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Abstract

6G networks are expected to face the daunting task of providing support to a

set of extremely diverse services, each more demanding than those of previous

generation networks (e.g., holographic communications, unmanned mobility,

etc.), while at the same time integrating non-terrestrial networks, incorporat-

ing new technologies, and supporting joint communication and sensing. The

resulting network architecture, component interactions, and system dynamics

are unprecedentedly complex, making human-only operation impossible, and

thus calling for AI-based automation and configuration support. For this to

happen, AI solutions need to be robust and interpretable, i.e., network engineers

should trust the way AI operates and understand the logic behind its decisions.

In this paper, we revise the current state of tools and methods that can make

AI robust and explainable, shed light on challenges and open problems, and

indicate potential future research directions.
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1. Introduction

Fifth-generation (5G) networks are now entering a stable phase in terms

of system architecture and commercial release, and the identification of the
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advanced features that will shape the evolution of 5G into the sixth generation

(6G) of mobile network systems has already started [1]. Despite being in the5

early stages of conceptualization, some key aspects of the future infrastructure

have been identified by the community: 6G will bring a paradigm shift from

“connected things” to “connected intelligence,” supporting even more stringent

KPI requirements than 5G, and global coverage [2]. Therefore, there are strong

expectations that Artificial Intelligence (AI) will permeate the 6G network in-10

frastructure, allowing for much swifter and more effective decision-making in

scheduling, control, and orchestration operations of the end-to-end communica-

tion systems [3]. Ultimately, this will allow 6G to support ambitious performance

targets such as near-zero latency, apparent infinite capacity, and near 100%

reliability and availability, to support new and diverse classes of innovative15

mobile services.

When applied to specific network functionalities, AI systems will either

employ pre-trained models or adapt those at operation time. These models

include machine and deep learning models, and are specialized in analyzing large

data and identifying complex relations and patterns that extend beyond human20

knowledge. In a nutshell, this process happens by relating input data to outputs

with stochastic processes. The deep learning models that are typically used

to address wireless network problems are stochastic while traditional software

is by nature deterministic. This implies that existing formal verification tools

that are usually employed for testing software robustness are no longer valid [4].25

To add another dimension to the challenge, deep learning models are regarded

as black-box [5]. In other words, it is very hard to understand the underlying

operation and the reasons why the models have taken certain actions [6].

In light of the considerations above, it is of paramount importance that

AI becomes trustworthy, in the sense that AI models should be robust and30

explainable for humans to trust such non-deterministic systems. Given the

growing interest in the matter, the landscape of regulations by national and

international bodies is continuously evolving [7]. Among others, Article 13 of

2



the EU Regulatory Framework for AI1 states: “AI systems should be sufficiently

transparent, explainable, and well-documented.” In human-in-the-loop scenarios,35

understanding how complex models operate is critical for system experts to

perform root-cause analysis [8]. This applies to the vast majority of zero-touch

network configuration and automation scenarios [9] under discussion within the

ETSI ZSM (Zero-touch network and Service Management) group. Furthermore,

to be trusted, AI models should be robust. Previous research has revealed that40

adding a small change to the inputs is sufficient to fool a classifier, e.g., the

infamous tape strip over a speed limit sign that leads a classifier to accelerate

and not to brake or, in the context of mobile networks, to misclassify wireless

signals sent for authentication that are generated by non-legitimate users [10].

In this paper, we provide an up-to-date primer on robust and explainable AI45

for mobile networks. We outline and review existing tools, their applicability,

and shortcomings to address 6G network challenges (§ 2). Next, we discuss how

to enable robust and explainable AI in 6G networks and integrate it into the

current network architecture models (§ 3). We then present a case study to

expose the complexity of applying explainability concepts to a deep learning50

mobile traffic predictor based on real-world traffic data (§ 4). Finally, we draw

conclusions and analyze future research directions (§ 5).

2. Tools and Methods for Explainable, Robust and Verifiable AI

This section presents background on explainable (§ 2.1) and robust AI (§ 2.2)

and formal verification techniques (§ 2.3) for AI models. Next, it provides a55

discussion (§ 2.4) that highlights shortcomings of existing tools when applied to

mobile networks.

2.1. Explainable AI

The growing interest in promoting trust in ICT systems has been addressed

by regulatory bodies at different levels [7]. In the context of AI/ML, DARPA has60

1Available online at: https://bit.ly/3FATnNj - Last accessed: 04/05/2022
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introduced the Explainable AI (XAI) initiative to promote research around model

interpretability to ultimately open up the AI/ML models’ black-box behavior and

make it more intelligible to humans [6]. Such initiative sparked the interest of

the AI community and model interpretability is becoming an important feature

as a basis for new designs. For example, Auric [11], a framework that is used by65

AT&T (a US mobile operator) to automatically configure base stations (known

as eNB and gNB in LTE and 5G jargon respectively) parameters, is based on

decision trees that offer good results in trading off accuracy and interpretability.

Despite some first results, XAI remains a wide-open research area. While

some models like decision trees are easy to interpret and have already been70

utilized in practice [11], in the mobile network domain, the vast majority of

AI/ML applications (e.g., routing, load balancing, and resource allocation) use

much more complex AI models like deep learning models [5]. The computer

vision and Natural Language Processing (NLP) domains received comparatively

more attention than the domain of time-series analysis because of the rich75

semantics of the inputs that are intuitive to humans. By setting to zero a

given set of pixels of an image (perturbation) [6], it is possible to visually

understand their contribution to a model (e.g., which lung regions from X-

RAY images are important to detect COVID-19 [12]). Using such an approach

for time series is technically feasible at the cost of disrupting the temporal80

dependencies. Explainability allows to better comprehend how models operate,

thereby allowing to strengthen robustness and resiliency [13]. At the same

time, assessing robustness and resilience with specific perturbations allows to

understand better which input patterns are prone to weaken the model accuracy.

Layer-wise Relevance Propagation (LRP), DeepLIFT, Local Interpretable Model-85

Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) are

existing methods for interpretability [14]. Unlike LRP, all the other methods

resort to perturbing the inputs to measure the accuracy drop with respect to

the original model. By contrast, LRP uses the neural network weights and the

activations that have been created with the forward-pass to propagate back90

the output until the input layer. For this reason, LRP can not be applied to
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any model out of the box like SHAP: there are existing implementations for

popular models like LSTM, and bi-directional LSTM. TSVis [15], Long-Short

Term Memories (LSTM)-Vis [16] and Sequence to Sequence (Seq2Seq)-Vis [17]

are visualization tools that apply respectively to CNN, LSTM and Seq2Seq95

learning models and aim at tracking the hidden state changes. The latter two

are conceived as a tool for NLP applications.

2.2. Adversarial Machine Learning

Perturbation is key to test robustness and resilience against adversarial

attacks. Adversarial Machine Learning (AML) comprises several techniques that100

build on this concept and ultimately define the trustworthiness of an AI model.

Seminal works like [18] revealed that adding a small change to the inputs is

sufficient to fool a classifier. Attacks performed against an AI model can be

white-box, gray-box, or black-box, depending on the amount of information the

attacker has about the model itself. The first category assumes that the adversary105

has full knowledge of the training data, model architecture, and parameters, the

latter none, and gray-box attacks assume partial knowledge. Known attacks

on time-series are modifications of attacks originally designed for images like

the Fast Gradient Sign Method (FGSM) and its iterative version Basic Iterative

Method (BIM) [19]. Both generate a crafted input that resembles the original110

one, but the values of its elements are equal to the sign of the elements of the

gradient of the cost function. This is enough to increase the classification/forecast

error.

2.3. Formal Verification for AI

Besides being able to counteract adversaries, to be fully trustworthy AI would115

require formal verification. In early 2000, formal verification boosted software

development with systematic bug detection in code, vulnerability analysis, threat

analysis, and run-time monitoring. However, applying the same concepts to AI

is challenging because i) many AI models like deep learning ones are stochastic

by nature as opposed to the deterministic nature of computing systems, and ii)120
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the role of data becomes crucial [4]. A learning model is trained on a particular

dataset and it is well known that adding additional input data usually leads to

an increase of accuracy. Applying formal methods to AI is not new and a recent

article surveys the tools and methods proposed so far [20]. Those applicable to

neural networks are categorized into complete and incomplete formal methods.125

The former methods suffer from scalability but are sound, i.e., they can report

if a given specification holds or not. In contrast, the latter scales better at the

cost of reporting false positives. Complete methods can be further categorized

into satisfiability modulo theory (SMT) and mixed-integer linear programming

(MILP) based methods. SMT boils down the verification problem to a constraint130

satisfiability problem: if the modeled constraints can be satisfied, then the

property is not verified. MILP-based methods transform the verification problem

into a MILP-one. If the objective function can be maximized or minimized, then

the property is not verified because it exists at least one counter-example.

2.4. Discussion135

The existing systems for explainability and trustworthiness outlined above

have several shortcomings when applied to the mobile network domain, as follows.

First, while the interpretability and visualization tools are relevant, they fail

to explain at a deeper level the model operation. Just highlighting that a given

load pattern at a given time triggers the activation of many neurons does not140

explain how important this is in relation to the nature of input data that produced

such behavior. Visualization tools should be extended and coupled with data

mining techniques like Gramian Angular Field or Markov Transition Field [21]

to fully comprehend and exploit the nature of the input data. In addition to

understanding the reason for producing a given output, a comprehensive tool145

should also unveil which patterns are responsible for the errors.

Second, the existing time-series attacks do not consider the specific require-

ments of mobile network inputs like traffic load or channel propagation. For

instance, the traffic load cannot be a negative value for a given base station. Or,

jamming multiple transmissions at a base station to decrease the observed load is150
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an extremely hard task in practice, which requires knowledge of the exact timing

of data transmission and of the time-varying characteristics of the channels from

the base stations to the users and from the jammers to the users. XAI and

AML tools can be used jointly, for example to understand if a model over-learns

outliers and if these outliers are legitimate or rather forged ad-hoc.155

Third, the existing AI formal verification tools are conceived for simple

neural networks and model parameters, and have all been tested only for popular

image datasets (e.g., MNIST, CIFAR-10). Therefore, they require a significant

extension to accommodate complex architectures that are commonly applied to

address mobile networking problems [22].160

3. Explainability and Robustness: Integration in Next Generation

Mobile Networks

We now discuss how techniques for AI robustness, explainability, and verifica-

tion, based on and possibly extending the approaches presented in the previous

Section, can be integrated in the 6G network architecture.165

While the 6G Radio Access Network (RAN) will significantly evolve from 5G,

at least in its earlier deployment, the 6G core will retain part of the concepts

and functionalities of the 5G core network. The reason is twofold. First, the 5G

core network is radically different from previous generations’ core networks and

Mobile Network Operators (MNO) are likely not willing to make a significant170

capital expenditure for a new change. Second, the 5G core network was designed

to adhere to cloud-native and service-based architecture principles, which make it

easy to extend it to support new functionalities like location-based analytics [23].

Fig. 1 shows the components of the mobile network architecture with 3GPP

standardized functions in the user-plane, control-plane, and radio part [24].2 For175

5G, initial support for AI is provided by the Network Data Analytics Function

2A comparison with previous generation architectures, and a thorough presentation of the

purpose of each of the 5G standardized functions is out the scope of this work. We refer the

interested reader to the complete description in [24].

7



NSSF NEF NRF PCF UDM AF

NWDAF AUSF AMF SMF AIML-F XAI/AML-F

UE RAN UPF Data Networks
Radio
User Plane Function

AI/ML
Control Plane Functions

NSSF (Network Slice Selection Function)
NEF (Network Exposure Function)
NRF (Network Repository Function)
PCF (Policy Control Function)
UDM (Unified Data Manager)
AF (Application Function)
AUSF (Authentication Server Function)
AMF (Access and Mobility Management Function)
SMF (Session Management Function)
UPF (User Plane Function)
UE (User Equipment)

Figure 1: Integration of AI/ML with tools to support robustness and explainability in the 6G

network architecture

(NWDAF) in the core and by the Radio Network Information Base (RNIB) in

the RAN [25]. Beyond 5G and 6G network architectures will likely comprise

functions to exploit AI/ML as a service to optimize specific mechanisms and

functionalities. The recently proposed AI/ML Platform (AIMLP) is an example180

on how to implement AI/ML as a service [26]. Specifically, the AI/ML-Function

(AIML-F) in Fig. 1 (that can be mapped to AIMLP) will contain pre-trained

learning models ready to be used by other functions (once trained, learning

models can be exported with information on all the weights in hd5 format).

Similarly to the AIML-F, a new function will host ready-to-apply tools for185

assessing the robustness of the AI models and provide explanations of their

execution (the XAI/AML-F in Fig. 1). Standard interfaces will provide AI

models and human-in-the-loop capabilities to access and execute XAI/AML

tools on the data or model of interest. For this to happen, the computing platform

of an MNO needs to adapt to accommodate computing- and memory-intensive AI190

tasks. While the community has well highlighted this need for executing all the

operations involved with an ML pipeline (e.g., collection of measurement data,

distributed/centralized model training and inference execution, actuation with a

change of network mechanism policy), also XAI/AML tools are computationally

expensive. The case study we present in the next Section provides a practical195

example of the substantial computational requirements of XAI methods for

networking.
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4. Case Study

We consider a specific case study, which we employ to set forward the path to

address one of the shortcomings highlighted in Section 2.4, i.e., that of ensuring200

deeper model explainability with the help of time series mining techniques. For

this, we focus on mobile traffic forecasting, one of the most popular applications

of AI for mobile networking. Next, we present the dataset used (§ 4.1) and

discuss how to ensure deeper model explainability and the associated execution

time, CPU and memory footprint (§ 4.2).205

4.1. The Dataset

For our experiments, we rely on a measurement dataset of real-world traffic

collected in a production 4G network serving a major metropolitan region in

Europe. The data consists of information on the traffic volume generated by a

set of target mobile applications, including popular services like Apple iCloud,210

Facebook, Netflix, and Whatsapp, among others, at each eNB. The traffic maps

to the demand of the whole user base of the operator in the region, which has a

market share of more than 30% there.

The data was collected via commercial passive probes that tap into interfaces

of the Gateway GPRS Support Nodes (GGSNs) and the Packet Data Network215

Gateways (PGWs), monitor individual flows, and perform traffic classification

using Deep Packet Inspection (DPI) and proprietary fingerprinting solutions.

The processing of flow-level captures into per-minute traffic volumes at each eNB

occurred in the secure premises of the network operator, under the supervision

of the local Data Protection Officer (DPO). We only had access to the de-220

personalized aggregates for our study, in compliance with applicable international

regulations.

Overall, the dataset comprises the per-eNB time series of 23 mobile services

at the granularity of three minutes. All the time series cover the same period of

11 weeks in the fall of 2019.225
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Figure 2: Model explanation with LRP

4.2. Explaining DL Models for Traffic and Capacity Forecasting

The univariate time series of the service-level demand aggregated over all

eNBs is fed to a deep neural network. The forecasting task then maps to

anticipating the future load in the region of interest. To this end, we employ an

LSTM layer with 200 memory cells followed by a fully connected output layer230

with a single hidden unit for the actual prediction3. The deep neural network

receives a history of past observations Tn 2 T = tn−k+1; tn−k+2; : : : ; tn of the

input feature, i.e., load expressed in MB/min, and aims at forecasting the load

at the time instant tn+1. For our analysis, we set k = 20 (i.e., 1 hour of the

time series as each sample characterizes the load over 3 minutes) and k = 120235

(i.e., 6 hours). We train our network over 9 weeks and we test over the last two

weeks of the dataset. The model is trained using MAE as the loss function and

the Adam optimizer with a learning rate of 0.0001 during 470 epochs. We verify

that the model outperforms by 15% in terms of Mean Absolute Error a naive

predictor whose forecast at tn+1 corresponds to the load at tn. We perform our240

explainability analysis on the test set by using both LRP and SHAP methods.

For LRP we use the implementation by Warnecke et al. [27] with � = 10−3.

Instead, for SHAP we use the open-source implementation by Lundberg et al.

[28] including the DeepExplainer method.

We now compare the model operation explained by LRP and SHAP. Our245

methodology is as follows: we explain how the model predicts the value tn+1 of

the load time-series T = t1; t2; : : : ; tn, using as history the last k = 20 values

Tn � T = tn−k+1; tn−k+2; : : : ; tn. Both methods identify a general trend in the

way in which the model works: recent and old samples contribute positively to

the forecast, while samples in the center of Tn are less relevant. Fig. 2 and Fig. 3250

3The neural network architecture was selected on the basis of extensive tests.
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Figure 4: Gramian Angular Fields and Markov Transition Field applied to our data

show respectively an example of LRP and SHAP explanations.

After having identified that the both XAI methods provide a similar explana-

tion regarding how the LSTM model operates, we mine the input data with two

techniques that encode time-series as images: the Gramian Angular Field (GAF)

in its sum and difference forms and the Markov Transition Fields (MTS) [21].255

Fig 4 shows an example of application of GAF and MTS over a generic Tn � T .

While the MTS does not seem to provide any deeper explanation, the GAF

does shed some light on the model operation. We know that samples at the

extremities of Tn are highly relevant to predict tn+1. By focusing on the GAF

(sum, the most left plot), we can appreciate that at the extremities of Tn (bottom260

left and top right part of the first plot in Fig 4), many values are positive and

many peak at 1. This means for the model, the most relevant samples of Tn are

those values of load that are either very low (these are also old values) or very

high (the most recent values of Tn).

We now characterize how computing intensive it is to execute the XAI265

tools. Table 1 and Table 2 show execution time and resource utilization for
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