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resource. To reduce search lengths, we propose a mechanism based on building
random walks connecting together partial walks (PW) previously computed at
each network node. Resources found in each PW are registered. Searches can
then jump over PWs where the resource is not located. However, we assume
that perfect recording of resources may be costly, and hence, probabilistic
structures like Bloom filters are used. Then, unnecessary hops may come from
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In addition, PWs can be either simple random walks or self-avoiding random
walks. Analytical models are provided to predict expected search lengths and
other magnitudes of the resulting four mechanisms. Simulation experiments
validate these predictions and allow us to compare these techniques with simple
random walk searches, finding very large reductions of expected search lengths.
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1 Introduction

A random walk in a network is a routing mechanism that chooses the next
node to visit at random among the neighbors of the current node. Random
walks have been extensively studied in mathematics, and have been used in
a wide range of applications such as statistic physics, population dynamics,
bioinformatics, etc. When applied to communication networks, random walks
have had a profound impact on algorithms and complexity theory. Some of the
advantages of random walks are their simplicity, their small processing power
consumption at the nodes, and the fact that they need only local information,
avoiding the communication overhead necessary in other routing mechanisms.
An important application of random walks has been the search for resources
held in the nodes of a network, also known as the resource location problem.
Roughly speaking, the problem consists of finding a node that holds the re-
source, starting at some source node. Random walks can be used to perform
such a search as follows. It is checked first if the source node holds the resource.
If it does not, the search hops to a random neighbor, that repeats the process.
The search proceeds through the network in this way until a node that holds
the resource is found. Due to the random nature of the walk, some nodes may
be visited more than once (unnecessarily from the search standpoint), while
other nodes may remain unvisited for a long time. The number of hops to find
the resource is the search length of that walk. The performance of this direct
application of random walks to network search has been studied in [1–5].

The use of random walks for resource location has several clear applica-
tions, like unstructured peer-to-peer (P2P) file sharing systems or content-
centric networks (CCN) [6]. The latter are networks in which the key elements
are named content chunks, which are requested by users using the content
name. Content chunks have to be efficiently located and transferred to be con-
sumed by the user. The techniques described in this paper could be used in
the context of CCN to locate content chunks.

Contributions This paper proposes an application to resource location of the
technique of concatenating partial walks (PW) available at each node to build
random walks. A PW is a precomputed random walk of fixed length. Two
variations are considered, depending on whether the search mechanism first
randomly chooses one of the PWs in the current node and then checks its
associated information for the desired resource, or it first checks all PWs in
the node and then randomly chooses among those with a positive result. Both
of these variations may use PWs that are simple random walks (RW) or self-
avoiding random-walks (SAW), resulting in four mechanisms referred to as
choose-first PW-RW or PW-SAW, and check-first PW-RW or PW-SAW, re-
spectively. Our mechanisms assume the use of Bloom filters [7] to efficiently
store the set of resources (not their owners) held by the nodes in each par-
tial walk. The compactness of Bloom filters comes at the price of possible
false positives when checking if a given resource is in the partial walk. False
positives occur with a probability p, which is taken into account in our anal-
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yses. These assumptions provide generality to our model, since a probability
of p = 0 models the case in which the full list of resources found are stored
(instead of using a Bloom filter).

We provide an analytical model for the choose-first PW-RW technique,
with expressions for the expected search length, the optimal length of the par-
tial walks, and for the optimal expected search length. We found that, when
the probability of false positives in Bloom filters is small, the optimal ex-
pected search length is proportional to the square root of the expected search
length achieved by simple random walks, in agreement with the results in [8].
Another interesting finding is that the optimal length of the partial walks does
not depend on the probability of false positives of the Bloom filters. We also
provide analytical models for the choose-first PW-SAW mechanism as well
as for the check-first variations, which predict their expected search length.
Then, the predictions of the models are validated by simulation experiments
in three types of randomly built networks: regular, Erdős-Rényi, and scale-
free. These experiments are also used to compare the performance of the four
mechanisms, and to investigate the influence of parameters as the false positive
probability and the number of partial walks per node. Finally, we have com-
pared the performance of the four search mechanisms with respect to simple
random walk searches. For choose-first PW-RW we have found a reduction in
the average search length ranging from around 98% to 88%. For choose-first
PW-SAW such a reduction is even bigger, ranging from 12% to 5% with re-
spect to PW-RW. Check-first PW-RW and PW-SAW can achieve still larger
reductions increasing the number of PWs available at each node.

Related Work. Das Sarma et al. [8] proposed a distributed algorithm to obtain
a random walk of a specified length ℓ in a number of rounds1 proportional to√

ℓ. First, every node in the network prepares a number of short (random)
walks departing from itself. The second phase takes place when a random
walk of a given length starting from a given source node is requested. One of
the short walks of the source node is randomly chosen to be the first part of the
requested random walk. Then, the last node of that short walk is processed.
One of its short walks is randomly chosen, and it is connected to the previous
short walk. The process continues until the desired length is reached.

Hieungmany and Shioda [9] proposed a random-walk-based file search for
P2P networks. A search is conducted along the concatenation of hop-limited
shortest path trees. To find a file, a node first checks its file list (i.e., an index
of files owned by neighbor nodes). If the requested file is found in the list, the
node sends the file request message to the file owner. Otherwise, it randomly
selects a leaf node of the hop-limited shortest path tree, and the search follows
that path, checking the file list of each node in it.

The use of partial random walks in resource location has been proposed
in [10] for networks with dynamic resoures. Our work in this paper incorporates

1 A round is a unit of discrete time in which every node is allowed to send a message to
one of its neighbors. According to this definition, a simple random walk of length ℓ would
then take ℓ rounds to be computed.
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efficient storage by means of Bloom filters, in the context of static resources.
The use of SAWs as PWs is also proposed and compared with simple RWs.

Structure. The next section presents a model for the four search mechanisms
proposed. Choose-first PW-RW is analyzed and evaluated in Section 3. For
clarity, choose-first PW-SAW is covered separately in Section 4. Similarly,
check-first PW-RW/PW-SAW are presented in Section 5.

2 Model

Let us consider a randomly built network of N nodes and arbitrary topology,
whose nodes hold resources randomly placed in them. Resources are unique,
i.e., there is a single instance of each resource in the network. The resource
location problem is defined as visiting the node that holds the resource, starting
from a certain node (the source node). For each search, the source node is
chosen uniformly at random among all nodes in the network.

The search mechanisms proposed in this paper exploit the idea of efficiently
building total random walks from partial random walks available at each node
of the network. This process comprises two stages:

(1) Partial walks construction. Every node i in the network precomputes a
set Wi of w random walks in an initial stage before the searches take place.
Each of these partial walks has length s, starting at i and finishing at a node
reached after s hops. In the PW-RW mechanism, the partial walks computed
in this stage are simple random walks. During the computation of each partial
walk in Wi, node i registers the resources held by the s first nodes in the
partial walk (from i to the one before the last node). As mentioned, for gen-
erality, we assume that the resources found are stored in a Bloom filter. This
information will be used in Stage 2. Bloom filters are space-efficient random-
ized data structures to store sets, supporting membership queries. Thus, the
Bloom filter of a partial walk can be queried for a given resource. If the result
is negative, the resource is not in any of the nodes of the partial walk. If the
result is positive, the resource is in one of the nodes of the partial walk, un-
less the result was a false positive, which occurs with a certain probability p.2

The size of the Bloom filters can be designed for a target (small) p considered
appropriate. A variation of the partial walk construction mechanism consists
of using PWs that are self-avoiding walks (SAW). The resulting mechanism,
called PW-SAW, is analyzed in Section 4.

(2) The searches. After the PWs are constructed, searches are performed in
the following fashion when the choose-first PW-RW/PW-SAW mechanisms
are used. When a search starts at a node A, a PW in WA is chosen uniformly

2 More concretely, p is the probability of obtaining a positive result conditioned on the
desired resource not being in the filter.
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Fig. 1: An example of search, using PWs of length s = 6.

at random. Its Bloom filter is then queried for the desired resource. If the re-
sult is negative, the search jumps to node B, the last node of that partial walk.
The process is then repeated at B, so that the search keeps jumping in this
way while the results of the queries are negative. When at a node C, the query
to the Bloom filter (of the PW randomly chosen from WC) gives a positive
result, the search traverses that partial walk looking for the resource until the
resource is found or the partial walk is finished. If the resource is found, the
search stops. If the search reaches the last node D of the partial walk without
having found the resource in the previous nodes, it means that the result of
the Bloom filter query was a false positive. The search then randomly chooses
a partial walk in WD and decides whether to jump over it or to traverse it
depending on the result of the query to its Bloom filter. A variation consists of
first checking all PWs of the node for the desired resource, and then randomly
choosing among the ones with a positive result. The resulting mechanisms,
called check-first PW-RW/PW-SAW are analyzed in Section 5.

In this work, we are interested in the number of hops to find a resource
(when PWs of length s are used), which is defined as the search length and
denoted Ls. Some of these hops are jumps (over PWs) and other are steps
(traversing PWs). In turn, we distinguish between trailing steps, taken when
the resource is found, and unnecessary steps, taken when the resource is not
found. The search length is a random variable that takes different values when
independent searches are performed. The search length distribution is defined
as the probability distribution of the search length random variable. We are in-
terested in finding the expected search length, denoted Ls. Figure 1 summarizes
the behavior of the search mechanisms.

At this point, we emphasize the difference between the search just defined
and the total walk that supports it, consisting of the concatenation of partial
walks as defined above. Searches are shorter in length than their corresponding
total walks because of the number of steps saved in jumps over partial walks
in which we know that the resource is not located (although these saving may
be reduced by the unnecessary steps due to Bloom filter false positives).
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3 Choose-First PW-RW

3.1 Analysis of Choose-First PW-RW

We make an additional assumption in order to simplify this analysis. Once a
PW has been used in the total walk of a search, it is never reused again in
that total walk or in any other searches. Thus we guarantee that the total
walks are true random walks. This implies that in practice each node needs to
have a large number of precomputed partial walks (w), assumption that would
compromise the benefits of the proposed mechanism in practice. Simulations
in Section 3.2 show that real cases with small w behave very similarly to the
base case provided by this analysis.

Let Ls be the random variable representing the number of hops in the
search (i.e., its length) when PWs of length s are used. The expected search
length is denoted by Ls. Let L be the random variable representing the number
of hops of the corresponding total walk. Its expected search length is denoted
L. Making use of the assumption that partial walks are never reused, L can
be viewed as the length of a search based on a simple random walk in the
considered network, and L as the expected search length of random walks in
that network. Then, we can state the following theorem:

Theorem 1 If the expected number of trailing steps is assumed to be uniformly
distributed in [0, s − 1]3, then the expected search length is:

Ls =

(

s

2
+

2L + 1

2s
− 1

)

· (1 − p) + L · p. (1)

Proof Let P , J , U and T be random variables representing the number of par-
tial walks, jumps, unnecessary steps and trailing steps in a search, respectively.
Their expectations are denoted as P , J , U and T . Since hops in a search can
be jumps, unnecessary steps or trailing steps, it follows that, Ls = J + U + T.
Then, the expected search length for partial walks of size s is4 Ls = J +U +T .

The expected number of jumps can be obtained from the expected number
of partial walks in the search (P ) and from the probability of false positive (p)
as J = P · (1 − p), since J follows a binomial distribution B(P, 1 − p), where
the number of experiments is the random variable representing the number of
partial walks in a search (P ) and the success probability is the probability of
obtaining a negative result in a Bloom filter query (1 − p).5

3 This is, in fact, a pessimistic assumption. The distribution of trailing steps is approxi-
mately uniform, but shorter walks have a slightly higher probability than longer ones. This
can be shown analytically and has been confirmed in our experiments (see Appendix A).
Therefore, the expected value in our analysis, derived from a perfectly uniform distribution,
is slightly higher than the real average value.

4 In the following, we make implicit use of the linearity properties of expectations of
random variables.

5 If Y is a random variable with a binomial distribution with success probability p, in
which the number of experiments is in turn the random variable X, it can be easily shown
that Y = X · p (see Appendix B).
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For the expected number of unnecessary steps, U = P · p · s, since P · p is
the expected number of false positives in the search and each contributes with
s unnecesary steps. The number of partial walks in a search can be obtained
dividing the length of the total walk by the size of a PW: P =

⌊

L
s

⌋

= L−T
s

.

Then, the expected number of partial walks in a search is P = L−T
s

.
Since we assume that the expected number of trailing steps is uniformly

distributed between 0 and (s − 1), its expectation is T = s−1
2 . Then we have:

Ls =

(

s

2
+

2L + 1

2s
− 1

)

+ p ·
(

L −
(

s

2
+

2L + 1

2s
− 1

))

,

where the first term is the expectation of the search length for a “perfect”
Bloom filter (one that never returns a false positive when the resource is not in
the filter, i.e., p = 0), and the second term is the expectation of the additional
search length due to false positives (p 6= 0).

Reorganizing to make explicit the contributions of a perfect filter and of
a “broken” filter (one that always returns a false positive result when the
resource is not in the filter, i.e., p = 1), we have that:

Ls =

(

s

2
+

2L + 1

2s
− 1

)

· (1 − p) + L · p.

From this theorem and using calculus, we have the following corollary.

Corollary 1 The optimal length of the partial walks, i.e., the length of the
partial walks that minimizes the expected search length, is:

sopt =
√

2L + 1.

The obtained value needs to be rounded to an integer, which is omitted in the
notation. Observe that the optimal length of the partial walks is independent
from the probability of false positives in the Bloom filters, while the expected
search length (Ls) does of course depend on it.

Corollary 2 The optimal expected search length, i.e., the expected search length
when partial walks of optimal length are used, is:

Lopt =
(
√

2L + 1 − 1
)

(1 − p) + L p = (sopt − 1) (1 − p) + L p. (2)

This result is an interesting relation between the optimal length of the search
and the optimal length of the PWs. If we consider perfect Bloom filters (p = 0),
we have Lopt = sopt − 1, which for large L (e.g. for large networks) becomes
Lopt ≈ sopt. Therefore, we have found that, for large N and p = 0, the optimal
expected search length approximately equals the optimal length of the partial
walks. For arbitrary values of p, the equation above shows that Lopt is linear
in p.

This completes the analysis of choose-first PW-RW. Section 4 provides
an alternative analysis. Instead of assuming that the total walk is a random
walk, it considers that it is built using the w PWs available at each node,
which avoids the need of L. On the other hand, the alternative model does not
provide expressions for the optimal PW length or the expected search length.
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Cost of Precomputing PWs. Since searches use the partial walks precomputed
by the nodes, the cost of this computation must be taken into account. We mea-
sure this cost as the number of messages Cp that need to be sent to compute
all the PWs in the network. This quantity has been chosen to be consistent
with our measure of the performance of the searches. Indeed, each hop taken
by a search can be alternatively considered as a message sent. In addition,
Cp is independent from other factors like the processing power of nodes, the
bandwidth of links and the load of the network. The cost of precomputing a
set of PWs can be simply obtained as Cp = Nw(s + 1), since each of the N
nodes in the network computes w partial walks, sending s messages to build
each of them plus one extra message to get back to its source node.

Let’s suppose that each node starts on the average b searches that are
processed by the network with the set of PWs precomputed initially. We define
Cs to be the total number of messages needed to complete those searches. If
the expected number of messages of a search is Ls + 1 (counting the message
to get back to the source node), we have that Cs = Nb(Ls +1). Now, defining
Ct as the average total cost per search, we can write:

Ct =
Cs + Cp

Nb
= (Ls + 1) +

w

b
(s + 1).

The second term in this equation is the contribution to the cost of the
precomputation of the PWs. This contribution will remain small provided
that the number of searches per node in the interval is large enough.

3.2 Performance Evaluation

The goal of this section is to apply the model for choose-first PW-RW presented
in the previous section to real networks, and to validate its predictions with
data obtained from simulations. Three types of networks have been chosen
for the experiments: regular networks (constant node degree), Erdős-Rényi
(ER) networks and scale-free networks (with power law on the node degree).
A network of each type and size N = 104 has been randomly built with the
method proposed by Newman et al. [11] for networks with arbitrary degree
distribution, setting their average node degree to k = 10. Each network is
constructed in three steps: (1) a preliminary network is constructed according
to its type; (2) its degree distribution is extracted, and (3) the final (random)
network is obtained feeding the Newman method with that degree distribution.
For each experiment, 106 searches have been performed, with the source node
chosen uniformly at random among the N nodes. Likewise, the resource has
been placed in a node chosen uniformly at random for each experiment.

Optimal PW Size and Expected Search Length in Choose-First PW-RW. We
start by applying Theorem 1 to the networks described above to obtain the
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Fig. 2: (a) Expected search length (Ls) vs. s when p = 0 in the three networks.
(b) Optimal expected search length (Lopt) vs. p.

expected search length as a function of the size of the PWs.6 Figure 2(a)
provides plots of the expected search lengths (Ls) given by Equation 1 as a
function of the size of the PWs (s), when the probability of a false positive
in the Bloom filter is set to p = 0, for the three types of networks considered.
Results from the analytical model are shown as curves while simulation data
are shown as points. The curves for the three networks show a minimum point
(sopt, Lopt). This behavior is due to the fact that, when s is small, the number
of jumps needed to reach a PW containing the chosen resource grows, therefore
increasing the value of L. In turn, for larger values of s, the number of trailing
steps within the last PW grows, also increasing the value of L.

Figure 2(b) illustrates (using Equation 2 and taking into account the fact
that sopt is independent from the value of p) the optimal expected search
length (Lopt) as a function of the probability of false positives (p). It can be
seen that it grows linearly: the regular network exhibits the smallest slope,
followed by the ER network and then by the scale-free network. For p = 1,
Equation 2 degenerates to Lopt = L, since the search performs all the hops of
the total walk (i.e., it is a random walk). In fact, Equation 1 also degenerates
to Ls = L in this case, meaning that the expected search length is that of
random walk searches regardless the size of the PWs (s).

Distributions of Search Lengths in Choose-First PW-RW. The aim of this
section is to experimentally explore how the use of PWs affects the statisti-
cal distribution of search lengths. We first obtain the lengths distributions of
searches using PWs that are never reused. Later in this section we will discuss

6 For each network, the expected length of a random walk search (L) is needed. We esti-
mate these expected values by simulating 106 simple random walk searches and averaging
their lengths in each of the networks (these average search lengths are denoted using low-
ercase (l) to distinguish them from the actual expected value (L) in the model. The values
obtained from the experiments are: lreg = 11246, lER = 12338, and lsf = 15166). These
results agree with the approximate analytical method in [12] (a modification of the one
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Fig. 3: Distributions of search lengths for non-reused PWs (regular network)).

the effect of having a limited number of partial random walks that are reused.
We consider each random walk to be the total walk of a search based on PWs.
For each original random walk, we break it in pieces of size s, which are taken
as the PWs that make up the total walk. Then we consider a search that uses
those PWs and count the number of hops (jumps plus trailing steps plus un-
necessary steps). This gives the length of the search if it had been constructed
using those (precomputed) PWs. Note that the PWs are not reused because
they are obtained from independent (real) random walks.

The search length distributions in the regular network for p = 0 and for
several values of s are shown in Figure 3(a). The plots also show, as vertical
bars, the average search lengths computed from each distribution. These av-
erage values are very close to the expected values calculated with Equation 1
(L50 = 248.9, L150 = 149.0 and L1000 = 510.2). Therefore, our model accu-
rately predicts average lengths of searches based on PWs of size s in the three
types of networks considered in our experiments.

As for the shape of the distributions, we observe that for low s (s = 50 in
Figure 3(a)) the search lengths are dominated by the number of jumps, which
is proportional to the length of the total walk. On the other hand, for high
s (s = 1000 in Figure 3(a)) the distribution adopts a rather uniform shape.
Search lengths are dominated here by the number of trailing steps in the
last PW, and this has approximately an uniform distribution between 0 and
s − 1, as mentioned earlier. The optimal length for the PWs, sopt (s = 150 in
Figure 3(a)), represents a transition point between these two effects. The shape
is such that the values around the average search length (which approximately
equals sopt, according to Equation 2) are also the most frequent.

Once it has been found the optimal length for the PWs sopt (which is
known to be independent of the value of p), we investigate the effect of the

provided in [5]), which produces the following results: lreg = 11095, lER = 12191, and

lsf = 14920.
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Table 1: Reductions of average search lengths.

(a) PW-RW with respect to RW searches

Reduction of l (%)

Network p = 0 p = 0.01 p = 0.1
Regular 98.67 97.68 88.73
ER 98.71 97.68 88.42
Scale-free 98.83 97.79 88.43

(b) PW-SAW with respect to PW-RW

Reduction of l (%)

Network p = 0 p = 0.01 p = 0.1
Regular 5.67 8.22 11.24
ER 6.25 9.10 11.88
Scale-free 6.53 9.75 12.65

probability of false positive of Bloom filters in these distributions. Figure 3(b)
shows the distributions of search lengths (histograms) for the regular network
when s = sopt and for several values of p. It can be seen that the distributions
get wider and lower as p grows, pushing average search lengths to higher
values, in accordance with Figure 2(b). However, we observe that the most
frequent lengths remain the same regardless of the value of p. For p = 0, the
most frequent value for each network approximately equals the average search
length which, in turn, approximately equals the optimal length of the PWs
(sopt = 150 for the regular network). For greater values of p, the average search
length grows while the most frequent value stays the same.

Regarding the distributions for the ER and the scale-free networks, they
have similar shapes and are not shown here. However, we have used these
distributions to obtain Table 1(a) (explained below).

Effect of reusing PWs. At this point, we note that we have been assuming
that PWs are never reused. However, in practical scenarios it seems quite
reasonable to consider a limited number of partial random walks that are
reused. In Appendix C we have explored the distributions of search lengths
when the total walks are built reusing a limited number w of PWs precomputed
in each node. As it can be readily seen there, we conclude that, for the types of
networks in our experiment, just two precomputed PWs per node are enough
to obtain searches whose lengths are statistically similar to those that would
be obtained with PWs that are not reused. So, we can say that our results for
not reused PWs are also valid when reusing a limited number of PWs.

Comparison of performance with respect to random searches. Finally, in Ta-
ble 1(a) we compare the performance of the proposed search mechanism with
respect to random walk searches. We can see that the reduction in the aver-
age search length that PW-RW achieves with respect to simple random walk
is lower for higher p, ranging from around 98% in the case when p = 0 to
88% when p = 0.1. Furthermore, we also see that the achieved reductions are
independent of the network type.
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4 Choose-First PW-SAW

As it was pointed in Section 2 when we introduced the PW construction mech-
anism in Stage 1, a possible variation consists of using self-avoiding walks
(SAW) instead of simple random walks. The resulting search mechanism is
called PW-SAW. The basic idea is to revisit less nodes, thus increasing the
chances of locating the desired resource. In short, a SAW chooses the next
node to visit uniformly at random among the neighbors that have not been
visited so far by the walk. If all neighbors have already been visited, it chooses
uniformly at random among all neighbors, like a simple random walk.

Analysis of Choose-First PW-SAW. When PWs are self-avoiding walks, their
concatenation is not a random walk, and hence Theorem 1 is no longer valid.
We state a new theorem for the choose-first PW-SAW mechanism, proving it
using a different approach.

Theorem 2 If the expected number of trailing steps is assumed to be uniformly
distributed in [0, s − 1], then the expected search length of PW-SAW is

Ls =
1

N

∑

k

nk

(

1

ptp(k)
· (pn(k) + s · pfp(k)) +

s − 1

2

)

.

The probabilities that the query of the Bloom filter of the chosen PW in the
current node returns a (true) negative, a true positive, and a false positive
result as a funcion of k, the degree of the node holding the resource, are
denoted by pn, ptp, and pfp, respectively.

Proof We write a recurrence equation for the expected length, given that the
search is currently in any of the nodes it visits. Since we have defined the
expected search length for any pair of source and target nodes, the expected
length of the search from the current node and the expected length of the
search from the source node are the same. Denoting it by Ls, as in the previous
section, we can write:

Ls = (Ls + 1) · pn + (Ls + s) · pfp +
s − 1

2
· ptp, (3)

where pn, ptp, and pfp are the probabilities that the query to the Bloom
filter returns a (true) negative, a true positive, and a false positive result,
respectively, with pn + ptp + pfp = 1. Solving for Ls, we obtain:

Ls =
1

ptp

· (pn + s · pfp) +
s − 1

2
. (4)

This equation can be rewritten as:

Ls =
1 − ptp

ptp

·
(

pn

1 − ptp

+ s · pfp

1 − ptp

)

+
s − 1

2
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which is an alternative formulation of the expected search length, in terms
of the expected number of partial walks of the search (P , as defined in Sec-
tion 3.1). Note that (1 − ptp)/ptp is the expectation of P , a geometric random
variable representing the number of failures before a Bloom filter returns a
true positive (with probability ptp). The fractions within the parenthesis are,
respectively, the probabilities of jumping a partial walk or traversing it, con-
ditional on the fact that the Bloom filter does not return a true positive.
Therefore, the terms in the parenthesis are the expectations of J and U , bi-
nomial random variables representing the number of jumps and the number
of partial walks that are unnecessarily traversed, respectively, as defined in
Section 3.1.

We now calculate the probabilities in the equations above using P (i, j),
the probability that, in the w partial walks of a node, there are i partial walks
that contain the node that holds the resource (i.e., their Bloom filters return a
true positive), and j partial walks that do not contain the resource, but whose
filters return false positives:

P (i, j) = B(w, pr, i) · B(w − i, p, j), (5)

where B(m, q, n) is the coefficient of the binomial distribution: B(m, q, n) =
(

m
n

)

· qn · (1 − q)(m−n).

In Equation 5 we are using pr, defined as the probability that a partial walk
includes the node that holds the desired resource. This probability is propor-
tional to the degree of the node that holds the resource, since the probability
that a random walk visits a node depends on its degree (see [13], for example).
We assume known the number of nodes of each degree k in the network, i.e.,
its degree distribution, which we denote by nk.

Denoting by k the degree of the node that holds the resource, the proba-
bility that a partial walk of size s contains the resource is then pr(k), and it
can be estimated as:

pr(k) = 1 −
s−1
∏

l=0

(

1 − k

S − lk

)

, (6)

where S denotes the number of endpoints in the network (S =
∑

k k nk) and k
denotes the average degree of the network (k =

∑

k k nk/N). Each factor in the
product in Equation 6 represents the probability that the resource is not found
in the lth hop of a partial walk, conditional on the fact that it was not found
in the previous hops of that partial walk. Note that the fraction k/(S − lk) is
the probability of the lth hop finding the resource, expressed as the number of
endpoints that belong to the node that holds the resource divided by the total
number of endpoints in the network, except those belonging to nodes already
visited by the partial walk, which are k per hop, on the average.

Now we rewrite Equation 5 making its dependence on k explicit:

P (i, j|k) = B(w, pr(k), i) · B(w − i, p, j),
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Then, the probabilities in Equations 3 and 4 are:

ptp(k) =

w
∑

i=1

w−i
∑

j=0

P (i, j|k) · i

w

pfp(k) =

w
∑

i=0

w−i
∑

j=1

P (i, j|k) · j

w

pn(k) = 1 − ptp(k) − pn(k). (7)

The expected search length can be finally obtained weighing Equation 4
with the probability that the resource is in a node with degree k, which is
nk/N , for all values of k:

Ls =
1

N

∑

k

nk

(

1

ptp(k)
· (pn(k) + s · pfp(k)) +

s − 1

2

)

. (8)

Expected Search Length in PW-SAW. In this section, we compare the analytic
results from the model with experimental data from simulations. Figure 4(a)
shows the expected search length (Ls) as a function of the size of PWs (s) in
a regular network, an ER network and a scale-free network, for p = 0. The
curves in this graph are plotted using Equation 8 and previous equations.

According to the results computed using the PW-SAW model, the mini-
mum search lengths occur for values around s = 141, s = 149 and s = 167 for
the regular, ER and scale-free networks, respectively. These values are slightly
lower than the ones predicted by the PW-RW model (Figure 2(a)), which were
sopt = 150, 157 and 174, respectively.

Both the model curves and the simulation experiments have been computed
for w = 5, chosen as a reference value. However, it has been observed that very
similar results are obtained if we change the value of w. Furthermore, plots
of the model equations for different values of w are coincident. This behavior
was also observed for PW-RW (Section 3.2), where we found that the average
search length remained almost constant as we increased w. The reason for
this is that the probability of the resource being in the chosen PW (pr in
Equation 5) does not depend on the number of PWs in the node.

We now compare the results of the PW-RW and PW-SAW mechanisms.
Figure 4(b) shows results for PW-RW (left part) and for PW-SAW (right part),
in the three networks considered in our study, and for values of p = 0, 0.01 and
0.1. Expected search lengths from the analytical models are shown as vertical
bars, while average search lengths from the simulations experiments are shown
as points. The size of the PWs has been set to s = 150, 157 and 174 for the
regular, ER and scale-free networks, respectively, which are the optimal values
predicted by the PW-RW model. For all the networks, we have found a very
good correspondence between model predictions and simulation results.
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Fig. 4: Expected search length of PW-SAW in the three networks.

Comparison of performance with respect to choose-first PW-RW. If we com-
pare the performance of the proposed search mechanisms, we observe that the
reduction in the average search length that PW-SAW achieves with respect to
PW-RW for a given p is largest for the scale-free network, followed by the ER
network and then by the regular network. For each network type, the reduction
is larger for higher p. Actual values can be found in Table 1(b).

Alternative Analysis for Choose-First PW-RW. This section presents an alter-
native analysis for the model of the choose-first PW-RW mechanism described
in Section 3.1. This analysis is based on the proof of Theorem 2 for the PW-
SAW mechanism. In fact, only the expression for pr(k) (Equation 6), defined
as the probability that a given PW contains the node that holds the resource,
needs to be rewritten to reflect the fact that the PW is a simple random walk
instead of a self-avoiding random walk. The new expression is:

pr(k) = 1 −
(

1 − k

S − krw

· krw − 1

krw

)s

. (9)

The first fraction within the parenthesis in Equation 9 is the ratio of positive
endpoints (the degree of the node that holds the resource) and all endpoints
in the network (S =

∑

k k nk) except those of the current node. We use krw,
which denotes the expectation of the degree of a node visited by a random
walk, as an estimation of the degree of the current node. It is obtained as:

krw =
∑

k

k · k · nk

S
=

1

S
·
∑

k

k2 · nk.

The second fraction within the parenthesis in Equation 9 corrects the previous
ratio taking into account that, when at a node of a given degree, the probability
of not going backwards (and therefore having the chance to find the resource)
is the probability of selecting any of its endpoints but the one that connects
it with the node just visited.
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The rest of the equations in the proof of Theorem 2 are valid for this
alternative analysis of the choose-first PW-RW mechanism.

5 Check-First PW-RW and PW-SAW

We now present the check-first versions of the PW-RW and PW-SAW search
mechanisms, introduced in Section 2. Suppose the search is currently in a node
and it needs to pick one of the PWs in that node to decide whether to traverse
it or to jump over it. With the new check-first mechanism, it first checks the
associated resource information of all the PWs of the node, and then randomly
chooses among the PWs with a positive result, if any (otherwise, it chooses
among all PWs of the node, as the choose-first version). These check-first
mechanisms improve the performance of their choose-first counterparts, since
the probability of choosing a PW with the resource increases. This comes at
the expense of slightly incrementing the processing power used since several
PWs need to be checked, but without incurring extra storage space costs.

A minor additional difference between the algorithms is that in the check-
first version, the resource information is registered from the first node (the
node next to the current node) to the last node in the PW. This change
slightly improves the performance of the new version, since the probability of
choosing a PW with the resource increases also in the cases where the resource
is held by the last node of the PW.

We have adapted the analysis presented in the proof for Theorem 2 to
reflect the new behavior of the check-first PW-RW/PW-SAW mechanisms.
Most of the expressions in the analysis of the choose-first versions are still
valid for the check-first versions of the mechanisms, so we present here only
the equations that need to be modified to reflect the new behavior. That is
the case of Equations 7 for the probabilities of choosing a PW with a true
positive, false positive, and negative result, respectively. Their counterparts
follow. Remember that i and j represent the number of PWs of the node that
return a true positive result and an false positive result, respectively:

ptp =

w
∑

i=1

w−i
∑

j=0

P (i, j) · i

i + j
,

pfp =
w−1
∑

i=0

w−i
∑

j=1

P (i, j) · j

i + j
,

pn = P (0, 0) = 1 − ptp − pfp.

The expression for pr(k) in Equation 9 is still valid for check-first PW-RW.
However, Equation 6 needs to be modified for check-first PW-SAW, since the
range of nodes has changed from [0, s − 1] to [1, s]:

pr(k) = 1 −
s

∏

l=1

(

1 − k

S − lk

)

.
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Finally, Equation 8 also needs modification (for chech-first PW-SAW) in the
expectation of trailing steps, for the same reason. The new version, which
completes the analysis of the check-first mechanisms, is:

Ls =
1

N

∑

k

nk

(

1

ptp(k)
· (pn(k) + s · pfp(k)) +

s

2

)

.

Expected Search Length in Check-First PW-RW/PW-SAW. Figure 5 shows
the expected search length (Ls) vs. the size of PWs (s) in a regular network
for the four mechanisms presented so far: choose-first PW-RW/PW-SAW, and
check-first PW-RW/PW-SAW, for p = 0.01 and w = 5. The check-first mech-
anisms achieve a lower minimum than the original choose-first mechanisms,
as expected. In fact, the expected search length can be lowered further by in-
creasing w, the number of PWs per node, clearly at the expense of increasing
the cost of the PWs construction stage. Also interesting is the observation
that the minimum expected search length occurs for significantly lower s (sopt

falls from 150 to about 50), meaning shorter PWs in the nodes, which in turn
decreases the cost of the PWs construction stage. Regarding the PW-SAW
mechanisms, they achieve a slight decrease in the expected search length with
respect to the PW-RW mechanisms, both for the check-first and the choose-
first versions (already observed in Table 1). Results for the ER and scale-free
networks are similar and are omitted here.

6 Future Work

The proposed resource location mechanisms could be improved with new
strategies to choose from the PWs available at the nodes. Smarter (and more
costly) variants of RWs could be used as PWs. It would be interesting to
compare their application to unstructured P2P networks with algorithms for
structured overlays like DHT or quorum systems.
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A Distributions of the Number of Trailing Steps

The proof of Theorem 1 assumes that the distribution of the number of trailing steps in the
last PW is uniform between 0 and s−1, corresponding to the cases where the first node/last
node in the PW holds the desired resource. Recall that the Bloom filter stores the resources
held by the s first nodes in the PW, from the node that precomputed the partial walk to the
one before its last node (which is included in the partial walks departing from it). We have
obtained that distribution from the 106 searches in our experiment for each of the three
networks. Figure 6 shows the results for the regular network when s = 10, s = sopt = 150
and s = 1000. Distributions for the ER and scale-free networks are similar in shape.

A slight decrease in the frequency is observed as the number of steps grows. This is
due to the fact that the number of trailing steps is essentially the length of the total walk
modulus the length of PWs (s). The total walk is a random walk, and its distribution can
be obtained approximately by Equation 10.7 Since it is a decreasing function, as it is shown
below, the frequency on the left end of an interval of width s is always higher than the
frequency on the right end, thus accounting for the observed decrease.

7 The distribution of simple random walk searches has also been obtained experimentally,
showing that Equation 10 is a good approximation.
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Fig. 6: Distributions of the number of trailing steps in the regular network.

This means that the result provided by Theorem 1 is pessimistic, since the estimated
average number of trailing steps is slightly higher than the real one. Results in Section 3.2
have shown that expected search lengths predicted by Equation 1 are very similar to values
averaged from simulations data, with larger error for higher values of s.

The probability distribution of simple random walk searches can be estimated using
Equation 10. We show below that it is strictly decreasing, that is: Pi − Pi−1 < 0 for
0 ≤ i < ∞:

Pi =

0

@1 −

i−1
X

j=0

Pj

1

A ·
1

N − 1
, for i > 0; P0 =

1

N
. (10)

First, it is shown by induction that 0 <
Pk

i=0 Pi < 1 for k ≥ 0 and N > 0. It holds trivially
for k = 0. Then, it is also true for k > 0 if it holds for k − 1:

k
X

i=0

Pi =

k−1
X

i=0

Pi +

 

1 −

k−1
X

i=0

Pi

!

·
1

N − 1
=

N − 2

N − 1
·

k−1
X

i=0

Pi +
1

N − 1
<

N − 2

N − 1
+

1

N − 1
= 1.

Next, it is shown that 0 < Pi < 1 for i ≥ 0 as a corollary of the previous result. It is checked

for i = 0 by inspection. For i > 0, we have that Pi =
“

1 −
Pi−1

j=0 Pj

”

· 1
N−1

. Then:

0 < 1 −

i−1
X

j=0

Pj < 1, and then: 0 < Pi =

0

@1 −

i−1
X

j=0

Pj

1

A ·
1

N − 1
< 1.

Finally, it is shown that Pi − Pi−1 < 0 for i > 0. For i = 1, by inspection. For i > 1:

Pi − Pi−1 =

0

@1 −

i−1
X

j=0

Pj

1

A

1

N − 1
−

0

@1 −

i−2
X

j=0

Pj

1

A

1

N − 1
= −

Pi−1

N − 1
.

Since we have shown that 0 < Pi−1 < 1, it follows that Pi − Pi−1 < 0.

B Expectation of a Random Variable with a Binomial Distribution

in Which the Number of Experiments is Another Random Variable

Let X be a random variable with sample space S = N0 = {0, 1, 2 . . .}. Let Y be a random
variable representing the number of successes when X experiments are performed with
a success probability p. Y has a binomial probability distribution Y ∼ B(X, p), where
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Fig. 7: Distributions for non-reused PWs and for w = 1, 2 (regular network).

the number of experiments is, in turn, a random variable. Then, from the definition of
expectation and the Total Probability Theorem, the expectation of Y is E[Y ] = E[X] · p.

E[Y ] =

∞
X

y=0

y · Pr[Y = y] =

∞
X

y=0

y ·

(

∞
X

x=0

Pr[Y = y|X = x] · Pr[X = x]

)

=

∞
X

x=0

E[Y |X = x] · Pr[X = x] =

∞
X

x=0

x · p · Pr[X = x] = E[X] · p.

C Searches Based on Reused Partial Walks

We explore here the search length distributions when the total walks are built reusing a
limited number w of PWs per node. How many PWs are necessary for the distributions to
be similar to those of non-reused PWs? For the networks considered in our experiment and
for the optimal PW size (sopt), we have found that it is enough to have as few as two PWs.
The extreme case of one PW yields a significant fraction of unfinished searches, since it is
relatively easy to build walks that are loops that do not visit all the nodes. Indeed, if the
last node of a PW is a node whose (only) PW has been previously used in that total walk,
it will repeatedly take the search to the same place again. However, if one PW is chosen
randomly among several ones, the chances of entering a loop are very small.

Figure 7 shows the search lengths distributions in the regular network. The top plots
correspond to non-reused PWs. The middle and bottom plots correspond to reusing a single
PW or two PW per node, respectively. The shape of the distributions is the same for all
w. However, distributions for w = 1 are lower and the average search length (marked as a
vertical bar) is also smaller. This is due to a significant percentage of unfinished searches
(about 26%), left out of the histograms, due to loops as explained above. If we focus on
the case for w = 2, we note that both the distribution and the average search length are
very similar to those of non-reused PWs. Additional experiments with higher w confirm this
observation. As a global measure of the difference between the distributions for w = 2 and for

non-reused PWs, we compute the mean relative difference as 1
L90%+1

PL90%

l=0
|h2(l)−hnr(l)|

hnr(l)
,

where hw(l) and hnr(l) are the frequencies of searches with length ℓ when using w partial
walks and non-reused PWs, respectively. The tail of the distribution is removed, including
searches within the 90% percentile (L90%). The mean relative differences for p = 0, p = 0.01
and p = 0.1 are, respectively, 0.023, 0.035 and 0.076. This suggests that two PWs per
node are enough to obtain a behavior close to the theorical case of non-reused PWs. The
conclusion for the ER network and the scale-free network is the same.


