall that the m-th token pair {tki, tkj} ∈ Lwm is
accepted as watermarked, if (fi − fj) mod sij ≤ t. We
represent the probability that this “watermarking statement”
holds as P (Xm = 1) = pm, for m = 1, ..., n. The value
of pm depends on t. The logic is that if t is zero, the false
negatives will increase. Let us assume that pm’s follow a
Uniform[0,1] distribution. The probability of having at

least k successes in n trials can be written as P (Sn ≥ k) =∑n
i=k P (Sn = m). We now study the behavior of P (Sn ≥ k)

depending on the behavior of t and k by using the Sandwich
Rule and Markov’s upper bound obtained by its inequality
theorem P (Sn ≥ k) ≤ µ

k , where µ =
∑n

m=1 pm is the mean
of Sn. Our analysis shows that if we decrease t, the probability
of accepting a dataset as watermarked will decrease to zero
and if we increase k, it will be hard to “accept” a dataset as
watermarked. For further details, see the full version [61].

Algorithm II: Watermark Detection

Input: D′
w, Lsc = {Lwm, R, z}, k, t

Output: accept/reject
Dhist

w = Preprocess(D′
w) count = 0, result = reject

foreach {tki, tkj} ∈ Lwm do
if Found(tki, tkj , Dhist

w) then
sij = H(tki||H(R||tkj)) mod z
if (fi − fj) mod sij ≤ t then

count++
end

end
end
if count ≥ k then

result = accept
end
Result: result

IV. EXPERIMENTAL EVALUATION

All of our experimental results are produced on a standard
laptop machine with dual-core Intel Core(TM) i7 − 5600U
CPU 2.5GHz, 16.00 GB RAM, 64-bit OS, and implemented
in Python language. We deployed SHA256 as a hash function.

A. Synthetic Experiments

For our synthetic experiments, we generated synthetic
datasets using a power − law distribution [64] with different
skewness values α as [0.05, 0.2, 0.5, 0.7, 0.9, 1]. The sample
size is 1M and the number of tokens is 1K for each different
α value. When α is 0, it is a uniform distribution in which
there are no eligible tokens to watermark. When α is 1, the
original dataset Do is skewed with a very long tail with almost
equal values. In this setting, we evaluate how the parameters
(a modulo value z, a budget b, and skewness parameter α) are
affecting the number of chosen pairs for watermarking and
the performance of optimal, greedy, and random approached
in terms of number of chosen pairs.

Figure 2a shows the correlation between skewness of a
dataset α and the size of chosen pairs when budget b = 2
and modulo value z = 1031. When a dataset is almost
uniform (i.e., α = 0.05), the solutions can select very few
pairs since there are not many eligible items (i.e., the upper
and lower boundaries are not enough, in fact many of them
are 0). When α starts increasing, the differences between the
frequencies of tokens increase. Thus, the number of eligible
items increases which also affects the number of chosen pairs
under a given budget. However, at some point (i.e., α = 0.7),
the number of chosen pairs decreases due to the tail of
(histogram) frequencies becoming uniform. The same figure

7

(a) Effect of different skewness pa-
rameters (α) on chosen pairs by
Optimal, Greedy, and Random.

(b) Effect of different modulo val-
ues (z) on chosen pairs by Opti-
mal, Greedy, and Random.

(c) Chosen pairs by Greedy and
Random with respect to Optimal.

Fig. 2: Effects of parameters on the size of chosen pairs for watermarking.

Dataset Size Token Distinct Tokens |Le| Optimal Greedy Random Gen Detect
(sec) (sec)

Chicago Taxi [62] 9.68GB Taxi ID 6573 33308 805 770 773 182.51 0.609
eyeWnder [58] 247MB URL 11479 257 38 33 31 420.81 0.053

Adult [63] 4MB Age 73 72 21 20 17 0.03 0.001

TABLE II: Validation results on real world datasets. Dataset: Dataset used Size: The size of original dataset. Token: Definition of the
token (e.g., the name(s) of the attributes). Distinct Token: The number of distinct tokens. |Le|: The number of eligible pairs. Optimal: The
number of chosen pairs by the optimal matching. Greedy: The number of chosen pairs by the greedy matching. Random: The number of
chosen pairs by the random matching. Gen: Running time of watermark generation. Detect: Running time of watermark detection.

shows the superior performance of the optimal solution. The
gap between optimal and the heuristics is around 20% for most
α values while the two heuristics perform similar the one with
the other (0.02% in average).

Figure 2b illustrates how the modulo value z affects the
size of chosen pairs. When we pick smaller modulo value z,
we would have a higher number of chosen pairs. The reason
is that a smaller z leads to smaller remainders sij that need
to be eliminated, thereby yielding more selected pairs within
a given budget b. When z is very small (i.e., 10), the three
approaches are very close (also see Section V-A for the effect
of z in terms of security). However, when z increases, our
optimal approach selects many more pairs than greedy and
random. Figure 2c shows how the budget selection affects
the performance comparison between the heuristics and the
optimal. We set modulo value z = 1031 and use the dataset
with the skewness α = 0.7. When we increase the budget b,
the heuristics get closer to the optimal performance. This is
expected since even the optimal algorithm cannot select more
than all the eligible pairs and with a large budget even the
heuristics can approach that.

1) Limit of z: We stated that z is selected from Z+;
however, by analyzing the frequency histogram we can derive
the upper and lower boundaries. Since the minimum value
(lower bound) z can take is 2, we delve into investigation of
the upper bound of z. Note that since the token with the highest
frequency has the upper bound of infinity, there will be at least
one pair that could be used for watermarking. Assume a wa-
termarking pair candidate (tki, tkj). Their frequencies, fi and
fj , are changed such that (fw

i −fw
j) mod sij ≡ 0. To have an

upper bound for z, let us investigate which pair of tokens re-
sults in the highest difference. If we can determine the highest

difference, say rmax, then rmax can be assumed as the upper
bound for z since it is the highest remainder. Now, considering
Dhist

o , the highest difference is between tk0 (the token having
the highest frequency) and tk|Dhist

o |−1 (the token having the
lowest frequency). That means that the largest remainder for
any pair is rmax = (f0

0 − f0
|Dhist

o |−1). Thus it is natural to
accept that the upper bound of z is rmax. To conclude, z can
be chosen from (2, rmax). Overall, rmax can be calculated
as ∀fi, fj ∈ Dhist

o s.t. fi ≥ fj ; rmax = max({fi − fj}).
Hence, the upper bound for z is calculated. However, note
that this value can be small and can be an advantage to an
attacker. As discussed in Section IV-A, z affects the number of
chosen pairs; thus, it correlates with the mix of possible attacks
and is use-case scenario dependent. We plan to investigate
this observation theoretically and experimentally in terms of
security, robustness, and utility in the future.

2) Limit of t: Another critical parameter is t ∈ [0, sij − 1].
Note that since sij has an upper bound as z − 1, the highest
value assigned to t is z − 1. While in our experimental study
we chose t as a constant value, t could be also a percentage.
Assume that an owner wishes to state that it wants 50% of
error tolerance. Now, setting t = sij × 0.5 states that a pair,
say tki and tkj , will be accepted as a watermarked if (fi −
fj) mod sij ≤ sij/2. Thus, t represents the robustness level
an owner desires. For instance, if t = 0 then the watermark
becomes fragile since it cannot tolerate any changes in Dw,
thus missing watermarked pairs (i.e., high false negatives). On
the other hand, when t = 100, it is more robust and can
tolerate modifications in Dw; however, it also means that it
accepts more false positives (see also Section III-B4).

8

B. Validation Using Real World Datasets

Next we apply FreqyWM to three real world datasets from
different domains: (1) Chicago Taxi dataset [62]; (2) A
real click-stream dataset logging the URLs visited by a group
of users of the eyeWnder advertisement detection add-on
[58]; (3) Adult dataset [63]. Our intention is to validate our
main conclusion using real data from the previous evaluation
with synthetic data, i.e., that the heuristic approaches perform
well enough compared to the optimal. A second evaluation
objective is to report the real processing time on an ordinary
machine for generating and detecting the watermark using
these real datasets.

For our watermark generation, we set the modulo value
z = 131 and the budget b = 2. We run our algorithm
30 times and take the mean of total computations. Table
II presents our validation results. Taxi ID, URL, and Age
were chosen as tokens for Chicago Taxi, eyeWnder, and
Adult, respectively. After generation, for Chicago Taxi,
eyeWnder, and Adult datasets, our optimal solution chose
805, 38, and 21 pairs, respectively. Considering the heuristic
approaches, greedy chose 770 pairs for Chicago Taxi, 33
pairs for eyeWnder, and 20 pairs Adult while random chose
773, 31, and 17 pairs, for Chicago Taxi, eyeWnder, and
Adult, respectively. Running times of computations for wa-
termark generation on the Chicago Taxi, eyeWnder, and
Adult datasets were 182.51 secs, 420.81 secs, and 0.03 secs,
respectively (where we exclude histogram and watermarked
data generations). For watermark detection, the total detection
time for each watermarked datasets was less than 1 sec. As it
can be interpreted from Table II, the number of chosen pairs
increases when the number of eligible pairs increases. For
instance, while eyeWnder has more distinct tokens (11479)
than Chicago Taxi has (6573), eyeWnder has fewer
eligible pairs (257) than Chicago Taxi has (33308). Thus,
FreqyWM has selected more pairs for Chicago Taxi (805)
than it selected for eyeWnder (38).

C. Watermarking Multi-Dimensional Data

During our discussion so far, we set the token as a single
attribute. However, as we previously stated, a token does not
necessarily need to be restricted to a single attribute of a multi-
dimensional dataset. Therefore, a token can be also defined
as combination of more than one attributes (e.g., [Age,
WorkClass]) in the Adult dataset. We ran FreqyWM
on such token represented as [Age, WorkClass] with
the same parameter setting in Section IV-B and the number
of tokens (i.e., distinct [Age, WorkClass] attributes in
the real dataset) were 481. The size of pairs chosen for
watermarking was 20. With multi-dimensional data removing a
token appearance is as simple as with single-dimensional data.
Increasing, however, a token’s frequency is more involved. The
reason is that just repeating the value of the token would leave
other fields not being part of the token with a value to be set,
e.g., all the other fields beyond Age and WorkClass in the
Adult dataset. A naive solution would be select a random
appearance of the token and copy its other fields every time

that an additional instance of the token needs to be added to
the watermarked dataset. This, however, could create semantic
inconsistencies if there are constraints to be respected for
individual attributes or combinations of them. Making sure
that added appearances of a token do not lead to semantic
inconsistencies that, in addition to degrading the quality of
the data, could also give away the existence of a watermarked
pair to an attacker. This analysis requires domain knowledge
about what each dataset represents. Such knowledge, however,
is orthogonal to all previous steps of our algorithms and,
thus, can be appended as a last step based on one’s domain
knowledge of the data whenever a token’s frequency needs
to be increased. We are currently investigating them and the
effect of FreqyWM on data utility of such dataset with unique
attributes as it is difficult to determine as addressed by [23].

D. Comparison to Related Works

As stated previously, we cannot directly apply (numerical)
database watermarking to datasets similar to the ones we
used for validation. However, one naive approach would be
to convert a dataset to a numerical representation (e.g., a
histogram) and watermark this numerical representation. In a
nutshell, the histogram of a given dataset based on a predefined
token is generated and then, the histogram is treated as a
two dimensional database consisting of primary keys which
are the tokens and an attribute consisting of integer values
which are the frequencies. Later, a database watermarking is
employed on this histogram. Then as in FreqyWM data trans-
formation (e.g., removing/adding tokens) occurs according to
the (new) watermarked histogram computed by the database
watermarking. However, applying a numerical database wa-
termarking is not really straightforward since it will distort
the underlying dataset unexpectedly as a result of change
in histogram data (e.g., cosine similarity) and would require
modification in their watermarking techniques (e.g., how to
create a watermarked dataset from the watermarked numerical
representation). However, since this is the closest and simplest
approach, we compare against it.

To actualize the above approach, we considered two numer-
ical database watermarkings: 1) Shehab et al. [35] (referred
as WM-OBT) due to partitioning approach (i.e., grouping
tokens before watermarking) similar to FreqyWM; 2) Li et
al. [30] (referred as WM-RVS) due to being one of the most
recent reversible watermarking schemes introducing very small
distortion compared to other same family of watermarkings.

More specifically, WM-OBT follows a data partition ap-
proach in which a watermark, defined as a bit sequence,
is inserted on a group of partitions. Each data partition is
filled by tokens and the frequencies of the tokens in each
partition are modified/distorted by solving a minimization (if
a watermark bit is 0) or maximization (if a watermark bit is 1)
problem via a genetic algorithm [65], in which the objective
function is in the form of a sum of sigmoid functions. WM-
RVS treats each numeric value individually and changes its
decimal part by selecting the random least significant position
based on the watermarking key/bit and attributes. Furthermore,

9

to apply WM-OBT and WM-RVS on a histogram generated
from a dataset, we had to adjust them such that their solutions
produced are integers since a frequency count cannot be a
decimal value.

Fig. 3: Comparisons of the watermarked histograms generated from
WM-OBT (purple color) and WM-RVS (fuchsia color) w.r.t. the
original data histogram (black color) for the synthetic dataset with
dummy token names.

For comparison, we investigate them based on two con-
straints: 1) change in the original histogram after watermarking
(i.e., cosine similarity with watermarked histogram), and 2) the
ranking of the tokens after watermarking.

We ran FreqyWM, WM-OBT, and WM-RVS on our syn-
thetic data with skewness parameter 0.5 (with 1K distinct
tokens and 1M sample size) where we set b = 2, and
z = 131 for FreqyWM. We set parameters for WM-OBT
and WM-RVS such that the parameters are proportional to the
experimental settings of Shehab et al. [35] and Li et al. [30].
For WM-OBT, we use genetic algorithm (GA) technique for
optimization [65] where we fix the number of partitions as
20 (where each partition has around 50 tokens), watermark bit
sequence as [1, 1, 0, 1, 0], condition as 0.75, and we allow the
change (constraint) between [−0.5, 10]. The decoding thresh-
old minimizing the probability of decoding error is calculated
as 0.0966. For WM-RVS, we use the same bit sequence as
in WM-OBT without creating it from the chaotic encryption.
Also, let us note that WM-OBT took more than 30 minutes to
run for such a small size dataset due to its optimization while
WM-RVS was in the order of seconds. Figure 3 visualizes
how the watermarked data histograms look like with respect
to the original data histogram after applying WM-OBT and
WM-RVS based on the experiments.
Similarity. In FreqyWM, even with 2% budget, the similarity
between the original histogram and the watermarked histogram
is 99.9998%, indicating that not all the budget was exhausted.
On the other hand, for WM-OBT and WM-RVS, the similari-
ties are 54.28% and 96%, respectively. The mean and standard
deviation of the changes introduced to the histogram by WM-
OBT are 444 and 855.91, respectively while they are −69.43
and 414.10 for WM-RVS, respectively.
Ranking. Another important evaluation is to compare the
ranking of the tokens in the histograms under WM-OBT and
FreqyWM. FreqyWM by definition maintains the ranking of
tokens. Preserving the ranking allows us not to sacrifice the
utility of a dataset, e.g., preserving the popularity of URLs.

However, after our analysis, we observed that WM-OBT and
WM-RVS changed the ranking of 998 and 987 out of the total
1000 tokens, respectively!

The results on similarity and ranking support our claim that
applying a numerical database technique on histogram data
would result in unexpected and uncontrolled distortion that
seriously undermines the utility of the original data.

V. SECURITY AND ROBUSTNESS ANALYSIS

This section discusses the security and robustness of our
FreqyWM method against four attacks: guess, sampling,
destroy, and re-watermarking (false-claim) attacks which
are well-known attacks in watermarking as studied by [23].In
order to measure the robustness against sampling and destroy
attacks, we run our optimal solution on a dataset where the
skewness parameter α = 0.5 (with 1K distinct tokens and
1M sample size), unless stated otherwise, the modulo value
z = 131, and the budget b = 2 and it selected 139 pairs for
watermark. We run the experiments for 100 times and compute
the average accepted pairs over all repetitions.

A. Guess (Brute-Force) Attack

In the guess attack, the probabilistic polynomial time ad-
versary tries to guess the watermark, i.e., the secret embedded
in the data. This is possible only if it can figure out a subset
of token pairs {tki, tkj}l (where

(|Dhist
w |
2

)
≥ l ≥ k) based on

the watermarked data Dw, the random value R, and the mod-
ulo value z where the watermark detection algorithm based
on these inputs (for some fixed k and t) returns accept.
Assuming that the hash function is collision resistant, R is
random, and z is an integer, the probability of the attacker
being successful can be formally defined as:

Pr[R← {0, 1}λ; (Dw, Lsc = {{tki, tkj}|Lwm|, R, z})
←WmGenerate(Do, b) : A(Dw)→ L′

sc = {{tki, tkj}l, R∗, z∗}|
WmDetect(Dw, L′

sc, k, t) = 1] ≤ negl(λ)

Considering the typical parameter values, the probability of
success becomes negligible.
B. Sampling Attack

In this attack, A copies a random subsample from the
watermarked dataset Dw in an attempt to exploit (pirate/steal)
it while hoping that the watermark won’t be detectable within
the extracted sample. The attack is run for different sample
sizes from 1% to 90%, extracted from the original water-
marked dataset Dw. For each percentage and subsample we
apply the detection algorithm and compute the percentage of
accepted pairs. Also, for each subsample detection experiment,
we deploy different values of the threshold t for accepting
a pair as watermarked as t = {0, 1, 2, 4, 10}. The attack
scenario is as follows: A randomly selects x% of Dw where
x defines the percentage for the sampling attack (e.g., 1) as
a subsample size of 1M × x

100 . When the owner suspects the
dataset (possible subsampled), it scales it up to the size of
Dw by multiplying the frequency counts by 100

x by using its
info from the (original) watermarked dataset (e.g., via info

10

added to its metadata). For instance, for 1% sampling attack,
a subsample would have total of 1M×0.01 = 10K where each
fi is multiplied by approximately 0.01. Note that if the sample
size is greater than the number of distinct tokens, which is the
number of items in Dhist

w , the sample will have all the distinct
tokens with a high chance. This also means that all the chosen
watermarked pairs are in the subsample. Our results show that
the size of the extracted subsample does not greatly affect
the number of accepted pairs if it is greater than the number
of unique tokens (1K). Since the frequencies of the tokens
vary, the value of t does affect the result of the detection. For
example, with t = 0 the detection algorithm can detect around
36% (in average) of the watermarked pairs. When t increases
from 1 to 10, the performance of the detection increases (in
average) from 72% to 99.5%.

Let us now see the results when the size of the extracted
subsample is very low, so that it might not contain at least
1 token from the total 1K of unique tokens that the original
watermarked dataset has. Figure 4 shows the results for sample
size proportions between 0.0007% and 0.5%. Observe that if
the sample size is greater than 5× the number of unique tokens
(1K), the detection algorithm stabilizes its performance for
detecting the watermark. Below 2× (2K), the performance
starts to decrease with higher velocity. In these extreme cases,
the detection algorithm will have more difficulties to detect the
data as watermarked. However, the utility of the data is highly
degraded since the subsample sizes are very small compared
to the original size of 1M tokens. This causes a small number
of distinct tokens to be found in the subsample.
Effect of modulo bases. As seen previously, t is crucial for
detecting whether a pair is watermarked. For small values of
t to be sufficient to fend off sampling attacks, the remainders
need to be small numbers that are covered by t. One way
to achieve this is by ensuring that the modulo bases used
(i.e., the sij’s) are relatively small numbers when compared
to the actual appearance frequencies of watermarked pairs.
When this does not apply, the method will of course fail. For
instance, assume a watermarked pair involving frequencies
fi = 540, fj = 440 which under base sij = 100 leave a
remainder of 0. W.l.o.g, lets assume that a 50% frequency
attack leads to a dataset with fi = 270, fj = 220 which leads
to a remainder of (270 − 220) mod 100 ≡ 50. Now if t is
chosen smaller than 50 then the watermarked pair will not be
detected. The reason is that mod 100 leaves large remainders
when applied to fi and fj that are in the same order with
100. In our experimental results fi’s were always much larger
numbers than the employed sij , thereby, even small t’s would
detect a pair under a sampling attack. To determine the optimal
t and how robust it is against attacks, a further investigation is
needed as it depends on various parameters such as z, sij as
well on the mix of expected attacks as discussed later. Note
that our experimental results show that sij values are ∼ 2 order
of magnitude smaller than z. Furthermore, we also tested the
sampling attack in other watermarked datasets with different
values of the skewness parameter and obtained similar results.

Fig. 4: Sampling attack results with very low sample size and α =

0.5.

C. Destroy Attack

In this case the attacker A tries to damage the watermark.
The no-security-by-obscurity principle [66] allows A to know
that it can destroy the watermark in a way that it cannot be
detected by the owner. A computes the histogram of water-
marked data Dw. A modifies the frequencies of tokens as it
pleases by allowing re-ordering (changing the popularity/rank
of the tokens) or without allowing re-ordering. We define these
two attacks and discuss FreqyWM’s robustness against them.

1) Destroy Attack without re-ordering: In this attack type,
A can modify the frequencies without changing the order of
frequencies. We introduce two types: (1) attacker changes the
frequencies randomly by the given boundaries and (2) attacker
changes the frequencies by (at most) some percentage.
Changing the frequencies randomly within the boundaries.
A calculates the boundaries for each token. Then, A chooses
a random value ri for each tki as ri ← (−li, ui). A changes
the frequency of tki and updates ui+1 of tki+1 by ri.
Changing the frequencies by (at most) some percentage.
A changes the frequencies of tokens up to some percentage
(e.g., 1%). To illustrate, A calculates the boundaries as ui and
li for each tki where it sets the percentage to 1%. It calculates
u′
i = floor(ui×0.01) and l′i = floor(li×0.01). Then it gets a

random value ri between (−l′i, u′
i). It hereby changes tki by at

most ±1%. After every change (f ′
i = fi+ri), the boundary of

the next element is updated. Thus, the attack never changes the
ranking/ordering since l′i and u′

i are already in the boundaries.
Figure 5 shows how robust FreqyWM is against these two

destroy attacks. We compare the success rate (the percentage
of accepted token pairs given threshold for accepting a pair t)
of detection algorithm with respect to modified watermarked
data after the attacks. We also include in the figure a sec-
ond dataset of skewness α = 0.7 that does not carry the
watermark, and report on how many of its pairs would be
falsely verified for different values of t. For an attack in which
the frequencies are changed by (at most) some percentage
(represented by the red line in the figure), FreqyWM can detect
around 90% of the pairs when t = 0. When t is increased,
after a point where t ≥ fi − fj mod sij , the success rate
converges at around 90%. For an attack where the frequencies
are changed randomly within the upper and lower frequency
boundaries (green line in Figure 5), FreqyWM can detect more
than 35% of the pairs when t = 0. Note that the latter is more
powerful than the former attack. There is a direct proportion

11

Fig. 5: Percentage of verified pairs for the following datasets:
(1) Dw : the original watermarked dataset α = 0.5 without any
attack/modification, (2) Dnon : a non-watermarked dataset defined
over the same token space but with α = 0.7, (3) Dr

w : Dw after
attacked by random attack without reordering, (4) D1

w : Dw after
attacked by changing frequencies at most 1%.

between t and the success rate. As shown, the success rate
reaches to 90% when t goes to 10.

From Figure 5, we can interpret in what parameter setting
false negative (rejecting a watermarked pair) and false pos-
itive (accepting a pair as watermarked while it is not) can
be avoided. Thus, the watermarking detection algorithm can
successfully detect a watermarked dataset attacked and reject
a dataset that was not watermarked. For instance, the rate of
false positive increases when the threshold for accepting a pair
t increases while the minimum number of accepted pairs for
detection k decreases which is the area under the results of the
dataset (not watermarked) with a different skewness parameter
(the area under the orange line). On the other hand, the rate
of false negative increases when the threshold accepting a
pair t decreases while threshold for detecting a watermark
k increases which is the area above the results of the attack
without re-ordering (the area above the green line) if we con-
sider a very strong attack. To avoid false negatives/positives,
convenient parameter settings (i.e., t and k) for detecting a
watermark lie between these two areas (between the orange
and the green lines in Figure 5). However, if a weaker attack
(changing the frequencies by some percentage) is considered,
the range of these parameters increases (the area between the
red and orange line). Hence, the detection algorithm can detect
a watermarked dataset and reject a dataset not watermarked
by the owner with a careful parameter setting. For instance,
adjusting t (and k) based on the nature of the data and the
specific application context can enable us to reduce the false
positives/negatives. This is an interesting future work.

2) Destroy Attack with re-ordering: In this attack type,
an attacker A can modify the frequencies as it pleases
without observing any ordering restrictions. Note that this
attack introduces more noise than the attack without re-
ordering which reduces the usability of watermarked data
Dw. A modifies the frequencies with various percentages
[10%, 30%, 50%, 60%, 80%, 90%] where the success rates are
[94%, 88%, 82%, 79%, 78%, 76%] respectively. FreqyWM can
detect the watermark with 76% chance up to modifications of
90% in frequencies approximately (where t = 4).

D. Re-watermarking/ False-Claim Attack

This attack is mounted by an attacker A creating a new
watermark on the watermarked data Dw, generated by an
honest owner.A generates its own watermarked data by simply
inserting Dw into the watermark generation algorithm as data
to produce DA

w . Then A can present DA
w and claim the

ownership of DA
w (since A can prove its ownership claim

by introducing its watermarking secret list LA
sc). This attack

creates a dispute since both the real owner, who created Dw,
and A have proofs of their ownerships. The dispute can be
arbitrated by introducing a judge (a trusted third party as
suggested by [67]) to the watermarking scheme. Both parties,
A and the real owner, introduce their secrets and their water-
marked data. A sends its secrets LA

sc and its watermarked data
DA

w . The real owner sends its secrets Lsc and its watermarked
data Dw. The judge computes watermark detection algorithm
on each received data for each secret which creates four
outputs. The judge compares these results and identifies the
real owner since only the secret of the real owner can produce
accept on both data. To show practicality of our defense
against the re-watermarking attack, we implemented the attack
above. Our results show that the first watermark is detected
with 92% on DA

w under t = 0. The attacker’s only way to
succeed is to perform successful guess or destroy attack which
it cannot perform as shown previously.

VI. DISCUSSION

We propose possible adjustments to FreqyWM for more
sophisticated properties and discuss some corner cases below:
• Incremental FreqyWM. In the literature, there exist water-
marking techniques that allow to update a watermark on a
dataset without computing insertion from scratch [57]. We
believe that an incremental FreqyWM can be built on top of
dynamic maximum weighted matching [68, 69] works but we
leave such investigations to future work.
• Multi-watermarks. There are at least two reasons that
someone may want to watermark a file multiple times: 1)
a legitimate one, e.g., to track the provenance of dataset as
it passes from a distributed pipeline, in which a watermark
can be added to signify the completion of each one of the
processing stages, or to have a chronological order in the
versions; 2) a malicious one, to falsely claim ownership via a
re-watermarking attack as already discussed in Section V-D.

Non-withstanding the motivation, we have run an experi-
ment by running 10 watermark insertions assuming a budget
b = 2 for each iteration on a sample dataset with skewness
α = 0.5. to calculate three effects: 1) the discrepancy between
the original asset and a final one; 2) dataset feature analysis;
and 3) the effect of successive watermarking on machine
learning model accuracy.

Discrepancy. The resulting similarity between the original
(histogram) and the latest watermarked version is 0.003%. As
it is evident, FreqyWM did not introduce 20% but rather very
tiny distortion.

Feature. We analyze the change of various features of the
eyeWnder dataset that commonly deployed after the water-

12

Fig. 6: Analysis of the effect of multi-watermarks (i.e., 10 watermarks) on the trend analysis of eyeWnder.

Fig. 7: Analysis of the effect of multi-watermarks (i.e., 10 watermarks) on the seasonality analysis of eyeWnder.

Fig. 8: Analysis of the effect of multi-watermarks (i.e., 10 watermarks) on the residual analysis of eyeWnder.

Fig. 9: Analysis of the effect of multi-watermarks (i.e., 10 watermarks) on the browser history analysis of eyeWnder.

marking. Figure 9 shows the change in the browser history
while Figures 6, 7, and 8 show the effect of watermarking
when the dataset is analyzed in terms of trends, seasonality,
and residuals, respectively. As shown by the figures, multi-
watermarks introduced very insignificant change to the dataset.

Accuracy. We also analyze the effect of multi-watermarks
on an ML model accuracy We use the eyeWnder dataset. We
implement a sequential data analysis approach using Tensor-
Flow to predict the next URL in a sequence, utilizing a dataset
of timestamped URLs. The model consists of an embedding
layer, LSTM layers, and a sigmoid output layer. We train the
model with 10 epochs and with 128 batch-size. The model
achieved an accuracy of 82.33% when trained on the original
eyeWnder dataset whilst achieving an accuracy of 82.34%
when it is watermarked. The model trained on the watermarked
dataset has slightly better accuracy. We suspect that this is due
to increase in the size of the dataset (i.e., the watermarked one

has 140 more URLs). While our initial results are promising,
we plan to extensively investigate the effect of FreqyWM on
data usability using different ML models for more concrete
reductions.
• Challenging datasets. Apart from datasets with close to
uniform frequencies, FreqyWM can also be challenged when
the range of token values is too wide, e.g., sales’ datasets
with many decimal values, resulting to very few (if any)
repetition of the same value. One natural solution to this is
to first bucketize (cluster) the widely ranged data and then
apply FreqyWM at the level of the bucket as opposed to the
exact token value.

VII. CONCLUSIONS AND FUTURE WORK

We proposed FreqyWM, a novel frequency watermarking
technique for protecting the ownership of data in the emerging
new data economy. We analysed the performance of FreqyWM

13

and showed how FreqyWM can encode watermarks with
minimal distortion on the original data, provided that the data
has sufficient variability in terms of token frequencies. We
analysed FreqyWM’s robustness to generic attacks. FreqyWM
is applicable to large numbers of tuples sold in wholesale
manner in modern DMs. An interesting, yet challenging,
research direction is to consider how to watermark small sets
or even individual tuples used in distributed data operations
such as replication and remote hosting and/or query execution.
We are currently looking at more attack scenarios and at
devising systematic procedures for optimizing the parameters
and also how to apply FreqyWM to multidimensional datasets
by overcoming the challenges mentioned in Section IV-C. We
also investigate integrating data privacy (e.g., differentially-
private fingerprinting [70]).

REFERENCES

[1] S. A. Azcoitia and N. Laoutaris, “A survey of data
marketplaces and their business models,” SIGMOD Rec.,
vol. 51, no. 3, pp. 18–29, 2022. [Online]. Available:
https://doi.org/10.1145/3572751.3572755

[2] A. Lutu, D. Perino, M. Bagnulo, E. Frias-Martinez,
and J. Khangosstar, “A characterization of the covid-19
pandemic impact on a mobile network operator traffic,”
in Proceedings of the ACM Internet Measurement
Conference, ser. IMC ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3419394.3423655

[3] D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic
introduction to secure multi-party computation,” Found.
Trends Priv. Secur., 2018. [Online]. Available: https:
//doi.org/10.1561/3300000019

[4] C. Gentry, “A fully homomorphic encryption scheme,”
Ph.D. dissertation, Stanford University, USA, 2009.
[Online]. Available: https://searchworks.stanford.edu/
view/8493082

[5] D. Boneh, A. Sahai, and B. Waters, “Functional
encryption: Definitions and challenges,” in Theory
of Cryptography Conference, TCC. Springer,
2011. [Online]. Available: https://doi.org/10.1007/
978-3-642-19571-6 16

[6] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted
execution environment: What it is, and what it is not,”
in TrustCom/BigDataSE/ISPA. IEEE, 2015. [Online].
Available: https://doi.org/10.1109/Trustcom.2015.357

[7] Y. Li, D. Ghosh, P. Gupta, S. Mehrotra, N. Panwar, and
S. Sharma, “PRISM: private verifiable set computation
over multi-owner outsourced databases,” in SIGMOD:
International Conference on Management of Data,
Virtual. ACM, 2021. [Online]. Available: https://doi.
org/10.1145/3448016.3452839

[8] R. Poddar, T. Boelter, and R. A. Popa, “Arx: An
encrypted database using semantically secure encryp-
tion,” Proc. VLDB Endow., 2019. [Online]. Available:
http://www.vldb.org/pvldb/vol12/p1664-poddar.pdf

[9] N. Anciaux, L. Bouganim, P. Pucheral, I. S. Popa,
and G. Scerri, “Personal database security and trusted
execution environments: A tutorial at the crossroads,”
Proc. VLDB Endow., 2019. [Online]. Available: http:
//www.vldb.org/pvldb/vol12/p1994-anciaux.pdf

[10] X. Ren, L. Su, Z. Gu, S. Wang, F. Li, Y. Xie, S. Bian,
C. Li, and F. Zhang, “HEDA: multi-attribute unbounded
aggregation over homomorphically encrypted database,”
Proc. VLDB Endow., 2022. [Online]. Available: https:
//www.vldb.org/pvldb/vol16/p601-gu.pdf

[11] W. Zhou, Y. Cai, Y. Peng, S. Wang, K. Ma, and
F. Li, “Veridb: An sgx-based verifiable database,” in
SIGMOD: International Conference on Management
of Data. ACM, 2021. [Online]. Available: https:
//doi.org/10.1145/3448016.3457308

[12] P. Jougleux, “Data ownership (and succession law),” in
Facebook and the (EU) Law: How the Social Network
Reshaped the Legal Framework. Springer, 2022, pp.
129–143.

[13] J. Kennedy, P. Subramaniam, S. Galhotra, and R. C.
Fernandez, “Revisiting online data markets in 2022:
A seller and buyer perspective,” SIGMOD Rec.,
vol. 51, no. 3, pp. 30–37, 2022. [Online]. Available:
https://doi.org/10.1145/3572751.3572757

[14] R. C. Fernandez, P. Subramaniam, and M. J. Franklin,
“Data market platforms: Trading data assets to solve
data problems,” Proc. VLDB Endow., vol. 13, no. 11,
pp. 1933–1947, 2020. [Online]. Available: http://www.
vldb.org/pvldb/vol13/p1933-fernandez.pdf

[15] F. Banterle, “Data ownership in the data economy: a
european dilemma,” EU Internet Law in the Digital
Era: Regulation and Enforcement, pp. 199–225, 2020.
[Online]. Available: https://papers.ssrn.com/sol3/papers.
cfm?abstract id=3277330

[16] M. Asikuzzaman and M. R. Pickering, “An overview
of digital video watermarking,” IEEE Trans. Circuits
Syst. Video Technol., 2018. [Online]. Available: https:
//doi.org/10.1109/TCSVT.2017.2712162

[17] M. Begum and M. S. Uddin, “Digital image
watermarking techniques: A review,” Inf., 2020. [Online].
Available: https://doi.org/10.3390/info11020110

[18] H. Ma, C. Jia, S. Li, W. Zheng, and D. Wu,
“Xmark: Dynamic software watermarking using collatz
conjecture,” IEEE Trans. Inf. Forensics Secur., 2019.
[Online]. Available: https://doi.org/10.1109/TIFS.2019.
2908071

[19] X. Zhou, H. Pang, K. Tan, and D. Mangla, “Wmxml: A
system for watermarking XML data,” in International
Conference on Very Large Data Bases (VLDB). ACM,
2005. [Online]. Available: http://www.vldb.org/conf/
2005/papers/p1318-zhou.pdf

[20] R. Agrawal and J. Kiernan, “Watermarking relational
databases,” in Proceedings ofInternational Conference
on Very Large Data Bases, VLDB, 2002. [Online].
Available: http://www.vldb.org/conf/2002/S05P03.pdf

[21] R. Agrawal, P. J. Haas, and J. Kiernan, “A system for

14

https://doi.org/10.1145/3572751.3572755
https://doi.org/10.1145/3419394.3423655
https://doi.org/10.1561/3300000019
https://doi.org/10.1561/3300000019
https://searchworks.stanford.edu/view/8493082
https://searchworks.stanford.edu/view/8493082
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1145/3448016.3452839
https://doi.org/10.1145/3448016.3452839
http://www.vldb.org/pvldb/vol12/p1664-poddar.pdf
http://www.vldb.org/pvldb/vol12/p1994-anciaux.pdf
http://www.vldb.org/pvldb/vol12/p1994-anciaux.pdf
https://www.vldb.org/pvldb/vol16/p601-gu.pdf
https://www.vldb.org/pvldb/vol16/p601-gu.pdf
https://doi.org/10.1145/3448016.3457308
https://doi.org/10.1145/3448016.3457308
https://doi.org/10.1145/3572751.3572757
http://www.vldb.org/pvldb/vol13/p1933-fernandez.pdf
http://www.vldb.org/pvldb/vol13/p1933-fernandez.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3277330
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3277330
https://doi.org/10.1109/TCSVT.2017.2712162
https://doi.org/10.1109/TCSVT.2017.2712162
https://doi.org/10.3390/info11020110
https://doi.org/10.1109/TIFS.2019.2908071
https://doi.org/10.1109/TIFS.2019.2908071
http://www.vldb.org/conf/2005/papers/p1318-zhou.pdf
http://www.vldb.org/conf/2005/papers/p1318-zhou.pdf
http://www.vldb.org/conf/2002/S05P03.pdf

watermarking relational databases,” in ACM SIGMOD
International Conference, 2003. [Online]. Available:
https://doi.org/10.1145/872757.872865

[22] T. Wang and F. Kerschbaum, “RIGA: covert and robust
white-box watermarking of deep neural networks,” in
WWW: The Web Conference, 2021. [Online]. Available:
https://doi.org/10.1145/3442381.3450000

[23] S. Rani and R. Halder, “Comparative analysis
of relational database watermarking techniques:
An empirical study,” IEEE Access, vol. 10,
pp. 27 970–27 989, 2022. [Online]. Available:
https://doi.org/10.1109/ACCESS.2022.3157866

[24] N. Agarwal, A. K. Singh, and P. K. Singh, “Survey of
robust and imperceptible watermarking,” Multim. Tools
Appl., 2019. [Online]. Available: https://doi.org/10.1007/
s11042-018-7128-5

[25] R. Agrawal, P. J. Haas, and J. Kiernan, “Watermarking
relational data: framework, algorithms and analysis,”
VLDB J., 2003. [Online]. Available: https://doi.org/10.
1007/s00778-003-0097-x

[26] T. Ji, E. Yilmaz, E. Ayday, and P. Li, “The
curse of correlations for robust fingerprinting of
relational databases,” in RAID : International Symposium
on Research in Attacks, Intrusions and Defenses.
ACM, 2021. [Online]. Available: https://doi.org/10.1145/
3471621.3471853

[27] E. Quiring, D. Arp, and K. Rieck, “Forgotten siblings:
Unifying attacks on machine learning and digital
watermarking,” in IEEE European Symposium on
Security and Privacy, EuroS&P. IEEE, 2018. [Online].
Available: https://doi.org/10.1109/EuroSP.2018.00041

[28] A. Cohen, J. Holmgren, R. Nishimaki, V. Vaikun-
tanathan, and D. Wichs, “Watermarking cryptographic
capabilities,” SIAM J. Comput., 2018. [Online].
Available: https://doi.org/10.1137/18M1164834

[29] X. Tang, Z. Cao, X. Dong, and J. Shen,
“Pkmark: A robust zero-distortion blind reversible
scheme for watermarking relational databases,”
in IEEE International Conference on Big Data
Science and Engineering, 2021. [Online]. Available:
https://doi.org/10.1109/BigDataSE53435.2021.00020

[30] W. Li, N. Li, J. Yan, Z. Zhang, P. Yu, and G. Long,
“Secure and high-quality watermarking algorithms for re-
lational database based on semantic,” IEEE Transactions
on Knowledge and Data Engineering, pp. 1–14, 2022.

[31] M. L. P. Gort, M. Olliaro, A. Cortesi, and C. F.
Uribe, “Semantic-driven watermarking of relational
textual databases,” Expert Syst. Appl., 2021. [Online].
Available: https://doi.org/10.1016/j.eswa.2020.114013

[32] C. Lin, T. Nguyen, and C. Chang, “LRW-CRDB: lossless
robust watermarking scheme for categorical relational
databases,” Symmetry, 2021. [Online]. Available: https:
//doi.org/10.3390/sym13112191

[33] S. Kumar, B. K. Singh, and M. Yadav, “A recent
survey on multimedia and database watermarking,”
Multim. Tools Appl., vol. 79, no. 27-28, pp. 20 149–

20 197, 2020. [Online]. Available: https://doi.org/10.
1007/s11042-020-08881-y

[34] M. H. Jony, F. T. Johora, and J. F. Katha, “A robust
and efficient numeric approach for relational database
watermarking,” in IEEE International Conference on
Sustainable Technologies for Industry 4.0 (STI), 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/
9732582

[35] M. Shehab, E. Bertino, and A. Ghafoor, “Watermarking
relational databases using optimization-based tech-
niques,” IEEE Trans. Knowl. Data Eng., 2008. [Online].
Available: https://doi.org/10.1109/TKDE.2007.190668

[36] D. Ibosiola, B. A. Steer, Á. Garcı́a-Recuero,
G. Stringhini, S. Uhlig, and G. Tyson, “Movie pirates of
the caribbean: Exploring illegal streaming cyberlockers,”
in Proceedings of the Twelfth International Conference
on Web and Social Media, ICWSM. AAAI Press,
2018. [Online]. Available: https://aaai.org/ocs/index.php/
ICWSM/ICWSM18/paper/view/17835

[37] W. Zhou, J. Hu, and S. Wang, “Enhanced locality-
sensitive hashing for fingerprint forensics over large
multi-sensor databases,” IEEE Trans. Big Data, 2021.
[Online]. Available: https://doi.org/10.1109/TBDATA.
2017.2736547

[38] Y. Lei, Q. Huang, M. S. Kankanhalli, and A. K. H.
Tung, “Locality-sensitive hashing scheme based on
longest circular co-substring,” in Proceedings of the
2020 International Conference on Management of
Data, SIGMOD. ACM, 2020. [Online]. Available:
https://doi.org/10.1145/3318464.3389778

[39] D. Chang, M. Ghosh, S. K. Sanadhya, M. Singh, and
D. R. White, “Fbhash: A new similarity hashing scheme
for digital forensics,” Digit. Investig., 2019. [Online].
Available: https://doi.org/10.1016/j.diin.2019.04.006

[40] C. N. K. Osiakwan and S. G. Akl, “The maximum weight
perfect matching problem for complete weighted graphs
is in pc*,” Parallel Algorithms Appl., 1995. [Online].
Available: https://doi.org/10.1080/10637199508915506

[41] Z. Galil, “Efficient algorithms for finding maximum
matching in graphs,” in ACM CSUR, 1986.

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms. MIT press, 2009.

[43] E. Ayday, E. Yilmaz, and A. Yilmaz, “Robust
optimization-based watermarking scheme for sequential
data,” in International Symposium on Research in
Attacks, Intrusions and Defenses, RAID, 2019. [Online].
Available: https://www.usenix.org/conference/raid2019/
presentation/ayday

[44] T. Ji, E. Ayday, E. Yilmaz, and P. Li, “Robust
fingerprinting of genomic databases,” CoRR, vol.
abs/2204.01801, 2022. [Online]. Available: https://doi.
org/10.48550/arXiv.2204.01801

[45] M. Kamran and M. Farooq, “A comprehensive survey
of watermarking relational databases research,” in arXiv
preprint arXiv:1801.08271, 2018.

[46] A. S. Panah, R. G. van Schyndel, T. K. Sellis,

15

https://doi.org/10.1145/872757.872865
https://doi.org/10.1145/3442381.3450000
https://doi.org/10.1109/ACCESS.2022.3157866
https://doi.org/10.1007/s11042-018-7128-5
https://doi.org/10.1007/s11042-018-7128-5
https://doi.org/10.1007/s00778-003-0097-x
https://doi.org/10.1007/s00778-003-0097-x
https://doi.org/10.1145/3471621.3471853
https://doi.org/10.1145/3471621.3471853
https://doi.org/10.1109/EuroSP.2018.00041
https://doi.org/10.1137/18M1164834
https://doi.org/10.1109/BigDataSE53435.2021.00020
https://doi.org/10.1016/j.eswa.2020.114013
https://doi.org/10.3390/sym13112191
https://doi.org/10.3390/sym13112191
https://doi.org/10.1007/s11042-020-08881-y
https://doi.org/10.1007/s11042-020-08881-y
https://ieeexplore.ieee.org/document/9732582
https://ieeexplore.ieee.org/document/9732582
https://doi.org/10.1109/TKDE.2007.190668
https://aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17835
https://aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17835
https://doi.org/10.1109/TBDATA.2017.2736547
https://doi.org/10.1109/TBDATA.2017.2736547
https://doi.org/10.1145/3318464.3389778
https://doi.org/10.1016/j.diin.2019.04.006
https://doi.org/10.1080/10637199508915506
https://www.usenix.org/conference/raid2019/presentation/ayday
https://www.usenix.org/conference/raid2019/presentation/ayday
https://doi.org/10.48550/arXiv.2204.01801
https://doi.org/10.48550/arXiv.2204.01801

and E. Bertino, “On the properties of non-media
digital watermarking: A review of state of the art
techniques,” IEEE Access, 2016. [Online]. Available:
https://doi.org/10.1109/ACCESS.2016.2570812

[47] M. E. Farfoura, S. Horng, J. Lai, R. Run, R. Chen,
and M. K. Khan, “A blind reversible method for
watermarking relational databases based on a time-
stamping protocol,” Expert Syst. Appl., 2012. [Online].
Available: https://doi.org/10.1016/j.eswa.2011.09.005

[48] Y. Li and R. H. Deng, “Publicly verifiable ownership
protection for relational databases,” in Proceedings of th
ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS. ACM, 2006. [Online].
Available: https://doi.org/10.1145/1128817.1128832

[49] D. Hu, D. Zhao, and S. Zheng, “A new robust approach
for reversible database watermarking with distortion
control,” IEEE Trans. Knowl. Data Eng., 2019. [Online].
Available: https://doi.org/10.1109/TKDE.2018.2851517

[50] H. M. El-Bakry and M. Hamada, “A novel watermark
technique for relational databases,” in Artificial Intel-
ligence and Computational Intelligence - International
Conference, AICI 2010, Sanya, China, October 23-24,
2010, Proceedings, Part II, ser. Lecture Notes in
Computer Science. Springer, 2010. [Online]. Available:
https://doi.org/10.1007/978-3-642-16527-6 29

[51] S. M. Darwish, H. A. Selim, and M. M. El-
Sherbiny, “Distortion free database watermarking system
based on intelligent mechanism for content integrity
and ownership control,” J. Comput., 2018. [Online].
Available: https://doi.org/10.17706/jcp.13.9.1053-1066

[52] Y. Zhang, B. Yang, and X.-M. Niu, “Reversible water-
marking for relational database authentication,” 2008.

[53] W. Wang, C. Liu, Z. Wang, and T. Liang, “FBIPT: A
new robust reversible database watermarking technique
based on position tuples,” in International Conference
on Data Intelligence and Security, ICDIS. IEEE, 2022,
pp. 67–74. [Online]. Available: https://doi.org/10.1109/
ICDIS55630.2022.00018

[54] G. Gupta and J. Pieprzyk, “Reversible and blind
database watermarking using difference expansion,” Int.
J. Digit. Crime Forensics, 2009. [Online]. Available:
https://doi.org/10.4018/jdcf.2009040104

[55] K. Jawad and A. Khan, “Genetic algorithm and
difference expansion based reversible watermarking for
relational databases,” J. Syst. Softw., 2013. [Online].
Available: https://doi.org/10.1016/j.jss.2013.06.023

[56] M. B. Imamoglu, M. Ulutas, and G. Ulutas, “A
new reversible database watermarking approach with
firefly optimization algorithm,” Mathematical Problems
in Engineering, 2017. [Online]. Available: https://doi.
org/10.1155/2017/1387375

[57] C. Chang, T. Nguyen, and C. Lin, “A reversible database
watermark scheme for textual and numerical datasets,”
in IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, SNPD. IEEE, 2021.

[Online]. Available: https://doi.org/10.1109/SNPD51163.
2021.9704991

[58] C. Iordanou, N. Kourtellis, J. M. Carrascosa, C. Soriente,
R. Cuevas, and N. Laoutaris, “Beyond content analysis:
detecting targeted ads via distributed counting,” in
Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies,
CoNEXT. ACM, 2019. [Online]. Available: https:
//doi.org/10.1145/3359989.3365428

[59] G. Cormode, S. Maddock, and C. Maple, “Frequency
estimation under local differential privacy,” Proc. VLDB
Endow., 2021. [Online]. Available: http://www.vldb.org/
pvldb/vol14/p2046-cormode.pdf

[60] J. Katz and Y. Lindell, Introduction to Modern
Cryptography, Second Edition. CRC Press,
2014. [Online]. Available: https://www.crcpress.com/
Introduction-to-Modern-Cryptography-Second-Edition/
Katz-Lindell/p/book/9781466570269

[61] D. İşler, E. Cabana, A. Garcia-Recuero, G. Koutrika,
and N. Laoutaris, “Freqywm: Frequency watermarking
for the new data economy,” IMDEA Networks Technical
Report, Tech. Rep., 2022.

[62] “Chicago Data Portal,” 2022, https://data.cityofchicago.
org/Transportation/Taxi-Trips/wrvz-psew.

[63] “Adult Dataset,” 1996, https://archive.ics.uci.edu/ml/
datasets/Adult.

[64] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-
law distributions in empirical data,” SIAM Rev., 2009.
[Online]. Available: https://doi.org/10.1137/070710111

[65] D. Goldberg and K. Sastry, Genetic algorithms: the
design of innovation. Springer, 2007.

[66] A. Kerckhoffs, “A. kerckhoffs, la cryptographie militaire,
journal des sciences militaires ix, 38 (1883),” in Journal
des sciences militaires, 1883.

[67] A. Adelsbach, S. Katzenbeisser, and H. Veith,
“Watermarking schemes provably secure against copy
and ambiguity attacks,” in ACM workshop on
Digital rights management, 2003. [Online]. Available:
https://doi.org/10.1145/947380.947395

[68] S. Behnezhad, “Dynamic algorithms for maximum
matching size,” in ACM-SIAM Symposium on Discrete
Algorithms, SODA. SIAM, 2023. [Online]. Available:
https://doi.org/10.1137/1.9781611977554.ch6

[69] S. Solomon, “Fully dynamic maximal matching in
constant update time,” in IEEE Annual Symposium
on Foundations of Computer Science, FOCS. IEEE
Computer Society, 2016. [Online]. Available: https:
//doi.org/10.1109/FOCS.2016.43

[70] T. Ji, E. Ayday, E. Yilmaz, and P. Li, “Differentially-
private fingerprinting of relational databases,” CoRR,
vol. abs/2109.02768, 2021. [Online]. Available: https:
//arxiv.org/abs/2109.02768

16

https://doi.org/10.1109/ACCESS.2016.2570812
https://doi.org/10.1016/j.eswa.2011.09.005
https://doi.org/10.1145/1128817.1128832
https://doi.org/10.1109/TKDE.2018.2851517
https://doi.org/10.1007/978-3-642-16527-6_29
https://doi.org/10.17706/jcp.13.9.1053-1066
https://doi.org/10.1109/ICDIS55630.2022.00018
https://doi.org/10.1109/ICDIS55630.2022.00018
https://doi.org/10.4018/jdcf.2009040104
https://doi.org/10.1016/j.jss.2013.06.023
https://doi.org/10.1155/2017/1387375
https://doi.org/10.1155/2017/1387375
https://doi.org/10.1109/SNPD51163.2021.9704991
https://doi.org/10.1109/SNPD51163.2021.9704991
https://doi.org/10.1145/3359989.3365428
https://doi.org/10.1145/3359989.3365428
http://www.vldb.org/pvldb/vol14/p2046-cormode.pdf
http://www.vldb.org/pvldb/vol14/p2046-cormode.pdf
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Adult
https://doi.org/10.1137/070710111
https://doi.org/10.1145/947380.947395
https://doi.org/10.1137/1.9781611977554.ch6
https://doi.org/10.1109/FOCS.2016.43
https://doi.org/10.1109/FOCS.2016.43
https://arxiv.org/abs/2109.02768
https://arxiv.org/abs/2109.02768

	Introduction
	Related Work
	Frequency-based Watermarking
	Overview of our Approach
	Detailed Description of FreqyWM
	Watermark Generation
	Optimal and Heuristic Approaches
	Watermark Detection
	Probabilistic Analysis of False Positives

	Experimental Evaluation
	Synthetic Experiments
	Limit of z
	Limit of t

	Validation Using Real World Datasets
	Watermarking Multi-Dimensional Data
	Comparison to Related Works

	Security and Robustness Analysis
	Guess (Brute-Force) Attack
	Sampling Attack
	Destroy Attack
	Destroy Attack without re-ordering
	Destroy Attack with re-ordering

	Re-watermarking/ False-Claim Attack

	Discussion
	Conclusions and Future Work

