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Abstract—The COVID-19 pandemic has affected our lives and
how we use network infrastructures in an unprecedented way.
While early studies have started shedding light on the link
between COVID-19 containment measures and mobile network
traffic, we presently lack a clear understanding of the implica-
tions of the virus outbreak, and of our reaction to it, on the
usage of mobile apps. We contribute to closing this gap, by
investigating how the spatiotemporal usage of mobile services has
evolved through different response measures enacted in France
during a continued seven-month period in 2020 and 2021. Our
work complements previous studies in several ways: (i) it delves
into individual service dynamics, whereas previous studies have
not gone beyond broad service categories; (ii) it encompasses
different types of containment strategies, allowing to observe
their diverse effects on mobile traffic; (iii) it covers both spatial
and temporal behaviors, providing a comprehensive view on the
phenomenon. These elements of novelty let us lay new insights
on how the demands for hundreds of different mobile services
are reacting to the new environment set forth by the pandemics.

I. INTRODUCTION

The COVID-19 pandemic has affected lives worldwide in a
way that is unprecedented in modern times. The response mea-
sures that governments have adopted to contain the virus have
changed the lifestyle of billions. Under severely restrained
mobility regulations, the telecommunication infrastructure has
played a key role, allowing people to communicate, work,
entertain and even carry out physical activity in the most
normal way possible. As proven by early studies, this has
determined significant changes in the use of networks [1], [2].

Mobile services and COVID-19. In this paper, we con-
tribute to the body of knowledge about the impact of the
COVID-19 emergence on network usage. More precisely, we
focus on mobile services, or apps, and investigate how their
consumption has evolved throughout periods characterized by
different pandemic containment measures.

To this end, we analyse the demands generated by hun-
dreds of apps in the whole territory of France. We observe
the modification of such usages across seven months from
2020 to 2021, and correlate them with the heterogeneous
restrictions enacted by the local government over that time
frame. Our study builds on mobile data traffic information
collected in the nationwide infrastructure of Orange, a major
telecommunications operator with a 35% market share and
over 20 million clients in France, and a 99% coverage of
the population. The spatial scale and penetration level of the
data lets us explore also the geographical dimension of mobile
service usage changes.

Fig. 1: Timeline of COVID-19 cases and responses in France.

As detailed in Section II, the perspectives we take in our
work, combining individual mobile services, multiple response
measures, and both temporal and spatial dimensions of the
phenomenon, have not been explored by previous studies on
the impact of COVID-19 on network traffic.

COVID-19 measures in France. The COVID-19 contain-
ment measures adopted in France resulted in three lockdowns,
spaced out by periods with varied responses, as illustrated in
Figure 1, along with the 7-day moving average of daily cases
in France [3]. The first lockdown (March 17 – May 10, 2020)
forced the majority of public places, including schools and
restaurants, to close, social gatherings to be forbidden, and
personal mobility to be limited to essential tasks. As in many
countries in Europe, the subsequent period (May 11, 2020
– October 29, 2020) was characterized by a progressive lift
on the restrictions, with a re-opening of public spaces under
the requirement to preserve social distancing. The growth of
COVID-19 cases later (October 17 – October 30, 2020) pushed
authorities to enforce a 9 PM – 6 AM curfew, first in a few
major cities and then to the majority of the country. A second
nationwide lockdown followed (October 31 – December 14,
2020), with similar measures to the first one, except for
primary and secondary schools staying open. Afterwards, non-
essential services started to re-open, and travel restrictions
were lifted, but an overnight curfew was maintained between
8 PM and 6 AM (December 15, 2020 – January 15, 2021).
The curfew was later (January 16 – April 2, 2021) anticipated
to 6 PM. A new increase in infections determined varied local
measures, and ultimately a third national lockdown (April 3
– May 4, 2021); non-essential travel was again prohibited,
and schools closed, but with lighter measures overall. This
period was again followed (May 5 – May 30, 2021) by a
progressive lift of restrictions. On a side note, vaccination
started in France on December 27, 2020, but the incidence was
not substantial during the observed period, with only 16.35%
of the population fully vaccinated by May 30, 2021 [4].



Contributions and key insights. Our study covers the
period from October 2020 to May 2021, hence encompasses
two lockdowns (L1 and L2 in the following), and three curfew
periods (C1, C2, and C3). The rationale is that previous studies
have already explored the impact of the first lockdown and
subsequent period on mobile traffic; our aim is instead inves-
tigating if and how diverse response measures have affected
mobile service usage at later stages of the epidemics.

By adopting such an approach, we provide new insights
on the spatial and temporal dynamics of both total traffic and
demands for specific services, which stem from the succession
of more and less restrictive pandemic response strategies. Our
key insights, later detailed throughout the paper, are as follows.
� We unveil the extremely rich and variegate range of

reactions that individual mobile services have in front
of restrictions of different severity; such diversity was
hidden in previous analyses that have focused on traffic
aggregates or service categories –as we show that apps on
same categories can have very heterogeneous behaviors.

� We prove that there are services that are more affected
than others by later-stages control measures in both time
and space patterns, and detail representative cases.

� We reveal that the pre-COVID-19 weekly activity peaks
of the total mobile data traffic have changed in a non-
negligible manner one year into the pandemic, due to
shifts in the consumption of a few high-volume services.

� We expose the de-urbanization of mobile service usage
during lockdowns, and show how less restrictive measures
such as curfews reverse that phenomenon.

II. RELATED WORK

The impact of the pandemic on internet traffic has been
extensively studied in the past year, at different levels across
the network. Most works have focused on Internet traffic at
large. At Internet Service Providers (ISPs) located in Central
Europe, traffic increased by 15% to 20% during the initial 2020
lockdown, with a much higher growth than in a typical year.
Such dynamics can be ascribed to the restrictions mandated by
governments, resulting also in dynamic changes in weekday
patterns that started looking similar to those in weekends [6],
[2]. Similar trends occurred in large ISPs in the United States,
with an increase from 30% to 60% of peak traffic rates
during the first quarter of 2020 [7]. Not only operators, but
companies that provide online services also noted significant
traffic changes; for instance, Facebook initially observed short
periods of sharp increase in their edge network traffic, with a
subsequent steady increase of load; they also reported user
behavior variations, such as an increase of interest in live
streaming services [8]. The sharp traffic changes due to new
user behaviors have been also seen at smaller scales: a 90%
reduction in downlink traffic was recorded in the university
network traffic, due to the classes becoming remote; at the
same time, uploads grew due to the much more frequent usage
of locally-hosted online teaching platforms [9]. The pandemic
also impacted latency in the Internet, with delays values 3 to
4 times higher than in 2019 [10].

When looking at the specific context of mobile networks,
the overall trend is different: restrictions in the UK resulted
in a decrease of 24% in downlink mobile data traffic over the
whole country. The changes were sharper across cosmopolitan
areas, which experienced a 50% mobile data traffic decrease,
while rural areas were more stable after the lockdown [1]. A lot
of attention was in fact drawn by mobility measurements based
on mobile network metadata: notably, network metrics showed
a steep decrease in the population mobility over the whole UK
during the first two weeks after the initial movement restric-
tions, followed by a slight uniform increase afterwards; also,
city-level analyses proved that people tended to move from
the more dense metropolitan areas to the urban outskirts just
before the measures took place [1]. At a national level, network
mobility metrics showed a 65% decrease in displacements over
France during the first nationwide lockdown, for both short-
and long-range trips [5]. The phenomenon started one week
before the lockdown was enforced, and, also in this case, fluxes
could be observed leaving large conurbations towards more
rural or touristic places. Restrictions during the first French
lockdown also disrupted rush-hour commuting patterns.

Table I summarizes the related work to date, and highlights
how our study complements and goes beyond those available
to date. Specifically, the vast majority of previous analyses
focused on the impact of the first lockdown on network usage,
and none investigated later stages of the pandemic response,
where the enacted measures became more varied, and the pop-
ulation increasingly accustomed to those. Also, most research
has considered aggregate traffic volumes, typically in ISPs or
Internet Exchange Points (IXPs), possibly disaggregated into
few macroscopic service categories; very limited attention has
been paid to individual mobile services, which are at the core
of our study. In the light of these considerations, our work
offers new insights on how the COVID-19 pandemic affected
the spatiotemporal consumption of hundreds of mobile apps.

III. MEASUREMENT DATA

Our study hinges on extensive mobile network data, whose
collection, preprocessing, and ethical aspects are detailed next.

A. Data collection

The mobile data traffic information we use was collected in
the production network of Orange servicing the metropolitan
France territory. The operator employed passive measurement
probes to monitor the Gi, SGi, and Gn interfaces that connect
Gateway GPRS Support Nodes (GGSNs) and Packet Data
Network Gateway (PGWs) to external Public Data Networks
(PDNs), gathering data about the traffic generated by mobile
subscribers using 2G, 3G and 4G connectivity. This basically
represents the full mobile demand, as 5G generated less than
1% of the total mobile data traffic as of May 2021 [11].

The mobile service generating each IP session was identified
via a combination of Deep Packet Inspection and proprietary
traffic classifiers deployed by the operator. Each IP session was
geo-referenced at the level of Base Transceiver Station (BTS),
leveraging the User Location Information (ULI) contained in



Study Temporal coverage Spatial coverage Network Metrics
Lutu et al., [1] First wave UK, at regional and city levels Mobile network Total data traffic, mobility metrics
Pullano et al., [5] First wave France, at regional level Mobile network Mobility metrics
Feldmann et al., [2], [6] First/second waves Europe, US, Madrid ISP, IXP, mobile network Total traffic and 5 service categories
Liu et al., [7] First wave US, nationwide ISP Total traffic
Bottget et al., [8] First wave Thirteen countries worldwide Edge network Facebook traffic and 4 categories
Favale et al., [9] First wave Turin, Italy, at a campus level LAN Total traffic
Candela et al., [10] First wave Five countries in Europe ISP Latency
Ours Second/third waves France, nationwide / communes Mobile network Total traffic and 285 individual apps

TABLE I: Summary of previous studies of the impact of the COVID-19 pandemic on telecommunication infrastructures.
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Fig. 2: Examples of spatial interpolation of Voronoi cells for
4G BTSs (gold) on four random communes (black) of France.

Packet Data Protocol (PDP) Contexts and Evolved Packet
System (EPS) Bearers over the GPRS Tunneling Protocol
control plane (GTP-C). Based on this, the operator computed
the hourly traffic demand for each mobile service at every
BTS, by aggregating the uplink and downlink traffic of all
users attached to the same BTS during one-hour intervals.

B. Data preprocessing

The data collected by the operator for this study encom-
passes all 370; 189 BTSs servicing in territory of Metropolitan
France, for the period between October 30, 2020 and May 31,
2021. As a spatial granularity at BTS level is exceedingly
high for a nationwide study, we further aggregated the hourly
traffic demand of each mobile app over 35,180 communes, i.e.,
local administrative units. To perform the spatial interpolation
of BTS-level traffic to communes zoning, we proceed as
illustrated in Figure 2. First, we tell apart BTSs into three sets
according to their technology, i.e., 2G, 3G, or 4G. Second, for
each set of BTS separately, we use the coordinates of BTSs as
bi-dimensional anchors to compute a Voronoi tessellation of
space; we assume each Voronoi cell to represent the coverage
area of the corresponding BTS, and the BTS traffic to be
uniformly distributed over the cell [12]. Third, we assign to
each commune a fraction of the mobile app traffic recorded
at each BTS and hour, proportional to the percentage of
the Voronoi cell surface intersecting the commune territory.
Finally, we compute the hourly demand for a service in a given
commune as the sum of the contributions from all BTSs.

The final data we use in the paper describes the hourly
traffic generated in every commune of France by 285 mobile
services. Those encompass a wide range of apps for video
and audio streaming, gaming, messaging, social networking, or
travel planning, just to name a few categories. The monitored
apps include all most popular and traffic-exacting services: a
non-comprehensive list of sample apps is in Table II.

C. Ethics considerations

The dataset supporting this study consists of hourly de-
mands for individual mobile apps recorded in French com-
munes. This representation entails a high spatiotemporal ag-
gregation that merges the IP sessions of thousands of sub-
scribers or more, hence granting that no individual data subject
can be re-identified from the data. In fact, traffic demands
over communes do not configure as personal data according
to the General Data Protection Regulation (GDPR) [13], and
our research does not involve risks for the mobile subscribers.
In addition, the data collection and aggregation occurred in full
compliance of article 89 of the GDPR, under the supervision of
the Data Protection Officer (DPO) of the operator, and upon
authorization by the French National Commission on Infor-
matics and Liberty (CNIL). Specifically, the aggregation was
performed in a secure platform at the operator premises, and
the raw measurements were deleted immediately afterwards.

IV. TEMPORAL ANALYSIS

In the first part of our analysis, we focus on the temporal
dynamics of mobile service usage over the whole country of
France, looking at both demand volumes and typical weekly
patterns throughout the studied period.

We will use the following notation. Let ds
c(t) be the demand

for service s ∈ S recorded in commune c ∈ C at time
t; we then refer to dc(t) =

P
s d

s
c(t) as the total demand

generated by all services in c at t, and to ds(t) =
P

c d
s
c(t)

as the demand for service s at time t over the whole country.
Similarly, the global demand at t is d(t) =

P
s

P
c d

s
c(t). Let

us also define six macroscopic time periods, each associated
with different pandemic containment measures: TL1, TC1, TC2,
TL2, TC3 denote the time span of the periods in the subscript.
Also, T21 is the concatenation of all these periods.

A. Demand volume analysis

For the volume analysis, we reduce the temporal granularity
of the data to days, since this is a better resolution to highlight
behaviors over the whole seven-month time span. Hence, the
time index t indicates the day over which the demand is
aggregated. We first briefly explore trends in total mobile data
traffic, and then delve into the dynamics of individual apps.

1) Total traffic: The daily evolution of the total traffic
volume recorded in the nationwide Orange network between
October 2020 and May 2021 is displayed in Figure 3. A
standard score normalization is used in this plot, and in all
subsequent time series, so as not to disclose the actual traffic
loads, which are considered sensitive by the operator.



Fig. 3: Total traf�c volume transiting in the Orange mobile
network during the observed seven-month period, as a color
scale (top), time series (middle), and linear interpolation over
time periods with different responses (bottom).

Formally, the standard score of daily total traf�c inT21 is

z(t) =
d(t) � 1

jT21 j

P
t 2 T21

d(t)

1
jT21 j

r
P

t 2 T21

�
d(t) � 1

jT21 j

P
t 2 T21

d(t)
� 2

: (1)

The �gure clearly shows howL1 determined a continued
drop in mobile data traf�c;L2 had a softer effect, but still
curbed the traf�c volume. The linear interpolations at the
bottom of Figure 3 emphasizes these trends. After both lock-
downs, mobile traf�c tended to recover fairly slowly, asC1 and
C3 are both characterized by fairly constant loads in time.C2
is the only period where mobile traf�c starts growing, which
used to be the norm in pre-pandemic times [14]; the reduced
growth at the end ofC2 can be ascribed to the fact that several
densely populated departments of France already started local
lockdowns a couple of weeks before the nationwide one.

Insights. Our analysis corroborates the �ndings of previous
studies, con�rming that the stringent restrictions enforced dur-
ing lockdowns hinder the utilization of mobile networks [1],
and expose that this occurs also at later stages of the pandemic
and not only during responses to its �rst wave. A new element
unveiled by our study is that milder measures such as curfews
do not instead curb mobile traf�c, but allow for a slow
recovery towards conventional trends of previous years.

2) Individual mobile services:An interesting question is
whether the dynamics above homogeneously characterize all
mobile services, or if the pandemic had varying impact on
diverse apps. To answer the question, we describe each service
as its normalized daily time serieszs(t) over the seven-month
observation period1; formally,

zs(t) =
ds(t) � 1

jT21 j

P
t 2 T21

ds(t)

1
jT21 j

r
P

t 2 T21

�
ds(t) � 1

jT21 j

P
t 2 T21

ds(t)
� 2

: (2)

It is worth noting that this normalization makes the times
series of different apps directly comparable, removing biases
due to assorted popularity and service categories (which
entail very diverse loads), and burstiness of usage (which
causes heterogeneous variances). Therefore, we can compute

1Here, we �lter out from the data and subsequent analysis ofzs (t ) all
vacation periods, which, as we will later see, can severely affect apps usage.
By doing so, we ensure that our results do not re�ect (dis)similarities among
services caused by the way they are consumed during holidays.

(a) (b)

Fig. 4: (a) Matrix of pairwise distances between traf�c volume
time series of apps. (b) Stopping rules versus cluster number.

Euclidean distances between the normalized time series of
each couple of services, which results in the pairwise distance
matrix in Figure 4a. The presence of clear clusters of apps
in the matrix calls for further investigation. We thus run a
hierarchical clustering based on the Ward algorithm [15], and
use the Silhouette score [16] and Dunn index [17] as stopping
rules to determine the best number of clusters in the matrix.
Figure 4b shows that both rules indicate2 18 clusters as the
optimal number. Moreover, the Silhouette score highlights5
clusters as a good partitioning of services.

We provide a comprehensive representation of the traf�c
volume evolution of the clusters of individual mobile services
in Figure 5. The5 macro-clusters tell apart high-level behav-
iors: I contains apps with higher weekend traf�c,II apps with
decreasing traf�c,III apps with noisy dynamics,IV apps with
higher working hours usage, andV apps with increasing traf�c.

The macroscopic behaviors are too coarse to be informative,
hence we focus on the micro-clusters. The full list, including
a brief description of their main characterizing features, as
representative examples of apps, is in Table II. The table,
jointly with Figure 5, reveals the substantial complexity and
variety of the temporal evolution of single mobile services
under the hood of the simpler view offered by total traf�c.
Many micro-clusters show trends that are resilient to the
COVID-19 containment measures enforced throughout our
period of observation: some, likeB, H or N, show steady
patterns across all periods; others, likeC, are characterized by
a growing popularity; and others, likeG, suffer from a fairly
consistent loss of users. Instead, our interest is on dynamics
that can be ascribed, at least in part, to the epidemics response.

In that sense, the micro-clustersA, D, E and F all show a
signi�cant increase in traf�c volumes during the lockdowns.
Sample time series of speci�c services in those clusters are
in Figure 6. Although there are discrepancies that make the
Ward algorithm cluster the apps separately, we can observe
in all cases sustained higher traf�c duringL1 (in E, such as
Pinterest in Figure 6c, and inF, such as Xiaomi Mi Home in
Figure 6d), duringL2 (in A, such as Houseparty in Figure 6a),
or during bothL1 andL2 (in D, such as Disney+ in Figure 6b).

2The two stopping rules measure clustering ef�ciency in terms of (ideally
small) intra-cluster variance and (ideally high) inter-cluster separation. The
rules pinpoint the best number of clusters as a high value before a steep
decrease that denotes a clear drop in the quality of intra- and inter-clustering.



Cluster Description Samples
A No weekly pattern, increasing in L1, C2 or L2; gaming and messaging apps mainly WhatsApp, League of Legends
B Higher usage in weekends, steady over time; video streaming and gaming apps mainly Net�ix, Youtube, Steam, PUGB
C Higher usage in weekends, increasing over time; gaming apps mainly MineCraft, Fornite
D Higher usage in weekends, increasing around L1 and L2; video streaming and gaming apps mainlyDisney+, Apple Video, CounterStrike
E No weekly pattern, increasing in proximity of L1 and L2 Pinterest
F No weekly pattern, increasing in L1; gaming and conferencing apps mainly Zoom, Clash of Kings, Angrywords
G No weekly pattern, decreasing over time Battle.net, Shazam
H Slightly higher usage in working hours, steady over time N26, Dropbox
I Higher usage in working hours, decreasing in time; business apps mainly Evernote, Twitter, Microsoft Of�ce
J No weekly pattern, increasing in C3 Amazon Prime Video, WeChat
K No weekly pattern, noisy over time; OS update services mainly Microsoft Windows Update
L Slightly higher usage in weekends, noisy in time; gaming apps mainly World of Warcraft, Playstation
M No weekly pattern, slightly increasing in C2 Psiphon, Coyote
N Higher usage in working hours, steady over time; of�ce applications mainly Gmail, Skype, Google Docs
O No weekly pattern, increasing in C2 and C3 Telegram, TikTok, Uber
P No weekly pattern, increasing in C2 and substantially more in C3; location-based services mainlyTripAdvisor, Foursquare, Spotify
Q Higher usage in working hours, increasing in C2 and C3 Google Maps, Waze, AirFrance
R No weekly pattern, increasing over time Twitch, Google Meet

TABLE II: List of 18 micro-clusters issued by the clustering in Figure 5, with a brief description and representative apps.

The reason for such dynamics is simple: videoconferencing,
on-demand television, social media, or smart-home managers
are all examples of mobile services that are more frequently
consumed at home, where people spent a much larger portion
of time during lockdowns. Importantly, we recall that we are
looking at traf�c generated at BTS, hence by mobile devices
connected to the cellular network, and not,e.g., to home
Wi-Fi hubs. Therefore, the services in the clusters above all
demonstrate that a non-negligible portion of the Orange user
population is actually employing 2G, 3G and 4G technologies
as a way to access the Internet from home.

Another notable behavior induced by COVID-19 is that of
micro-clusters that show a dual behavior to the one above.
Namely, the apps inO, P, and Q are curbed by lockdowns,
and record an increased usage during the relaxed measures
in curfews. A closer look reveals that the vast majority of
these services are directly or indirectly related to personal
mobility: the limitations to movements determined byL1 and
L2 clearly reduce their utility. Interestingly, the dynamics
are slightly different in apps for general mobility and for a
more leisure-oriented mobility. The �rst case includes services
with a marked working-hour pattern (inQ, such as Google
Maps or Waze in Figure 6g) and with more regular usage
(in O, such as Uber or Apple Maps in Figure 6e), and show
moderate increase in usage in bothC2 andC3. Instead, apps
targeting mobility during free time (inP, such as Foursquare
or TripAdvisor in Figure 6f) show a dramatic increase in usage
in C3, which we attribute to the combination of more relaxed
measures and inviting weather conditions during that period.

To conclude our analysis, we underscore how our approach
of considering individual apps is critical to reveal the richness
of behaviors above. For instance, Figure 7 shows the traf�c
time series of a number of popular video streaming services.
These mobile services undergo very heterogeneous evolutions
in the observed seven months, with volumes that are steady
(e.g., YouTube, Net�ix) and possibly higher during working
hours (e.g., Skype), declining (e.g., Zoom), or heavily depen-
dent on pandemic response measures (e.g., Amazon Prime
Video). In fact, these services are classi�ed indifferentmicro-

clusters by our analysis. Had video streaming been treated as
a single category, all this diversity would have been lost.

Insights. Individual mobile services create an entangled
ecosystem of usages, and are affected by pandemic response
measures in very diverse ways. Therefore investigations of
traf�c volumes aggregated over all services, or even over
services belonging to a same category, hides the actual com-
plexity of the usage dynamics, and can lead to misleading
conclusions. Instead, our �rst in-depth look at the behavior
of hundreds of apps, allows identifying a variety of micro-
behaviors. Speci�cally, we observe how many services are
simply not affected by the COVID-19 emergence, whereas
others experience substantial and diversi�ed variations in their
demands depending on the containment measures enacted.
Clear links can be found between the nature of the latter
services, and their speci�c reaction to restrictions.

B. Demand pattern analysis

An interesting question is whether COVID-19 measures had
not only an impact on the volumes of traf�c transiting in
the mobile network, but also on the temporal distribution of
such traf�c. For instance, previous works have showed that the
typical difference between the hourly traf�c pattern in working
days and weekends tends to disappear during a lockdown [6].
Here, we look at hourly traf�c –i.e., the time indext denotes
one speci�c hour– and examine weekly patterns in both total
and per-app traf�c. Also, we use equivalent weekly patters
computed from a three-month control period in 2019 as a
reference, so as to understand if and how the daily activity
has changed due to COVID-19 responses. We denote byT19

the set of hourst in such a control period.
We �rst focus on typical weekly dynamics that are known to

capture most of the variance in the telecommunication activity
of individuals [18], [19], and condense the seven-month traf�c
dynamics into amedian week signature[20]. Formally, we
compute the median traf�c in each hour of the week asw(t) =
� 0:5 f d(t)jt 2 M (t)g, where� 0:5 denotes the median of the
argument set, andM (t) is the set of same hours of the week as
t (e.g., Mondays at 8 AM). Then, the median week signature



Fig. 5: Normalized time series of the daily traf�c volume of
individual apps during the seven-month observation period.
The left labels highlight18 micro-clustersA–R, while the
right labels mark5 macro-clustersI–V, obtained with the
hierarchical clustering. Dashed vertical lines separate theL1,
C1, C2, L2, C3 periods introduced in Figure 1.

is obtained by applying the standard score normalization in (1)
to w(t) instead ofd(t). Note that disjointM (t) are used for
T21 andT19, so as to obtain independent median weeks during
and prior to the COVID-19 pandemic.

Figure 8 superposes the median week signatures for the
considered COVID-19 response period and in the 2019 con-
trol period. While peak traf�c hours stayed the same, mi-
nor changes can be accredited to the enacted restrictions.
First, remote working sensibly reduced the need for daily
commuting, which explains the disappearance of the early-
morning traf�c peak in 2020-21. Second, evening peaks during
the pandemic are relatively higher than in 2019, which is
likely caused by mobility limitations that forced people at
home from late afternoon onwards, consistently through the
observation period. Third, we con�rm the reduced diversity
between working and weekend days, which tend to be closer
during COVID-19 than they were before.

We then repeat the analysis on a per-app basis. We compute
ws(t) = � 0:5 f ds(t)jt 2 M (t)g, for each mobile services, and
derive the app-speci�c median week signature applying in (2)
to ws(t) instead ofd(t). In this case, we also produce separate
median weeks forTL1, TC1, TC2, TL2, andTC3, so as to assess
the impact of restrictions on the weekly patterns of app usage.

As median week signatures are also standardized, they can
be directly compared. We compute, for each service inde-
pendently, the dynamic time warping between its signatures
in different periods,i.e., L1, C1, C2, L2, C3, and in the
2019 control period. Figure 9 shows the result for all mobile
services, along columns; the �rst �ve rows show the distances
of the 2019 median week and those inL1, C1, C2, L2, C3,
respectively. The following rows report the distances between
different periods in the epidemics,i.e., L1–C1, L1–C2, L1–L2,
L1–C3, C1–C2, C1–L2, C1–C3, C2–L2, C2–C3, andL2–C3.

Most apps do not show any signi�cant change in their
weekly pattern (i.e., have near-zero or negative distances in
all rows), hence the way they are consumed is hardly affected
by the pandemic. Among the mobile services that show some
diversity (i.e., have positive distances), those on the left (group
1 in the plot) are less popular apps with inherently bursty
dynamics that tend to vary all the time, even within weeks of
2019. More interesting is the group of services that show a
clear distance between the control and studied period, but no
differences in periods within the COVID-19 pandemic (group
2 in the plot). The weekly usage pattern of these apps clearly
reacted –in auniform way– to the restrictions.

The median weeks of representative mobile services in this
group are illustrated in Figure 10. A video calling application
such as Skype adjusted to a strongly work-oriented activity
pattern, with high peaks in the morning and early afternoon,
which also over�ew to weekends. Major video streaming
services are also in the group of interest. Both YouTube and
Net�ix saw their early morning peaks disappear, along with
home-work commuters who created such demands; given the
large volume of traf�c of these apps, this also determines the
same effect observed in the total traf�c in Figure 8. In addition,
the incidence of evening traf�c grew dramatically during
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Fig. 6: Time series of traf�c volumes for different individual mobile services. The gray shade highlights Christmas vacations,
which have been disregarded to avoid biases, as explained in footnote 1. Dashed lines separate the different restriction periods.

(a) ClusterB (b) ClusterF (c) ClusterJ (d) ClusterN

Fig. 7: Time series of traf�c volumes for different individual mobile services in the video streaming category, by micro-cluster.

Fig. 8: Total traf�c median week in target and control periods.

weekends for Net�ix, due to the impossibility for people
to enjoy nights out as in pre-pandemic times. Finally, with
COVID-19, private cabs were hired with Uber in a new pattern,
with reduced hours of operation in working days (owing to
no commuting and early curfews), and no evening peaks on
Fridays and Saturdays (due to almost absent nightlife).

Insights. Weekly patterns in the total mobile data traf�c
show changes during COVID-19, which are however mainly
caused by a small subset of popular video streaming apps. In
fact, when the vast majority of mobile services are consumed
does not change in a signi�cant way during the pandemic.

V. SPATIAL ANALYSIS

We now look at whether the temporal changes above occur
homogeneously over the French territory, or are the result of
geographically diverse effects of the epidemics responses. We
leverage data disaggregated at the commune level to this end.

A. Total traf�c

We �rst consider the total mobile data traf�c, and compute
the average traf�c density in each commune during the 2019
control periodT19 and in the target 2020-21 period. Formally,
�dc(T19) = (1 =T19)�

P
t 2 T19

dc(t)=ac, and �dc(T21) = (1 =jT21)�P
t 2 T21

dc(t)=ac, whereac is the area of communec. Since

we are interested in understanding if therelative geographical
distribution of traf�c has changed due to COVID-19, we
standardize over space the traf�c density in each period, as

zc(T19) =
�dc(T19) � 1

jCj
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; (3)
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1
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�dc(T21) � 1
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P
c2C

�dc(T21)
� 2

: (4)

In practice, zc is a measure of how the traf�c density of
communec compares to that of the average French commune.

The difference in the standardized traf�c density between
the 2019 control period and the observed pandemic time span
in 2020-21 is illustrated in Figure 11. The manifest trend is a
signi�cant reduction of the relative importance of cities as the
places where the overall mobile traf�c demands are generated.
Negative differences, in dark blue, pinpoint all large- and
medium-sized urban areas in the country. Zoomed views are
provided in the bottom part of the �gure for the 10 most
populated cities: they show even better how the phenomenon
is strongly localized in urban centers, whereas the surrounding
suburban areas possibly experience a positive difference,i.e.,
increased contribution to the overall traf�c. Indeed, the higher
incidence of countryside regions in also visible at a nationwide
scale, and is especially strong at locations well known to attract
metropolitan inhabitants during vacation periods3.

The result very neatly demonstrates how COVID-19 mea-
sures not only forced inhabitants of major cities at home, so

3We recall that we �lter out vacations, whose impact would be anyway
diluted in seven months: the effect cannot be ascribed to holiday mobility.
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