
Edge Gaming: a Greening Perspective⋆

Francesco Spinellia,b,∗, Antonio Bazco-Noguerasa, Vincenzo Mancusoa

aIMDEA Networks Institute, Avda. del Mar Mediterraneo, 22, 28918 Madrid, Spain
bUniversidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain

Abstract

We tackle the problem of how to support gaming at the edge of the cellular network. The reduced latency and higher
bandwidth that the edge enjoys with respect to cloud-based solutions implies that transferring cloud-based games to the
edge could be a premium service for end-users. The goal of this work is to design a scheme compatible with MEC and
network slicing principles of 5G and beyond, and which maximizes the utility of a service/infrastructure provider with
time-varying edge node capacities due to the access to intermittent renewable energy. We formulate a multi -dimensional
integer linear programming problem, proving that it is NP-hard in the strong sense. We prove that our problem is
sub-modular and propose an efficient heuristic, GREENING, which considers the allocation of gaming sessions and their
migration. For the mentioned scenario, we analyze a wide variety of realistic configurations at the edge, studying how
the performance depends on i) whether the games have a static or dynamic workload, ii) the distribution of renewable
energy through nodes and time, or iii) the topology of the edge network. Through simulations, we show that our heuristic
achieves performance close to that achieved by solving the NP-hard optimization problem, except with extremely lower
complexity, and performs up to 25% better than state-of-the-art algorithms.

Keywords: MEC, Edge computing, Edge gaming, Sustainable computing, Renewable energy, beyond 5G, Resource
allocation and migration

1. Introduction

Cloud gaming allows users to play newest-generation
games requiring only an internet connection and a screen
(e.g., a TV screen, laptop, or mobile phone) by leveraging
on a cloud infrastructure. Games are located and pro-
cessed in a cloud server, which streams the content to
the end-user screen. Initial attempts were unsuccessful
(e.g., OnLive) mainly due to the lack of infrastructure,
but nowadays cloud gaming is having a second life. It is
a growing market—reaching by 2023 a total revenue of 8
billion dollars [2])—and many tech companies are launch-
ing cloud gaming services within their network infrastruc-
ture, for example Google with Google Stadia, NVidia with
Geforce Now, and AWS with Amazon Luna, to name just a
few. At the same time, one of the main features of 5G and
beyond 5G networks is the ability to place computing re-
sources closer to end-users, at the edge of the network. In
this scenario, paradigms such as Multi-access Edge Com-
puting (MEC) [3] arose, bringing forth novel use cases or

⋆This work is supported in part by the Regional Government of
Madrid through the grant 2020-T2/TIC-20710 for Talent Attraction
and by the TAPIR-CM project (S2018/TCS-4496). A preliminary
conference version has been published at IEEE WoWMoM’22 [1].

∗Corresponding author
Email addresses: francesco.spinelli@imdea.org

(Francesco Spinelli), antonio.bazco@imdea.org
(Antonio Bazco-Nogueras), vincenzo.mancuso@imdea.org
(Vincenzo Mancuso)

Lower

Ac
tio

n
Pr

ec
is

io
n

Higher

Lower Latency Higher

Figure 1: High level example of latency requirements for different
game actions.

verticals [4]. MEC gives the opportunity to exploit cloud
gaming at the edge, developing the concept of edge gaming.

We can highlight three main benefits of edge gaming
with respect to cloud gaming: i) notably reduced latency,
which makes the gaming experience immersive and inter-
active, with different nuances, as shown in Figure 1; edge
gaming will enable in particular fast-paced games, where
timing is fundamental—e.g. First Person Shooter (FPS)—
and competitive online multiplayer gaming. ii) At the
same time as allowing for tighter latency requirements,
allocating games at the edge will reduce network core con-
gestion [5], therefore reducing the possibilities of packet
losses while allowing higher video quality. Finally, iii) the
edge gaming paradigm could easily leverage the roll out
of new networking principles such as network slicing and

Preprint submitted to Computer Communications June 27, 2022

standardization bodies such as ETSI MEC [3].
However, constrained edge resources are scarce and vari-

able, and new techniques should be proposed to efficiently
provision resources to meet several quality and cost con-
straints.

In particular, it is expected that energy will become a
crucial bottleneck for the deployment of this kind of sys-
tems [6], and there is a growing interest in making infras-
tructures more sustainable by leveraging renewable ener-
gies [7, 8]. Indeed, edge nodes and datacenters could be
endowed with their own sources of renewable energy, which
means that MEC nodes would have time-varying capabil-
ities depending on the fluctuating energy resources, ris-
ing the possibility to migrate resources across several edge
nodes if necessary. This is particularly true for gaming
applications, as games have a highly dynamic behavior
in terms of both workload and instantaneous resource re-
quirements [9]. As a matter of example, we can imag-
ine that the workload required for the same game differs
when it renders a static scenario with respect to the case
where the scenario quickly changes (e.g., where the charac-
ter moves); such change of requirements may happen also
if the frame rate has changed from 30 to 60 fps.

Games could exploit migration at the edge because
migration delays are negligible in such scenario due to
the proximity of edge servers in residential areas [4]
and new efficient migration techniques that can be ex-
ploited [10, 11, 12]. Hence, the possibility of migrating
online gaming servers in few milliseconds would enable
seamless game sessions and therefore an increased QoE
for end-users even in a dynamic scenario with twofold
variability—in games requirements and nodes capabilities.
In such (possibly unsteady) scenario, resource allocation
and migration becomes one of the most challenging tasks.

Main Contributions

Motivated by the aforementioned, we focus on the prob-
lem of resource allocation in a sustainable edge-based on-
line gaming scenario, which we refer to as green edge
gaming. In this scenario, we aim at maximizing the util-
ity of the system taking into account revenue and costs
of energy, deployment and migration. Accordingly, we de-
velop a smart allocation and migration algorithm of online
game sessions under several realistic constraints.

The main contributions of our article are as follows.

• We develop the concept of green edge gaming with
time-varying edge node capabilities due to the fluctu-
ating availability of renewable energy. We show that
this concept is compliant with ETSI MEC standard-
ization and with modern networking principles such
as network slicing.

• We argue that this concept could lead to a premium
business scenario for which we formulate an accurate
multi -dimensional linear integer programming prob-
lem, showing that it is NP-hard in the strong sense
and sub-modular.

• We develop GREENING, an efficient online heuristic for
game session allocation and migration which maxi-
mizes the utility by maximizing the use of renewable
energy (green energy) instead of the one proceeding
from polluting sources (brown energy).

• We study the proposed algorithm in realistic settings,
where (i) the amount of available renewable energy is
obtained from a database of real values for solar and
wind energy generation whose average levels depend
on the time of the day; (ii) maximum capabilities of
edge nodes are taken from actual commercial equip-
ment; (iii) resource requirements of game sessions can
be either static (e.g., as an approximation for their
maximum possible values) or dynamically change at
a fast pace, in accordance with real measures on on-
line gaming. We are the first modeling and studying
the job’s dynamics in a gaming scenario at the edge.

• We evaluate the proposed algorithm against several
benchmarks, and we show it achieves near-optimal
performance without high complexity. The results
show that the proposal obtains values up to 25% bet-
ter than state-of-the-art approaches.

A preliminary version of our work has appeared in [1].
In this article, we provide new insights on realistic dynamic
aspects, and in particular on green energy dynamics and
dynamic gaming workloads, and explore a much richer set
of operational scenarios, therefore offering a more com-
prehensive overview of the green edge gaming paradigm.
Please note that the GREENING algorithm proposed in this
article represents an evolution of the preliminary GREENING
algorithm presented in [1].

Article Organization: The rest of this article is orga-
nized as follows. We provide an overview of previous re-
lated works in Section 2, and we define the system model in
Section 3. In Section 4, we formulate an instantaneous op-
timization problem, proving its NP-hardness and its sub-
modularity. In Section 5, we tackle the more general online
problem of green game session allocation. Section 6 high-
lights our main results and finally Section 7 presents our
concluding remarks.

2. Related Work

We present in the following an overview of the related
works, with an emphasis on cloud gaming, edge gaming,
and edge resource allocation and migration, as well as a
brief description of the differences of our work with respect
to the literature.

Cloud gaming: Cloud gaming has been well studied
and is becoming a reality, with some projections highlight-
ing that 20% of gaming sessions will be soon on cloud [6].

Several recent papers addressed this paradigm, focusing
especially on: i) server allocation, ii) costs and iii) QoS
guarantees. In [13], the authors study the server provi-
sioning problem for cloud gaming with the double goal of

2

reducing server running and software storage costs. Sim-
ilarly, the authors in [14] propose several heuristic algo-
rithms to solve the problem with both server allocation
costs (for server renting fees and data transfer) and the
bandwidth costs, taking into account real-world latency
constraints, while Wu et al. [15] design an online control
algorithm to reduce both latency (focusing especially on
queuing delay) and server provisioning costs.

Some works study resources utilization, using real
testbeds: Li et al. [16] focus on minimizing resources usage
when interference between co-located games at the same
server happens (i.e., decreasing QoS). According to [9],
games could fall into two categories: CPU-critical and
memory-input-output critical. Therefore, they propose
several task scheduling strategies in order to optimize re-
source allocation. In [17], the authors propose a framework
called T-Gaming that uses o�-the-shelf consumer GPUs,
prioritized video encoding, and adaptive real-time stream-
ing based on deep reinforcement learning with the goal of
reducing hardware and network costs.

Other works analyze the resources placement problem.
For example, Hong et al. [18] study the virtual machine
(VM) placement problem for maximizing both the pro�t
for service providers and the overall gaming QoE for end-
users while, in [19], the authors propose a distributed algo-
rithm to optimize VM placement in mobile cloud gaming
through resource competition.

Finally, only few papers consider energy in cloud gaming
systems. At high level, the authors in [20] discuss green
energy solutions for cloud gaming while in [21], Chuahet
al. propose a control algorithm to decrease GPU power
consumption while guaranteeing the Service-Level Agree-
ment (SLA).

Edge gaming: Compared to cloud gaming, edge gam-
ing is a newer concept tied up with edge computing.
Indeed, edge computing could help the cloud gaming
paradigm in both storage [22] and computation (by of-
oading tasks [23] or rendering whole games), minimiz-
ing the overall response time. In [5], the authors lever-
age edge servers to o�oad computation intensive tasks for
gaming, showing that this strategy could reduce network
delay and bandwidth consumption. Yates et al. [24] de-
velop a Markov model to optimize frame rate and lag syn-
chronization of server and player in low-latency edge cloud
gaming systems, employing an age of information metric
to characterize the system performance.

In an edge computing scenario with constrained com-
puting resources, migrations between di�erent servers are
both possible (due to the proximity and the fast connec-
tion between nodes) and necessary (because of the lim-
ited amount of resources and the variability of the sce-
nario), which opens new scenarios with multiple chal-
lenges. Braunet al. [11] propose a new migration protocol
to migrate a MEC gaming application through di�erent
edge servers while in [12] the authors have developed Ta-
laria, an in-engine content synchronisation solution. The
latter allows for unnoticeable game instance migration be-

tween edge servers, which is mandatory in order to main-
tain a satisfactory QoE for end-users in fast-paced games.

Edge resource allocation and migration: Alloca-
tion and migration of resources is a well-known problem,
which has been studied especially for centralized cloud sys-
tems [25]. Notwithstanding, edge nodes could be con-
strained for instance in bandwidth, energy, storage, or
computing capabilities, and it is di�cult to apply the same
strategies designed for cloud systems into an edge scenario
due to these multiple constraints on the edge resources.

Among the works that consider this challenge in edge
networks, [26] proposes a joint service placement and re-
quest scheduling scheme, while [27] proposes a randomized
rounding technique for the joint optimization of service
placement and request routing in a MEC network. Both
papers consider several constraints on edge nodes. Other
papers provide solutions from a di�erent perspective, and
they make use of a machine learning approach; for exam-
ple, Wang et al. [28] propose a joint task o�oading and mi-
gration schemes in a mobility-aware MEC network. Their
scheme is based on Reinforcement Learning (RL) and their
goal is to obtain the maximum system utility minimizing
the migration costs. In [29], the authors use a deep learn-
ing framework for proactive migration (based on service
replication) of MEC resources in a 5G vehicle scenario,
with the goal of minimizing the total energy expenditure,
without considering hardware limitations such as on mem-
ory and CPU cycles. In [30], the authors leverage on deep
reinforcement learning to minimize the average completion
time of tasks under migration energy budget, while in [31]
the authors investigate the task migration issue for multi-
ple UAVs in the MEC-based UAV delivery system. Specif-
ically, they study an energy-aware decision-making strat-
egy for the dynamic task migration in order to optimize
the UAV energy consumption. Wang et al. [32] propose
a Markov decision process framework for dynamic service
migration in order to follow users movement, without con-
sidering edge nodes capabilities. In [33], the authors pro-
pose a resource-aware VM migration technique, without
taking into account energy consumption, while the authors
in [34], on the opposite, focus on a VM migration mecha-
nism that is aware and adapts to the uctuating available
green energy, minimizing therefore the energy consump-
tion from non-renewable sources, but without considering
other constraints.

Novelty of our work: To the best of our knowledge,
the green edge gamingscenario, in which games are al-
located in nodes with time-varying capacity and in the
presence of both uctuating energy and workloads and of
several nearby edge nodes, has not yet been analyzed. In
this scenario migration of tasks may play a signi�cant role,
since they can not only reduce costs and pollution, but also
avoid congestion in the network core, with improved QoE
for end-users.

Many works in the cloud gaming area have tackled QoS
or QoE metrics (on delay and bandwidth especially), al-
though they do not incorporate other aspects as storage,

3

energy, or computation limitations, since these constraints
are usually not challenging in a cloud infrastructure due
to higher amount of resources. However, they are indeed
very important for the edge infrastructure. In this work,
we attempt to consider all the types of resources that may
become the bottleneck in the green edge gaming scenario,
namely bandwidth, delay, storage, node computation ca-
pabilities, and energy available. Besides, we consider a
twofold dynamic setting, where we consider that both the
capacity of the nodes (due to variable amount of renew-
able energy) and the requirements of the jobs (due to the
inherent varying nature of games speci�cations) are time-
varying, which has not been evaluated before in edge/cloud
gaming scenarios.

Most of previous works focused on a subset of the con-
straints here considered and the migration of tasks, if taken
into account, was mainly based on user's mobility. We
will show in this work that migrations have a fundamen-
tal role independently of user mobility. We assume that
the migration of already-on-the-system jobs can be per-
formed within nearby edge servers for two main reasons:
�rst, to optimize the use of energy and other resources,
but also to make space in the system for newly arrived
jobs while respecting all the considered constraints. This
is only possible in the edge context, since migrations can-
not be considered in legacy cloud gaming contexts [18].
Finally, we are the �rst ones that study the jobs' dynam-
ics in an edge gaming scenario, exposing how resources
should be delicately allocated at the edge with jobs hav-
ing dynamic workload. In this scenario, migrations are
necessary in order to maintain a high QoE for end-users.

3. System Model

Figure 2 shows a schematic of our reference scenario.
We model a layered 5G edge network infrastructure [35]
containing a set of edge game servers, with a set of net-
work links connecting these servers between them and with
the end-users. We denote the set of network links byZ ,
and the size of this set asZ = jZj . The set of edge com-
puting servers is denoted byN and it is composed ofN
servers. We consider two types of servers, which di�er in
their capabilities and proximity to end-users. Among the
N nodes,B servers reside onfar-edge nodes, each deployed
at a base station (BS), and primarily meant to serve users
of that BS, whereas the rest of the servers are each located
at a di�erent M1 node, placed in the edge/transport net-
work where the tra�c of multiple BSs converges [35]. M1
nodes have bigger capacities compared to edge nodes, in
terms of computation, energy, and memory capabilities,
although these capabilities must be shared across users
belonging to multiple cells.

We distinguish two di�erent types of energy powering
the servers, whether it comes from renewable (green) and
non-renewable (polluting) energy sources. Regarding the
green energy availability, we restrict ourselves to locally

Figure 2: 5G Edge Infrastructure compliant with ETSI MEC.

generated energy, and thus we only consider wind and so-
lar as renewable sources, which have already been applied
in edge computing contexts [36]. Non-renewable energy
is always available at M1 nodes, while edge nodes might
not have access to it. When a server can only access green
energy, its computing capacity is proportional to the avail-
able green energy. In all cases, we assume that green en-
ergy can be used at no cost, but brown energy has a non-
negligible cost.

The infrastructure is used to run online game sessions,
each of which is referred to as ajob. The operation time is
slotted, and we consider that the game sessions' require-
ments are random variables that may follow di�erent dis-
tributions. The jobs arriving over time are modeled by
a set J . The operator accepts to process the job in ex-
change to a monetary payment, such that a certain jobj
provides a revenueRj to the operator that includes many
factors, e.g. user's fees, percentages of game purchases,
advertising, etc. At the same time, jobs incur a cost of de-
ployment, management, and processing which depends on
the amount of computation, memory, and communication
resources, the energy required, and the duration of the job,
which are variable quantities that evolve over time. Fur-
thermore, jobs interruption (due to shortage of energy) or
migrations also incur a certain non-negligible cost.

In the following, we explain in detail the time-slotted
operation of the system, and the statistical model consid-
ered for energy uctuations, jobs requirements, and nodes
capabilities.

3.1. Resource allocation for Green Edge Gaming
The system operates in a time-slotted manner. We con-

sider a centralized decision maker that is aware of the state
(in terms of capability and load) of each server. At the
beginning of each time slot, there exists a set of newly
arrived job requests, as well as another set of jobs that
are already being served. Furthermore, the amount of re-
newable energy at each node and the energy and compu-
tation requirements of each job may vary from one time
slot to the next one. The system's task is to migrate on-
going jobs, interrupt them, and accept and allocate cur-
rent requests with the goal of optimizing the utility of the

4

scenario. The optimization is applied each time slot in
which something has changed, i.e., upon new jobs arrive,
the available level of green energy changes, or job require-
ments change. Note that considering dynamic energy lev-
els and workloads is challenging because past optimal job
allocations might soon turn into non-optimal and call for
recon�guration at a frequent pace. We will analyze di�er-
ent settings in which the frequency of these changes varies.

The network does not know the future duration of each
job, as game sessions have an unknown duration in na-
ture. However, we assume that at each time slot the deci-
sion maker knows the jobs requirements (bandwidth, de-
lay, memory, computation, and energy) for the starting
slot. This assumption can model a scenario where the net-
work can estimate and/or predict with high enough preci-
sion the average consumption of a certain job based on the
information available (type of game and device, previous
values, etc.) and the considered optimization time slot is
short enough, e.g., a few tens of seconds for a game whose
computing and rendering power typically change signi�-
cantly only upon signi�cant changes of scene.

3.2. Energy uctuation model

We consider that each edge node is equipped with on-site
renewable energy sources. In particular, we consider that
each edge node has installed a personal-use-size windmill
and a one-square-meter solar panel. Both energy genera-
tors amount to a total maximum capacity of 1:5 kW, as
per speci�cations of current commercial devices.1

Due to the unpredictability of wind/solar resources [37],
we model the green energy behavior in a stochastic man-
ner [38]. We make use of the dataset provided by a Bel-
gian operator called Elia to create samples that match the
trends and randomness of green energy generation in a
real power grid. In particular, Elia provides weekly fore-
casts of both wind [39] and solar [40] energy generation in
Belgium, with a granularity of 15 minutes, and we have
used the data generated for the period from 21st to 27th
of March 2022 for speci�c areas in Belgium.

In addition to the most probable forecast, the dataset
provides con�dence intervals. We will use such informa-
tion to generate random realizations of energy forecast
that conform to daily changes of green energy availabil-
ity. Figure 3 shows a weekly solar and wind power genera-
tion forecast together with con�dence intervals, with data
taken from the dataset made available by Elia. We can
observe that the amount of available green energy varies
considerably depending on the time of the day but also be-
tween di�erent days. For simplicity, we do not consider the
use of long-duration batteries at edge nodes, and therefore
green energy is not stored from time slot to time slot.

1E.g., see Tumo-Int 1000W Vertical Wind Turbine Generator or
GONGJU 1000W Vertical Axis Wind Turbine Generator for wind-
mills, and Jinko TIGER Pro 545W or Longi Hi-MO 4 455W for
solar panels.

Figure 3: Weekly solar and wind power generation forecast provided
by Elia for Flanders (wind data) and for a federal region of Bel-
gium (solar data), from the 21st to the 27th of March, 2022. Values
reported in the �gure are normalized to the solar peak average ex-
pected on the third day (about 3 MW for the entire region to which
the dataset applies). In this article, this forecast dataset was re-
scaled to account for the fact that only a limited number of solar
panels and a windmill can be mounted at an edge node, and used to
produce the numerical results presented in Section 6.

3.3. Job monetization and cost

Each accepted job brings a revenueRj to the operator,
which may depend on the requirements of the job. At the
same time, jobs require an operating cost that is propor-
tional to such requirements. In particular, the total cost
associated to jobj , which is denoted by Cj , is composed
of a cost of deployment, the cost of the non-renewable en-
ergy consumption, the possible cost from migrating the
job, and the interruption cost.

a) Deployment cost. It represents the cost of instantiating
and deploying resources to support the accepted jobs, and
it is denoted by C(d)

j .

b) Energy cost. This cost is proportional to the amount of
polluting energy consumed by the job at each time unit,
and hence is not constant over time. It is denoted byC(b)

j .

c) Migration cost. The migration cost represents the
induced operating cost derived from re-deploying, re-
scheduling and migrating resources among nodes within
the edge network.

For simplicity, we do not consider migrations triggered
by handovers as an optimization problem. We do so not
only because that topic has been covered in other stud-
ies [11], but also because we are interested in the evalua-
tion of interactive game sessions, which are typically sev-
eral minutes long and are played at home or in a static
environment [41].

d) Interruption cost. A job interruption leads to a loss
of performance and the termination of the user experi-
ence. Consequently, the cost associated to interruptions

5

(C(p)
j) is considerably higher than that of migrations and

can take out the revenue associated to that job, because of
the premium nature of the user's subscriptions. Accord-
ingly, jobs have to be scheduled immediately or rejected
rather than queued. A job interruption can occur both
when the availability of green energy decreases and/or al-
located jobs change their workload, causing the server's
computing or energy capacity to become insu�cient for
all running jobs, and migration cannot be enforced.

Note that our approach to revenue and cost values does
not consider topological factors such as the distance be-
tween nodes. In fact, those factors lead to negligible dif-
ferences in the edge scenario (cf. [4]).

3.4. Game requirements model

Jobs originate from devices such as mobile phones, lap-
tops, or smart TV. Thus, considering a large potential
number of users, we consider that jobs arrive according to
a Poisson process and have a duration extracted from a
Weibull distribution, which realistically models the dura-
tion of online game sessions [41].

Every job will need powerful dedicated resources to
work smoothly, in particular for energy [6] and comput-
ing power. The jobs, which we recall that refer to online
game sessions, must meet QoS requirements in terms of
delay and bandwidth, and they are characterized by their
requirements in terms of energy, memory, and computa-
tion consumption.

Let us describe separately these aspects.

3.4.1. Delay
The overall response delay is the total time between an

end-user submits his/her commands and the time the cor-
responding game frame is displayed to the user [42].

Response delay (D r) is composed of network delay (Dn),
processing delay (Dp), game logic (Dg) and playout delay
(Do), i.e., D r = Dn + Dp + Dg + Do [42]. The network
delay is basically the round-trip-time (RTT), which de-
pends on where the server is placed; the processing delay is
the delay to encode/decode and packetize commands and
frames (which could take from 5 ms to 100 ms, depend-
ing on many factors [12, 42]); game logic delay denotes
the time required by the game software to process a user's
command and render the next game frame that contains
responses to the command. This delay strongly depends
on the game, with a range from 5 ms [12] to 50 ms with
cases reaching even 130 ms [42]. Finally, the playout delay
is the time required for the client to receive, decode, and
display a frame, and it takes an average of 4 ms [12].

For simplicity, we work with average delays and focus on
the network delay budget of each job,D j , considering the
other delay components (which are less correlated to net-
work management and more dependant on the particular
game) as constant.

Furthermore, we assume that queuing delays at switches
are negligible, since ourpremium service could prioritize

packets, avoiding unnecessary delays. The network delay
budget is therefore spent over the links that connect the
user to the game server, the resulting delay being the sum
of average per-link delaysdz .

Since the time scale of our scheduling problem and the
duration of the time slots is in the order of minutes, we
also neglect the migration time because it is possible to
obtain seamless game migration across several edge servers
at millisecond timescale (cf. [12]).

3.4.2. Bandwidth
Focusing instead on the bandwidth requirements, we as-

sume that each job requires a constant downlink band-
width t j , chosen at random from a uniform distribution
with realistic bounds, while the uplink bandwidth is as-
sumed to be negligible [42]. This assumption of constant
t j follows from the fact that it is possible to play games in
streaming mode with several screen resolutions.

Furthermore, since we focus on the edge environment,
we assume that the downlink bandwidth of far-edge nodes
and M1 nodes is the bottleneck, rather than the per-link
bandwidth, and consequently we ignore the latter.

3.4.3. Memory
Each job j requires a per-time-slot memorysj at the

node where it is running. We assume that this memory
requirement is known and constant for the whole duration
of the job, although it randomly varies for each job.

3.4.4. Computation requirements and energy consumption
Both energy consumption and computation require-

ments of a game session are strongly correlated. In partic-
ular, we consider that there exists a linear relation between
both parameters, and that they may be di�erent for each
job. At a given time, we denote the energy consumption
of job j as ej , and its required computing power (in terms
of processing cycles) aspj .

We consider practical values for these requirements, ex-
tracted from some studies on gaming energy consump-
tion [6] (in particular, from the resources in [43, 44]), such
that we de�ne both a minimum and a maximum value for
both computation and energy consumption levels, as well
as a mean value. Furthermore, we consider that the energy
and computation for each job has a random value within
the range of practical levels.

We consider two di�erent scenarios regarding the jobs'
requirements. First, we will consider that these values re-
main constant during the whole duration of the job. The
second scenario is a practical generalization where the en-
ergy and computation requirements of a job vary over time.
In such case, we assume that the required values evolve as
a random walk process constrained within the maximum
and minimum values.

In general, by considering �xed computing workloads
and use of resources for each job, we make a tractable
simpli�cation which makes sense to evaluate a system in

6

Table 1: Notation used in this work

Notation Meaning

Cj Total Cost of job j
C (b)

j Energy cost (per slot) for job j
C (d)

j Deployment cost for job j
C (m)

j ; C (p)
j Migration and interruption costs for job j

J ; J Set of jobs and its size
N ; N Set of nodes (game servers), and its size

R j Revenue of job j
T Set of consecutive time slots

Z ; Z Set of links and its size
Tn Bandwidth of node n
t j Downlink throughput for job j
dz Delay incurred on link z
D j Maximum delay for job j

Gn ; En Green and total power at node n
ej Power required by job j
Pn Computing power at node n
pj Computing power for job j
Sn Memory capacity at node n
sj Memory required for job j

wjz = f 0,1g (Variable) 1 if job j passes through link z
x jn = f 0,1g (Variable) 1 if node n handles job j

which resources are always guaranteed to the user, hence
they are allocated based on the peak demand of the online
game session, which makes sense for a premium service like
the one studied in this article. It has been shown in the
literature that co-locating several games at the same server
that has to share un-isolable resources leads to a general
performance degradation of the QoS [16]. However in our
work we do not consider such degradation since we do not
have un-isolable resources.

With the above, we next formulate a utility optimiza-
tion problem on how to allot jobs to nodes so as to max-
imize the overall utility by serving as many jobs in full
and minimizing total costs. This means that the use of
green energy has to be prioritized, migrations should be
used only if they bring more revenue than cost, and job
interruptions should be avoided.

4. Instantaneous Utility Optimization

First, we consider the instantaneous version of our prob-
lem, meaning that revenues and costs are allocated at each
time slot, every job is allocated and executed in a single
time slot, and there are neither migrations nor job inter-
ruptions.

4.1. Problem formulation

We consider the following variables: Rj is the revenue
of accepted job j while Cj is its total cost. Cj includes
deployment C(d)

j and brown energy costsC(b)
j associated

to the computation required for the job.
Our decision variables, denoted byx jn for all j 2 J and

all n 2 N , are binary variables that indicate whether job j
is allocated at edge noden (x jn = 1) or not (x jn = 0).

wjz is another binary variable, whose value is 1 if jobj
passes through linkz and 0 otherwise.

Table 1 summarizes the notation used in the article. The
problem is therefore formulated as follows:

max
X

n 2N

X

j 2J

(Rj � Cj) x jn ; (1a)

s.t.:
X

n 2N

x jn � 1; 8j 2 J ; (1b)

X

j 2J

t j x jn � Tn ; 8n 2 N ; (1c)

X

j 2J

pj x jn � Pn ; 8n 2 N ; (1d)

X

j 2J

ej x jn � En ; 8n 2 N ; (1e)

X

j 2J

sj x jn � Sn ; 8n 2 N ; (1f)

X

z2Z

dzwjz � D j ; 8j 2 J ; (1g)

where:

ˆ The objective function (1a) expresses the net utility;

ˆ Constraint (1b) states that job j can only be allocated
to a single noden;

ˆ Constraints (1c) to (1f) ensure that a job's place-
ment does not violate the server's capacity in terms
of: downlink bandwidth (Tn), processing power (Pn),
available energy (instantaneous powerEn), and mem-
ory (Sn);

ˆ Constraint (1g) ensures that the average delay is guar-
anteed for each job;

ˆ All weights t j , pj , ej , sj , and dz , capacities Tn , Pn ,
En , Sn , and delay budgetsD j take positive values.

The above described problem is non-trivial to solve if no
server can accommodate all jobs. In that case, the problem
is NP-Hard, as shown next.

Theorem 1. Constraints (1b) and (1c) alone make the
problem NP-hard (in the strong sense).

Proof. We reduce the Multiple Knapsack Problem (MKP)
to our problem formalization. According to [45], the MKP
could be written as follows: considering a set ofK knap-
sacks with capacity Wk each,k 2 f 1; : : : ; K g, and a set of
I items to store (K � I) where each itemi has positive re-
ward r i and positive weight wi , i 2 f 1; : : : ; I g. The objec-
tive expression is

P K
k=1

P I
i =1 r i x ik ; which has to be max-

imized under the constraints that
P I

i =1 wi x ik � Wk ; 8k,
and

P K
k=1 x ik � 1; 8i , with x ik being a binary variable

indicating whether item i is allocated to knapsackk.

7

We consider the special case whereCj = 0 and pj ; ej ; sj ,
and dz are all equal to 1, whereasPn ; En , and Sn are equal
to J and D j = Z . In this special case, constraints (1d)-
(1g) are all redundant and always satis�ed.

With this special con�guration, our problem is a MKP
with K = N knapsacks of capacityTn and I = J items
with weights t j and rewardsRj . This means that the MKP
is a particular case of our problem. Therefore, we could
argue that our problem is complex as much as the MKP,
which is NP-hard. Since this reduction can be built in
polynomial time, it follows that our problem is NP-hard.
However, we highlight that due to this reduction to MKP,
our problem is NP-hard in the strong sense, meaning that
no polynomial-time approximation scheme is known [45]
unlessP = NP .

4.2. Sub-modularity
We now show that the problem in Section 4.1 is sub-

modular, which leads to useful performance guarantees.
First, let us re-formulate the problem as a set-optimization
problem. Let S � J � N denote the set of selected single-
service placements, where (j; n) 2 S means that job j is
placed at noden. Let �(S) denote the objective value of
(1a), so that (1) becomes

max �(S) (2a)

s.t.: S � J � N (2b)

(1b) to (1g): (2c)

Theorem 2. The optimal value of � is a monotone in-
creasing and sub-modular set function.

Proof. Consider that a real-valued set functionf is mono-
tone increasing if 8 S1 � S 2 � S , f (S1) � f (S2). More-
over, the function f (�) is sub-modular if 8 S1 � S 2 �
S and u 2 S n S2, it holds that f (f ug [S 1) � f (S1) �
f (f ug [S 2) � f (S2).

The monotonicity of the solution of our problem is
clear because expandingS (i.e., putting more jobs and/or
nodes) enlarges the solution space of (2a) and therefore in-
creases its optimal value. The solution is also sub-modular
since, for a given amount of green energy, any increase in
the number of allocated jobs will increase the amount of
required polluting energy at the nodes, and therefore the
overall utility obtained by including more jobs will be pro-
gressively reduced. For this class of problems, it is known
that we can construct a greedy algorithm that iteratively
selects the element that maximizes (subject to the con-
straints) the objective function, such that this algorithm
achieves a performance guarantee of 1� 1=e [46].

We present in Algorithm 1 the legacy GREEDYalgorithm
that solves problem (2) in polynomial time with perfor-
mance guarantees using its submodularity property. Since
the structure of the algorithm is well known and derives
from [46], we omit a detailed explanation about it and refer
to [46] for further information.

Algorithm 1 GREEDY Algorithm

1: Input: Network topology, N , jobs J (with param-
eters t j ; pj ; sj ; ej ; D j 8j 2 J); Tn ; Pn ; Sn ; Gn ; En 8n 2
N ; dz 8z2Z

2: Output: Job-to-node placement mapS
3: Initialize: S = ; ; J ; = J ; S; = J � N
4: while 9(j; n) 2 S ; s.t. S [(j; n) satis�es (2c) do
5: (j ?; n?) arg max(j;n)2S ; �(S [(j; n))
6: S S [(j ?; n?)
7: J ; J ; n j ?

8: S; = J ; � N
9: end while

5. Online Problem with Migrations and Penalties

The problem in Section 4 can be extended to the case
where jobs last more than the duration of a time slot and
arrive asynchronously. This situation is important because
it represents the practical problem to be solved online in
a real system. For this case, the objective function of the
optimization problem becomes

max
X

� 2T

X

n 2N

X

j 2J

(Rj (�) � Cj (�)) x jn (�) (3)

where T is the time interval (a set of consecutive slots)
over which we optimize the utility of the system, and
where we recall that the total cost Cj (�) is obtained as
Cj (�) = C(d)

j (�) + C(b)
j (�) + C(m)

j (�) + C(p)
j (�). In (3), we

consider a one-time revenue rather than a per-time-slot
revenue, such that Rj (�) is a non-zero value only at the
time slot of the arrival of request of acceptance for jobj ,
and it does not depend on the job duration. Similarly,
the deployment cost (C(d)

j) is only non-zero at acceptance

time, whereas the penalties for migration (C(m)
j) and for

job interruption (C(p)
j) are only applied in the time slots in

which the corresponding events occur. The only term that
appears in every time slot (due to its possible uctuation)
is the variable cost incurred by consuming non-renewable
energy (C(b)

j). In this optimization problem, the objective
function in (3) must satisfy the same constraints as the
problem in (1a), i.e., (1b){(1g), except for the fact that
these constraints have to hold at any time slot� 2 T .

In this new formulation, jobs can arrive in di�erent time
slots, and decisions must be made online at the slot bound-
aries. It is worth noting that, if migration and job inter-
ruption costs are neglected, the problem is equivalent to
the one shown in Section 4, because it is enough to max-
imize the objective function slot by slot. Therefore the
sub-modularity property will hold also for the online job
allocation problem under such simplifying assumptions.
Instead, if we consider those penalties, sub-modularity is
not guaranteed. However, with realistically small migra-
tion costs and rare job interruptions, the problem can be
considered,in practice, still sub-modular or as a small per-
turbation of a sub-modular case. From that, it is intuitive

8

Algorithm 2 GREENING{ Proposed heuristic algorithm

1: Input: N , active (J (�)) and new (J (+)) jobs with
current parameterst j ; sj ; pj (�); ej (�); D j 8j 2 fJ (�) [
J (+) g,
network parameters Tn ; Pn ; Sn ; E (�)

n 8n 2 N ,
dz 8z 2 Z , and previous allocation S(� � 1) .

2: Output: S(�) ; � (�)

3: Initialize: S(�) S (� � 1) ; � (�) 0;
4: if Jobs or Nodes energy levels changethen
5: for n 2 N do
6: En; e�

P
j :(j;n)2S (�) ej (�)

7: Pn; e�
P

j :(j;n)2S (�) pj (�)

8: while E (�)
n < E n; e� or P (�)

n < P n; e� do
9: J n f j j (j; n) 2 S (�) g

10: N (�)
g sort (N ; G(�)

n � En; e�)
11: j (m) ; n(m) Migration-GREENING(J n ; n)
12: if n(m) == � 1 f interruption g then
13: j (m) arg minj :(j;n)2S (�) f Rj g
14: J (�) J (�) n f j (m) g
15: � (�) � (�) � C(p)

j (m)

16: S(�) S (�) n
�

(j (m) ; n)
	

17: else if n(m) 6= n f migrationg then
18: � (�) � (�) � C(m)

j (m)

19: S(�)
�

S(�) n (j (m) ; n)
	

[
�

(j (m) ; n(m))
	

20: end if
21: En; e�

P
j :(j;n)2S (�) ej (�)

22: Pn; e�
P

j :(j;n)2S (�) pj (�)
23: end while
24: end for
25: end if
26: Execute: Acceptance-GREENING(Algorithm 2-a)
27: � (�) � (�) �

P
(j;n)2S (�) C(b)

j f Substract energy costg

to consider that we can extend the greedy heuristic ap-
proach also to the online version of the problem, as shown
in the following.

5.1. Proposed online heuristic

For sub-modular problems, it is known that the simple
strategy of maximizing the instantaneous utility at each
time that a new job arrives achieves high performance.
This approach precludes the possibility of rejecting a job
just because it might prevent the acceptance of future jobs.
However, this strategy does not limit us to only use the
GREEDYalgorithm in Algorithm 1. Instead, we propose
a heuristic algorithm that, although it retains the greedy
spirit of Algorithm 1, is able to conform to the current
state of the servers and the available green energy. Our
proposal, namedGREENING, operates in a per-time-slot ba-
sis, and it takes its decision only based on the current
state of the network. For the sake of readability, we have
split the description of the algorithm in two sequential

Algorithm 2-a Acceptance-GREENING{ Proposed
heuristic algorithm (Part II: Acceptance of new jobs)

1: Continue from line 25 in Algorithm 2
2: En; e�

P
j :(j;n)2S (�) ej (�) 8n 2 N

3: N (�)
g sort (N ; G(�)

n � En; e�)
4: De�ne: �S(�)

(j 1 ! j 2) ;n as
�

(j 2; n) [fS (�) n (j 1; n)g
	

5: for j arr 2 J (+) do
6: for n 2 N (�)

g do
7: if (j arr ; n) satis�es (1c){(1g) then
8: J (�) J (�) [f j arr g
9: S(�) S (�) [f (j arr ; n)g

10: � (�) � (�) + Rj arr � C(d)
j arr

11: break loop overn
12: end if
13: end for
14: if j arr =2 J (�) f New job not placedg then
15: for n 2 N (�)

g do
16: J arr ;n f j j (j; n) 2 S (�) and

�S(�)
(j ! j arr) ;n satis�es (1c){(1g) g

17: j (m) ; n(m) Migration-GREENING(J arr ;n ; n)
18: if n(m) 6= � 1 then
19: J (�) J (�) [f j arr g
20: S(�) S (�) [f (j arr ; n)g
21: S(�)

�
S(�) n (j (m) ; n)

	

[
�

(j (m) ; n(m)); (j arr ; n)
	

22: � (�) � (�) + Rj arr � C(d)
j arr

� C(m)
j (m)

23: break loop overn
24: end if
25: end for
26: if j arr =2 J (�) then
27: Reject job j arr

28: end if
29: end if
30: end for
31: Continue in Algorithm 2

stages and one auxiliary function: The general descrip-
tion of our proposed algorithm is shown in Algorithm 2,
which includes the entire procedure; however, the latest
part of the algorithm, which handles the acceptance of
newly arrived jobs, is disclosed in Algorithm 2-a due to
space limitations. Finally, a migration function called by
both Algorithm 2 and Algorithm 2-a will be presented in
Algorithm 2-m. The migration function is called in two
circumstances: when an arriving job is not allocated with
a direct placement and when there is a change of green
energy levels due to changes in energy generation or in
gaming workloads. Next, we detail the algorithm and each
one of its parts.

The algorithm is triggered at the beginning of each time
slot. It has two main stages. One is dedicated to react and
re-schedule active jobs in the possible event that either the
energy availability at the nodes or the energy requirements

9

Algorithm 2-m Migration-GREENING

1: Input: J (m) (Set of candidate jobs to migrate)
n (node that needs to migrate jobs)

2: Inherit: State and variables of Algorithm 2
3: Output: j (m) (job to migrate)

n(m) (node wherej (m) migrates)
4: Initialize: n(m) n
5: for j c 2 J (m) do
6: for n0 2 N (�)

g n f ng do
7: if allocating j c to n0 satis�es (1c){(1g) then
8: n(m) n0

9: j (m) j c

10: break double loop overJ (m) and N (�)
g

11: end if
12: end for
13: end for
14: if n(m) == n f No node to migrateg then
15: n(m) � 1
16: end if

for the jobs change with respect to the previous time slot.
The second part focuses on the admission control and op-
timizes the resource allocation in order to accept new jobs
if it is possible.

Re-allocating ongoing jobs. (Algorithm 2). First, the
GREENINGalgorithm checks whether the amount of avail-
able renewable energy has changed at any node. In the
case in which the jobs energy and computation require-
ments can dynamically change, the algorithm also moni-
tors if these values have evolved. If any of these events
happen, some nodes might no longer have enough power
to serve all their allocated jobs, and therefore some jobs
must be migrated or interrupted.

The algorithm proceeds node by node and, for each node
with not enough resources (in terms of either computation
or energy resources), it examines if some job can be mi-
grated to other|less loaded|nodes in order to avoid job
interruptions. This search of both jobs to migrate and
feasible destination nodes is carried out by the migration
function Migration-Greening presented in Algorithm 2-
m. This function takes as input a node n and a set of
candidate jobs J (m) to be migrated from node n, and it
outputs which one of the candidate jobs has to be migrated
(j (m)) and toward which node is the migration conducted
(n(m)).

Importantly, before starting the search for possible mi-
grations the nodes are sorted by the amount ofavailable
green energy, in descending order.2 For that, let us in-
troduce some useful notations. We de�neEn; e� as the
total energy required by all the jobs currently running in

2Sorting nodes according to the total available level of green en-
ergy is also possible, as shown in our preliminary work [1], although
using the residual energy is more robust to dynamic workloads.

node n. Pn; e� is similarly de�ned for the computation re-
sources required at noden. From the de�nition of En; e� ,
it follows that the amount of green energy currently avail-
able at noden is obtained by subtracting En; e� from the
total amount of green energy in the node (G(�)

n), where
a negative value ofG(�)

n � En; e� indicates the amount of
polluting energy consumed at noden. Let us further de-
note the set of nodes ordered based onG(�)

n � En; e� as
N (�)

g , and the node index in the i -th position of N (�)
g as

� i . From this notation, it follows that N (�)
g is ordered such

that (G(�)
� i � E � i ;e�) � (G(�)

� i +1 � E � i +1 ; eff) for any i < N .
This ordering is motivated by the fact that nodes that have
more available green energy incur less costs.

If no other node can accommodate any of the jobs in
node n, Algorithm 2-m returns that the destination node
is � 1. In this latter case, when no job can be migrated, the
job with the smallest revenue (since the interruption cost
is comparable to the revenue) in the node is interrupted.
This process is repeated until all energy and computation
constraints are satis�ed.

Migrating function. (Algorithm 2-m). The previously
mentioned migration function operates a simple search on
the set of potential migration destination nodes and checks
the feasibility of migration based on the problem's con-
straints. For each candidate job j c in the input set J (m) ,
we evaluate if j c can be migrated to other noden0.

In order to check the feasibility of the migration, the
search starts from the node with moreavailable green en-
ergy and the list of nodes follows by the amount ofavail-
able green energyN (�)

g . In this manner, we give priority
to the nodes that reduce the cost of energy consumption.
The search stops as soon as a destination node is found.
Once we �nd a node n0 2 N (�)

g n n that can allocate a
job j c 2 J (m) , we set job j c as the migrating job (j (m))
and noden0 as the destination node (n(m)), which are the
outputs of the function. If there is no feasible pair (j (m) ,
n(m)), the function returns n(m) = � 1.

Acceptance of new jobs.After handling the continuity of
the jobs that are already in the system,GREENINGfocuses
on the admission of newly arrived jobs. For that, it tries
to allocate them one by one, in a sequential order. For
each one of the arrived jobs, the algorithm veri�es if the
job �ts in any of the servers. This veri�cation follows the
same available green energyorder N (�)

g as described in
the previous stage, such that the nodes with the highest
available green power have priority in the job allocation.

The algorithm tries a direct placement on the node at
the top of the list, and moves to the next node only if
the allocation is not possible according to any of the con-
straints. This is aligned with the greedy heuristic of the
instantaneous problem, although considering just energy
levels rather than overall allocation utilities. Yet, the prob-
ability of making the same decision as the greedy algorithm

10

is high, because nodes with higher unused green energy are
likely to be the ones o�ering the highest utility.

However, if no node in the list can take a newly arrived
job, GREENINGtries to migrate some of the already allo-
cated jobs so that the new job can �t in the system. This
section of the algorithm substantially di�ers from a stan-
dard greedy heuristic. In order to do this, the algorithm in-
vokes again the migration function Migration-Greening
from Algorithm 2-m on the already allocated jobs. In this
case, however, there exists a di�erence with respect to the
other call to the function. Before, the set of candidate jobs
J (m) was the whole set of jobs allocated to noden, i.e.,
J (m) = f j j (j; n) 2 S (�) g. Now, since we need to have
enough space to allocate the new job, we restrict the set of
candidate jobs to be composed only of the jobs enabling
the new admission. This set is given byJ (m) = f j j
(j; n) 2 S (�) g \ f j j �S(�)

(j ! j arr) ;n satis�es (1c){(1g) g, where

we have de�ned �S(�)
(j 1 ! j 2) ;n as the resulting allocation set

obtained from substituting the already allocated job j 1 by
the new job j 2, i.e., �S(�)

(j 1 ! j 2) ;n =
�

(j 2; n) [fS (�) n(j 1; n)g
	

.
As before, the nodes are ordered by the amount of avail-
able green energy. If the migration function does not �nd
any migration combination that makes enough room for
the new job, the job is rejected and its revenue is lost.
Otherwise, the job is allocated, bringing a revenue ofRj

and a cost of deployment ofC(d)
j , and the migration is

committed with an incurred cost C(m)
j .

Eventually, the algorithm discounts from the objective
function the cost due to the amount of polluting (non-
renewable) energy consumed during the time slot.

Note that the described migration function is greedy and
so Algorithm 2 is still a greedy algorithm, in the sense that
it makes instantaneous decisions without considering what
could happen in the future. However, allowing migrations
can only improve the utility obtained with a scheme with-
out migrations, be it Algorithm 1 or Algorithm 2 simpli�ed
by skipping the call to the migration function. Therefore,
we can expect that Algorithm 2 will o�er better perfor-
mance guarantees than the value 1� 1=e of Algorithm 1.

To conclude, the complexity of our GREENINGheuristic
described in Algorithm 2 is O(N 2J 2), which would reduce
to O(NJ 2) in case of direct placement of the arriving jobs,
without migrations.

5.2. ETSI MEC and network slicing compatibility

In this subsection we comment on how green edge gam-
ing is compliant to both ETSI MEC and network slicing
concepts.

In the case of ETSI MEC, the MEC Orchestrator
(MEO), which has an overview of the complete MEC sys-
tem and therefore could be deployed in more centralized
nodes, could consider the objective function (1a) to place
games in its system. Indeed, one of the MEO's roles con-
sists in selecting appropriate MEC host(s) for application

instantiation based on constraints, such as latency, avail-
able resources, and available services [3]. To this aim, the
MEO talks directly to the Virtual Infrastructure Manager
(VIM), whose role is to physically deploy resources. MEC
hosts provide compute, storage and network resources for
the MEC applications and they could be deployed in edge
and M1 nodes, where games are actually installed. Finally,
games could be deployed as MEC applications, leveraging
on severalon-board MEC services, such as Radio Network
Information, location and tra�c management to sustain
the appropriate QoE level. Edge and M1 nodes could be
connected through several reference points: with the MEO
through a Mm3 link and they could communicate between
each other through aMp3 link [3]. Indeed, Figure 2 shows
also a high level example of the edge gaming scenario im-
plemented through ETSI MEC.

Green edge gaming could also leverage network slicing
to guarantee resources to servers. A service provider could
reserve a slice of resource in order to satisfy end-users in
terms of bandwidth computing power.

6. Numerical Evaluation

In this section we evaluate numerically the proposed al-
gorithm on a set of green edge gaming scenarios, and we
provide a performance comparison with alternative online
gaming solutions. To perform our experiments we built
a simulator with Matlab 2021a, in which we implemented
our solution as well as several baselines and state-of-the-
art alternatives.

We study the performance of the considered solutions in
a set of di�erent con�gurations. We are interested in ana-
lyzing how the di�erent parameters and possible topologies
of the edge computing system impact the results. For that,
we run a set of experiments, where in each of the experi-
ments we vary one aspect of the network (e.g., the arrival
rate of jobs, the energy dynamics, the relation between
number of far-edge nodes and M1 nodes, etc.). Among the
compared algorithms, we consider cases where migrations
are not considered, or where the type energy (renewable or
not) is not taken into account, so as to better understand
the impact of each of the features.

We start by describing the general parameters of the
scenarios considered, and later we will detail each variation
and its implications.

6.1. Simulation scenario and setup

We study the problem in a metropolitan area where
users leverage online game servers in far-edge and M1
nodes, with the QoS requirements described before in
terms of computing power, latency, memory, and band-
width. For each of the settings considered in the follow-
ing, we evaluate di�erent sizes of the edge network, i.e., a
set of values of the number of nodesN , always within the
range compatible with the number of edge and M1 nodes

11

Table 2: Simulation parameters

Edge server Job

Bandwidth 350 Mbps U(10 ; 30) Mbps

Computing
3 � 3:5 GHz (Far-edge)

5 � 3:5 GHz (M1)

Random walk within

315 to 385 Mops

Memory
3 � 64 GB (Far-edge)

5 � 64 GB (M1)
U(750 ; 850) MB

Power
1.5 kW (Far-edge)

2 kW (M1)

Random walk within

70 to 130 W

Delay U(2 ; 15) ms U(50 ; 150) ms

Revenue - U(0 :03; 0:0367) $

Duration - W eib(2504 :8; 2:9637)

Deployment
0.01 $ (Far-edge)

0.015 $ (M1)
-

Migration - 0:0003 $

Interruption - 100% of the revenue

Energy - 0:35 $/kWh

that will be initially deployed in a metropolitan frame-
work, in line with previous studies [35]. We will vary the
total number of nodes between 4 and up to 48.

We simulate a green edge gaming environment during
a whole day, and repeat the experiment several times un-
til we obtain small con�dence intervals. We solve Prob-
lem (3) with multiple approaches, on a slot-by-slot basis.
We consider that each time slot lasts one minute, which is
much shorter than a typical online game session (� 40 min-
utes [41]) and much longer than any job migration mecha-
nism (lasting from tens of milliseconds [12] up to seconds)
or game session launching (which takes less than a sec-
ond [10]).

6.1.1. Network topology and server speci�cations
The network topology is hierarchical, as displayed in

Figure 2, and the connectivity in between servers is as-
sumed to be a full mesh. Throughout the experiments, we
will vary the portion of the nodes that belong to the M1
type.

Server capabilities are based on a NVidia blade
server [47] for edge computing. In particular, we consider
that far-edge servers dedicate 3 blades to our use case,
whereas M1 nodes dedicate 4 blades. Each of these blades
is endowed with a CPU of 3:5 GHz for computing power,
64 GB of RAM memory and requires 450 watts (W) of
energy. From this, we consider that the far-edge nodes re-
quire 1:5 kW in order to work at full capacity, while M1
nodes require 2 kW.

Besides, we assume that the bandwidth and incurred
delays for the edge nodes are constant and inline with 5G
values; speci�cally, we consider that each node has a down-
link bandwidth of 350 Mb/s and incurs a latency of the
order of 5-10 ms.

6.1.2. Job statistics
We assume that the time of arrival of jobs follows a

Poisson process, such that the number of arrivals in each
time slot is given by a Poisson random variable with rate� .

In general, we will scale the arrival rate proportionally to
the number of nodes, such that� can be generically written
as � = �N , where � is a constant.

The duration of a job is extracted from a Weibull distri-
bution, which is known to precisely characterize the dis-
tribution of duration of online game sessions [41]. In par-
ticular, we consider a Weibull distribution with parameter
k = 2 :9637 and� = 2504:8, which yields an average dura-
tion of about 40 minutes for a typical session, and which
also yields that the probability of having durations above
two hours is negligible.

The computation requirement of each job ranges from
315 to 385 Mcycles/s, which amounts to 10% to 15% of
a standard server CPU core. The energy requirements of
the game sessions are strongly correlated with the com-
putation requirements, and they are randomly generated
within the range 70{130 W, with a mean of 100 W. These
values are obtained from studies on online gaming require-
ments (cf. [6, 43, 44]). We provide more information about
energy dynamics in Section 6.1.3.

In terms of bandwidth requirements, we consider that it
can vary uniformly from 10 to 30 Mb/s, which matches the
requirements for video resolutions that range from 720p
to 4K [48]. Other game session requirements (memory,
delay, CPU) are inline with previous works [6, 9]. For
instance, the maximum delay allowed for each game ses-
sion is a random variable uniformly distributed between
50 and 150 ms, and RAM requirements are also uniformly
distributed in the interval from 750 to 850 MB.

With the above numbers, a system workingat full capac-
ity at all the nodes can allocate on average up to 14 jobs
in each far-edge node and a maximum of about 20 jobs
at each M1 node. Note that, for the already mentioned
dependency on renewable energy, this peak of capacity is
likely never reached in the far-edge nodes.

We would like to note that, for the assumed speci�ca-
tions of both nodes and jobs, the system is saturated (i.e.,
the servers are using all the available resources for active
jobs) for � > 0:6, while � < 0:1 implies generically that
all nodes have always room for more jobs and every job is
accepted and served.

6.1.3. Energy uctuation dynamics
Let us explain how the energy availability at the edge

nodes and the jobs energy requirements evolve over time.
We focus �rst on the availability of green energy at the

nodes. We consider that the green energy available at each
node (and locally generated) changes every 15 minutes. In
contrast with our previous work [1], we consider that the
energy available presents space-time correlation. We gen-
erate random samples of green energy availability from the
datasets provided by Elia for wind [39] and solar [40] en-
ergy generation. For each node we select an energy pro�le
from a di�erent day of the forecasting dataset (see Fig-
ure 3 for a sequential visualization of the pro�le for seven
di�erent days).

12

Every 15 minutes, each node changes its available green
energy following the given statistics (in terms of mean,
minimum, and maximum expected value) from the ran-
dom day pro�le. The speci�c value is obtained as a ran-
dom sample of a PERT distribution [49] characterized by
the mean, minimum, and maximum values provided by the
energy pro�le. The PERT distribution, which is highly re-
lated to the well-known Beta distribution, is usually con-
sidered for modelling and estimating the e�ect of uncer-
tainty. The total green energy available is then the sum of
both wind- and solar-generated resources.

The far-edge nodes are assumed to rely only on the local
green energy available (apart from a minimum constant en-
ergy that ensures the functioning of the server). If no green
energy is available at a certain time, jobs in the far-edge
node must be migrated to another node or interrupted.
This implies that the capacity of the far-edge nodes varies
over time. Actually, in our experiments, the average capac-
ity of the far-edge nodes ranges between 25% and 80% of
the nominal capacity (i.e., between 375 W and 1:2 kW out
of a nominal peak power of 1:5 kW). On the other hand,
the M1 nodes have always access to the same amount of
energy (2 kW), irrespective of the amount of green energy,
which in our experiments is covered by green sources for
up to 1:2 kW, i.e., up to 60% of the power available at an
M1 node can be green.

We will consider two cases for the M1 layer: The default
case (green M1) , in which the green energy availability at
M1 nodes follows the same statistics as the one for far-edge
nodes. The only di�erence in this case between nodes is
that M1 nodes use polluting energy to obtain the remain-
ing amount of energy until 2 kW of power. Hence, they
can secure a certain level of reliability in the system at the
expense of a higher cost due to the cost of energy. The
second case (brown M1) is the case in which M1 nodes
make only use of the general electricity grid, i.e., they only
consume non-renewable energy, while they keep enjoying
the constant 2 kW. With these two cases we try to under-
stand the impact of heterogeneity in the access to green
energy resources.

Next, we describe the dynamics of the energy/power re-
quirements for the game sessions. We also consider two
di�erent cases. The �rst one is the realistic scenario in
which the energy requirements of a particular game ses-
sion vary at each time slot (dynamic workload). This
continuous variation is inherent to the nature of gaming.
We consider that the power required by a job for the next
time slot follows a random walk with standard deviation
5 W. We limit the value of this variable to the maximum
and minimum values provided before (70 and 130 W, re-
spectively), since in practice a game has a limit on both
maximum and minimum requirements. The second case is
the simpli�ed case in which the energy required by a job is
randomly picked at the start of the game session but then
it remains constant with this initial value throughout the
duration of the session (static workload). This partic-
ular case is an abstraction to the approach in which the

jobs are allocated the maximum amount of resources that
they will ever need, such that there is no need of moni-
toring the current demand, but at the same time implies
overprovisioning and hence a waste of resources due to the
inevitable variation of the real requirements, as the worst-
case (maximum) value will not be frequently reached.

6.1.4. Monetary gains and costs
Each job provides a monetary gainRj that ranges be-

tween 0:03$ and 0:0367$. The revenue of the job is as-
sumed to be uniformly distributed in this range. The mo-
tivation to pay a higher fee is that higher-revenue jobs
will have less chances of being interrupted. On the other
hand, the migration cost of a job is �xed to 0:0003$, which
is also the deployment cost at the far-edge nodes; the de-
ployment cost for jobs allocated to M1 nodes is considered
to be 50% more expensive than that of far-edge nodes, due
to the longer distance. In case of a job interruption, the
penalty is a monetary cost equal to the revenue previously
paid by the user (Rj). This value follows from the fact
that this use case is a premium service scenario, for which
the userexpectsto receive a great QoS, which would not be
possible in case of interruption of an active game session.

With respect to the cost of energy consumption, we as-
sume a price of 0:35$ per kWh, which is a realistic value in
line with current prices in Europe (by �rst half of 2022).
We consider that the energy generated from renewable
sources does not incur any monetary cost, since it is lo-
cally generated at the edge node and cannot be stored for
long term. Hence, only the energy from non-renewable
(polluting) sources will incur the cost of 0:35 $/kWh. We
assume that the energy obtained from the general grid is
coming entirely from non-renewable sources.3

6.1.5. Metrics and algorithms
In our experiments, the main performance metric is the

system utility, which is computed on a per time slot basis.
The average system utility is proportional to the objective
function of our online optimization problem (3), so that it
represents the performance of the tested algorithms.

Besides the average utility, we also consider other met-
rics to shed light on the behavior of the system. For that,
we also evaluate the user's QoE by means of comparing
the normalized time played, which we de�ne as the ratio
between the sum of the service o�ered to all activeac-
cepted jobs over the total aggregate nominal duration of
all (accepted and rejected) jobs. This metric provides us
with information about the percentage of users that are
satis�ed with the system.

In order to provide a broader perspective of the function-
ing of the algorithms, we also provide the average amount

3The portion of energy generated from renewable sources varies
strongly for di�erent countries and for di�erent periods of the year
or of the day. Our simulations are directly applicable under the as-
sumption of mixed generation just modifying the price of the energy
based on the percentage of green energy pg as 0:35(1 � pg) $/kWh.

13

of jobs in the system, as well as the amount of rejected, in-
terrupted, and migrated jobs. We omit the study of other
typical QoS metrics like jitter or packet losses because in
the edge gaming scenario here considered their values are
typically small and thus they are less relevant.

The above metrics are computed in terms of average and
95% con�dence intervals for 8 di�erent algorithms:

ˆ Solver is an algorithm that solves integer linear pro-
gram (3), evaluated at each time slot over a time
horizon of one time slot (jT j = 1). It uses the Mat-
lab intlinprog function with a timeout of 40 seconds
for each simulated time slot, in order to avoid long
lasting experiments. A single experiment showed in
what follows can require up to one week to complete
notwithstanding the imposed timeout. Due to such
huge complexity, we only provide the solution with
this algorithm in a subset of the experiments.

ˆ GREENINGis our proposed heuristic de�ned in Algo-
rithm 2.

ˆ PFPJ-1is derived from [33], which presents a resource-
aware allocation and migration algorithm designed for
IoT Cloud applications. It clusters servers into highly
and lightly loaded subsets, and enforces migrations
from highly to lightly loaded servers to enforce load
balancing. We have added a power constraint in the
original algorithm for a fairer comparison with our
scheme.

ˆ PFPJ-2 is the original placement algorithm de�ned
in [33].

ˆ GREENING-NoMigis a simpli�ed version of GREENING
where we disable the migration function, so that the
heuristic becomes very similar to the baseline greedy
approach of Algorithm 1, although with energy con-
text information used in the sorting of candidate
nodes for job allocation.

ˆ Randomperforms probabilistic placement and does not
consider migrations. It considers a random job place-
ment with all nodes having equal probability to be
chosen.

ˆ Free-Green is a green-energy-aware probabilistic
placement that does not consider migrations. In this
case, the random job placement assigns probabilities
to nodes proportionally to the level of green energy
available at the node but yet not assigned to other
jobs.

ˆ Total-Green is a variant of Free-Green in which the
random job placement assigns probabilities to nodes
proportionally to the total level of green energy avail-
able, independently on whether the energy is already
in use or not.

To obtain the values reported in this article, Solver
takes several days on a Dell T640 server with 128 GB of
RAM and 40 logical cores with a variable clock rate (but
intlingprog uses only 1 thread per instance, so we paral-
lelized the number of experiment replicas rather than the
single experiment), while all other algorithms need just a
few minutes.

6.2. Results
To assess and start comparing the behavior of the 8 al-

gorithms described before, Figure 4 reports the average
number of online gaming sessions active at an edge node
over time, for a 24-hour period taken at random from the
Elia's dataset used in this article. Here we use a baseline
network con�guration with 9 far-edge nodes, 3 M1 nodes,
and a total intensity of arrivals � = 0 :25N (expressed in
terms of gaming session requests per slot). This load cor-
responds to a moderately high utilization of edge game
resources of about 75% of the total available computing
resources. M1 nodes are allowed to use green energy ac-
cording to its availability, according to the green M1 case
described above. Figure 4a shows statistics for far-edge
nodes with static workload, while Figure 4b refers to M1
nodes in the same experiment. The �gures clearly show a
dependency on the availability of green energy, which al-
lows far-edge nodes to host more jobs in the central hours
of the day. Solver is particularly able to o�oad jobs to
far-edge servers as soon as possible, followed byGREENING
and GREENING-NoMig. PFPJ-1 and PFPJ-2 perform simi-
larly, while the other algorithms are less reactive to green
energy level changes. From this �gure, it is clear that
enforcing migrations or not has an impact, although lim-
ited. However, the way the algorithms account for the
presence of green energy makes a bigger di�erence. Dif-
ferences are further exacerbated if we consider the case of
dynamic workload in Figures 4c and 4d. In this case, the
average of active jobs decreases with all algorithms, which
tells that gaming session deviations from the average be-
havior require more resources, as expected. This e�ect
is particularly detrimental for algorithms that cannot en-
force migrations. Indeed,GREENING-NoMigdrastically re-
duces the number of active jobs in M1 nodes. Both under
static and dynamic workloads, the Free-Green algorithm
tends to balance the load across all available nodes, so
that it is the only algorithm under which the occupancy
of M1 nodes increases also in the central hours of the day.
Total-Green behaves almost asRandom, because the total
level of green energy uctuates for all nodes following the
same daily trend. All other algorithms tend to move jobs
to the far-edge when the green energy is more abundant.
This also tells that the network is not saturated when the
green energy level is higher although the load is quite high.
Indeed, consider that, with the parameters of Table 2, a
far-edge node can handle up to 15 jobs, on average, while
an M1 node can host up to 20 jobs.

To see how the above described behaviors map onto sys-
tem utility, Figure 5 depicts average results for GREENING

14

	Introduction
	Related Work
	System Model
	Resource allocation for Green Edge Gaming
	Energy fluctuation model
	Job monetization and cost
	Game requirements model
	Delay
	Bandwidth
	Memory
	Computation requirements and energy consumption

	Instantaneous Utility Optimization
	Problem formulation
	Sub-modularity

	Online Problem with Migrations and Penalties
	Proposed online heuristic
	ETSI MEC and network slicing compatibility

	Numerical Evaluation
	Simulation scenario and setup
	Network topology and server specifications
	Job statistics
	Energy fluctuation dynamics
	Monetary gains and costs
	Metrics and algorithms

	Results

	Conclusions

